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Abstract

We present a new method for regularization of ill-conditioned problems, such as
those that arise in image restoration or mathematical processing of medical data. The
method extends the traditional trust-region subproblem, TRS , approach that makes
use of the L-curve maximum curvature criterion, a strategy recently proposed to find
a good regularization parameter. We use derivative information, and properties of
an algorithm for solving the TRS, to efficiently move along points on the L-curve and
reach the point of maximum curvature. We do not find a complete characterization
of the L-curve. A MATLAB code for the algorithm is tested and a comparison to
the conjugate gradient least squares, CGLS, approach is given and analyzed.
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1 Introduction

Regularization centers on finding approximate solutions for least-squares problems such as

min|Gz — ]| 1

where G is a singular or ill-conditioned forward operator and d is a vector of observed data.
(Here we restrict G to being a square n X n matrix.) This problem arises from mathematical
models Gz = d, where the data contains noise 7,

Gz = Gmtrue +n= d= dtrue + 7.

It is remarkable that, for many applications, a small amount of noise 1 can result in a
solution z that has no relation to e, i.e. we can make the size of the error ||n||, arbitrarily
small, while the size of the error in the solution ||z — Z¢wel|, is arbitrarily large. Moreover,
in the G singular case, there can be no solution or an infinite number of solutions Tiyye.
(See e.g. the survey article [26] or the book [1].) The least-squares problem (1) typically
arises from discretizations of linear equations in infinite dimensional spaces, e.g. Tx = d,
where T is typically a compact operator and so has an unbounded inverse. This means that
z is not a continuous function of the data d. Such problems are called ill-posed [14, 15].

To obtain meaningful solutions to the mathematical model one often uses various methods
of reqularization. The aim is to find algorithms for constructing generalized solutions that
are stable under small changes in the data d. One method uses the solution, z(¢), of the
constrained least-squares problem:

re:=r(A a,¢e):= min |Gz — d||, (2)
subject to ||z, < e.

The restriction on ||z||, results in a larger residual error |Gz — d||, but reduces the prop-
agated data error in [|z||,. As e increases we reduce ||Gz(e) —d||, and expect z(e) to
approximate the best least-squares solution Zgue = G dirue, where G denotes the Moore-
Penrose generalized inverse of G. However, in practice the error propagation in z(e) stays
small for small € but then eventually causes divergence of the iterates z(¢) from ¢ye. (See
semiconvergence in [24].) Regularization depends on choosing the correct parameter ¢.

By squaring the objective and the constraint, (2) can be reformulated as the so-called trust

region subproblem, TRS , e.g. [7]:

. . - e T A o T
(TRS ) pe = (A, a,¢) := min g(z) =2 Az — 2a" x

subject to ||:1;||§ < &2,
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where A := GTG is n x n symmetric (we assume n > 2 and G is nonsingular, though
probably ill-conditioned), a := GTd is an n-vector, ¢ is a positive scalar, and z is the
n-vector of unknowns. All matrix and vector entries are real. We let 2* = z(¢) denote
the optimal solution and A* = A(¢) denote the corresponding optimal Lagrange multiplier.
The relation between optimal values is r. = p. + d’d. The TRS can be used to form the
so-called L-curve,

L(G,d) = {(log(e),log ||Gz(c) — d||,) : € > 0, z(e) is optimal for TRS }, (3)

see e.g. Figure 5 below. A strategy introduced recently to find a good (correct) regular-
ization parameter uses the point of maximum curvature on the L-curve, e.g. [17].

In this paper, we apply known results for TRS to efficiently control the parameter
and find regularized solutions of (1). This extends the traditional trust-region approach for
regularization of ill-conditioned problems. We show that this is an effective tool that can
be used in conjunction with the L-curve maximum curvature criterion. We also compare
our approach to the Conjugate Gradient Least Squares method, CGLS, see e.g. [25].

1.1 Outline

In Section 2 we present the basic regularization theory that we need. This includes the ana-
lytic description of the L-curve and its curvature. In Section 3 we present the TRS approach
for regularization and show how it can be used to efficiently control the regularization pa-
rameter using the trust region radius €. The main result, i.e. the regularization algorithm
using differential information for finding the correct regularization parameter, is presented
in Section 4.

Numerical results are presented in Section 5. In Section 5.2 we consider an image
restoration example. Concluding remarks are given in Section 6.

2 Basic Regularization Theory

2.1 Tikhonov Regularization

Regularization dates back to work by Tikhonov [35]. (See also [36].) For the linear equation
Tx = d, one solves the damped normal equation

(TT + oz2I):1ca =T"d, (4)

where T denotes the adjoint of T and d = diye + 1. In this paper we restrict our analysis
to a finite-dimensional discretization of an operator T, represented by a matrix G. We



replace (4) by
(GTG + a2I);r;a = GTd. (5)

Regularization involves choosing the correct value for the parameter o, when given some
information on the size of the error n. A Lagrange multiplier argument shows the equiva-
lence between choosing the correct value for o in (4) and choosing the correct value for ¢

in (2).

2.2 Using Singular Values

The singular value decomposition (SVD) of the matrix G simplifies the understanding of
the L-curve analysis (see Section 2.3). We will write the SVD as G = USV7T, where matrix
S is a diagonal n X n matrix consisting of singular values o; of G, 0y < ... < 0, and U, V
are orthogonal matrices. We can characterize the Tikhonov regularized solution z, using
the SVD in the following way. Substitute the SVD of the matrix G into (5):

(VSUTUSVT + o*I)z, = VSUTd
Vi, = (S?+a20)"15UTd.

