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TRUST REGIONS AND QAP 14. Parametric Trust Region Bounds 134.1. Symmetric Border Perturbations4.2. Numerical ResultsReferences 191. IntroductionConsider the general, equality constrained, matrix quadratic programmingproblem (EP ) min tr(AXBXt + 2CXt)s.t. XXt = I;where I denotes the identity matrix, �t means transpose, tr stands for trace,and A;B and C are real n � n matrices. This problem can be viewed as amatrix version of the well known trust region subproblem for unconstrainedminimization, i.e.,(TR) min q(x) subject to xtx � �; x 2 <n;where q(x) = xtQx + ctx is a quadratic, not necessarily convex, function on<n. Characterizations of optimality and e�cient numerical algorithms exist for(TR). In addition, in the homogeneous case (C = 0; c = 0), both problemsreduce to eigenvalue problems. But the important problem of e�ciently solvingthe general nonhomogeneous (EP) is still open.After scaling (TR), the unit ball � � 1, can be assumed. Moreover, the hardpart of the trust region subproblem is dealing with the case xtx = 1, sincethe trivial < 1 case occurs only when q is convex with optimum in the interiorof the ball. A characterization of optimality for (TR) holds without any gapbetween necessity and su�ciency, even in the absence of convexity. Eigenvaluetype algorithms can be applied to quickly and e�ciently solve the problem. (Seee.g., [10, 25].) This is due to the fact that these problems are implicit convexproblems. In fact, a dual program exists that consists in the maximization of aconcave function over an interval [33]. However, the addition of a second trustregion can create great di�culties both in the theory and the algorithms; seee.g., [15, 24, 34, 35, 36].The general matrix quadratic programming problem (EP) has a quadraticobjective function and (n2 + n)=2 quadratic constraints. We further relax theorthogonal constraint XXt � I = 0 to XXt � I = N , where N is negativesemide�nite; equivalently XXt � I � 0;is the partial ordering given by the positive semide�nite matrices, i.e., theLo�ewner partial order. (We denote this latter problem by (P).) These prob-lems resemble (TR) visually. Motivated by this, we extend the existing theory



2 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZfor (TR) to (P) and (EP). We also present a parametric eigenvalue approach tobound the solution of (P) and (EP).The paper is organized as follows. In Section 2 we �rst present preliminaryde�nitions and concepts. We also include a motivation for studying the matrixquadratic problems. We will show that the problems we investigate are relax-ations of the quadratic assignment problem denoted QAP. We survey the theoryof eigenvalue bounds for QAP that led to this relaxation in Section 2.2. In Sec-tion 3 we present �rst and second order optimality conditions for (P) and (EP).This includes conditions that guarantee orthogonality of the optimum in (P).In Section 4 we present perturbations of the matrices A;B using the full rankfactorization of the linear term matrix C. This yields a parametric homogeneouseigenvalue problem, which is used to approximate the optimal solution of thegeneral problem (P). Thereby, we obtain new lower bounds for QAP. Numericaltests are included.2. Preliminary Notations and Motivation2.1. Notations. We will use the following notation throughout the paper.If S is symmetric then it has an orthogonal diagonalization S = UDU t, wherethe eigenvalues of S are ordered�1(S) � �2(S) � : : : � �n(S):Recall that the spectrum of S is real since S is symmetric. We will use �(S) :=(�i(S)) to denote the vector of eigenvalues. The set of positive semide�nitematrices is denoted P or psd. We let A � B denote the Lo�ewner partial order,i.e., A�B is negative semide�nite (nsd). Similar de�nitions hold for A � B; A �B; A � B:We denote the vector of all ones of size n by u := (1; : : : ; 1)t 2 <n: The vectorof row sums of the matrix S 2 <n�n is r(S), and the sum of all the entries of Sis s(S), that is r(S) := Su and s(S) := utSu:The vector uk denotes the k-th unit vector, i.e., the k-th column of the identitymatrix; while the matrix Ek := ukutk: We let diag(v) denote the diagonal matrixformed from the vector v and conversely, diag(S) is the vector of the diagonalelements of the matrix S. For a set K, we let int(K) denote interior and Kdenote closure.We also need to de�ne theminimal scalar product of two vectors � and � 2 <n.It is given by h�; �i� := minf nXi=1 �i��(i) : � permutation g:The maximal scalar product h�; �i+ is de�ned analogously.



