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Abstract. The quasi-Cauchy (QC) relation is the weak quasi-Newton relation of Dennis and
Wolkowicz [SIAM J. Numer. Anal., 30 (1993), pp. 1291–1314] with the added restriction that full
matrices are replaced by diagonal matrices. This relation is justified and explored and, in particular,
two basic variational techniques for updating diagonal matrices that satisfy it are formulated.

For purposes of illustration, a numerical experiment is described where a diagonal updated matrix
with hereditary positive definiteness is used to precondition Cauchy’s steepest-descent direction. The
resulting QC algorithm is shown to be significantly accelerated.

In the concluding section, the following topics are briefly discussed: additional variational princi-
ples, use of diagonal updates within other optimization algorithms together with some further numer-
ical experience (summarized in an appendix), and an interesting connection between QC-diagonal
updating and trust-region techniques.
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1. Introduction. We consider the problem of finding a local minimum of a
smooth, unconstrained nonlinear function, namely,

minimizex∈Rn f(x).(1)

For purposes of discussion, it is useful to identify a hierarchy of relations that can
be employed within Newton and Cauchy algorithms for solving (1) (see, for example,
Dennis and Schnabel [4], Bertsekas [2], and Nazareth [14] for background):

• Quasi-Newton (QN). M+s = y, where the n-dimensional vector s = x+ − x
denotes the step corresponding to two different points x and x+, and y =
g+ − g denotes the gradient change corresponding to the gradients g and
g+ at the two points. Assume sT y > 0. M+ is a full n × n matrix that
approximates the Hessian of f . Both s and y are used explicitly and O(n2)
storage is required for the matrix M+.

If M is chosen to be a positive definite diagonal matrix, say D, then one
can recur only the diagonal elements of M+ in a QN update formula, for
example, the BFGS, yielding an updated diagonal matrix D+. The matrix
M+ is positive definite, and hence D+ is also positive definite, but obviously
D+ does not satisfy the QN relation. Only O(n) storage is required to store
D+. This diagonal-updating approach is used in Gill and Murray [9] and
Gilbert and Lemaréchal [8].
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QC-DIAGONAL UPDATING 1193

• Weak-quasi-Newton. sTM+s = sT y. This relation was introduced and stud-
ied by Dennis and Wolkowicz [5]. For example, one of the updates proposed
in [5] is as follows:

M+ = M +
(sT y − sTMs)

(sTMs)2
MssTM,(2)

where M is positive definite. The condition sT y > 0 implies that M+ is
also positive definite. Again s and y are used explicitly and O(n2) storage is
required.

As in the QN case, if M is taken to be a positive definite diagonal matrix
D, the foregoing formula (2) can be restricted to updating only the diagonal
elements of M+, yielding a positive definite updated matrix, say D+. In
general, D+ does not satisfy the weak-QN relation.

It is interesting to note that the quantity sT y in expression (2), which
equals gT+s− gT s, can be obtained directly from directional derivative differ-
ences along s that require only function values. Thus, knowledge of gradient
vectors is not essential in this formula.
• Quasi-Cauchy (QC). sTD+s = sT y, where D+ is required to be a diagonal

matrix, i.e., the QC relation is the weak QN with matrices further restricted
to be diagonal. The vectors s and y are assumed to be available. Only O(n)
storage is required to store the diagonal update. Additionally, we would like
the matrix D+ to be positive definite and thus able to define a metric. An
obvious usage would be to precondition or rescale Cauchy’s steepest-descent
direction, which accounts for our choice of terminology.

Consider the well-known Oren–Luenberger scaling matrix, namely,

D+ = (sT y/sT s)I,

where I is the identity matrix. It is interesting to note that this is precisely the
unique matrix that would be obtained from the QC relation with the further
restriction that the diagonal matrix is a scalar multiple of the identity matrix,
i.e., the diagonal elements of the Hessian approximation D+ are equal and the
model function associated with it has contours that are hyperspheres. Thus,
scaling matrices derived from the QC relation are a natural generalization of
Oren–Luenberger scaling.

