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Levent Tunçel Henry Wolkowicz

September 15, 2008

University of Waterloo
Department of Combinatorics & Optimization

Waterloo, Ontario N2L 3G1, Canada
Research Report CORR 2008-07

Key words and phrases: Cone Optimization, Duality, Constraint Qualification, Semidefinite
Programming, Strict Complementarity, Nice Cones, Devious Cones.

AMS subject classifications: 90C46, 90C22, 49K40, 90C31

Abstract

The elegant results for strong duality and strict complementarity for linear programming,
LP , can fail for cone programming over nonpolyhedral cones. One can have: unattained optimal
values; nonzero duality gaps; and no primal-dual optimal pair that satisfies strict complemen-
tarity. This failure is tied to the nonclosure of sums of nonpolyhedral closed cones.

We take a fresh look at known and new results for duality, optimality, constraint qualifica-
tions, and strict complementarity, for linear cone optimization problems in finite dimensions.
These results include: weakest and universal constraint qualifications, CQs ; duality and char-
acterizations of optimality that hold without any CQ ; geometry of nice and devious cones; the
geometric relationships between zero duality gaps, strict complementarity, and the facial struc-
ture of cones; and, the connection between theory and empirical evidence for lack of a CQand
failure of strict complementarity.

One theme is the notion of minimal representation of the cone and the constraints in order
to regularize the problem and avoid both the theoretical and numerical difficulties that arise due
to (near) loss of a CQ . We include a discussion on obtaining these representations efficiently.
A parallel theme is the loss of strict complementarity and the corresponding theoretical and
numerical difficulties that arise; a discussion on avoiding these difficulties is included. We
include results and examples on the surprising theoretical connection between duality, strict
complementarity, and nonclosure of sums of closed cones.

Our emphasis is on results that deal with Semidefinite Programming, SDP .
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1 Introduction

In this paper we study duality and optimality conditions for the (primal) conic optimization problem

vP := sup
y
{by : A∗y �K c}, (P)

where: A : V → W is a (onto) linear transformation between two finite dimensional inner-product
spaces; A∗ denotes the adjoint transformation; K is a convex cone; and �K denotes the partial
order induced by K, i.e., c−A∗y ∈ K. We assume that vP is finite valued. This programming model
has been studied for a long time, e.g., in [20] as a generalization of the classical linear program,
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LP , i.e., the case where K is a polyhedral cone. More recently, many important applications have
arisen for more general nonpolyhedral cones. This includes the case when K is the cone of positive
semidefinite matrices, Sn

+ ; then we get semidefinite programming, SDP . Another important case
is K = SOC 1 ⊕ . . .⊕ SOC k, a direct sum of second order (Lorentz) cones.

We use the subspace form for (P) and derive new characterizations of optimality without any
constraint qualification, CQ, as well as new CQs including a universal constraint qualification,
UCQ , i.e., a CQthat holds independent of the data b, c. In addition, we study the geometry
of nice and devious cones and the relationship that lack of closure has to both strong duality and
zero duality gaps; and, we provide characterizations for a zero duality gap. We include a surpris-
ing connection between duality gaps and the failure of strict complementarity in the homogeneous
problem.

A major theme is showing that using minimal representations of the linear transformation A
and/or the cone K regularizes a cone program. This justifies the pleasing paradigm: efficient
modelling provides for a stable program.

We include a discussion on an efficient auxiliary problem for regularization in the absence of
the Slater CQ, and an algorithm that efficiently solves ill-posed problems where the Slater CQ can
fail. (This relates to the ongoing work in [53].) In addition, we collect many results on the facial
structure of the cone optimization problems.

1.1 Background and Motivation

The research areas related to cone optimization, and in particular to SDPand SOC , remain very ac-
tive, see e.g. [62, 56, 2, 31, 66, 33, 38, 28] and URL: www-user.tu-chemnitz.de/˜helmberg/semidef.html.
Optimality conditions and CQs have been studied in e.g., [20, 26, 51] and more recently for both
linear and nonlinear problems in e.g., [54]. (See the historical notes in [54, Sect. 4.1.5].) Optimality
conditions and strong duality without a CQ have appeared in e.g., [14, 12, 11, 13, 46, 47].

Both strong duality and strict complementarity behave differently for general cone optimization
problems, compared to the LP case. First, strong duality for a cone program can fail in the absence
of a CQ, i.e., there may not exist a dual optimal solution and there may be a nonzero duality
gap. In addition, the (near) failure of the Slater CQ (strict feasibility) has been used in complexity
measures, [49, 50]. Moreover, numerical difficulties are well correlated with (near) failure of the
Slater CQ, see [22, 23]. Similarly, unlike the LP case, there are general cone optimization problems
for which there does not exist a primal-dual optimal solution that satisfies strict complementarity,
see e.g. [62] for examples. See [24] for the LP result. Theoretical difficulties arise, e.g., for local
convergence rate analysis. Again, we have that numerical difficulties are well correlated with
loss of strict complementarity, see [60]. An algorithm for generating SDPproblems where strict
complementarity fails, independent of whether the Slater CQholds or not, is also given in [60].

Connections between weakest CQs and the closure of the sum of a subspace and a cone date
back to e.g. [26]. We present a surprising theoretical connection between strict complementarity of
the homogeneous problem and duality gaps, as well as show that both loss of strict complementarity
and strong duality are connected to the lack of closure of the sum of a cone and a subspace.

Examples where no CQ holds arise in surprisingly many cases. For example, Slater’s CQ fails
for many SDP relaxations of hard combinatorial problems, see e.g. [63, 64, 4]. A unifying approach
is given in [57]. Another case is the SDP that arises from relaxations of polynomial optimization
problems, e.g. [58]. Current public domain codes for SDPare based on interior-point methods and
do not take into account loss of Slater’s CQ(strict feasibility) or loss of strict complementarity.
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Both of these conditions can result in severe numerical problems, e.g., [60, 22, 58]. A projection
technique for handling these cases is given in [53].

1.2 Outline

In Section 2 we present the notation and preliminary results. We introduce: the subspace forms for
the cone optimization in Section 2.1.1; the complementarity partition and minimal sets in Section
2.1.3; facial properties in Sections 2.2.1 and 2.2.2; and nice and devious cones in Section 2.2.3. We
include many relationships for the facial structure of the cone optimization problems.

The strong duality results, with and without CQs , and the CQsand UCQ , are presented in
Section 3, see e.g. Theorem 3.10.

We study the failure of duality and strict complementarity in Section 4. This includes a char-
acterization for a zero duality gap in Section 4.1. The surprising relation between duality gaps and
strict complementarity of the homogeneous problem, is given in Section 4.1.2, see e.g. Theorems
4.10 and 4.14.

Our concluding remarks are in Section 5.
Due to the many definitions, we have included an index at the end of the paper; see page 35.

2 Notation and Preliminary Results

The set K is a convex cone if it is a cone, i.e., it is closed under nonnegative scalar multiplication,
λK ⊆ K,∀λ ≥ 0, and, it is also closed under addition K + K ⊆ K. The cone K is a proper cone
if it is closed, pointed, and has nonempty interior. We use S to denote closure, preclS = S\S to
denote the preclosure of a set S. We let conv S denote the convex hull of the set S and cone S
denote the convex cone generated by S. (By abuse of notation, we use cone s = cone {s}, for a
single element s. This holds similarly for e.g. s⊥ = {s}⊥ and other operations that act on single
element sets.) The dual or nonnegative polar cone of a set S is S∗ := {φ : φs ≥ 0, ∀s ∈ S}. In this
paper we use φs = 〈φ, s〉 to denote the inner-product of φ and s by juxtaposition, if the meaning is
clear. In particular, for the space of n× n symmetric matrices, Sn, we use the trace inner-product
φs = trace φs, i.e., the trace of the product of the matrices φ and s. We denote the dimension of
Sn by dim Sn = t(n) := n(n + 1)/2. We let ei denote the ith unit vector of appropriate dimension,
and Eij denote the (i, j)th unit matrix in Sn, i.e., Eii = eie

T
i and if i 6= j, Eij = eie

T
j + eje

T
i . By

abuse of notation, we let xij denote the ij element of x ∈ Sn.
The ray generated by s ∈ K is called an extreme ray if 0 �K u �K s implies that u ∈ cone s.

The subset F ⊆ K is a face of the cone K, denoted F � K, if

(s ∈ F, 0 �K u �K s) implies (cone u ⊆ F ) . (2.1)

Equivalently, F � K if
(

x, y ∈ K, 1
2(x + y) ∈ F

)

=⇒ (cone {x, y} ⊆ F ). If F � K but is not equal
to K, we write F � K. If 0 6= F � K, then F is a proper face of K. (Similarly, S1 ⊂ S2 denotes
a proper subset, i.e. S1 ⊆ S2, S1 6= S2.) For S ⊆ K, we let face S denote the smallest face of K
that contains S; equivalently face S is the intersection of all faces containing S. A face F � K is
an exposed face if it is the intersection of K with a hyperplane. The cone K is facially exposed if
every face F � K is exposed. If F � K, then the conjugate face is F c := K∗ ∩{F}⊥. Note that the
conjugate face F c is exposed using any s ∈ relint F , i.e., F c = K ∩ s⊥,∀s ∈ relint F .
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We denote by�K the partial order with respect to K. That is, x1 �K x2 means that x2−x1 ∈ K.
We also write x1 ≺K x2 to mean that x2 − x1 ∈ int K. In particular, K = Sn

+ yields the partial
order induced by the cone of positive semidefinite matrices in Sn, i.e., the so-called Löwner partial
order.