TRUST REGIONS AND QAP 32.2. A Survey on Eigenvalue Bounds for the QAP. The quadraticassignment problem (QAP) consists in minimizing a quadratic over the set ofpermutations. In the trace formulation QAP is the problemQAP minX2� f(X) = tr(AXBt +C)Xt;where � is the set of permutation matrices. We assume in addition that A andB are real symmetric n � n matrices and C 2 <n�n.The QAP is an NP-hard combinatorial optimization problem since the specialcase of QAP, the travelling salesman problem, is well known to be NP-hard.QAP even belongs to the hard core of NP-hard problems since �nding an "-approximation of the optimal solution proves to be NP-hard. For the complexityproofs, see [31]. QAP is a very hard problem in practice as well, since instancesof size n � 15 can prove to be intractable; see e.g., [30].Since current solution techniques employ branch and bound methods, onehas to improve the quality of lower bounds in order to be able to solve largerproblems. The remainder of this section will show that (P) can also be seen as arelaxation of QAP, which therefore yields bounds for QAP. A di�erent approachfor obtaining bounds is presented in this proceedings in [19].Eigenvalue bounds employ the trace formulation of QAP and use the obser-vation that the set of permutation matrices satis�es� = O \ E \N :(2.1)Here O := fX : XtX = Ig is the set of orthogonal matrices, while E := fX :Xu = Xtu = ug is the set of all matrices having row and column sums equal toone, and N := fX : X � 0g is the set of nonnegative matrices.The basic idea for eigenvalue bounds is to enlarge the feasible set � to get atractable problem. The orthogonal relaxation (i.e., optimizing over O instead of�) was applied to the QAP in [7, 29] and makes use of the following fact, whichcan be viewed as a variant of a classical inequality commonly referred to as the\Ho�man- Wielandt Inequality".Theorem 2.1 ([5, 7, 29]). Let A and B be real symmetric n � n matrices.Then h�(A); �(B)i� � trAXBXt � h�(A); �(B)i+ ; 8X 2 O:Moreover, the lower (upper) bound is attained for X = PQt, where P;Q 2 Ocontain the eigenvectors of A and B, respectively, in the order prescribed by theminimal (maximal) scalar product of the eigenvalues.This result can be used as the basis for the calculation of eigenvalue bounds.The basic bound proposed in [7] was obtained by bounding the quadratic partof QAP by Theorem 2.1 and by solving the linear part separately. This yieldsthe following lower bound for QAPQAP (A;B;C) � h�(A); �(B)i� + LSAP (C):(2.2)



4 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZLSAP(C) stands for the solution of the linear sum assignment problem with costmatrix C.The quality of this bound is in general rather poor and was further improvedby transformations of the objective function, called \shifts" and \reductions".These transformations consist in adding constants to the quadratic part and inappropriately modifying the linear part in order to keep the objective functionvalue unchanged over the permutation matrices. A simple way to select thesetransformations was proposed in [7] and led to the bound labeled EVB2; seeTable 1 below.In [29] an iterative improvement technique was developed to �nd shifts andreductions for making the sum of the quadratic and linear bounds in (2.2) aslarge as possible. The parametric programming approach that was given in [29]resulted in a new bound EVB3. EVB3 is in most cases the best eigenvalue boundavailable. But since it is computationally very expensive, it is not suitable forbranch and bound methods. Again we refer to Table 1.Recently in [14], the relaxation of the feasible set was strengthened by op-timizing over the smaller set X 2 O \ E . This is done by elimination of theconstraints E and yields an equivalent projected problem PQAP. For the projec-tion, an n�(n�1) matrix V such that V tu = 0 and V tV = In�1 was introduced.The new (n � 1)-dimensional problem was thenPQAP min tr(ÂY B̂t + Ĉ)Y t + consts.t. Y 2 On�1; V Y V t � �uut=n:where Â = V tAV; B̂ = V tBV , Ĉ = 2nV tr(A)rt(B)V + V tCV; and const =[s(A)s(B)=n + s(C)] =n.By ignoring the projected nonnegativity constraints V Y V t � �uut=n, weobtain the eigenvalue bound EVB4QAP (A;B;C) = PQAP (Â; B̂; Ĉ) � D�(Â); �(B̂)E� + LSAP (Ĉ) + const:(2.3)Before closing this section we look at the rank of the linear term of PQAP.Both r(A) and r(B) are at most rank 1, therefore V tr(A)rt(B)V is also at mostrank 1. The rank of the second part in Ĉ depends strongly on C, sincerank C � 2 � rank (V tCV ) � min(rank V; rank C):We can see that if QAP is pure quadratic, that is C = 0, the linear part willbecome at most rank 1. Below we exploit this rank 1 property when �ndingbounds using perturbed problems. The problem is further simpli�ed if Ĉ = 0,which occurs if C = 0 and either r(A) or r(B) are constant vectors.