As in the foregoing discussion on the weak-QN relation, the quantity
sT y in the right-hand side of the QC relation can be obtained by directional
derivative differences along s. Thus, explicit use of gradient vectors can be
circumvented, and the resulting diagonal update can find potential use in an
algorithm that requires only approximations to gradients (quasi-gradients).
The QC relation and variational-based diagonal updating were originally pro-
posed in this setting in [15], [16].

The purpose of this article is to formulate two basic techniques for diagonal updat-
ing subject to the QC relation (section 2). These are based on variational principles
that are analogous to ones employed in quasi-Newton updating. The first is the ana-
logue of the principle from which the Powell symmetric Broyden (PSB) quasi-Newton
update is derived—see, for example, Dennis and Schnabel [4]. Like PSB, the diagonal
update does not have the hereditary positive definiteness property. The second is
based on a principle analogous to that from which the BFGS update is commonly
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1194 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

derived—again, see [4]. Like BFGS, the diagonal update has hereditary positive defi-
niteness and can therefore be used to define a metric. So can its complementary form,
which corresponds to DFP.

For purposes of illustration, the latter diagonal update is used to iteratively pre-
condition (or rescale) Cauchy’s steepest-descent algorithm, and the results of its nu-
merical performance on a set of standard MINPACK-1 test problems are reported
(section 3). The algorithm is shown to be significantly accelerated.

In the concluding section, we briefly discuss further variational principles; the use
of diagonal updates within other optimization algorithms, in particular, the L-BFGS
algorithm (some additional numerical results are summarized in an appendix); and
an interesting connection with trust-region techniques.

More detail can be found in Zhu [19], [20], where a comprehensive theory of
diagonal updating subject to the QC relation is developed and applied.

2. QC-diagonal updating. Suppose D > 0 is a positive definite diagonal ma-
trix and D+, which is also diagonal, is the updated version of D. We require that
the updated D+ satisfy the QC relation and that the deviation between D and D+

is minimized under some variational principle. (Here we will use only the Frobenius
matrix norm to measure the deviation.) We would like the derived update to pre-
serve positive definiteness in a natural way, i.e., we seek well-posed metric problems
such that the solution D+, through the diagonal updating procedure, incorporates
available curvature information from the step and gradient changes, as well as that
contained in D. As noted earlier, a diagonal matrix uses the same computer storage
as a vector so only O(n) storage is required. Thus, the resulting update will have
potential use in algorithms where storage is at a premium.

We now focus on two basic forms of QC-diagonal updating.

2.1. Updating D. Consider the variational problem

(P ) : minimize ||D+ −D||F

subject to (s.t.) sTD+s = sT y,

where s 6= 0, sT y > 0, and D > 0. Let

D+ = D + Λ, a = sTDs, b = sT y.(3)

Then the variational problem can be stated alternatively as

(P ) : minimize
1

2
||Λ||2F

s.t. sTΛs = b− a.
In (P ), the objective is strictly convex and the feasible set is convex. Therefore, there
exists a unique solution to (P ). Its Lagrangian function is

L(Λ, µ) =
1

2
tr(Λ2) + µ(sTΛs+ a− b),

where µ is the Lagrange multiplier associated with the constraint and tr denotes the
trace operator. Differentiating with respect to the diagonal elements, setting the
result to zero, and invoking the constraint sTΛs = b− a, we have

Λ =
b− a

tr(E2)
E, E = diag [s2

1, s
2
2, . . . , s

2
n ],(4)
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QC-DIAGONAL UPDATING 1195

where si is the ith element of s. When b < a, note that the resulting D+ = D + Λ is
not necessarily positive definite.

The foregoing update is the counterpart of the PSB update in the quasi-Newton
setting and, like the latter, it does not preserve positive definiteness. Thus it is
inappropriate for use within a metric-based algorithm.

2.2. Updating D1/2. An alternative approach to preserving positive definite-
ness through diagonal updating, which is the analogue of the principle used to de-
rive the BFGS update in the quasi-Newton setting, is to update the square root or

Cholesky factor D1/2 to give the corresponding D
1/2
+ with

D
1/2
+ = D1/2 + Ω,

where Ω is chosen to

(FP ) : minimize ||Ω||F(5)

s.t. sT (D1/2 + Ω)2s = sT y > 0.