We consider the following pair of dual conic optimization problems in standard form:

vP := sup
y
{by : A∗y �K c}, (P)

vD := inf
x
{cx : Ax = b, x �K∗ 0}, (D)

where the data (A,K, b, c) are defined above. Throughout, we assume that the optimal value vP is
finite. Weak duality holds for any primal-dual feasible solutions y, x, i.e., if s = c−A∗y �K 0,Ax =
b, x �K∗ 0, then we get

by = (Ax)y = (A∗y)x = (c− s)x ≤ cx. (Weak Duality)

Denote the feasible solution sets of (P) and (D) by

Fy
P = Fy

P (c) = {y : A∗y �K c}, Fx
D = Fx

D(b) = {x : Ax = b, x �K∗ 0}, (2.2)

respectively. The set of feasible slacks for (P) is

Fs
P = Fs

P (c) = {s : s = c−A∗y �K 0, for some y}. (2.3)

We allow for the dependence on the parameters b and c. Similarly, the optimal solution sets are
denoted by Os

P ,Oy
P ,Ox

D. Moreover, the pair of feasible primal-dual solutions s, x satisfy strict
complementarity if

s ∈ relint FP and x ∈ relint F c
P , for some FP � K,

or
s ∈ relint F c

D and x ∈ relint FD, for some FD � K∗.
(SC)

(Note that this implies s + x ∈ int (K + K∗), see Proposition 2.16 part 1, below.)
The usual constraint qualification, CQ, used for (P) is the Slater condition, i.e., strict feasibility

A∗ŷ ≺ c (c −A∗ŷ ∈ intK). If we assume Slater’s CQ holds and the primal optimal value is finite,
then strong duality holds, i.e., we have a zero duality gap and attainment of the dual optimal value,
Ox

D 6= ∅,
vP = vD = cx∗, for some x∗ ∈ Fx

D. (Strong Duality)

2.1 Subspace Form, Recession Directions, and Minimal Sets

2.1.1 Subspace Form for Primal-Dual Pair (P) and (D)

Suppose that s̃, ỹ, and x̃ satisfy
A∗ỹ + s̃ = c, Ax̃ = b. (2.4)

Then, for any feasible primal-dual triple (x, y, s), where s is, as usual, the primal slack given by
s = c−A∗y, we have cx̃ = (A∗y + s)x̃ = by + sx̃. Therefore, the objective in (P) can be rewritten
as

sup
y

by = sup
s

(cx̃− sx̃) = cx̃− inf
s

sx̃.
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We let L denote the nullspace N (A) of the operator A. Then

Fs
P = Fs

P (c) = (c + L⊥) ∩K = (s̃ + L⊥) ∩K. (2.5)

In addition, for x ∈ x̃ + L, we get cx = (A∗ỹ + s̃)x = s̃x +A∗ỹx̃ = s̃x + ỹb. We can now write the
primal and dual conic pair, (P) and (D), in the so-called subspace form (see e.g., [39, Section 4.1]):

vP = cx̃− inf
s
{sx̃ : s ∈ (s̃ + L⊥) ∩K}, (2.6)

vD = ỹb + inf
x
{s̃x : x ∈ (x̃ + L) ∩K∗}. (2.7)

The symmetry means that we can directly extend results proved for (2.6) to (2.7). Note that we
have much flexibility in the choice of s̃ and x̃. In particular, if (2.6) and (2.7) are feasible, we may
choose s̃ ∈ Fs

P and x̃ ∈ Fx
D, and in the case that the optimal values are attained, we may choose

s̃ ∈ Os
P and x̃ ∈ Ox

D.

Proposition 2.1 Let s̃, ỹ, and x̃ satisfy (2.4). Then (2.6) and (2.7) are a dual pair of cone opti-
mization problems equivalent to (P) and (D), respectively. Moreover, (P) (resp. (D)) is feasible if
and only if s̃ ∈ K + L⊥ (resp. x̃ ∈ K∗ + L). �

2.1.2 Assumptions

Note that we can shift the data c using any element from R(A∗).

Lemma 2.2 Let ȳ ∈ W. If c is replaced by c̄ = c − A∗ȳ, then the optimal value is shifted to
vP −〈b, ȳ〉, and the new feasible set contains y = 0. Moreover, the set of optimal solutions is shifted
to the set Oy

P − {ȳ}.

Proof.
Note that

vP = supy{by : A∗y �K c}
= supy{by : A∗y −A∗ȳ �K c̄ = c−A∗ȳ}
= supy{b(y − ȳ) + bȳ : A∗(y − ȳ) �K c̄}
= bȳ + supw{bw : A∗w �K c̄}.

�

Corollary 2.3 For (P), we can assume that at least one of the following holds:

c ∈ N (A) or c ∈ K −K.

Proof.
From Lemma 2.2, we can shift c with the projection of c onto R(A∗), i.e., we get an equivalent
problem with c← c− PR(A∗) ∈ N (A). Alternatively, we can shift c with A∗yc for yc that satisfies
A∗yc + kc = c, for some kc ∈ K −K. This latter set must be nonempty since the optimal value vP

is finite. We get an equivalent problem with c← c−A∗yc = kc ∈ K −K. �

Assumption 2.4 In this paper, the following assumptions are made (when needed).
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1. K is a convex cone, and vP is finite valued.

2. c ∈
{

N (A) if intK 6= ∅
K −K if intK = ∅

3. s̃, ỹ, x̃ satisfy (2.4) in the subspace forms (2.6) and (2.7). If b, c are not specified, then we set
c = A∗ỹ + s̃ and b = Ax̃. �

2.1.3 Complementarity Partition and Minimal Sets

Denote the minimal faces for the homogeneous problems (recession directions) by

f0
P := faceFs

P (0) = face
(

L⊥ ∩K
)

, (2.8)

f0
D := faceFx

D(0) = face (L ∩K∗) . (2.9)

(For connections between recession directions and optimality conditions, see e.g., [5, 10, 1].) Note
that f0

P ⊆ (f0
D)c (equivalently, f0

D ⊆ (f0
P )c).

Definition 2.5 The pair of faces F1 � K,F2 � K∗ form a complementarity partition of K,K∗ if
F1 ⊆ F c

2 . (Equivalently, F2 ⊆ F c
1 .) The partition is proper if both F1 and F2 are proper faces. The

partition is strict if (F1)
c = F2 or (F2)

c = F1.

We now see that we can assume F1 � F c
2 and F2 � F c

1 in Definition 2.5.

Lemma 2.6 Suppose that F � K, G � K, and F ⊆ G. Then F � G.

Proof.
Suppose that s ∈ F , and 0 �G u �G s. This implies s ∈ F and 0 �K u �K s, since G � K. We
now conclude that cone u ⊆ F , since F � K, i.e., the definition (2.1) is satisfied. �

The following proposition is well-known. We include a proof for completeness.

Proposition 2.7 For every linear subspace L, the pair of faces (f0
P , f0

D) form a complementarity
partition of K,K∗. The partition is strict if K is a polyhedral cone.

Proof.
That the faces form a complementarity partition is clear from the definitions that use the orthogonal
subspaces L,L⊥. Next, we apply linear programming duality to the homogeneous primal dual pair,
i.e., with data b = 0 and c = 0. Since both the primal and dual problems are feasible, we know
that a strict complementarity optimal primal-dual pair s̄ ∈ K, x̄ ∈ K∗, s̄ + x̄ ∈ int (K + K∗) exists,
[24]. E.g., for K = K∗ = Rn

+ , we get s̄ + x̄ > 0 and necessarily (f0
P )c = f0

D. �

Example 2.8 Generating examples where we have a proper, not strict, complementarity partition
is easy. We use K = K∗ = Sn

+ and the algorithm in [60] to generate A so that we have (f0
P )c ∩

(f0
D)c 6= {0}. Here the linear transformation A∗y =

∑m
i=1 yiAi for given Ai ∈ Sn, i = 1, . . . , n. The

main idea is to start with
[

QP QN QD

]

an orthogonal matrix; and then we construct one of the
m matrices representing A as

A1 =
[

QP QN QD

]





0 0 Y T
2

0 Y1 Y T
3

Y2 Y3 Y4





[

QP QN QD

]T
,
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where Y1 ≻ 0, Y4 symmetric, and QDY2 6= 0. The other matrices Ai ∈ Sn are chosen so that the
set {A1QP , . . . , AmQP } is linearly independent.

The minimal face of (P) is the face of K generated by the feasible slack vectors; while the
minimal face for (D) is the face of K∗ generated by the feasible set, i.e., we denote

fP := faceFs
P , fD := faceFx

D.

Note that both fP = fP (s̃) and fD = fD(x̃), i.e., they depend implicitly on the points s̃, x̃ in the
subspace formulations (2.6) and (2.7). The primal and dual minimal subspace representations of
L⊥ and of L, respectively, are given by

L⊥PM := L⊥ ∩ (fP − fP ), LDM := L ∩ (fD − fD). (2.10)

The cone of feasible directions at ŷ ∈ Fy
P is

D≤
P (ŷ) = cone

(

Fy
P − ŷ

)

. (2.11)

We similarly define the cones D≤
P (ŝ),D≤

D(x̂). For these three cones, we assume that ŷ, ŝ, x̂ are
suitable feasible points in Fy

P ,Fs
P ,Fx

D, respectively. The closures of these cones of feasible directions
yield the standard tangent cones, denoted TP (ŷ), TP (ŝ), TD(x̂), respectively. (See e.g., [18, 8].) Note
that if the primal feasible set is simply K, the cone of feasible directions corresponds to the so-called
radial cone.

Proposition 2.9 ([59, 55]) Let K be closed. Then K is a polyhedral cone if and only if at every
point ŝ ∈ K, the radial cone of K, cone (K − ŝ), at ŝ is closed. �

Example 2.10 We now look at three examples that illustrate the lack of closure for nonpolyhedral
cones, e.g. in each instance we get

K + span f0
P ( K + span f0

P = K + ((f0
P )c)⊥. (2.12)

The lack of closure in (2.12) can be used to find examples with both finite and infinite positive
duality gaps; see Theorem 4.3 below.

1. First, let n = 2 and L in (2.6) and (2.7) be such that L⊥ = span {E22, E13}. Then f0
P =

cone {E22} and f0
D = cone {E11}. Therefore, f0

P = (f0
D)c and f0

D = (f0
P )c, i.e., this is a strict

complementarity partition. Moreover, (2.12) holds e.g. E12 ∈ (f0
P )⊥ ∩ (f0

D)⊥ and

E12 = lim
i→∞

([

1/i 1
1 i

]

− iE22

)

∈
(

S2
+ + (f0

D)⊥
)

∖(

S2
+ + span f0

P

)

= precl
(

S2
+ + span f0

P

)

.