Using the orthogonality of the matrices U and V with the so-called Tikhonov filter factors
2

fi= ¢
;= we ge
02-2 + a?’

2 2 -1 T n U?d
Lo = V(S +a I) SU'd = Ei:1 fi—V; (6)
a;
d— Gzy =d— USVTJ:Q = U(I— 5(52 +Oz21)_1S)UTd,

where U,; denotes the 7" column of U. This implies

el = 2, £2( 20

, (7)
|Gra —d|)} = S0, (1 - fi)2<UnT'd> '

We note that ||za||, < ||zoll,, Va > 0, with ||z4||, = 0 as o = co. If G is invertible, then
setting a = 0 gives the unique solution zg, i.e. ||Gzo—d||, = 0 as all filter factors are
equal to one. Moreover, adding uncorrelated noise 7 results in

" (Ul e Ul 2
lolly = D° (Fotme 4+ 220

a a;
i—1 ) 2




These error contributions can be large when we have small singular values and the noise
vector is not orthogonal to the corresponding singular vectors, U,;’s.

In the case of small singular values, the situation continues to be problematic even if the

l]:?dtrue

noise component is absent, i.e. the ratio in (7) implies that we require:

the Fourier coefficients |UZ diye| decay faster than the o; (8)

This condition, known as the Discrete Picard Condition, e.g. [20], guarantees that the
least-squares solution has a reasonable norm and thus is physically meaningful. Example
2.1 and Figure 1 illustrates the difficulties that arise when the Picard condition fails.

Figure 1: Picard plot for a Shaw problem

Example 2.1. We consider a Shaw problem from the Hansen MATLAB package (see [18])
with n = 32. This s a one-dimensional image restoration problem which is constructed via
discretization of a Fredholm integral equation of the first kind (see [31]). The MATLAB
shaw command produces the matrix G and the right-hand side vector dipue, as well as the
true solution vector Tirye.

T
We plot the Fourier coefficients |U:ZT»dtme|, the singular values o; and the ratio M m

Figure 1, marked with o, x, and —, respectively. The Picard condition holds u(;{til the
singular values (line marked with X ) reach the machine epsilon level (horizontal dashed
line). the Picard condition fails for the larger indices due to round-off error. The norm
of the least-squares solution computed via SVD, i.e. by using (7), is ~ 10°; while the true
solution has norm ~ 10. A good approzimation of the true solution is still recoverable via
a truncated SVD, i.e. by setting to 0 all the singular values less than machine epsilon.



Remark 2.1. Suppose that the singular values can be divided into two sets: the large
singular values S;, = {oi,1 = 1...r} and the small singular values Ss = {o;,1 = r+1...n}.
And suppose that the Fourier coefficients {|U:€dtrue|,i =r+1...n} are small, essentially
zero. Then, by the above arqument, we see that the least-squares solution is physically
meaningful. It is interesting, as we shall see below, that this corresponds to the so-called

hard case for TRS.

2.3 The L-curve analysis

We now study the relationship between the norm of the solution |z,||, and the norm of
the residual |Gz, — d||,. The relationship is plotted as the log-log L-curve described in
(3), see e.g. [20]. The curve usually features a strong L-shaped form with almost linear
vertical and horizontal parts and a well distinguishable elbow or corner. (In this paper we
use the nonstandard L-curve with the abscissa as log(||zal|,)-)

Recall the expressions (7) for the norms of the residual and the solution. In the presence

_ Urd Ul 2
2 _ 2 i Ytrue Sl
loalls = 012 (24 1)

2

of noise 7, the latter is

If we assume uncorrelated noise, then the expected value of the Fourier coefficients of 5
are independent of 7, 5<|U:1T»77|> ~ ||n||,,Vi. Therefore the Picard condition fails in the

presence of noise when there are small singular values.

T T L L L L
0 50 100 150 200 250 300 350 400
index, i

Figure 2: Picard plot for the unperturbed right-hand side

For illustration, we consider a deblurring of a 20 x 20 image. (See Section 5.2 for problem
details.) Figure 2 shows the Picard plot for the unperturbed right-hand side. On average



the Fourier coefficients corresponding to the unperturbed data vector decay faster than the
singular values. Hence, the Picard condition holds and the least-squares solution recovers
the true solution in the absence of noise. The Fourier coefficients with noise 7 are plotted

10 T T T T T T T

—— o,

- \u;nl
10° 4 Uin/a|
- average of \uf il

L L L L L L
0 50 100 150 200 250 300 350 400

Figure 3: Picard plot for the noise vector

in Figure 3. Now on average they stay on the same level and hence fail to satisfy the Picard
condition. As expected, the Picard plot for the perturbed (noisy) right-hand side levels off
at approximately ||n||, as shown in Figure 4.

10 T T T T T T T
—— o,

o \u;u\
2

10° H u;d/al . 4
— average of U] d|

L L L L L L
0 50 100 150 200 250 300 350 400
index, i

Figure 4: Picard plot for the perturbed right-hand side

Now we no longer restrict f; = 1 and start looking at solutions z, corresponding to the
different values of the regularization parameter a. Since

i~ 1 ifo; > a
T 0 ifo K a,

9



The filter factors control which terms in the summation contribute to the norm of the
residual and the solution. Figure 5 demonstrates that when the regularization parameter
corresponds to the larger singular values (equivalently ¢ is small), the norm of the residual
varies greatly with a, but the norm of the solution is almost unaffected, since all the terms
corresponding to the smaller singular values are filtered (this is also known as oversmoothing
a solution). This situation gives rise to the vertical part of the L-curve. On the other hand,
when « is small (or equivalently the trust region radius e is large), then small changes in
« results in small changes in the norm of the residual, but can cause large changes in the
norm of the solution. This corresponds to the horizontal part of the L-curve. Depending
on the particular Picard plot, the smoothness of the transition between the vertical and
horizontal parts can vary in a broad range. For example, the L-curve for the deblurring
problem is presented in Figure 5. It is not strongly L-shaped, but it is still possible to
locate a distinguishable elbow. This discussion is relevant only when the log-log scale is
used. In a linear scale the plot is always convex, see e.g. [19].