The foregoing variational problem is well posed, being defined over the closed set of
matrices for which the corresponding D+ is positive semidefinite. Further, analogous
to the full matrix case in standard QN updating, it always has a viable solution for
which D+ is positive definite, as we now show in the following theorem.

Theorem 2.2.1. Let D > 0, s 6= 0, and a, b, E be defined as in (3) and (4).
There is a unique global solution Ω of (FP ) which is given by

Ω =

{
0 if b = a,
−µ∗E(I + µ∗E)−1D1/2 if b 6= a,

(6)

where µ∗ is the largest solution of the nonlinear equation F (µ) = b and

F (µ)
def
= sT (D(I + µE)−2)s =

∑
{i:si 6=0}

dis
2
i

(1 + µs2
i )

2
.(7)

Proof. In the process of the proof we will see that every expression above is well
defined. Let Ω = diag(ω1, . . . , ωn) and let ω denote the vector of diagonal elements
(ω1, . . . , ωn)T . First, by a simple transformation, problem (FP ) is equivalent to

(FP ) : minimize ||ω||22 = wTw

s.t. ωTEω + 2wTEr = b− a,
where

r = [d
1/2
1 , d

1/2
2 , . . . , d1/2

n ]T .

When b = a, the global optimal solution is obviously ω = 0, and hence Ω = 0, which
implies that D+ = D is positive definite. In the following discussion we assume that
b 6= a. Problem (FP ) has a strictly convex objective with the Hessian E of the
constraint being positive semidefinite. By a theorem concerning a quadratic objective
with also a quadratic constraint in [12], (FP ) has a global solution. Differentiating
its Lagrangian

L(ω, µ) = ωTω + µ(ωTEω + 2wTEr + a− b)
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1196 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

with respect to ω, where µ is the Lagrange multiplier, and setting the result to zero,
we have

ωi = − µs2
i d

1/2
i

(1 + µs2
i )
, i = 1, . . . , n.

Substituting these quantities into the constraint equation, we obtain

F (µ)
def
= sT (D(I + µE)−2)s

=
n∑
i=1

dis
2
i

(1 + µs2
i )

2

=
∑
{i:si 6=0}

di
s2
i (µ+ (1/s2

i ))
2

= b.

Note that F (µ) has poles at (−1/s2
i ), i = 1, . . . , n. Let

j = arg max{i,si 6=0}

(
− 1

s2
i

)
.

The derivative of F (µ) is

dF (µ)

µ
= −2

∑
{i:si 6=0}

r2
i

s2
i (µ+ (1/s2

i ))
3
,

which is less than zero on the interval(
− 1

s2
j

,+∞
)
,

so F (µ) is strictly decreasing in the above interval from +∞ to 0. Noting that b > 0,
we see that there is a unique solution µ∗ within this interval such that F (µ∗) = b.
Although the behavior of F (µ) is complicated in the entire domain, solutions for
F (µ) = b except µ∗ are of no interest. (Note that µ∗ is the largest solution.) This is
because a necessary condition [12] of the solution of (FP ) requires the Hessian of the
Lagrangian (with respect to ω), namely, 2(I + µE), to be positive semidefinite. This
is equivalent to

1 + µs2
i ≥ 0, i = 1, . . . , n,

and clearly µ∗ is the unique solution of F (µ) = b satisfying the above inequalities. A
key observation is that I + µ∗E is positive definite, and thus µ∗ is the unique global
minimizer for (FP ). Returning to the relationship of ω and µ, we see that

Ω∗ = −µ∗E(I + µ∗E)−1D−1/2

is the unique solution of (FP ). Note also that ∀i = 1, . . . , n,

d
1/2
i − µ∗s2

i d
1/2
i

(1 + µ∗s2
i )

=
1

1 + µ∗s2
i

d
1/2
i 6= 0,
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QC-DIAGONAL UPDATING 1197

so D+ is positive definite. This completes the proof.
The following is a direct result of the theorem.
Corollary 2.2.1. The solution D+ through the diagonal updating problem (FP )

is positive definite and unique and is given by

D+ =

{
D if b = a,
(I + µ∗E)−2D if b 6= a.

(8)

Make the following definitions:

U = D−1, c = yTUy, G = [y2
1 , . . . , y

2
n].