2. Now, let n = 3 and suppose that L⊥ = span {E33, E22 + E13}. Then f0
P = cone {E33} and

f0
D = cone {E11}. Therefore, f0

P ( (f0
D)c, i.e., this is not a strict complementarity partition.

In addition, note that (2.12) holds and moreover, if we choose s̃ = x̃ = E22 ∈ (f0
P )c ∩ (f0

D)c,
then E22 ∈ precl (L+ (face s̃)c) ∩ precl

(

L⊥ + (face s̃)c
)

. This means that s̄ = x̄ = E22 is both
primal and dual optimal, see Theorem 4.3, below.
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3. Similarly, we can choose L⊥ = span {E22, E33, E23, E11 + E12}. Then f0
P = face {E22, E33}

and f0
D = {0}. Again, f0

P ( (f0
D)c = S3

+, i.e., this is not a strict complementarity partition.
Moreover, similar to part 2, we can choose s̄, x̄ appropriately, and find points in precl(L +
(face s̄)c) and precl(L⊥ + (face x̄)c).

�

All instances in the above Example 2.10 have the facial block structure





f0
D 0 0
0 0 0
0 0 f0

P



. Viz., the

matrices in f0
D are nonzero only in the (1, 1) block, and the matrices in f0

D are nonzero only in the
(3, 3) block. We now formalize the concept of such block structure for Sn in the following definition
and lemma. (These may be extended to more general cones using appropriate bases.)

Definition 2.11 The support of x ∈ Sn is S(x) := {(ij) : xij 6= 0}.

Lemma 2.12 Let K := Sn
+ .

1. There exists an orthogonal matrix Q and integers 0 ≤ kD < kP ≤ n + 1 such that

x ∈ f0
D, (ij) ∈ S(QT xQ) =⇒ max{i, j} ≤ kD, (2.13)

and
s ∈ f0

P , (ij) ∈ S(QT sQ) =⇒ min{i, j} ≥ kP . (2.14)

2. Let n ≥ 3 and suppose the subspace L is such that the complementarity partition (f0
P , f0

D) is
not strict. Then, there exists an orthogonal matrix Q and integers 1 ≤ kD < kP − 1 ≤ n− 1
such that (2.13) and (2.14) hold.

Proof.
We can choose x = QxDxQT

x ∈ relint f0
D and s = QsDsQ

T
s ∈ relint f0

P , where Qx, Qs has orthonor-
mal columns (of eigenvectors) and both Dx and Ds are diagonal positive definite. Choose Qr so
that Q :=

[

Qx Qr Qs

]

is an orthogonal matrix. Then this Q does what we want, since f0
P f0

D = 0.
�

2.2 Facial Properties

We now collect some interesting and useful facial properties for general convex cones K. Further
results are given in e.g. [40, 7, 15, 6].

2.2.1 Faces of General Cones

Recall that a nonempty face F �K is exposed if F = φ⊥∩K, for some φ ∈ K∗. Note that the faces
of K are closed if K is closed.

Proposition 2.13 Let K be closed and ∅ 6= F � K. Then:

1. (F − F ) ∩K = (span F ) ∩K = F .

2. F cc = F if and only if F is exposed.

9



3. K∗ + spanF c ⊆ K∗ + F⊥. Moreover, if K is facially exposed, then K∗ + spanF c = K∗ + F⊥.

Proof.

1. That F − F = span F follows from the definition of a cone. Further, suppose k = f1 − f2

with k ∈ K and fi ∈ F, i = 1, 2. Then k + f2 = f1 ∈ F . Therefore, k ∈ F , by the definition
of a face.

2. The result follows from the fact that the conjugate of G := F c is exposed by any x ∈ relint G.

3. That K∗ + span F c ⊆ K∗ + F⊥ is clear from the definition of the conjugate face F c. To prove
equality, suppose that w = (k + f) ∈ (K∗ + F⊥)\K∗ + spanF c, with k ∈ K∗, f ∈ F⊥. Then
there exists φ such that φw < 0 ≤ φ(K∗+spanF c). This implies that φ ∈ K∩(F c)⊥ = K∩F ,
since K is facially exposed. This in turn implies φw = φ(k + f) ≥ 0, a contradiction.

�

Proposition 2.14 Let s ∈ relint S and S ⊆ K be a convex set. Then:

1. face s = face S,

2. cone (K − s) = cone (K − S) = K − face s = K − face S = K + span face s = K + span face S.

Proof.

1. That face s ⊆ face S is clear. To prove the converse inclusion, suppose that z ∈ S ⊆ K, z 6= s.
Since s ∈ relint S, there exists w ∈ S, 0 < θ < 1, such that s = θw + (1− θ)z, i.e., s ∈ (w, z).
Since s ∈ face s, we conclude that both w, z ∈ face s.

2. That cone (K − s) ⊆ K − cone s ⊆ K − face s ⊆ K − span face s is clear. The other inclusions
follow from part 1 and cone (K − s) ⊃ cone (face (s)− s) = span face s.

�

Proposition 2.15 ([12], Prop 3.2) Let S ⊆ K. Then:

1. there is a unique minimal face, face S, containing S;

2. there is a unique minimal exposed face, faceef S, containing S.

Proof.

1. The intersection of all faces containing S is face S and it is clearly a face.

2. By [52, Cor. 18.1.3], the dimension of the intersection of two non-nested faces has a lower
dimension than either face. Therefore, the face formed from the intersection of all exposed
faces containing S can be replaced by the finite intersection ∩t

i=1

(

φ⊥
i ∩K

)

, φ ∈ K∗,∀i. This

face is exposed by
∑t

i=1 φi and is the desired unique smallest exposed face containing S.

�

The following Proposition 2.16 illustrates some technical properties of faces, conjugates, and
closure.
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Proposition 2.16 Let T be a convex cone and F � T .

1. Suppose that s̄ ∈ relint F and x̄ ∈ relint F c. Then

s̄ + x̄ ∈ int (T + T ∗).

2. Suppose that s̄ ∈ relint F . Then

cone (T − s̄) = (F c)∗;

cone (T − s̄) ⊃ relint ((F c)∗) .
(2.15)

3. Suppose that F1 � T , F2 � T ∗, are both exposed faces, and F2 ⊆ F c
1 . If 0 6= x̃ ∈ F⊥

1 ∩ (F c
1 )⊥ ∩

F⊥
2 ∩ (F c

2 )⊥, then

x̃ ∈ precl(T + spanF1) ∩ precl(T ∗ + span F c
1 ) ∩ precl(T + span F c

2 ) ∩ precl(T ∗ + spanF2).

Proof.

1. First, note that if int (T + T ∗) = ∅, then we have

0 6= (T + T ∗)⊥ ⊆ T ∗∗ ∩ T ∗ = T ∩ T ∗ ⊆ T + T ∗,

a contradiction, i.e., this shows that int (T + T ∗) 6= ∅.
Now suppose that s̄+ x̄ /∈ int (T +T ∗). Then we can find a supporting hyperplane φ⊥ so that
s̄ + x̄ ∈ (T + T ∗) ∩ φ⊥ � T + T ∗ and 0 6= φ ∈ (T + T ∗)∗ = T ∩ T ∗. Therefore, we conclude
φ(s̄ + x̄) = 0 implies that both φs̄ = 0 and φx̄ = 0. This means that φ ∈ T ∩ s̄⊥ = F c and
φ ∈ T ∗ ∩ x̄⊥ = (F c)c, giving 0 6= φ ∈ (F c) ∩ (F c)c = {0}, which is a contradiction.

2. The first result follows from: cone (T − s̄) = (T − s̄)∗∗ = (T ∗ ∩ s̄⊥)
∗
.

Now suppose that the conclusion in the second statement in (2.15) does not hold. That is,
there exists d̄ ∈ (relint [(F c)∗]) \ (cone (T − s̄)). Since T may not be closed, we only have the
weak separation φT ≥ 0, φs̄ = 0, and φd̄ ≤ 0. Again 0 6= φ ∈ T ∗ ∩ s̄⊥ = F c. Moreover, this
contradicts the hypothesis that d̄ ∈ relint ((F c)∗).

3. First, Lemma 2.6 implies that F2 � F c
1 . Moreover, using the definition of the conjugate, we

get F1 � F c
2 .

Now if x̃ = k + f , with k ∈ T and f ∈ span F1, then 0 = F c
1 x̃ = F c

1k +F c
1f = F c

1k. Therefore,
k ∈ F cc

1 = F1, i.e., x̃ ∈ F1 + span F1. This implies that x̃ = 0, a contradiction. Thus, we have
shown that x̃ /∈ T + spanF1.

But,

x̃ ∈ F⊥
1 ∩ (F c

1 )⊥ ⊆ F ∗
1 ∩ (F c

1 )∗ ⊆ F ∗
1 ∩ (T ∗ ∩ F⊥

1 )∗ = F ∗
1 ∩ (T + spanF1),

i.e., we have shown x̃ ∈ precl(T + spanF1). The result for x̃ ∈ precl(T ∗ + span F c
1 ) follows

similarly, as do the results for F2.

�

Remark 2.17 From the above Proposition 2.16, part 3, we see that K polyhedral implies that
F⊥ ∩ (F c)⊥ = {0},∀F � K, i.e., the full dimensionality of conjugate faces characterizes polyhedral
cones. Moreover, we can combine Proposition 2.9 and Proposition 2.14, and conclude that K is
polyhedral if and only if K + span F is closed, for all F � K.
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2.2.2 Faces for Primal-Dual Pair (P) and (D)

We now present facial properties specific to the primal-dual pair (P) and (D). In particular, this
includes relationships between the minimal faces fP , fD and the minimal faces for the homogeneous
problems, f0

P , f0
D. The relationships depend on the specific choices of s̃, x̃.

Proposition 2.18 Suppose that both (P) and (D) are feasible, i.e., equivalently s̃ ∈ K + L⊥ and
x̃ ∈ K∗ + L. Let ŝ ∈ FP (s̃) and x̂ ∈ FD(x̃). Then the following holds.

1.
f0

P ⊆ face (ŝ + f0
P ) ⊆ fP (s̃), f0

D ⊆ face (x̂ + f0
D) ⊆ fD(x̃). (2.16)

2.
s̃ ∈ (f0

D)c + L⊥ ⇔ fP (s̃) ⊆ (f0
D)c; x̃ ∈ (f0

P )c + L ⇔ fD(x̃) ⊆ (f0
P )c.