This behaviour leads to the L-curve criterion for choosing the regularization parameter
proposed in [17, 21], i.e. one chooses the value of the parameter that corresponds to
a point on the L-curve with maximum curvature (details on curvature calculation are
given in Sections 2.3.1 and 2.3.2). A point of maximum curvature coincides with an
elbow that separates the regions where the solution is dominated by regularization errors
(oversmoothing) and perturbation errors.

‘\/ vertical part

residual, [|Gx - d]|

.
10°

solution, [[x||

Figure 5: The L-curve for the deblurring problem
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2.3.1 Curvature of the L-curve

Following [20], see also [16, 21, 17, 16], let
n-= ||$s||§v 1 = logn; p =Gz, — d||§ = fe + de, p = log p.

And, recall the \* = A(¢) is the optimal Lagrange multiplier for TRS. The L-curve is a
plot of 77/2 versus p/2. Then the curvature x of the L-curve, as a function of ¢, is given by

NSyl NI ¥y

Ko =2 PP 9
()2 + (i)™ Y

Under the assumptions made in Section 3.1, n = %, and therefore,

2 2
y="-2 and i = -5

Furthermore,

P A
ol g Mele 2(,%) ‘
E p

Substituting these expressions into (9) we get

! " = 2 2 é 2 2\
wo = 2(opik - B ()4 (2))
= dep. (ff(/l’s)2 — pepil — Euau2’> (ez(u’s)2 + 4#3) (10)
) ~3/2
= &2, <252/\*2 — 2N — ep. (%)) <54/\*2 + ,uf) :
The last equality follows from (15) and (16) derived below.

2.3.2 Curvature Estimation and Gauss Quadrature

The numerical evaluation of the curvature (10) requires the (expensive) derivative % =

e/ (aT(A — /\*I)_3a), see (14) below. This issue is addressed in [10, 11, 2, 12]. One ap-

proach lies in obtaining both upper and lower bounds
(o) < vp(a) = d"G(GTG + al)PGTd < uy(a),

where a = —\* is a positive scalar, p is a negative integer (p = —3,GTG = Aand GTd =«
in (14)). These bounds are obtained using an iterative procedure and become tighter as
the number of iterations, k, increases. We briefly outline the idea.

11



After k iterations applied to G, the Lanczos Bidiagonalization algorithm (e.g. [13]) pro-
duces a (k + 1)-by-k lower bidiagonal matrix

T
o .
B = , with GV = VB, V=[v; ... v,
V&
such that the Gauss and Gauss-Radau quadrature rules for v,(a) are defined as
() = ||GTd|; T (B By, + aI)Pe; = ||d||3 €F By(BE By + aI)?Bf ey, (11)
~ T o~
up(@) = ||GTd||; T (Uy Uy + al)e;. (12)

Here Uy, is (k4 1)-by-k upper bidiagonal matrix obtained from By by a sequence of Givens
rotations and by setting the main diagonal to zero.

Our implementation of the Lanczos Bidiagonalization algorithm allows restarting from
the specified iteration (with vy) if optional parameters are supplied. This enables one to
increase the precision when necessary. This feature is exploited by the main algorithm that
iterates by gradually decreasing . Since for p < 0 and non-singular By, we have that:

liny(a) < oo, limup(a) = oo,

it 1s natural that the bounds weaken as o \ 0, i.e. we need to increase the precision.

Note that evaluating the expressions Gp(«) and R,(«) implies solving linear systems:

(UkTUk +al)x = e,
(BB, + al)x = Ble;.

The above equations are the normal equations for the linear least-squares problem, LLS |

min |[ %, )2 = [, /]

2

. B e
min [ 2 ]2 - [4]]] .
This means that the solution = for the linear least-squares problem satisfies the original
linear system as well. We may, however, exploit the structure of LLS problems and solve
them efficiently by a sequence of Givens rotations that produces the QR factorization.

This approach is described in [6, 8, 38].

12



3 Regularization Using TRS

In this section, we recall some of the details in the Rendl-Wolkowicz TRS algorithm,
[28, 7], denoted RW ;| and apply them to the regularization problem. We show that the
RW algorithm visits a point on the L-curve at each iteration and that the curvature of the
L-curve can be efficiently computed for each such point. Therefore, we can modify the
radius, e, of the trust region to steer the algorithm to the elbow of the L-curve.

3.1 The Optimality Conditions
It is known ([9, 32]) that z* is a solution to TRS if and only if:

(A= X1)z* =a, .
A—NT= 0,1 <0 dual feasibility .
||:c*||§ < g? primal feasibility (13)
/\*(||:1c*||§ - =0 complementary slackness

for some (Lagrange multiplier) A*. The above conditions connect Tikhonov regularization
with TRS , i.e. solving (5) with a particular value of the regularization parameter o
is equivalent to solving (2) with a corresponding value of e. Also, for our applications
A <0 < A(A). Therefore, the optimal solution always lies on the boundary, ||z*||, = ¢,
and the so-called easy case holds for TRS .