One can obtain the update that is complementary to the update in the foregoing
theorem by making the following transpositions:

µ↔ ν, s↔ y, a↔ c, D ↔ U, D+ ↔ U+.

This is summarized in the following result, which is based on the analogue of the
variational principle from which the DFP quasi-Newton update is derived.

Corollary 2.2.2. The solution U+ through the diagonal updating problem com-
plementary to (FP) is positive definite and uniquely given by

U+ =

{
U if b = c,
(I + ν∗G)−2U if b 6= c,

(9)

where ν∗ is the largest solution of H(ν) = b and

H(ν)
def
= yT (U(I + νG)−2)y =

∑
{i:yi 6=0}

uiy
2
i

(1 + νy2
i )2

.

3. Numerical illustration. An immediate application for the diagonal update
of the previous section, which we use for purposes of illustration, is to dynamically
scale the steepest-descent direction at each iteration of Cauchy’s algorithm.

The Cauchy direction is ideal when the contours of the objective f to be min-
imized are hyperspheres. For a general function that is not quadratic, a precondi-
tioning can be used to make the transformed contours closer to hyperspheres such
that the efficiency of the Cauchy direction in the transformed space is enhanced. The
diagonal updating is a variable preconditioning which includes the updated curvature
information, and its hereditary positive definiteness is naturally maintained when the
Cholesky factor is updated as shown in the previous section. An expectation that the
Cauchy method will be significantly accelerated using diagonal updating is supported
by our numerical results.

Our source code is written in Fortran-90, with double precision algorithmic, run-
ning on an ULTRIX DEC workstation. Purely for convenience, we implemented the
complementary updates which are defined in terms of the inverse matrix U+. The
numerical experiment is done within the MINPACK-1 testing environment. Test func-
tions are the standard unconstrained problems collected in [11], which we identify by
the numbering in Table 1.

We employ a line search routine of Moré and Thuente [13] along direction, say, d,
which is based on cubic interpolation and satisfies the (strong) Wolfe conditions:

f(x+) ≤ f(x) + αλgT d,(10)

|gT+d| ≤ β|gT d|,(11)
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1198 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

Table 1
MINPACK-1 test problems.

Number Problem name

1 Helical valley function
2 Biggs exp6 function
3 Gaussian function
4 Powell badly scaled function
5 Box 3-dimensional function
6 Variably dimensioned function
7 Watson function
8 Penalty function I
9 Penalty function II
10 Brown badly scaled function
11 Brown and Dennis function
12 Gulf research and development function
13 Trigonometric function
14 Extended Rosenbrock function
15 Extended Powell function
16 Beale function
17 Wood function
18 Chebyquad function

where x+ = x + λd and the line search parameters are chosen as in [6], namely,
α = 10−4, β = 0.9. The stopping criterion is also as in [6]:

||g(x)|| ≤ 10−5max{1.0, ||x||}.(12)

At any iterate, say, x+, the corresponding search direction d+ in the methods tested
is as follows:

1. Standard Cauchy. The search direction is of the form d+ = −g+.
2. Cauchy with Oren–Luenberger scaling. This scales the search direction with

Oren–Luenberger scaling [7] in its complementary form,

d+ = − y
T s

yT y
g+,

for all iterations except the first, where the initial steepest-descent search
direction is employed.

3. DU-Cholesky. This implements the complementary diagonal update of Corol-
lary 2.2.2 with d+ = −U+g+. In our numerical implementation, ν∗ is obtained
by a simple bisectional search within the interval from the largest pole of the
function H(ν) to some large number on the axis such that the initial bisection
condition of the endpoints is satisfied. Note that H(0) = c, and thus if b > c,
then the solution ν∗ < 0; if b < c, then ν∗ > 0. Hence, the interval for the
bisection is actually reduced with one endpoint being 0 in each case. (The
cost of computing ν∗ by bisection is a relatively minor portion of the algo-
rithm. Note that more efficient reformulations and techniques, for example,
Newton’s method, for solving the subproblem for ν∗ are possible, as discussed
in the concluding section.)