TRUST REGIONS AND QAP 52.3. Lo�ewner Partial Order. The above provides motivation for the studyof (EP). In the context of QAP we can think of (EP) as being the relaxationof the projected instance PQAP of an (n + 1) � (n + 1) dimensional QAP. Bytreating the quadratic and linear parts of (EP) together one should expect betterbounds, as shown in [29] for EVB3.We now further relax the orthogonal constraint X 2 O to XXt � I = Nwhere N is a negative semide�nite matrix. For notional convenience we add afactor of 2 to the linear part. We then get the following relaxation to QAP(P ) min f(X) = trAXBXt + 2CXts.t. g(X) = XXt � I � 0;(2.4)where � refers to the Lo�ewner partial order de�ned above, see e.g., [16].Let us now look at some of the properties of the constraint g(X) of (P), whichde�nes an operator from <n�n to the space of n � n symmetric matrices. Notethat g is P-convex, i.e., for any X1; X2 2 <n�n and any � 2 [0; 1] we have�g(X1) + (1� �)g(X2) � g(�X1 + (1� �)X2)or equivalently�g(X1) + (1� �)g(X2)� g(�X1 + (1� �)X2) 2 P:When the eigenvalues of S are ordered�1(S) � �2(S) � : : : � �n(S);then we can see that S � 0 if and only if �1(S) � 0:Thus we can replace the cone constraint in (P ) by the scalar constraint�1 = �1(g(X)) � 0:The function �1(g(X)) is a convex function of X. We can �nd the derivativeof �k(g(X)) using the corresponding normalized eigenvector vk of g(X): If �k issimple, see e.g., [17], then@�k(g(X))@Xij = vtk @g(X)@Xij vk= 12vtk(EijXt +XEtij)vk= vk(i)(Xt:jvk);(2.5)where Eij is the zero matrix with 1 in the i; j-position, X:j is the j-th column ofX and vk(i) is the i-th component of vk. If �k is not simple, then the function�k may not be di�erentiable. Since we want X orthogonal at the solution, wecan expect multiple eigenvalues of 1. It is well known that the largest eigenvalueis convex and so we can obtain expressions for the subdi�erentials of the largest



6 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZeigenvalue if its multiplicity is > 1, see e.g., [8], [13],[27, 28]. These subdi�er-entials are just the convex hull, of the expression given above for the derivative,over all normalized eigenvectors vk.Note that the di�erentials at X in the direction h of the above functions in(P ) are: df(X;h) = trA(XBht + hBtXt) + 2Chtdg(X;h) = Xht + hXt:(2.6)Moreover df(X;h) = tr 2AXBht + 2Cht;since A and B are symmetric.We use the inner-product hS; T i = trST ton the space of n � n matrices. In the space of symmetric matrices with thisinner-product, P is a closed convex cone with nonempty interior, intP 6= ;.Moreover, P is self polar, i.e., the polar coneP+ = fT = T t : trST � 0; 8S 2 Pg = Psee e.g., [20].We will also need the singular values of an n � n matrix E which we denoteby �1(E) � : : : � �n(E):The corresponding singular value decomposition of E is U�V t = E, where Uand V are orthogonal n� n matrices and � is a diagonal matrix containing thesingular values of E.We should mention that optimization over a partial order like the Lo�ewnerorder is an important problem. There are many applications which occur forexample in control theory and combinatorial problems. Some applications werepresented at the Fourth SIAM Conference on Optimization in Chicago in May1992; see e.g., [1, 3]. 3. Optimality Conditions3.1. First Order Conditions. In this section we present the �rst orderoptimality conditions for the relaxed matrix quadratic programming problem(P ) min f(X) = trAXBXt + 2CXts.t. g(X) = XXt � I � 0;with A;B;C 2 <n�n; A and B are symmetric.This relaxation provides, under certain circumstances, conditions which guar-antee that the optimal solution is orthogonal. Thus we will see that under