3.2 Derivatives of ; and \*
We keep the data A, a fixed and consider the optimal value as a function of ¢ > 0. By

abuse of notation, we write y. = (A, a,e). We assume (as discussed in Section 3.1) that
the easy case holds, and that the optimum point lies on the boundary of the feasible region,
Le. ||z*||, = e.

The derivative % can be found using implicit differentiation on the equation ||(A — )\*I)_laH;—

e? = 0, obtained after the substitution z* = (A — A*I)a, i.e.

al(A—XM1)"%a = &2

2(86’::*)aT(A—/\*I)_3a = 2

and

oN* B €
ds aT(A—XI)3a’

(14)

13



Moreover,

pe = (2*)TAz* — ZaT:z:*
= (l‘*)TAfC = X (lle[l; — &)
= (x *) (A— /\* ) —2aTx* 4+ \*e?

(A M) ta —2a (A—)\*I)_la—l—)\*52
al(A—X1)"ta+ N\t

Then, using a” (A — X\*I)"2a — % = ||z*||3 — &2 = 0, we get

Oke  _ (T(4— XI)2a (<220 1 () 2 4 24

Oe i
= (=2 (aT(A = MI)"2a — ) + 2)e (15)
= 2X¢
and 5 o
He )
=2\ . 1
0c? < e Oe ) (16)

More details on these and other perturbation results can be found in [34].

3.3 Building the L-curve using TRS

If the optimum of TRS is on the boundary, then the objective function of TRS and ¢
correspond to a unique point on the L-curve, and vice-versa. Moreover, each step of the

N

«———— Points visited by the TRS solver

/

B
5,

residual, ||Gx ~ d|

H
o,

fution, [jx||

Figure 6: Points encountered while solving TRS

TRS algorithm produces a solution z that is optimal to TRS with a different, but close,

14



trust region radius e, i.e. the TRS algorithm finds points on the L-curve. E.g. Figure
6 presents an L-curve for a sample Shaw problem created using the Hansen MATLAB
package (see [18]). The TRS algorithm was then executed with the generated data and
a fixed trust region radius ¢ = 6. (The TRS optimum yields a point near the elbow). It
took 8 iterations to solve the trust region subproblem with a desired optimality tolerance
§ = 1078, We obtained four points on the L-curve. (The other four are located outside
the interval of uncertainty.) These four points give enough information to approximate the
vertical part of the L-curve to the left of the elbow.

We will modify the TRS solver to control the trust region radius as we iterate towards the
solution so that each point that we find on the L-curve helps in locating the elbow.

We continue with results from the RW algorithm. By exploiting the strong Lagrangian
duality of TRS (see [33]), TRS can be reformulated as an unconstrained concave maxi-
mization problem, i.e.

fe = Ir;lnrilggc Lz, \) = n/\lgg{rr;mL(:p, A),

where L(z,)\) = 2T Az — 2aTz + M(e? — ||:c||§) denotes the Lagrangian of TRS . Define the
symmetric (n 4+ 1) X (n + 1) matrix

D(t) = {_ta iﬂ , (17)
and let \;(D(#)) denotes its smallest eigenvalue. Further define the concave function
E(t) = (2 4+ )M (D(t) — ¢, t € R, (18)
Then an unconstrained dual problem is given by
pre = maxck(t). (19)

Furthermore, under assumptions of the easy case, A\;(D(t)) is a singleton eigenvalue, and
the derivative of k(t) satisfies

()= (" + Lys — 1, (20)

where (yg?) is the normalized eigenvector for A;(D(t)), scaled so that yo > 0. (Note yo > 0
in the easy case.)

15



3.4 Regularization as a one-dimensional parameterized problem

The L-curve is formed using ¢ in TRS as a parameter and finding the residual for the
corresponding optimal z(e). We now see that the L-curve can be formed using any of the
following parameters:

t — control parameter in k(t), D(t)

¢ — trust-region radius, norm of the solution [|z(¢)||,
a — Tikhonov regularization parameter

A — optimal Lagrange multiplier for TRS

From Section 2.1, we have A = —a?. However, changing between ), ¢ and ¢ is computa-
tionally expensive. the following lemmas describe some of the relationships.

Lemma 3.1. Given the parameter A < 0, the corresponding values of t and ¢ are given by

t = A + d'G(GTG - \I)"'GTd
M(D() = A (21)
2 = dTG(GTG — \I)-2GTd

Proof: The formula for t follows from Proposition 3.1 and Corollary 3.4 in [28]. The
formula for € follows from the optimality conditions (13), since the optimal solution z* to
TRS , that corresponds to the Lagrange multiplier \* = A, lies on the boundary. [ |

Lemma 3.2. Given the parametert < d'd, the corresponding values of \ and ¢ are given

by
A= M(D(t))
2 = 1— yo( ) (22)
Yo(t)?

where y(t) is the eigenvector corresponding to A (D(t)) and yo(t) is its first component.

Proof: The results follow from Theorem 3.7 in [28], e.g. we use the normalized eigenvector
(%E ) and find that yLoil'} is a solution for TRS. This implies

vo +llzll; =1, ally = voe.

16



Corollary 3.1. The derivatives

dA
N = o =(14+)7" >0 (23)
de (1+eH) N 1 y2
5/:%—726 /\/_gs;ﬂ/\s_/\>0, (24)

where ys, As and the formula for X" are given in (25) below.