The numerical comparative results are given in Table 2; it gives nitr/nfg, namely,
the number of iterations and the number of calls for function and gradient evaluation.
The symbol ∗ in the table indicates that the method takes too many iterations and is
regarded as having failed to converge. The first and second columns in the table are
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QC-DIAGONAL UPDATING 1199

Table 2
Numerical results for diagonal updating.

Prob. Dim. Cauchy Cauchy-OL DU-Cholesky

1 3 2552/5229 431/756 370/688
2 6 24041/45488 2221/4353 1165/2120
3 3 2/4 2/6 2/6
4 2 * * 238/1649
5 3 32535/65075 225/428 165/300
6 6 446/1001 574/877 157/274
6 8 981/2318 269/415 229/427
7 2 14/35 15/20 15/20
8 4 46282/46295 491/1386 491/1386
9 4 63/128 40/61 49/66
10 2 * 147/998 147/998
11 4 * 126/892 198/387
12 3 * 988/2506 *
13 4 76/93 35/46 67/85
13 8 134/169 109/156 80/120
14 2 1109/2248 242/558 289/701
15 4 70638/159377 2853/5081 428/827
16 2 188/377 315/471 104/167
17 4 2879/5795 1755/2347 525/1003
18 4 11/25 16/21 16/20
18 8 118/253 82/128 67/98

the numbers standing for the test problems and the problem dimensions, respectively.
The remaining columns are the results for the three corresponding methods.

From the above results, we see that the Cauchy algorithms using diagonal updat-
ing are much faster than the standard Cauchy. The simple Oren–Luenberger scaling
dramatically improves performance, and the DU-Cholesky diagonal update usually
results in a very significant further acceleration.

One can expect similar and quite likely better performance from the diagonal
update of Corollary 2.2.1 (whose quasi-Newton counterpart is the BFGS rather than
the DFP update).

4. Conclusion. As noted in section 1, any QN or weak-QN update formula can
be converted immediately into a diagonal-updating formula. If the original update
has hereditary positive definiteness, then the associated diagonal update will retain
this property. The diagonal update does not satisfy any curvature condition a priori,
and the approach is therefore heuristic—in particular because a QN update does
not maintain a Hessian approximation in an element-to-element sense. Nevertheless,
the usefulness of this approach within optimization algorithms, when storage is at a
premium, has been nicely demonstrated in the works cited earlier, namely, [8] and
[9]. Let us identify it by the name QN-diagonal updating (and, correspondingly, weak-
QN-diagonal updating when derived from a weak-QN formula).

In this article we have developed an alternative, variational-based approach with
more solid foundations. QC-diagonal updating is an attractive theory whose appeal
arises from its simplicity, its elegant solutions, and the similarity of the variational
techniques employed to those of QN methods.

We conclude by briefly itemizing some broader issues involving QC-diagonal up-
dating:
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1200 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

• Additional variational principles. We have used only the Frobenius norm in
the variational principles of section 2. Other updates can be derived using
weighted Frobenius norms, again with variational counterparts in QN up-
dating. Furthermore, a principle based on the deviation from violation of a
previous QC relation can be formulated (analogous to the derivation of the
LPD QN update; see Mifflin and Nazareth [10]). For more details, see Zhu
[20].

It is also possible to extend both weak-QN-diagonal updating and QC-
diagonal updating along lines that parallel work in Yuan and Byrd [18] by
substituting a higher-order estimate of curvature for the quantity b in the
right-hand side of the weak-QN and QC relations.
• Other applications. When proposing a new algorithmic technique, it is essen-

tial to provide a basic (level 1) numerical illustration of viability. We have
done this in section 3 for an obvious application—a diagonally preconditioned
Cauchy algorithm applied to a standard set of (low-dimensional) MINPACK-1
problems. A much more detailed study of QC-diagonal updating within the
limited-memory BFGS algorithm is given in Zhu [20] using more practical
MINPACK-2 problems of high dimension. (Some numerical results from this
study are briefly summarized in the appendix.) This study has reaffirmed the
usefulness of QC-diagonal updating in this setting, thus paralleling the pos-
itive experience with QN-diagonal updating mentioned above. One can also
envision using a QC-diagonal update within a conjugate gradient iteration
(preliminary results along these lines are also reported in [20]) and within a
truncated-Newton method.
• Connections to other techniques. Suppose n is not large and evaluating a