Proof.
Since both problems are feasible, we can assume, without loss of generality, that ŝ = s̃ ∈ K, x̂ =
x̃ ∈ K∗.

1. Since cone s̃ and f0
P are convex cones containing the origin, cone s̃ + f0

P = conv (cone s̃ ∪ f0
P );

see e.g., [52, Theorem 3.8]. Hence

f0
P ⊆ conv (s̃ ∪ f0

P )

⊆ conv (cone s̃ ∪ f0
P )

= cone s̃ + f0
P

= cone (s̃ + f0
P )

⊆ face (s̃ + f0
P ).

This proves the first inclusion. It is clear that s̃ + (L⊥ ∩K) ⊆ (s̃ +L⊥) ∩K. This yields the
second inclusion. The final two inclusions follow similarly.

2. Suppose that s̃ ∈ (f0
D)c + L⊥ and s̃ + r ∈ K with r ∈ L⊥. Then, for all ℓ ∈ L ∩K∗ ⊆ f0

D, we
have

(s̃ + r)ℓ = s̃ℓ
= 0, since s̃ ∈ (f0

D)c + L⊥.

This implies that fP = face
(

(s̃ + L⊥) ∩K
)

is orthogonal to f0
D = face (L∩K∗), i.e. the first

implication holds.

For the converse implication, since (P) is feasible, we have s̃ ∈ fP (s̃). So if fP (s̃) ⊆ (f0
D)c,

then s̃ ∈ (f0
D)c. The implication follows since we can add anything in L⊥ to s̃, while leaving

fP (s̃) unchanged.

The second equivalence follows similarly.

�

Remark 2.19 If s̃ ∈ relint
(

(f0
P )⊥ ∩ (f0

D)c
)

and x̃ ∈ relint
(

(f0
D)⊥ ∩ (f0

P )c
)

; then we conjecture
that the following relation between the faces holds as well.

fP (s̃) = face (s̃ + f0
P ), fD(x̃) = face (x̃ + f0

D).

12



Corollary 2.20 Fs
P 6= ∅ =⇒ f0

P ⊆ fP . Fx
D 6= ∅ =⇒ f0

D ⊆ fD.

Proof.
Since we can always choose s̃ (resp. x̃) as feasible points, the two results follow immediately from
(2.16). �

Additional relationships between the faces follow. But first we need a lemma that is of interest
in its own right.

Lemma 2.21 Let s̃ ∈ f0
P , and suppose that s = s̃ + ℓ is feasible for (P) with ℓ ∈ L⊥. Then

ℓ ∈ span f0
P .

Proof.
Let v ∈ relint (L⊥ ∩K). Then v ∈ relint f0

P , and since s̃ ∈ f0
P , we have v− ǫs̃ ∈ f0

P for some ǫ > 0.
Now if ℓ is such that s = s̃ + ℓ is feasible for (P), then s̃ + ℓ ∈ K, and

1

ǫ
v + ℓ =

1

ǫ
(v − ǫs̃) + (s̃ + ℓ) ∈ f0

P + K = K.

For convenience, define α := 1/ǫ. Since αv ∈ L⊥ and ℓ ∈ L⊥, we in fact have

αv + ℓ ∈ K ∩ L⊥ ⊆ f0
P . (2.17)

Now to obtain a contradiction, suppose that ℓ /∈ span f0
P , and write ℓ = ℓ1 + ℓ2, where ℓ1 ∈ span f0

P

and 0 6= ℓ2 ∈ (f0
P )⊥. In view of (2.17), we have 0 = ℓ2(ℓ + αv) = ℓ2ℓ2 + ℓ2(ℓ1 + αv) = ‖ℓ2‖2 > 0, a

contradiction. �

Proposition 2.22 1. s̃ ∈ f0
P ∪ L⊥ =⇒ fP (s̃) = f0

P and x̃ ∈ f0
D ∪ L =⇒ fD(x̃) = f0

D.

2. Let f0
D � K∗. Then there exists 0 6= φ ∈ K ∩ L⊥. Moreover, (−φ + L) ∩K∗ = ∅.

Proof.

1. We begin by proving the first statement. If s̃ ∈ L⊥, then s̃ + L⊥ = L⊥, so the desired
result holds. If instead s̃ ∈ f0

P , then it follows from Lemma 2.21 that ℓ ∈ span f0
P for all

feasible points of the form s = s̃ + ℓ. Hence all feasible s lie in the set span (f0
P ) ∩K, which

by Proposition 2.13, part 1, equals f0
P . So fP (s̃) ⊆ f0

P ; but, the reverse inclusion holds by
Proposition 2.18, part 1.

The second statement for f0
D in proven in a similar way.

2. Existence is by the theorem of the alternative for the Slater CQ ; see Lemma 3.14, below.

�

Proposition 2.23 Let K be closed. If there exists a nonzero x ∈ −(K ∩K∗) such that

x ∈ (K ∩ L⊥)⊥ ∩ (K∗ ∩ L)⊥, (2.18)

then
x ∈ precl(K + L⊥) ∩ precl(K∗ + L).

Hence, neither K + L⊥ nor K∗ + L is closed.
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Proof.
To obtain a contradiction, suppose that (2.18) holds but x ∈ K + L⊥. Then there exists w ∈ K
such that x−w ∈ L⊥. Moreover, x−w ∈ −K −K = −K, so x−w ∈ −(K ∩L⊥). It follows from
(2.18) that 〈x, x−w〉 = 0. But 〈x, x−w〉 = 〈x, x〉+ 〈−x,w〉 > 0, where we have used the fact that
x ∈ −K∗. Hence x /∈ K + L⊥. A similar argument shows that x /∈ K∗ + L.

Since K and L⊥ are closed convex cones, we have (K ∩ L⊥)∗ = K∗ + (L⊥)∗ = K∗ + L. It

follows from (2.18) that x ∈ K∗ + L. Similarly, x ∈ K + L⊥. This completes the proof. �

2.2.3 Nice Cones, Devious Cones, and SDP

Definition 2.24 A face F � K is called nice if K∗ + F⊥ is closed. A closed convex cone K is
called a nice cone or a facially dual-complete cone, FDC , if

K∗ + F⊥ is closed for all F � K. (2.19)

The condition in (2.19) was used in [11] to allow for extended Lagrange multipliers in f∗
P to be

split into a sum using K∗ and f⊥
P . This allowed for restricted Lagrange multiplier results with

the multiplier in K∗. The condition (2.19) was also used in [41] where the term nice cone was
introduced. (In addition, it was shown by Pataki (forthcoming paper) that a FDC cone must be
facially exposed.)

Moreover, the FDC property has an implication for Proposition 2.13, part 3. We now see that
this holds for SDP .

Lemma 2.25 ([62],[47]) Suppose that F is a proper face of Sn
+ , i.e., {0} 6= F � Sn

+ . Then:

F ∗ = Sn
+ + F⊥ = Sn

+ + span F c,

Sn
+ + span F c is not closed.

�

From Lemma 2.25, we see that Sn
+ is a nice cone. In fact, as pointed out in [41], many other

classes of cones are nice cones, e.g., polyhedral and p-cones. However, the lack of closure property
in Lemma 2.25 is not a nice property. In fact, from Proposition 2.14, part 2, this corresponds to
the lack of closure for radial cones, see [55] which can result in duality problems. Therefore we add
the following.

Definition 2.26 A face F � K is called devious if the set K + spanF is not closed. A cone K is
called devious if

the set K + span F is not closed for all {0} 6= F � K.

By Lemma 2.25, Sn
+ is a nice but devious cone. On the other hand, polyhedral cones are nice but

not devious, since faces of polyhedral cones are themselves polyhedral and sums of polyhedral sets
are closed, e.g., [52, Chapter 9].

The facial structure of Sn
+ is well known, e.g., [47, 62]. Each face F � Sn

+ is characterized by a
unique subspace S ⊆ Rn :

F =
{

x ∈ Sn
+ : N (x) ⊃ S

}

; relint F =
{

x ∈ Sn
+ : N (x) = S

}

.
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The conjugate face satisfies

F c =
{

x ∈ Sn
+ : N (x) ⊃ S⊥

}

; relint F =
{

x ∈ Sn
+ : N (x) = S⊥

}

.

The description of spanF for F � Sn
+ is now clear.

Another useful property of SDPs(and the Löwner partial order) is given by the following lemma.
This lemma played a critical role in Ramana’s explicit description of a dual SDP problem for which
strong duality holds.

Lemma 2.27 Let K̃ ⊆ Sn
+ be a closed convex cone. Then

[(

face K̃
)c]⊥

=

{

W + W T : W ∈ Rn×n,

[

I W T

W U

]

� 0, for some U ∈ K̃

}

.

�

Properties 2.28 The following three properties of the cone Sn
+ are needed for the strong duality

approach in Ramana [46]. (The first two also make the Borwein-Wolkowicz approach in [13] behave
particularly well.)

1. K is facially exposed.

2. K is FDC .

3. Lemma 2.27.

�

Suppose that the cone K describing the problem (P) is SDP-representable. (That is, there exists
d and a linear subspace V ⊂ Sd such that V ∩ Sd

++ 6= ∅ and K is isomorphic to (V ∩ Sd
+).) Then

by [17, Cor. 1, Prop. 4], K is facially exposed and FDC , since Sd
+ is. Moreover, by [17, Prop. 3],

every proper face of K is a proper face of Sd
+ intersected with the subspace V . Hence, an analogue

of Lemma 2.27 is also available in this case. Therefore, SDP-representable cones (which strictly
include homogeneous cones, due to a result of Chua [16] and Faybusovich [21]) satisfy all three of
the above-mentioned Properties 2.28. For related recent results on homogeneous cones and strong
duality, see Pólik and Terlaky [42].