Proof: We use (20) and (22). The derivative of the smallest eigenvalue (see e.g. [27])
dx  _ da(D()

dt dt
()" 400 (w)

=)' o] ()
= Y3

This yields (23).
For a given ¢, we have k'(t) = (¢? + 1)‘(%‘ — 1 =0 at the optimum ¢. We can differentiate
both sides with respect to ¢ and solve for % to get (24). A formula for A" can be found

in [22, 27, 23], i.e. with v, = (g) denoting the other normalized eigenvectors of D(t) for
D(t)

eigenvalues A, s # 1, and using 2 = = 0, we get
ysyo (ys)®
=2 = -2 . 25
2 T T T e (25)
s#£1 s#£1

Lemma 3.3. Given the parameter ¢ < ||G'd||,, the corresponding values of t and X can
be obtained by solving TRS using the RW algorithm. The corresponding optimal solution
satisfies ||z(e)||, = e.

Proof: The RW algorithm solves TRS with a fixed trust region radius ¢ producing the
optimal solution z(¢), the optimal Lagrange multiplier A*, and the corresponding parameter
t. And, ||z(e)||, = ¢, since the norm of the unconstrained minimum |z*||, = |47 "q||, =

G~ u

Combining the above lemmas we conclude that each of ¢, A\, ¢, a can be interchangeably
used to parameterize the regularization problem.

17



3.5 Intervals of interest for ¢, A and ¢

2

The interval of uncertainty for the Tikhonov regularization parameter is 0 < o < oo.

Using the results in Section 3.4, this corresponds to the following.
Corollary 3.2. The intervals of uncertainty for the parameters are:

—o00 < A=XMN(D(t)) = —a?
0 < t=XA+d"G(GTG — \)"'GTd
0 < e=|(GTG-I)"'GTd|,

N

0
113

<
< |G,

The upper bounds correspond to the linear least squares solution.

Proof: Follows directly from Lemmas 3.1 and 3.2. [ |

Note that if the largest singular value o, of the matrix G is known, the results of Section
2.2 imply that —c? is a lower bound on .

4 Regularization Algorithm

Before presenting the details of the algorithm we state our assumptions and present more
geometry and relations among the various parameters. The key assumption is that the
values of the parameters are in known bounded intervals of uncertainty, as described in
Section 3.5.

First, we observe that the norm of the regularized solution is a monotonic function of both

t and .

Lemma 4.1. ||z(t)|, and ||z(X)||, are monotonically increasing functions of t and A, re-
spectively.

Proof: The lemma follows from Theorem 3.7 in [28]. [ |

Throughout the rest of the paper we will interchangeably use parameters ¢, ¢ and A when
describing points on the L-curve. Hence, if a statement is true for smaller or larger values
of e, it 1s also true for, respectively, smaller or larger values of ¢t and A.

From a given ¢, we can calculate the corresponding ¢ and the value of the objective function
pe = k(t), thus obtaining a point on the L-curve. To analyze the location of a given pair
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(¢, pe) on the L-curve, we need the derivative of [,(¢) := log(||Gz(e) — d|,) with respect
to Ix(e) :=log(||z(e)]],), i.e.

9(l:())/0(e) _ dlog(l|Gz — d]|,))/(e) 9(log(p- +d"d))/0(e)

1
d(l.(¢))/9(e) dlog([z[l,))/a(s) 2 3log(c))/d(e)
1 ple
2u. +d7d (26)
2.
pe +drd’

where ! is found using (15).

To distinguish whether a point lies before (left) or after (right) the elbow, one can test the
value of the derivative. It should be (negative) close to zero if we are at the plateau after
the elbow. Alternatively, the value tends to a large negative number as we approach the
elbow from the left.

4.1 Initial L-curve point

Each iterate of our algorithm increases the value of ¢, i.e. subsequent points are located to
the right of previous ones. Hence, locating the elbow of the L-curve means we start to the
left of it. One way is to start with the point corresponding to A = —c,(G)?, see Sections
2.2 and 3.5.

In the case we do not have the largest singular value of the matrix G, we start with a point
associated with small enough value of t = #. As discussed in Section 2.3, a "well-shaped”
L-curve plot can be viewed as a linear plateau to the right of the elbow and a linear vertical
part to the left of the elbow. For well shaped L-curve plots, small changes in ¢ would
result in large changes in ¢ when we are on the horizontal part. Conversely, large changes
in t result in smalll changes in ¢ when we are on the vertical part. This is explained by
the structure of the singular value decomposition of the matrix G (see Section 2.2). The
behaviour remains true for less well-behaved L-shaped plots. This tells us that points that
lie on the plateau region correspond to the values of # that are very close to d”d. Thus,
taking half of this value will put us onto the vertical part to the left of the elbow.

4.2 Outline of the algorithm

We now describe the details behind the implementation. It can be divided into three parts:
wnitialization, main loop and final solution refinement.
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Algorithm 1: Trust-Region Based Regularization [initialization]

1 compute the largest singular value o, of the matrix G
2 compute the initial bidiagonalization (v, d) of the matrix G using Lanczos
Bidiagonalization algorithm; use d as the starting vector.

3 tlow =0
4 ty, = dtd
— 2
5 )\low = —0,
6 Ayp =20
T Eyp = —1
previous __
8 Kiow ) =00
9 Iiﬁ;emous = 50
10 A = Ao

11 find starting L-curve point parameters [¢, z, k| using (21)

The initialization starts with the computation of the largest singular value of G. This step
is not essential, but is inexpensive and yields a lower bound on the eigenvalue A. If this
step is omitted, then a reasonable value for the parameter ¢, e.g. @, can be used. This

also yields a lower bound on the eigenvalue, see Lemma 3.2.

The more important step is to compute the initial bidiagonalization of the matrix G. This
data is used to estimate the curvature of the L-curve every time a point is obtained. The
details are covered in Section 2.3.2.