function/gradient is relatively expensive (a common assumption in nonlinear
optimization). Then the cost of solving the nonlinear equation F (µ) = b in
Theorem 2.2.1, which we call the QC subproblem, is essentially trivial even
when it is performed by a crude unidimensional algorithm, for example, using
bisection. If greater efficiency is needed, it is useful to exploit a connection
between problem (FP) of section 2.2 and a scaled trust-region subproblem
as follows. This connection is particularly ironic because the QC method
developed in this article is quintessentially metric-based, whereas trust-region
techniques are the fundamental building blocks of model-based approaches
(for terminology see Nazareth [14]).

Write problem (FP) as

minimize ||D1/2
+ −D1/2||F

s.t. sTD+s = b > 0.

Then using the earlier definitions

E = diag [s2
1, s

2
2, . . . , s

2
n ],

r = [d
1/2
1 , d

1/2
2 , . . . , d1/2

n ]T

and defining the vector z to be the diagonal elements ofD
1/2
+ , we can reexpress

the variational problem as follows:
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Table 3
MINPACK-2 test problems.

Number Problem name Par.

1 Elastic-Plastic Torsion 0.5D+01
2 Pressure Distribution in a Journal Bearing 0.1D+00
3 (Enneper’s) Minimal Surface 0.0D+00
4 Optimal Design with Composite Materials 0.8D-02
5 Steady-State Combustion 0.1D+01
6 Homog. Superconductors: 2-D Ginzburg–Landau 0.2D+01

minimize − rT z +
1

2
zT z(13)

s.t. zTEz = b,

where b > 0. When E is nonsingular and the equality in the constraint is
replaced by a ≤ inequality, one obtains a standard trust-region subproblem
in the metric defined by E > 0. It is likely that many of the techniques used
to solve trust-region subproblems—see, in particular, Rendl and Wolkowicz
[17]—can be suitably adapted to the task of solving the QC subproblem
more efficiently if desired, based on the above interpretation of (FP) as a
nonstandard trust-region problem (13).

• Convergence analysis. Interesting issues remain to be addressed, in particular,
the convergence of algorithms that use diagonal updating, the convergence
(or not) of diagonal updates to Hessian matrices of functions when these
Hessians are themselves diagonal, and the impact of diagonal updating on
finite termination of associated algorithms when applied to strongly convex
quadratic functions.

Appendix. Some additional numerical experience with QC-diagonal updating
within a limited-memory BFGS algorithm is described briefly in this appendix. We
employ the MINPACK-2 testbed—a suite of test problems, each of which comes from
a real application and is representative of other commonly encountered problems.

MINPACK-2 contains problems from such diverse fields as fluid dynamics, medi-
cine, elasticity, combustion, molecular conformation, nondestructive testing, chemical
kinetics, lubrication, and superconductivity; see Averick et al. [1]. In our experi-
ment, we consider a subset of six MINPACK-2 problems (also employed in the study
of Burke and Wiegmann [3]), which are suitable for testing the behavior of uncon-
strained nonlinear optimization algorithms. They are summarized in Table 3. (The
first two are unconstrained versions of constrained problems, and the other four are
unconstrained problems.) The last column of the table denotes the default parameters
for the corresponding problems as used in our testing. For a complete description of
these MINPACK-2 problems, see [1].

We give a numerical comparison of the following two limited-memory BFGS al-
gorithms, which differ only in the choice of diagonal scaling matrix used to initiate
the L-BFGS upate at each iteration:

• L-BFGS-OL. The diagonal matrix is obtained in the standard way by Oren–
Luenberger scaling yT s/yT y (for notation, see section 3).
• L-BFGS-DU(C). The diagonal matrix is obtained by QC-diagonal updating

of Cholesky factors.
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Table 4
MINPACK-2, n = 400.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 35/39 33/35 +
2 83/89 68/76 +
3 21/23 28/30 −−
4 58/61 49/56 +
5 45/49 45/50 =
6 204/215 175/193 +