3 Duality and Minimal Representations

In this section we see that minimal representations of the problem guarantee strong duality results.
We first use the minimal representations and extend the known strong duality results without any
constraint qualification that use the minimal face of K, see e.g. [12, 11, 13, 61]. Equivalent strong
duality results based on an extended Lagrangian are given in [45, 46]. (See [47, 62] for comparison
and summaries of the two types of duality results.) By strong duality for (P), we mean that there
is a zero duality gap, vP = vD, and the dual optimal value vD in (D) is attained.
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3.1 Strong Duality and Constraint Qualifications

We now present strong duality results that hold with and without CQs . We also present: a weakest
constraint qualification (WCQ), i.e., a CQ at a given feasible point ȳ ∈ Fy

P (c) that is independent
of b; and a universal constraint qualification, (UCQ), i.e., a CQ that is independent of both b and
c.

Following is the classical, well-known, strong duality result for (P) under the the standard Slater
CQ .

Theorem 3.1 (e.g., [36, 54]) Suppose that Slater’s CQ (strict feasibility) holds for (P). Then
strong duality holds for (P), i.e., vP = vD and the dual value vD in (D) is attained. Equivalently,
there exists x̄ ∈ K∗ such that

by + (c−A∗y)x̄ ≥ vP , ∀y ∈ Rm .

Moreover, if vP is attained at ȳ ∈ Fy
P , then (c−A∗ȳ)x̄ = 0 (complementary slackness holds). �

Corollary 3.2 Suppose that Slater’s CQ (strict feasibility) holds for (P) and ȳ ∈ Fy
P . Then, ȳ is

optimal for (P) if and only if
b ∈ A [(K − s̄)∗] , (3.1)

where s̄ = c−A∗ȳ.

Proof.
The result follows from the observation that (face s̄)c = K∗∩ s̄⊥ = (K− s̄)∗, i.e., (3.1) is equivalent
to dual feasibility and complementary slackness. �

Strong duality can fail if Slater’s CQ does not hold. In [12, 11, 13], an equivalent regularized
primal problem that is based on the minimal face,

vRP := sup{by : A∗y �fP
c} (3.2)

is considered. Its Lagrangian dual is given by

vDRP := inf{cx : Ax = b, x �f∗

P
0}. (3.3)

Theorem 3.3 ([11]) Strong duality holds for the pair (3.2) and (3.3), or equivalently, for the pair
(P) and (3.3); i.e., vP = vRP = vDRP and the dual optimal value vDRP is attained. Equivalently,
there exists x∗ ∈ (fP )∗ such that

by + (c−A∗y)x∗ ≥ vP , ∀y ∈ (A∗)−1(fP − fP ).

Moreover, if vP is attained at ȳ ∈ Fy
P , then (c−A∗ȳ)x∗ = 0 (complementary slackness holds). �

Corollary 3.4 Let ȳ ∈ Fy
P . Then ȳ is optimal for (P) if and only if

b ∈ A [(fP − s̄)∗] ,

where s̄ = c−A∗ȳ.
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Proof.
As above in the proof of Corollary 3.2, the result follows from the observation that f∗

P ∩ s̄⊥ =
(fP − s̄)∗. �

The next result uses the minimal subspace representation of L⊥, introduced in (2.10), L⊥PM =
L⊥ ∩ (fP − fP ).

Corollary 3.5 Let ỹ, s̃, and x̃ satisfy (2.4) with s̃ ∈ fP − fP and let

K∗ + (fP )⊥ = (fP )∗. (3.4)

Consider the following pair of dual programs.

vRPM
= cx̃− inf

s
{sx̃ : s ∈ (s̃ + L⊥PM) ∩K}, (3.5)

vDRPM
= ỹb + inf

x
{s̃x : x ∈ (x̃ + LPM) ∩K∗}. (3.6)

Then, vRPM
= vRP = vP = vDRPM

= vDRP , and strong duality holds for (3.5) and (3.6), or
equivalently, for the pair (P) and (3.6).

Proof.
That vP = vRPM

= vRP follows from the definition of the minimal subspace representation in
(2.10):

Fs
P (c) = Fs

P (s̃)
= (s̃ + L⊥) ∩ fP , by definition of fP ,
= (s̃ + L⊥PM) ∩K, since s̃ ∈ fP − fP .

For the regularized dual, we see that

vDRPM
= infx

{

cx : Ax = b, x �f∗

P
0
}

= ỹb + infx
{

s̃x : Ax = b, x = xk + xf , xk ∈ K∗, xf ∈ f⊥
P

}

, by (3.4)
= ỹb + infx

{

s̃x : x = xk + xf = x̃ + xl, xk ∈ K∗, xf ∈ f⊥
P , xl ∈ L

}

= ỹb + infx
{

s̃xk : xk ∈ (x̃ + L+ f⊥
P ) ∩K∗

}

.

�

Remark 3.6 The condition in (3.4) is equivalent to K∗ + (fP )⊥ being closed, and is clearly true
if K is a FDC cone.

Remark 3.7 Using the minimal subspace representations of L in (D), i.e., replacing L in (D) by
LDM in (2.10), we may obtain a result similar to Corollary (3.5).

Note that if the Slater CQholds, then the minimal sets (face and subspace) satisfy fP = K and
(2.10). We now see that strong duality holds if at least one of these conditions holds.

Corollary 3.8 Suppose that intK = ∅ but the generalized Slater CQ (relative strict feasibility)
holds for (P), i.e.,

ŝ := c−A∗ŷ ∈ relint K, for some ŷ ∈ W. (Generalized Slater CQ ) (3.7)

(Equivalently, suppose that the minimal face satisfies fP = K.) Then strong duality holds for (P).
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Proof.
The proof follows immediately from Theorem 3.3 after noting that K = fP . �

The following Corollary illustrates strong duality for a variation of the generalized Slater con-
straint qualification, i.e., for the case that the minimal subspace satisfies (2.10).

Corollary 3.9 Let s̃ ∈ fP − fP and K be FDC . Suppose that

L⊥ ⊆ fP − fP . (Subspace CQ ) (3.8)

(Equivalently, suppose that L⊥PM = L⊥.) Then strong duality holds for (P).

Proof.
Follows directly from Corollary 3.5. �

We summarize the results in the special case that K is FDC (a nice cone). Weakest constraint
qualifications for general nonlinear problems are given in [26].

Theorem 3.10 Let s̃, x̃ satisfy linear feasibility (2.4) with s̃ ∈ fP − fP and let K be FDC . Then
we have the following conclusions.

1. The primal optimal values are all equal, vP = vRP = vRPM
. Moreover, strong duality holds

for the primal, where the primal is chosen from the set

{(2.6), (3.2), (3.5)} (set of primal programs)

and the dual is chosen from the set

{(3.3), (3.6)} (set of dual programs)

i.e., the optimal values are all equal and the dual optimal value is attained.

2. The following are CQs for (P):

(a) fP = K (equivalently generalized Slater CQ (3.7));

(b) L⊥ ⊆ fP − fP (equivalently L⊥PM = L⊥ ∩ (K −K));

3. Let ȳ ∈ Fy
P (c) and s̄ = c−A∗ȳ. Then,

D≤
P (ȳ)∗ = −A((K − s̄)∗) is a WCQ for (P) at (ȳ, s̄). (3.9)

Equivalently,

A[(fP − s̄)∗] = A((K − s̄)∗) is a WCQ for (P) at (ȳ, s̄). (3.10)

Proof.

1. That vP = vRP follows from the definition of the minimal face fP . Similarly, vP = vRP =
vRPM

follows from the definition of the minimal subspace representation L⊥PM .

That strong duality holds for the regularized pair that uses the minimal face (3.2),(3.3), follows
from [11]. The results using the minimal subspace representations follow from Corollary 3.9.
More precisely, by the assumptions on s̃, we have

Fs
P (c) = Fs

P (s̃) = (s̃ + L⊥) ∩K =
[

s̃ + L⊥ ∩ (fP − fP )
]

∩K,

i.e., the feasible set in (3.5) is Fs
P (c) = Fs

P (s̃). Moreover therefore, the optimal value in (3.5)
is indeed vP . Since L⊥PM ⊆ fP − fP , we get strong duality from Corollary 3.9.
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2. The results follow from Corollaries 3.8, 3.9, respectively.

3. The so-called Rockafellar-Pshenichnyi condition, e.g., [44], [26, Thm 1], states that ȳ is optimal
if and only if b ∈ −D≤

P (ȳ)∗. From Theorem 3.3, ȳ is optimal if and only if Ax̄ = b, s̄x̄ = 0,
for some x̄ ∈ f∗

P ; equivalently, if and only if b ∈ A((fP − s̄)∗). The result follows from the
fact that strong duality holds if and only if Ax̄ = b, s̄x̄ = 0, for some x̄ ∈ K∗; equivalently,
Ax̄ = b, for some x̄ ∈ (K − s̄)∗.

�

Remark 3.11 The WCQ in (3.9) follows the approach in e.g. [26, 19, 65, 34, 35]. Moreover,
since for any set S, A(S) is closed if and only if S + L is closed (e.g. [29, 9]), we conclude that a
necessary condition for a WCQ to hold at a feasible s̄ ∈ Fs

P is that

(K − s̄)∗ + L is closed. (3.11)

(For a detailed study of when the linear image of a closed convex set is closed, see e.g., [41].)

3.1.1 Universal Constraint Qualifications

A universal CQ, denoted UCQ , is a CQthat holds independent of the data b, c.

Theorem 3.12 Suppose that K is FDC , and s̃ ∈ K, x̃ ∈ K∗ in the primal-dual subspace represen-
tation in (2.6) and (2.7). Then

L⊥ ⊆ f0
P − f0

P

is a UCQ , i.e., a universal CQ for (P).

Proof.
The result follows from (3.8) and the fact that s̃ ∈ K, x̃ ∈ K∗ implies f0

P ⊆ fP and f0
D ⊆ fD, see

Lemma 2.18. �

Corollary 3.13 Suppose that K = Sn
+ , both vP and vD are finite, and n ≤ 2. Then strong duality

holds for at least one of (P) or (D).

Proof.
We have both Fs

P 6= ∅ and Fx
D 6= ∅. By going through the possible cases, we see that one of the

CQsL⊥ ⊆ f0
P − f0

P or L ⊆ f0
D − f0

D must hold. �

3.2 CQ Regularization

In the case that the Slater CQ fails, we can use the paradigm of minimal representation to efficiently
regularize (P). This approach is used in [53]. Essentially, the procedure alternates between finding
a smaller cone to represent fP and finding a smaller subspace to represent L⊥PM .
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3.2.1 Theorems of the Alternative

The regularization procedure for (P) is based on the following lemma that specializes [13, Theo-
rem 7.1]. This provides a characterization for Slater’s condition.