We then proceed by getting an initial point on the L-curve. The discussion on getting a
good estimate is in Section 4.1. We assumne that we know the largest singular value of G
and thus start with a value on a parameter A. Hence, to locate a point on the L-curve, we
solve for values ¢, z and k.
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Algorithm 2: Trust-Region Based Regularization [main loop)]

1 while A < ), —107'% do

2 § calculate the slope of the L-curve (26) and ‘f‘i—;‘ (23)
3 e? = ;L'T:L', res®? =k +d'd

4 Lope = Ae?[res?

5 Z—’t\ =(1+&*)™!

6 save current point to the solutions history

7 tlow = t, /\low =)\

8 [Klow, Kup) = curvature(e, res?, \)
9 f termination criteria
10 while curvature value is not certain do
11 if Kjpw > rh e then
12 ‘ DONE, proceed to the final solution refinement
13 end
. previous

14 if Kup < Koy then

previous __
15 ke = Klow

previous __
16 Kb = Kup
17 curvature value is now specified, break
18 else
19 update bidiagonalization (v, d) of G to improve precision
20 [Klow, Kup] = curvature(e, r'esz, by
21 recalculate bounds on gPTeV*ou*
22 end
23 end

24 t update t

25 Etarget = €

26 perform triangle interpolation on the k(#) to get an estimated ¢ for esarger
27 find next L-curve parameters [¢, z, k] using (21)

28 end

The curvature function [Kiow, Kup] = curvature (e, res, A) is found by computing lower and
upper bounds on the curvature using the current Lanczos bidiagonalized approximation,
see Section 2.3.2.

At each iteration the algorithm takes the current point and produces the next one strictly
to the right on the L-curve. There are several possible strategies to achieve this goal. As
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Lemma 4.1 suggests, increasing either one of the parameters ¢, A or ¢ will move us further
to the right. We can compute a step in any of the spaces associated with these parameters.
The hard part, though, is the strategy on choosing the step length. Even a tiny change
in ¢t will lead to the huge change in . Changing ¢ alone involves solving TRS , which we
try to avoid. Instead of relying just on a single parameter, we employ their combination
to compute the step length in the following manner.

The key idea lies in the properties of the function k(). Recall from Section 3.3, that
k(t) = (6* + 1)A — t and p. = max; k(¢). The function k(t) is also concave. Given the
current iterate ¢, and the corresponding e, we consider the function k(¢) with e = £., which
attains its maximum at the point ¢t = ¢.. Consider also the point t,, = d’d. From Section
3.5 we know that k(t,,) = —t.,, = —d’d. Moreover, the derivative is k'(t,,) = —1 and
does not depend on e. At every iteration we have t. < t,,.

k(t)

Figure 7: k(t) and triangle interpolation

In Figure 7 we see the main step of the algorithm. First, we use the tangent lines to
the current curve k(t) at the current point t. and at the upper bound point ¢,,. The
intersection of these two tangent lines yields a new point ¢,.. This new point ¢, corresponds
to an eigenvalue A;(D(t4)) and a trust region radius ¢ = ||z(¢)||,. This new trust region
radius € gives us the new curve k(t) lying below the previous curve. This technique gives
quite good results due to the fact that k(¢) is almost linear on both sides of the maximum.
Moreover, as A gets closer to A1(A), the curve becomes linear to the right of ¢, with slope
—1.

Suppose t; is found using the triangle interpolation above. Since the slope at t,, is —1,
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we have

tup — t4 = k(tC) - k(tuzo)
ty = tup — k(tC) + k(tup)
t+ - —k(tc)

This gives an explicit expression for the iteration
ty =t.— (2 + 1)A(D(t)). (27)

Suppose that we have convergence in t. If we take the limit on both sides of (27), then
t cancel on both sides and we get 0 = (2 4+ 1)A\(D(t)), i.e. the only limit point ¢
satisfies A;(D(t.)) = 0 yielding t* = ¢,, = d"d. Therefore, the iteration cannot terminate
prematurely and ¢, > t. at each iteration. So we only have to worry about stepping too
far, in which case we backtrack appropriately.

With the new t, we can compute both A and ¢ as Lemma 3.2 suggests. Particular details
on the eigenvalue computation are given in Section 5.1.

The termination condition is based on the L-curve maximum curvature criterion, i.e. we
look for a point on the L-curve that has the maximum negative curvature. To locate
such a point we compute the curvature at each step. This computation uses the Gauss
QQuadrature approach which is described in Section 2.3.2. Since we are only getting lower
and upper bounds on the real value of the curvature, it can be difficult to compare values
for two consecutive points. If such a situation is detected, we improve the bidiagonalization
of the matrix GG. This increases the precision in the curvature estimation and, eventually,
allows safe comparison between the curvature at these two points. Since the L-curve is a
convex function near the elbow, we can determine the area of interest by keeping track of
the curvature. Once we get the point with a smaller curvature than the previous one, we
know we have gone too far. The main loop of the algorithm terminates once we have 3
points, such that the middle one has a larger curvature value than the other two. From
the convexity we deduce that the elbow should lie somewhere between the endpoints. The
final refinement step is then performed to estimate the elbow location.
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Algorithm 3: TRS Based Regularization [final solution refinement]

1§ observe interval of last three points left, center, right

(&)

while point of mazimum curvature still can be improved do
3 set A as bisection of either left or right interval

4 find corresponding L-curve point, [t, z, k] = 12t()\)

5 i calculate norm of the residual and e

e? =27z

6
7 res? = k+dld

8 [Klow, kup] = curvature(e, res?, \)

9 if located point has larger curvature then
10 set current point as a solution

11 DONE

12 end

13 shrink interval of uncertainty

14 end

To estimate the elbow location, we proceed with a simple bisection of the left and right
intervals trying to find a point with the maximum curvature value. We stop once we have
got a point with a curvature value larger than the one we have seen so far.