TRUST REGIONS AND QAP 7controlled assumptions, we do not weaken our bound by relaxing the constraintXXt � I = 0 to XXt � I � 0. First we show the following.Lemma 3.1. Y is an extreme point of the feasible setF = fX : XXt � I � 0g;if and only if it is an orthogonal matrix.Proof. Suppose that the n � n matrix Y 2 F is not orthogonal. LetY = U�V t be its singular value decomposition with the diagonal matrix �containing the singular value 0 � �k < 1. Then we get0 � (Y � �UEkV t)(Y � �UEkV t) � I;for some �, i.e., Y is not an extreme point.Conversely, suppose Y is orthogonal, but Y = �Y1 + (1 � �)Y2, for some0 < � < 1, and Yi 2 F; i = 1; 2. Then the singular value decomposition of Ysatis�es � = I = �Z1+(1��)Z2, where Zi = U tYiV; i = 1; 2. Since Zi; i = 1; 2,are still feasible and so have norm � 1, we conclude that Zi = I; i = 1; 2, i.e.,Y = Yi; i = 1; 2. Thus Y is an extreme point. �Equivalent formulations of Lemma 3.1 can be found in [6, 27]. Although theformulations are slightly di�erent, the resulting feasible set and its extreme pointsare the same.We de�ne the Lagrangian of (P )L(X;S) = f(X) + trSg(X)and the �rst order optimality conditions(i) AXB +C = �SX(ii) trS(XXt � I) = 0(3.1) (iii) XXt � I(iv) S � 0:Note that the Lagrange multiplier is a psd symmetric matrix S, since g(X) issymmetric and P = P+.Theorem 3.1. Suppose that X is a local minimizer of (P ). Then ( 3.1) holdsfor some S.Proof. Since I 2 intP, the zero matrix satis�es the Slater constraintquali�cation, i.e., g(0) � 0. Since X is a local minimizer of (P), the standardLagrange multiplier theorem, see e.g., [21], states that there exists S 2 P+ such



8 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZthat complementary slackness trS(XXt�I) = 0 holds and, for all n�n matricesh 0 = hrL(X;S); hi= trA(XBht + hBXt) + S(Xht + hXt) + 2Cht= 2tr(AXB +C + SX)ht;i.e., AXB +C + SX = 0: �From Lemma 3.1, we see that the solution X is orthogonal if it is an extremepoint of the feasible set. This can be guaranteed by perturbations which makethe objective function f concave. However, the above �rst order conditionsprovide us with a better means to guarantee orthogonality.Theorem 3.2. Suppose that A and B are nonsingular and the smallest sin-gular value �n(A�1CB�1) > 1:(3.2)Then, if X solves (P ), it is orthogonal and the associated Lagrange multiplierS � 0:Proof. Suppose that X solves (P ). To prove that S and X are nonsingular,the �rst order conditions (3.1)(i) implies that we need only showX +A�1CB�1 is nonsingular,(3.3)since nonsingularity of S and X implies SX = AXB + C is also nonsingular.Let U (A�1CB�1)V t = �be the singular value decomposition of A�1CB�1. Then (3.3) holds if and onlyif Y +� is nonsingular,where Y = UXV t. Now (3.1)(iii) implies thatY Y t = UXXtU t � UIU t = I;(3.4)since U and V are orthogonal. Now for jjxjj = 1 we getxt(Y + �)x � xtY x+ �n> xt (Y + Y t)2 x+ 1� ��1(Y ) + 1; (e.g., [23] pg. 240])� 0;