Lemma 3.14 ([13]) Suppose that int (K) 6= ∅. Then exactly one of the following two systems is
consistent:

1. Ax = 0, 0 6= x �K∗ 0, and cx = 0.

2. A∗y ≺K c (Slater CQ ).

Proof.
We modify the proof from [13] for our special case. Suppose that ŷ ∈ Fy

P . Define the vector-valued
and real-valued functions g(y) := A∗y − c and gx(y) := (A∗y − c)x. Note that ∇ygx(y) = Ax.

Suppose that x satisfies the system in Item 1. Then∇ygx(ŷ) = Ax = 0 and gx(y) = (Ax)y−cx =
0,∀y. Therefore ŷ is a global minimizer of the linear function gx(y), i.e., (A∗(Rm)− c)x = 0. Since
0 6= x �K∗ 0, this implies that the Slater CQ fails.

Conversely, suppose that the Slater CQ in Item 2 fails. We have int K 6= ∅ and

0 /∈ (A∗(Rm)− c) + int K.

Therefore, we can find x 6= 0 to separate the set from 0, i.e., [(A∗(Rm)− c) + int K]x ≥ 0. There-
fore, ŷ is again a global minimizer of gx(y), and the optimality conditions imply that this x satisfies
the conditions in Item 1. �

Similarly, we can characterize the generalized Slater CQ for (D).

Corollary 3.15 Suppose that int (K∗) 6= ∅, and x̃ ∈ K∗ +L ((D) is feasible). Then exactly one of
the following two systems is consistent:

1. 0 6= A∗v �K̄ 0, and bv = 0.

2. Ax = b, x ≻K∗ 0 (generalized Slater CQ ).

Proof.
Let A† denote the Moore-Penrose generalized inverse of A. Since (D) is feasible, we can assume
that x̃ = A†b and

Fx
D = {x ∈ K∗ : x = A†b + (I −A†A)v, for some v ∈ V}.

In addition, we can assume that s̃ = c in (P). Therefore, we can apply Lemma 3.14, after exchanging
the roles of K and K∗ and associating

A†b here with c in Lemma 3.14 , and (I −A†A) here with A∗ in Lemma 3.14 . (3.12)

From (3.12), the alternative 1 in Lemma 3.14 becomes (I−A†A)∗s = 0, 0 6= s ≥K̄ 0, and s(A†b) = 0.
After setting v = (A†)∗s, we get the desired alternative 1 here.

Similarly, using (3.12), the alternative 2 in Lemma 3.14 becomes (I −A†A)x ≺K∗ A†b. Equiv-
alently, we have x̃− (I −A†A)x ∈ int K∗; i.e., we get the desired alternative 2 here. �
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3.2.2 Auxiliary Problem and Regularization

In theory, we can solve the problem in part 1 in Lemma 3.14. Similarly, we could work on the
dual and solve the problem in part 1 in Corollary 3.15. However, these problems do not necessarily
satisfy an appropriate constraint qualification, so they can be difficult to solve. The following
auxiliary primal-dual cone optimization problems are used in [53].

(A)

infx,α α
s.t. Ax = 0

〈c, x〉 = 0
〈e, x〉 ≤ 1

x + αe �K∗ 0

supy,β,γ,w γ
s.t. A∗y + βc + γe + w = 0

〈e,w〉 = 1
γ ≤ 0

w �K 0.

(3.13)

It is shown in [53] that both these programs satisfy the generalized Slater CQ . A nonzero x provides
a hyperplane H = x⊥ ⊃ fP , i.e., fP ⊆ (x⊥ ∩K) � K. We then restrict A∗ to a subspace so that
the new linear transformation A∗

H satisfies R(A∗
H) ⊆ H. We now redefine the problem so that we

reduce the dimension of (P). This process is repeated until no x 6= 0 can be found. The process
must stop in a finite number of iterations, since we work in finite dimensions. The end result is
that we have a minimal representation for both the cone and the constraint based on the linear
transformation, i.e., we have regularized the problem. (A backward error analysis is done in [53].)

Note that failure of Slater’s CQ for (P) can result in failure of strong duality, i.e., we have
theoretical difficulties. In addition, it has been shown that near loss of Slater’s CQ is closely
correlated with the expected number of iterations in interior-point methods both in theory [48,
50] and empirically, [22, 23]. Therefore, a regularization process is an essential preprocessor for
SDP solvers. Under exact arithmetic, the auxiliary problem is only of assistance if Slater’s CQ
fails, so in practice one may solve a “robust” variant of the auxiliary problem that in addition to
computing an approximate optimal solution, also computes a measure of the distance to the set of
feasible instances for which Slater’s CQ fails.

It is also known that lack of strict complementarity for SDPcan result in theoretical difficulties.
For example, superlinear and quadratic convergence results for interior-point methods depend on
the strict complementarity assumption, e.g. [43, 30, 3, 37, 32]. This is also the case for convergence
of the central path to the analytic center of the optimal face, [27]. In addition, it is shown empirically
in [60] that loss of strict complementarity is closely correlated with the expected number of iterations
in interior-point methods. However, one can generate problems where strict complementarity fails
independent of whether or not Slater’s CQ holds for the primal and/or the dual, [60].

We see below that duality and strict complementarity of the homogeneous problem have a
surprising theoretical connection.
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4 Failure of Duality and Strict Complementarity

Strong duality for (P) means a zero duality gap, vP = vD and dual attainment, vD = cx∗, for some
x∗ ∈ Fx

D. The CQs (resp. UCQs ), introduced above in Section 3, guarantee that strong duality
holds independent of the data b (resp. b and c). Under our assumption that vP is finite valued,
there are three cases of failure to consider: (i) a zero duality gap but with no dual attainment; (ii)
an infinite duality gap (dual infeasibility); (iii) a finite positive duality gap.

4.1 Finite Positive Duality Gaps

4.1.1 Positive Gaps and Closure Conditions

We present characterizations for a finite positive duality gap under attainment assumptions in
Theorem 4.3 and Corollary 4.4. We first give sufficient conditions for a positive duality gap using
well known optimality conditions based on feasible directions.

Proposition 4.1 Let s̃ ∈ Fs
P , x̃ ∈ Fx

D, and s̃x̃ > 0. Suppose that s̃ ∈ D≤
D(x̃)∗ and x̃ ∈ D≤

P (s̃)∗.
Then s̃ is optimal for (P), x̃ is optimal for (D), and −∞ < vP < vD <∞.

Proof.
The optimality of s̃ and x̃ follows immediately from the definition of the cones of feasible directions
and the Rockafellar-Pshenichnyi condition, see e.g. the proof of Theorem 3.10. The finite positive
duality gap follows from the hypotheses that both (P) and (D) are feasible, and that s̃x̃ > 0. �

To connect the conditions using the cones of feasible directions with conditions using closure
we need the following.

Lemma 4.2 Suppose that K is closed, ỹ is feasible for (P), with corresponding slack s̃, and that x̃
is feasible for (D). Then

−D≤
P (ỹ)∗ = A((fP − s̃)∗) = A((K − s̃)∗), D≤

D(x̃)∗ = L⊥ + (fD − x̃)∗ = L⊥ + (K∗ − x̃)∗.

Proof.
First note that b ∈ A((K − s̃)∗) implies that strong duality holds so that s̃ is optimal for (P).
Therefore, b ∈ −D≤

P (ỹ)∗ = A((fP − s̃)∗), by the Rockafellar-Pshenichnyi condition and Theorem

3.3, i.e., we have shown the first containment A((K − s̃)∗) ⊆ −D≤
P (ỹ)∗ = A((fP − s̃)∗).

To prove the converse containment, we use Proposition 2.16, part 2, and show that (A((K − s̃)∗))∗ ⊆
−D≤

P (ỹ). Let F = face s̃ and let d ∈ (A((K − s̃)∗))∗ = (A(F c))∗. Equivalently, A∗d ∈ (F c)∗. Then
Proposition 2.16, part 2, implies that −A∗d is a feasible direction at s̃; equivalently, −d is a feasible
direction at ỹ.

The second containment follows similarly. �

A well-known characterization for a zero duality gap can be given using the perturbation func-
tion. For example, define

vP (ǫ) := sup
y
{by : A∗y �K c + ǫ}, where ǫ ∈ V.

The connection with the dual functional φ(x) := supy by + x(c − A∗y) is given in e.g., [36]. Then
the geometry shows that the closure of the epigraph of vP characterizes a zero duality gap. We
now use preclosure and present a characterization for a finite positive duality gap in the case of
attainment of the primal and dual optimal values.
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Theorem 4.3 Suppose that K is closed, ỹ is feasible for (P), with corresponding slack s̃, and that
x̃ is feasible for (D). Then

s̃ ∈ Os
P , x̃ ∈ Ox

D, s̃x̃ > 0,

if and only if
x̃ ∈ precl(L+ (K − s̃)∗), c ∈ precl(L⊥ + (K∗ − x̃)∗).

Proof.
We have: s̃ ∈ Os

P if and only if −b ∈ D≤
P (ỹ)∗, and x̃ ∈ Ox

D if and only if c ∈ D≤
D(x̃)∗. But s̃x̃ > 0

implies that strong duality fails for both the primal and the dual. Therefore, b /∈ A((K − s̃)∗)
and c /∈ L⊥ + (K∗ − x̃)∗. The result now follows from Lemma 4.2 and the fact that Ax̃ = b ∈
preclA(K − s̃)∗) if and only if x̃ ∈ precl(L+ (K − s̃)∗). (See e.g., [29, 9].) �

It is difficult to apply the closure condition in Theorem 4.3 directly. We now see that we can
expand the expression under the closure using the recession cones f0

P and f0
D.