5 Numerics

5.1 Eigensolver issues

As shown above, obtaining a new L-curve point means solving for the smallest eigenpair of
the matrix D(¢). In the case G is large and sparse, the same is true for D(t), so one should
use matrix-free iterative algorithms to compute the eigenpairs, e.g. Lanczos methods. As
t increases, the smallest eigenvalue may become numerically closer to the second one. This
can substantially slow down the eigensolver.

Under such numerical degeneracy an algorithm may converge to a wrong eigenpair, giving
an incorrect eigenvector and an incorrect regularized solution. One way to control the
eigensolution is to start with an initial eigenvalue smaller than the estimated one and,
at the same time, relatively close to it. For iterative algorithms, it i1s possible to store
previous eigenvalue results to re-use on the next step as an initial guess. This works only
if the eigenvalue is about to increase at every subsequent iteration.
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We have employed this method in our Regularization Algorithm and it proved to be very
efficient. We have used the MATLAB eigs routine which uses a Lanczos-type matrix-free
algorithm. With a good initial eigenvalue guess, this method computes eigenvalues in time
independent of the gap between the first and second eigenvalues.

Another approach that can be used is to apply a spectral transformation to separate the
first and second eigenvalues, i.e. preconditioning. In particular, a Tchebyshev polynomial
transformation is discussed in [29] and [30].

5.2 Image deblurring example

We demonstrate how the algorithm works by considering a sample problem of deblurring
an image. Problems of this nature occur often. For instance, one might need to deblur a
photo taken by a space telescope or a satellite, see e.g. the forthcoming book [37].

10F
15-

L L L L L L L |
5 10 15 20 25 30 35 40

Figure 8: Image deblurring example: original picture

For this particular example we take an image generated by the Hansen MATLAB package
([18]). This package provides an excellent set of regularization tools that can be used for
demonstration purposes. Figure 8 shows the image generated by the blur command. This
command also produces the blurring matrix G and the right-hand side d, i.e. observed
data, computed as d = Gxiye + 7. Where n represents the noise. Figure 9 shows the
observed image.

The generated image is a 40-by-40 grayscale picture, which is stored as a vector x ¢y, of size
1600. This vector is formed by stretching the image matrix into a single column. Every
component z!, . represents the brightness of the pixel, measured from 0 for the white to
3 for the black (see the colorbar). The matrix G stands for the operator that represents
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5 10 15 20 25 30 35 40

Figure 9: Image deblurring example: observed data, blurred with added noise

degradation of the image caused by atmospheric turbulence blur, modelled by a Gaussian

1 1,2 _I_ y2
h.y) = 9ma? P (_ )

202

Taking a symmetric banded Toeplitz matrix 7" with the first row:

{e—(i—l)z/w 1<i<b,
Z; =

point-spread function,

0 b<i1 <40
21 Z2 e Z40
22 ZS21 22 239

T = . ;
Z40 <39 238 ... 21

matrix G is constructed as G = (2#02)_1T ® T, where ® denotes the Kronecker product.

Here parameter o controls the smoothness (by defining the shape of the Gaussian point
spread), and b stands for the bandwidth. Since only non-zero elements are within a distance
b— 1 from the diagonal of the matrix 7', it can be stored in a sparse format. It also follows
that matrix GG is sparse. Hence, we have an example of a large sparse problem.

For our example we fix the parameters to be 0 = 1, b = 5. Noise 1 has a normal distribution
with the mean of 0 and the standard deviation of 0.05.

Before running the algorithm, we construct the L-curve to get an idea where the solution
is located. We can see that the curve is not strongly L-shaped, but we can still distinguish
both vertical and horizontal parts. (See Figure 10.) We also build a plot (dashed line) that
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best possible Tikhonov solution

residual, ||Gx ~ d|

.
10°
solution, [x/|

Figure 10: Image deblurring example: corresponding L-curve

shows how well the points on the L-curve approximates the true solution, i.e. for every

Ttrue — T . .
point = we determine the quantity u which we treat as the relative accuracy; the

[ truel
smaller the value, the better the approximation we obtain. The minimum corresponds to

the best possible solution that can be obtained using the Tikhonov regularization approach.

Then we run the RPTRS algorithm, see Figure 11. For each point it visits, we present
the associated solution image. See Figures 16, 17, 18, 19, 20, 21. We can follow how
the solution transforms as we go along the curve. For smaller values of the paramter ¢
the solution appears to be very smooth. The noise components are almost eliminated for
these solutions. However, as we increase the regularization parameter, the noise starts to
evolve. At the same time, pictures become sharper and represent a better approximation
to the true solution. This behaviour continues until we hit the point #5 (see Figure 20).
Suddenly, the noise components overcome the real signal and the solution becomes less
distinguishable. Finally, the situation becomes even worse at the last point. The least-
squares solution consists mostly of the noise components and contains practically no signal
information.

The algorithm, however, observes the changes in the curvature value and backtracks, trying
to locate the elbow. Figure 11 demonstrates the steps that are taken. Points marked with
x (cross) are those visited during the main loop, and circles denote the final refinement
steps. The algorithm terminates after locating the point closest to the point of the largest
curvature (on the convex part). This point is returned as the solution. Note the proximity
to the best possible Tikhonov solution. The final RPTRS solution is shown on Figure 12.