TRUST REGIONS AND QAP 9by (3.4). This yields (3.3) and so S � 0. Now 3.1(ii) implies that0 = trS(XtX � I)= trS1=2(XtX � I)S1=2and 3.1(iii) implies that S1=2(XtX � I)S1=2 � 0:Thus, XtX � I = 0. �In the pure quadratic case, i.e., C = 0, we do not have to apply the relaxationXXt � I but can use XXt = I. This yields the eigenvalue decompositionbounds of Theorem (2.1).In the case that A = B = 0, the problem (P ) can be solved explicitly, see e.g.,[16], pg. 429.Corollary 3.1. Suppose that A = B = 0. Then the optimum X for problem(P ) is obtained from the polar decomposition of C,C = SX;(3.5)where X is orthogonal and S � 0. Moreover, the optimal valuetrCXt = nXi=1 �i(C):Proof. Since f(X) is linear, the optimumX is an extreme point of the feasibleset F , i.e., it is orthogonal. Thus (3.5) follows from the �rst order optimalitycondition for (P ). �Note that if f(X) is convex, i.e., A 
 B is psd, then Theorem 3.1 yields a �rstorder characterization of optimality.3.2. Second Order Conditions. We now present optimality conditions for(P) using second order information. We also present a conjecture that a charac-terization of optimality exists that has no gap between necessity and su�ciencyindependent of convexity of the objective function f . This would extends knownresults on trust region methods and methods for quadratic objectives with asingle quadratic constraint. Note that the relaxation has (n2+n)=2 constraints.We �rst present a test for optimality in (P ) which compares di�erent solutionsof the �rst order optimality conditions (3.1). This extends the result in [9] whichdeals with a single real valued quadratic constraint.Theorem 3.3. Suppose that Xi; Si; i = 1; 2, are solutions of the �rst orderoptimality conditions ( 3.1) with Si � 0; i = 1; 2. Then4(f(X2)� f(X1)) = tr(X1 �X2)(S1 � S2)(X1 �X2)t:



10 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZProof. From the �rst order conditions (3.1) we gettrAXiBXti +CXti = � trSiXiXti ; i = 1; 2;and, after subtracting,trAX2BXt2 � trAX1BXt1 + C(X2 �X1)t = tr(S1X1Xt1 � S2X2Xt2):(3.6)Also, (3.1) implies thattrAX1BXt2 +CXt2 = � trS1X1Xt2trAX2BXt1 +CXt1 = � trS2X2Xt1 = � trS2X1Xt2which, after subtracting, yieldstrC(X2 �X1)t = � trS1X1Xt2 + trS2X1Xt2:(3.7)Subtracting (3.6) and (3.7) we get2(f(X2) � f(X1)) = trS1X1Xt1 � trS2X2Xt2 � tr(S1 � S2)X1Xt2= tr(S1 � S2)(I �X1Xt2)= tr(S1 � S2)2 (I �X1Xt2 + I �X2Xt1);since S � 0 implies X1Xt1 = X2Xt2 = I: �We now characterize the feasible directions at a feasible point X.Lemma 3.2. Let F = fX : XXt � Ig denote the feasible set of (P). Then Fis a convex set. Moreover, let X 2 F and denote the set of feasible directions atX by DX = fV 2 <n�n : 9� > 0 with (X + �V )(X + �V )t � Ig:Then: a) ; 6= int DX = fV : XV t + V Xt is nd on N (XXt � I)g;and b) DX = fV : XV t + V Xt is nsd on N (XXt � I)g;where � denotes closure.Proof. Note that, for each S 2 P, the Hessian of trSXXt = I 
 S ispsd and so the constraint g is P-convex and the feasible set F is a convex set.Moreover, g(0) � 0 i.e., X = 0 is in the interior of F . Therefore D0 = <n�n.Thus the result holds in the trivial case X = 0. Now suppose that 0 6= XXt � I.Then the direction V = �X points into the interior of the feasible set, i.e.,(X + �V )(X + �V )t = (1� �)2XXt � I;for 0 < � � 1. Thus V = �X is in the interior of the convex cone DX .



TRUST REGIONS AND QAP 11Suppose h is a feasible direction. Then,V� = �h + (1� �)(�X);for 0 � � < 1, is a feasible direction pointing into the interior of the feasible seti.e., V� 2 int DX . Therefore,(X + �V�)(X + �V�)t � I = �(XV t� + V�Xt) + �2V�V t� +XXt � Iis nsd for small, � > 0. Since V�V t� is psd, this implies that XV t� + V�Xt is ndon N (XXt � I)g and thus Xht + hXt is nsd on N (XXt � I)g. Thus we haveshown that int DX 6= � andDX � fV : XV t + V Xt is nd on N (XXt � I)g:Conversely, suppose that Xht + hXt is nd on N (XXt � I)g. Then �(Xht +hXt) + �2hht is nd on N (XXt � I)g, for small � > 0. This implies that(X + �h)(X + �h)t = �(Xht + hXt) + �2hht +XXt � Iis nsd, for small � > 0, see e.g., [2] or [22], i.e., h 2 DX . We can perturb h andstill maintain that Xht + hXt is nd on N (XXt � I)g. Therefore h 2 intDX .This proves a). Since intDX 6= ; and we are dealing with convex sets, b) followsfrom a continuity argument. �Corollary 3.2. If XXt � I, then; 6= fV : XV t + V Xt is nd on N (XXt � I)g:We now present second order optimality conditions for (P). Note that (3.8)di�ers from the standard conditions in the literature and allows for su�ciencyfor a global optimum to hold. In this respect, it is close to the standard trustregion results.Theorem 3.4. Suppose X is feasible for (P ). De�ne the optimality condi-tions (i) S � 0(ii) AXB + C + SX = 0(3.8)(iii) trS(XXt � I) = 0(iv) trAhBht + Shht � 0; if Xht + hXt is nsd on N (XXt � I)g:Then the following holds:a) if ( 3.8) holds for some S, then X is a global minimum for (P ) ;b) if ( 3.8) holds for some S � 0, then X is a global minimum of (P ) andXXt = I.