Corollary 4.4 Suppose that K is closed. Let ỹ = 0 be feasible for (P), with corresponding slack s̃,
and x̃ be feasible for (D). Let:

Fs := face s̃;Fx := face x̃; TP := F c
s + ((f0

D)c)⊥;TD := F c
x + ((f0

P )c)⊥. (4.1)

Then:

1.
s̃ ∈ Os

P , x̃ ∈ Ox
D, s̃x̃ > 0, (4.2)

if and only if
x̃ /∈ L+ F c

s , s̃ /∈ L⊥ + F c
x , (4.3)

and
x̃ ∈ F c

s + ((face (F c
s ∩ L))c)⊥ + L, s̃ ∈ F c

x + ((face (F c
x ∩ L⊥))c)⊥ + L⊥.

2. Moreover, if Fs ⊆ (f0
D)c and Fx ⊆ (f0

P )c, then (4.2) holds if and only if

x̃ ∈ TP + L\(L+ F c
s ), s̃ ∈ TD + L⊥\(L⊥ + F c

x). (4.4)

Proof.
We have Fs � K and F c

s � K∗. The result follows directly from the characterization in Theorem
4.3 if we use the following equivalences.

(K − s̃)∗ + L = F c
s + L

= F c
s + span (F c

s ∩ L) + L
= F c

s + span face (F c
s ∩ L) + L, by Proposition 2.14, Part 2

= F c
s + ((face (F c

s ∩ L))c)⊥ + L, by Proposition 2.13, Part 3.

Moreover, if Fs ⊆ (f0
D)c, then f0

D ⊆ face (F c
s ∩ L). We can then apply Proposition 2.13, Part 3

again.
The equivalences for Fx follow similarly. �

23



4.1.2 Positive Gaps and Strict Complementarity

In this section we study the relationships between complementarity partitions and positive duality
gaps. In particular, we consider cases where the complementarity partition for the pair of faces
(f0

P , f0
D) fails to be strict.

Example 4.5 A simple example with data K = K∗ = S6
+ uses

A1 = −E11, A2 = −E22, A3 = −E34, A4 = −E13 − E55,

A5 = −E14 − E66, b =
(

0 0 −2 0 1
)T

, c = E12 + E66.

The faces and recession cones of the primal and dual are

f0
P =

[

S2
+ 0
0 0

]

� K, f0
D = QS2

+QT
� K∗, where Q = [e3 e4],

fP = QS3
+QT , where Q = [e1 e2 e6], fD = QS3

+QT , where Q = [e3 e4 e6].

The optimal values are vP = 0 and vD = 1. �

A connection between optimality and complementarity can be seen in the following proposition.

Proposition 4.6 Suppose that (P) has optimal solution ỹ with corresponding optimal slack s̃, and
that (D) has optimal solution x̃. Suppose also that the optimal values vP = cx̃− s̃x̃, vD = ỹb + s̃x̃
are finite. Then

s̃x̃ = inf {sx : s ∈ Fs
P , x ∈ Fx

D} .

Proof.
The proof is immediate from the subspace form (2.6), (2.7) of the primal-dual pair, i.e., the primal
problem shows that s̃x̃ ≤ sx̃,∀s ∈ Fs

P ; while the dual problem implies that s̃x̃ ≤ s̃x,∀x ∈ Fx
D. �

Simple necessary conditions for strict complementarity and sufficient conditions for failure of
strict complementarity follow easily from Corollary 4.4.

Corollary 4.7 Let K be a proper cone. Suppose that s̃ and x̃ are optimal for (2.6) and (2.7), re-
spectively, with a positive duality gap s̃x̃ > 0. Moreover, suppose that the complementarity partition
for the pair of faces (f0

P , f0
D) is strict. Then

x̃ ∈ (face s̃)c + (f0
P )⊥ + L\((face s̃)c + L), s̃ ∈ (face x̃)c + (f0

D)⊥ + L⊥\((face x̃)c + L⊥). (4.5)

Proof.
The proof follows immediately from Corollary 4.4 after replacing (f0

D)c and (f0
P )c by f0

P and f0
D,

respectively. �

Corollary 4.8 Let K be a proper cone. Suppose that s̃ and x̃ are optimal for (2.6) and (2.7),
respectively, with a positive duality gap s̃x̃ > 0. Moreover, suppose that

x̃ ∈ (face s̃)c + (f0
P )⊥ + L\(face s̃)c + ((f0

D)c)⊥ + L, (4.6)

or

s̃ ∈ (face x̃)c + (f0
D)⊥ + L⊥\(face x̃)c + ((f0

P )c)⊥ + L⊥. (4.7)

Then the complementarity partition for the pair of faces (f0
P , f0

D) fails to be strict.
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Proof.
The proof follows from combining Corollary 4.4 with Theorem 4.7. �

Example 4.9 It is possible to have a finite positive duality gap even if the complementarity parti-
tion for the pair of faces (f0

P , f0
D) is strict. Let K = K∗ = S5

+, and

A1 = −E11, A2 = −E22, A3 = −E34, A4 = −E13 − E45 − E55,

b =
(

0 −1 −2 −1
)T

, c = E44 + E55.

Then

f0
P =

[

S2
+ 0
0 0

]

, f0
D =

[

0 0
0 S3

+

]

, fP = QS4
+QT , fD =

[

0 0
0 S4

+

]

,

where Q = [e1 e2 e4 e5]. The primal optimal value is zero and the dual optimal value is (
√

5− 1)/2,
and both are attained. This can be seen using the optimal s̃ = c for (P), and x̃ optimal for (D) and
applying Corollary 4.7. (Note that the optimal x∗ = x̃ has values 1/

√
5 and (3−

√
5)/(2

√
5) for the

diagonal (4, 4) and (5, 5) elements, respectively.)
One can also have an example without attainment of the optimal values. Consider the SDPwith

data K = K∗ = S5
+, and

A1 = E11, A2 = E22, A3 = E34, A4 = E13 + E45 + E55, b =
(

0 1 2 1
)T

, c = E12 + E44 + E55.

Then

f0
P =

[

S2
+ 0
0 0

]

, f0
D =

[

0 0
0 S3

+

]

, fP = QS4
+QT , fD =

[

0 0
0 S4

+

]

,

where Q = [e1 e2 e4 e5]. The primal optimal value is zero and the dual optimal value is 1, but
neither value is attained. �

Stronger sufficient conditions for failure of strong duality follow.

Theorem 4.10 Let K be a closed convex cone. Suppose that both (2.6) and (2.7) are feasible but
strong duality fails for either problem. In addition, suppose that

s̃ ∈ (f0
D)c + L⊥, x̃ ∈ (f0

P )c + L. (4.8)

Then the complementarity partition for the pair of faces (f0
P , f0

D) fails to be strict.

Proof.
Suppose that (4.8) holds. Then by Proposition 2.18, part 2, fP ⊆ (f0

D)c and fD ⊆ (f0
P )c. To prove

a contradiction, suppose that (f0
P , f0

D) forms a strict complementarity partition. Then (f0
D)c = f0

P .
Since for all feasible problems, f0

P ⊆ fP and f0
D ⊆ fD (Proposition 2.18, part 1), we actually have

f0
P = fP and f0

D = fD. But then fP fD = 0, i.e. every feasible point is optimal and we have a zero
duality gap. But this contradicts the assumption that strong duality fails for either (P) or (D). �

Corollary 4.11 Suppose that both (2.6) and (2.7) are feasible but strong duality fails either prob-
lem. In addition, suppose that all feasible points for (P) and (D) are optimal. Then the comple-
mentarity partition for the pair of faces (f0

P , f0
D) fails to be strict.

25



Proof.
Suppose that all feasible points for (P) are optimal. Then the primal objective function is constant
along all primal recession directions. That is, 〈x̃,L⊥ ∩ K〉 = {0}, i.e, x̃ ∈ (L⊥ ∩ K)⊥. Now by
construction, x̃ is dual feasible, i.e, x̃ ∈ (L⊥ ∩K)⊥ ∩K∗ = (f0

P )⊥ ∩K∗ = (f0
P )c. Finally, as argued

previously, translating x̃ by a point in L leaves the dual problem unchanged, giving the condition
on x̃ in (4.8). In a similar way we can show that if all feasible points for (D) are optimal, then the
condition on s̃ in (4.8) holds. The desired result now follows from Theorem 4.10. �

We now consider cases when the assumption that the complementarity partition for the pair of
faces (f0

P , f0
D) fails to be strict implies a finite positive duality gap.

We can apply Corollary 4.4 and obtain a class of SDPproblems with a finite positive duality
gap.

Corollary 4.12 Let K = Sn
+ and (after the appropriate orthogonal congruence using Lemma 2.12)

let G := (f0
P )c ∩ (f0

D)c = face {Ess, . . . , Ett}. Suppose that s̃ = x̃ = Ett satisfies s̃ = p + l,
p ∈ L⊥, l ∈ L, and

p− pttEtt ∈ TP ∩ TD, (4.9)

where TP , TD are defined in (4.1). Then the underlying problems (2.6) and (2.7) admit a finite
nonzero duality gap.

Proof.
From Corollary 4.4 and since s̃x̃ > 0, it is enough to show that s̃ and x̃ satisfy

x̃ ∈ TP + L, s̃ ∈ TD + L⊥.

First note that pl = 0 and ptt + ltt = 1 implies that both ptt > 0 and ltt > 0 and

pij =

{

1− lij > 0 if i = j = t
−lij if i 6= t or j 6= t.

Therefore, we have s̃ = p + l = pttEtt + (p − pttEtt) + l. This implies that (1 − ptt)s̃ ∈ TP + L, i.e.
s̃ ∈ TP + L. Similarly, s̃ ∈ TD + L⊥. �

Remark 4.13 Let

T := TP ∩ TD =









f0
D = + + 0 ∗

+ + 0 +

0 0 X = 0 0

∗ + 0 f0
P = +









,

denote the block structure of the cone defined in (4.9), where ∗ denotes free elements, + denotes
positive semidefinite principal submatrices, and X = 0 denotes the tt position. The structure for p
in s̃ = p + l that satisfies (4.9) is therefore

p ∈









f0
D = + + 0 ∗

+ + 0 +

0 0 R++ 0

∗ + 0 f0
P = +









, (4.10)

i.e. the structure in (4.10) shows the support, S(p).
We can apply Corollary 4.4 to different choices of s̃ and x̃ as long as the inner-product s̃x̃ > 0.