For more information and techniques on image de-blurring problems, we note the ongoing
research based on wavelets (see e.g. [3, 4, 5]). We do not perform any comparison with
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RPTRS solution

residual, [|Gx - di|
_—
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solution, |||

Figure 11: Image deblurring example: corresponding L-curve with RPTRS points

these techniques in this paper.

o

Figure 12: Image deblurring example: RPTRS solution picture

5.3 Comparison with CGLS

We compare our approach to the conjugate gradients based method for solving the least-
squares problems CGLS. CGLS is one of the most robust regularization techniques that
can handle very large problem instances. This method, described in [25] (see also [16]),
applies conjugate gradients (CG) to the normal equations T*T'xz = T*d along with an early
termination criteria to obtain the regularized solution. The stopping condition is based
on the discrepancy principle, i.e. the method terminates once the residual is smaller than
some prescribed bound §. Typically, the value of § is based on the norm of the noise.
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Figure 13: Image deblurring example: corresponding L-curve with CGLS points

CGLS solution

residual, ||Gx ~ d|
o

. ——_

\
\
/ X —— RPTRS solution

best Tikhonov solution

solution, [[x]|

Figure 14: Image deblurring example: CGLS, RPTRS, z{.4e, best Tikhonov solutions

We applied the CGLS algorithm on the data from the previous example supplying ¢ to be
precisely the norm of the noise, i.e. § = ||n||,. In some sense this corresponds to the best
case for CGLS. The results are presented in Table 5.2 and Figure 13. The CGLS points
are shown as circles above the L-curve. The CGLS solution is almost as good as the best
Tikhonov solution. This result is not unusual and emphasizes the fact that the method was
applied with exact knowledge of the noise. However, comparing both CGLS and RPTRS
solutions to the true one (see Figure 14), we see that both methods achieve practically the
same accuracy.

The RPTRS algorithm, though, does not require a specific value of the norm of the noise.
This is a big advantage in a sense that CGLS might perform very poorly if supplied
with slightly smaller (or larger) value of §. Figure 15 illustrates this situation. Running
CGLS with 6 = 0.6|n||, results in a larger number of iterations (31 comparing to 6 with
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Figure 15: Image deblurring example: CGLS with 6 = 0.6 ||n||,, rel.acc. = 52%

HH# |z, |Gz — d||, | accuracy [%]
1] 3.8162e+001 | 6.9804e4-000 47.59
2 | 3.9849e+001 | 3.9256e+000 41.83
3 | 4.0593e+001 | 2.8676e+000 38.99
4 | 4.1045e+001 | 2.3920e-+000 36.97
5 | 4.1406e+001 | 2.1105e+000 35.51
6 | 4.1706e+001 | 1.9309e-+000 34.41

Table 1: Data for points visited by the CGLS algorithm with § = ||5]|,

d = |Inll,) and the computed solution is much worse now. This shows the importance of a
robust stopping criteria that does not rely on the possibly uncertain data.

The main advantage of the CGLS method is its speed. Each iteration of the algorithm
requires only several matrix-vector multiplications, where only the original matrix G is
used. This allows for solutions of problems that involve large sparse matrices which are
never formed explicitly. At the same time, the RPTRS algorithm can be viewed as a matrix-
free iterative algorithm based on the Lanczos method that features conjugate gradients
steps as well. This leads to a conclusion that combining both approaches may result in a
better algorithm that can provide a reliable and a fast way to locate a regularized solution
in the absence of any certain knowledge about the noise.
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HH# |z, |Gz — d||, | accuracy [%] | time t A
1| 1.8573e+001 | 2.0010e+4001 65.39 | 2.794 | 652.166 | -9.8851e-001
2 | 2.8472e+001 | 1.1095e+4001 49.63 | 3.054 | 994.155 | -3.4166e-001
3| 3.7079e+001 | 4.0222e-+000 38.07 | 3.014 | 1271.46 | -7.7717e-002
41 4.1957e+001 | 1.5642e-+000 31.82 | 3.695 | 1378.38 | -7.7959e-003
5| 4.9732e+001 | 1.0570e+000 57.14 | 6.509 | 1392.12 | -5.3731e-004
6 | 6.8218e+001 | 7.9497e-001 116.29 | 5.558 | 1393.45 | -1.0426e-004
+1 | 4.2910e+001 | 1.4078e+000 32.63 | 2.834 | 1384.90 | -4.1666e-003
+2 | 5.3732e+001 | 9.7305e-001 71.49 | 2.794 | 1392.69 | -3.2078e-004
+3 | 4.3991e+001 | 1.2993e4-000 35.36 | 2.824 | 1388.32 | -2.3520e-003

Table 2: Data for points visited by the RPTRS algorithm
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Figure 16: Image deblurring example: point #1, t = 652.166, rel.acc. = 65.39%

6 Conclusion

31

We have applied ideas from the RW algorithm for TRS to efficiently find the point of maxi-
mum curvature on the L-curve. This provides a regularization procedure for ill-conditioned
problems Gz = d. We have taken advantage of the fact that each iteration of the RW algo-
rithm corresponds to a point on the L-curve. We implicitly change the trust region radius
while applying the RW algorithm. The changes drive the algorithm to the correct radius
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Figure 17: Image deblurring example: point #2, t = 994.155, rel.acc. = 49.63%
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Figure 18: Image deblurring example: point #3, t = 1271.46, rel.acc. = 38.07%

that corresponds to the elbow, the point of maximum curvature on the L-curve.
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Figure 19: Image deblurring example: point #4, t = 1378.38, rel.acc. = 31.82%

Figure 20: Image deblurring example: point #5, t = 1392.12, rel.acc. = 57.14%
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Figure 21: Image deblurring example: point #6, t = 1393.45, rel.acc. = 116.29%
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