Table 5
MINPACK-2, n = 2,500.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 89/95 81/84 +
2 185/191 125/162 ++
3 77/78 70/71 +
4 230/236 174/201 +
5 120/126 106/108 +
6 480/495 381/423 +

The retention parameter in the two L-BFGS algorithms, i.e., the number m of
preserved step/gradient-change pairs over which updating is performed at each iter-
ation, is the standard choice m = 5; see Gilbert and Lemaréchal [8]. The line search
routine employed is that of Moré and Thuente [13], which was also used in the exper-
iments described in section 3, with its parameters in the strong Wolfe exit conditions
(10)–(11) set as follows:

α = 10−3 and β = 0.9.(14)

For other implementation details, see Zhu [20].
The algorithms used the starting points and stopping criterion of [1] for all tests.

Details are again given in [20].
The two limited-memory BFGS algorithms were tested on the MINPACK-2 prob-

lems in Table 3 for problems of dimensions 400, 2,500, 10,000, and 40,000; see Tables
4, 5, 6, and 7.

The test results are given in these four tables—each analogous to Table 2—
corresponding to the four different choices of problem dimension. Each table reports
the results for the two limited-memory BFGS algorithms. The first column records
the problem names. Each entry in the second and third columns contains a pair
of numbers, namely, the number of iterations and the number of function/gradient
calls—the number of times the evaluation routine that returns the function value and
gradient vector at a specified point is called—for the corresponding algorithm. The
entries in the last column assess relative performance as follows:

= indicates that the function/gradient counts for the two algorithm
are within 5 percent of each other;

+ indicates that the function/gradient count for L-BFGS-DU(C) is
better by between 5 and 15 percent;

++ indicates that the foregoing count for L-BFGS-DU(C) is better by
more than 15 percent;

− indicates that L-BFGS-OL is better by between 5 and 15 percent;
−− indicates that L-BFGS-OL is better by more than 15 percent.
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Table 6
MINPACK-2, n = 10,000.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 177/188 113/143 ++
2 368/387 237/245 ++
3 176/182 94/105 ++
4 377/385 244/256 ++
5 223/230 143/155 ++
6 773/802 769/793 =

Table 7
MINPACK-2, n = 40,000.

Prob. L-BFGS-OL L-BFGS-DU(C) Perf.

1 312/321 319/321 =
2 758/784 710/767 =
3 403/414 449/453 −
4 866/874 1091/1165 −−
5 415/432 312/364 ++
6 1444/1502 1360/1405 +
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[13] J.J. Moré and D.J. Thuente, Line search algorithms with guaranteed sufficient decrease,
ACM Trans. Math. Software, 20 (1994), pp. 286–307.

[14] J.L. Nazareth, The Newton-Cauchy Framework: A Unified Approach to Unconstrained Non-
linear Minimization, Lecture Notes in Comput. Sci. 769, Springer, New York, 1994.

D
ow

nl
oa

de
d 

06
/2

6/
17

 to
 1

29
.9

7.
91

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1204 M. ZHU, J. L. NAZARETH, AND H. WOLKOWICZ

[15] J.L. Nazareth, If quasi-Newton then why not quasi-Cauchy?, SIAG/OPT Views-and-News, 6
(1995), pp. 11–14.

[16] J.L. Nazareth, The Quasi-Cauchy Method: A Stepping Stone to Derivative-Free Algorithms,
Technical Report 95-3, Department of Pure and Applied Mathematics, Washington State
University, Pullman, WA, 1995.

[17] F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with
applications to large scale minimization, Math. Programming, 77 (1994), pp. 273–300.

[18] Y. Yuan and R.H. Byrd, Non-quasi-Newton updates for unconstrained optimization, J. Com-
put. Math., 13 (1995), pp. 95–107.

[19] M. Zhu, Limited Memory BFGS Algorithms with Diagonal Updating, M.Sc. Project Report,
School of Electrical Engineering and Computer Science, Washington State University, Pull-
man, WA, 1997.

[20] M. Zhu, Techniques for Nonlinear Optimization: Principles and Practice, Ph.D. dissertation,
Department of Pure and Applied Mathematics, Washington State University, Pullman,
WA, 1997.

D
ow

nl
oa

de
d 

06
/2

6/
17

 to
 1

29
.9

7.
91

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