This allows us to exploit the structure of L, if it is known.
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Our main result for the complementarity relationship follows. For simplicity, we consider the
self-dual case.

Theorem 4.14 Let K = K∗ be a proper cone. Suppose that the complementarity partition for the
pair of faces (f0

P , f0
D) fails to be strict, and dim G = 1, where the face G := (f0

P )c ∩ (f0
D)c � K.

Then there exists s̃ = x̃ ∈ relint G such that the underlying problems (2.6) and (2.7) admit a finite
nonzero duality gap.

Proof.
First note that L ∩K = {0} if and only if L⊥ ∩ intK 6= ∅ if and only if f0

P = K. Using this and a
similar result for L⊥ ∩K = {0}, we conclude that both f0

P and f0
D are proper faces of K.

To complete the proof by contradiction, we assume that (relint G) ∩ TP + L = ∅, where TP :=
Gc + ((f0

D)c)⊥ is defined in Corollary 4.4. Then, see e.g. [52, Thm. 11.3], there exists φ such that

φ(relint G) < 0 ≤ φ
(

Gc + ((f0
D)c)⊥ + L

)

.

Therefore, since dim G = 1,

φ ∈ (Gc)∗ ∩ span (f0
D)c ∩ L⊥, φ(G\{0}) < 0. (4.11)

We now choose v ∈ relintL⊥ ∩K and show that

ᾱv − φ ∈ L⊥ ∩K, for some sufficiently large ᾱ > 0. (4.12)

We now identify the cone (f0
D)c with the cone T in Proposition 2.16, part 2. We have 0 6= v ∈

relint F := (f0
D)c ∩ f0

P ⊆ span (f0
D)c and −φ ∈ relint (F c)∗ = relint G∗ ∩ (f0

D)c ⊆ span (f0
D)c. We

further identify v with s̄ and −φ with d̄. Then, by Proposition 2.16, part 2, we get that (4.12)
holds.

Now (4.12) contradicts the fact that Gf0
P = 0, i.e. since we now have ᾱv − φ ∈ f0

P , we let
g ∈ relint G and get 0 = g(ᾱv − φ) = −gφ > 0, a contradiction. Therefore, we conclude that we

can choose s̃ ∈ (relint G) ∩ TP + L. Similarly, we can choose x̃ ∈ (relint G) ∩ TD + L⊥. Since we
now have s̃x̃ > 0, the main conclusion follows from Corollary 4.4. �

Remark 4.15 The above proof of Theorem 4.14 obtains a contradiction by separating two sets and
obtaining a feasible direction ᾱv − φ that contradicts the definition of f0

P . A similar contradiction
can be obtained by assuming that s̃ = x̃ ∈ relint G and that s̃ is not optimal. This yields a feasible
direction φ ∈ L⊥, e.g. s = s̃ + φ ∈ K, with φ(G\{0}) < 0. Using a similar argument to that above,
we get that necessarily φ ∈ L⊥ ∩ (f0

D)c and we can obtain (4.12). The assumption that dim G = 1
was needed to ensure that φ(G\{0}) < 0. Thus we see the connection between the separation
argument and obtaining feasible directions. In the special case K := Sn

+ (with dim G = 1 still), we
can find the descent direction using a a simpler proof based on the Schur complement, rather than
the hyperplane separation Theorem.

To obtain a proof for dim G > 1, it suffices to apply a separation argument and obtain φ(G\{0}) <
0. Currently, this is still an open problem.

Example 4.16 We now see that choosing one of s̃, x̃ in relint G may not result in a positive duality
gap. Consider the SDPwith data K = K∗ = S4

+, and

A1 = E44, A2 = E24 + E33, A3 = E13 + E22.
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Then

f0
P =

[

0 0
0 R+

]

� K, f0
D =

[

R+ 0
0 0

]

� K∗,

and
G := (f0

P )c ∩ (f0
D)c = QS2

+QT ,

where Q = [e2 e3]. If s̃ and x̃ are chosen such that s̃ ∈ relint (G) and x̃ ∈ G, with x̃33 > 0, then the
optimal values are both x33(s33 − s2

23/s22).
However, there exist matrices s̃, x̃ ∈ G that are singular on G such that (P) and (D) admit a

positive duality gap. For example, if s̃ = x̃ is the diagonal matrix s̃x̃ = Diag ((0 0 s33 0)), then the
primal optimal value is zero and the dual optimal value is x33s33.

1 Both values are attained at
s̃ = x̃. To apply Corollary 4.4, We can write x̃ as the limit

x̃ = x33 lim
i→∞









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1/i









= x33 lim
i→∞









0 0 i 0
0 −2i 0 −1/2
i 0 1 0
0 −1/2 0 0









+









0 0 0 0
0 2i 0 1/2
0 0 0 0
0 1/2 0 1/i









+









0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0









∈ L+ (face s̃)c + ((f0
D)c)⊥.

However, one can also find examples where choosing s̃ = x̃ = Ett ∈ G also results in a zero
duality gap. This can be seen using K = K∗ = S4

+, and

A1 = E44, A2 = E22 − E33 + E24, A3 = E22 + E33 + E14.

Then

f0
P =

[

0 0
0 R+

]

� K, f0
D =

[

R+ 0
0 0

]

� K∗,

and
G := (f0

P )c ∩ (f0
D)c = QS2

+QT ,

where Q = [e2 e3]. �

4.2 Infinite Duality Gap and Devious Faces

As we have already noted, (D) is feasible if and only if x̃ ∈ K∗ + L. Moreover feasiblility of (D)
is equivalent to a finite duality gap, recalling our assumption that the primal optimal value vP is
finite. We now see that if a nice cone has a devious face, then it is easy to construct examples with
an infinite duality gap.

Proposition 4.17 Suppose that K is a nice, proper cone and F is a devious face of K, i.e.,

K∗ + (F c)⊥ = K∗ + span F and (K∗ + span F ) is not closed.

1Similarly, we can use the 2, 2 position rather than the 3, 3 position.
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Let L = spanF and choose c = s̃ = 0 and x̃ ∈ (K∗ + (F c)⊥)\(K∗ + L). Then (x̃ + L) ∩K∗ = ∅
and we get vD = +∞. Moreover, L⊥ = F⊥ and, for every feasible s ∈ F⊥ ∩K,

x̃s =
(

x̃K∗ + x̃(F c)⊥

)

s ≥ 0,

i.e., 0 = vP < vD =∞.

Proof.
The proof follows from the definitions. �

Proposition 4.17 can be extended to choosing any L that satisfies K∗ + L is not closed and
K∗ + L ⊆ K∗ + (F c)⊥.

Example 4.18 Let K = S2
+, and suppose that (P) and (D) admit a nonzero duality gap. Then

Slater’s CQ fails for both primal and dual, i.e., {0} 6= f0
P ( S2

+ and {0} 6= f0
D ( S2

+. After a
rotation (see Lemma 2.12) we can assume the problem has the structure

[

f0
D 0
0 f0

P

]

,

viz., the matrices in f0
D are nonzero only in the (1, 1) position, and the matrices in f0

P are nonzero
only in the (3, 3) position. There are only three possible options for L: span {E11}, span {E22},
span {E11, E12}, or span {E22, E12}. In each case, either L is one-dimensional and L⊥ is two-
dimensional, or vice versa. So without loss of generality, we may choose L = span {E11}. Now
take x̃ = E12 ∈ S2

+ + (f0
P )⊥. Then

x̃ /∈ S2
+ + L = S2

+ + span f0
D ( S2

+ + (f0
P )⊥, (4.13)

and the dual program (D) is infeasible. But choosing c = s̃ = E22 implies that the primal optimal
value vP = cx̃− y1E22x̃ = 0 < vD = +∞.

Corollary 4.19 If K = S2
+, then a finite positive duality gap cannot occur. �

The above Corollary 4.19 also follows from [55, Prop. 4], i.e., it states that a finite positive duality
gap cannot happen if dimW ≤ 3.

4.3 Regularization for Strict Complementarity

Suppose that strong duality holds for both the primal and dual SDPs, but strict complementarity
fails for every primal-dual optimal solution (s̄, x̄) ∈ Sn

+ ⊗ Sn
+ . Following [60], (s̄, x̄) is called a

maximal complementary solution pair if the pair maximizes the sum rank (s) + rank (x) over all
primal-dual optimal (s, x). The strict complementarity nullity, g := n− rank (s̄)− rank (x̄).

Let U = N (s)∩N (x) be the common nullspace of dimension g, and U be the n× (n−g) matrix
with orthonormal columns satisfying R(U) = U . Let

[

U Q
]

be an orthogonal matrix. Then we
can regularize so that strict complementarity holds by replacing both primal-dual variables s, x
by QsQT , QxQT , respectively. This is equivalent to replacing the matrices Ai, i = 1, . . . ,m, c that
define A by QT AiQ, i = 1, . . . ,m, c. (Note that we would then have to check for possible linear
dependence of the new matrices QT AiQ, as well as possible loss of Slater CQ .) Finding the common
nullspace can be done dynamically during the solution process. This is done by checking the ratios
of eigenvalues of s and x between iterates to see if the convergence is to 0 or to O(1). (In the case
of LP , this corresponds to identifying nonbasic variables using the so-called Tapia indices, see e.g.
[25].)

29



5 Conclusion

In this paper we have looked at known, and new, duality and optimality results for the (primal)
cone optimization problem (P). We have used the subspace formulations of the primal and dual
problems, (2.6),(2.7), to provide new CQs and new optimality conditions that hold without any
CQ . This includes a UCQ , i.e., a CQthat holds independent of both data vectors b and c. In
particular, the optimality characterizations show that a minimal representation of the cone and/or
the linear transformation of the problem results in regularization, i.e., efficient modelling for the
cone K and for the primal and dual constraints results in a stable formulation of the problem.

In addition, we have discussed conditions for a zero duality gap and the surprising relations to
complementarity of the homogeneous problem and to the closure of sums of cones.

The (near) failure of Slater’s CQ relates to both theoretical and numerical difficulties. The same
holds true for failure of strict complementarity. We have discussed regularization procedures for
both failures. We hope that these results will lead to preprocessing for current cone optimization
software packages.
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