12 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZProof. Now suppose (3.8) holds. If Y is feasible for (P ) and f(Y ) < f(X),then L(Y; S) = f(Y ) + trS(Y Y t � I)< f(X)= f(X) + trS(XXt � I)(3.9) = L(X;S):We can assume that Y Y t�I is negative de�nite. (Use a small perturbation of Yinto the interior of the feasible set and maintain f(Y ) < f(X).) Let V = X �Yand Y� = X � �V , and so Y� is a convex combination of X and Y for 0 � � � 1.Then Y�Y t� � I = ��(XV t + V Xt) + �2V V t +XXt � I is negative de�nite forsmall � > 0. Therefore, XV t + V Xt is positive de�nite on N (XXt � I) which,by hypothesis, implies that
V;r2L(X;S)V � = trAV BV t + SV V t � 0:But by (3.9) and the stationarity condition rL(X;S) = 0 in (3.8), we haveL(Y; S) = L(X;S) + 
V;r2L(X;S)V � < L(X;S);a contradiction. This proves (a).(b) follows from complementary slackness, i.e., S � 0; XXt � I � 0 andtrS(XXt � I) = 0 imply XXt � I = 0. �Corollary 3.3. Suppose that�n(A�1CB�1) > 1:(3.10)Then the second order conditions ( 3.8) characterize optimality of X for (P ),with X orthogonal, i.e., X is orthogonal and solves (P) if and only if the �rstorder conditions ( 3.8) hold andtrAhBht + Shht � 0 if Xht + hXt is nsd:(3.11)Proof. Necessity follows directly from the previous theorem and holdswithout (3.10). By Theorem 3.4, the �rst order conditions and (3.11) are su�-cient for X to be a global optimum for (P). But Theorem 3.2 and (3.10) implythat if X solves (P) then it is orthogonal and the associated Lagrange multiplierS � 0. This proves su�ciency. �We now present a conjecture that the above su�cient conditions are in factnecessary. This would provide a characterization of optimality that parallelsthe one for the standard trust region subproblem TR. Recall that the standardsecond order necessary conditions di�er from (3.8) in that the Hessian of the



TRUST REGIONS AND QAP 13Lagrangian is positive semide�nite on the tangent space, i.e. for all h such thatXht + hXt = 0.Conjecture 3.1. X is a global minimum for (P ) only if ( 3.8) holds for someS. 4. Parametric Trust Region BoundsIn this section we present a parametric approach for solving (EP). We formbordered matrices by augmenting the matrices A and B using the full rankfactorization of the linear term. We obtain a (larger) pure quadratic problem,which enables us to apply the eigenvalue bounds discussed above. Preliminarynumerical results are given in Section 4.2.We consider the matrix quadratic programming problem (EP) throughoutthis section, i.e., (EP ) min f(X) = trAXBXt + 2CXts.t. XXt = I;where A;B are (real) symmetric n�n matrices and C 2 <n�n with r := rankC.With respect to QAP this is again the orthogonal relaxation of PQAP, thatis we assume again that the elimination of the linear equality constraints (theprojection) was already done.4.1. Symmetric Border Perturbations. Let C = abt be a full rank fac-torization of C with a; b 2 <n�r. With this factorization of C we de�ne thefollowing symmetric border perturbations of A;B�A := � � ata A � and �B := � � btb B � ;where �; � are symmetric matrices in <r�r . We will describe below how wechoose these matrices � and �. Furthermore, we partitionZ = � w utv Y �(4.12)with u; v 2 <n�r and w 2 <r�r . We now introduce the following (n + r)dimensional eigenvalue problem(P�;�) min q�;�(Z) := tr �AZ �BZts.t. ZZt = In+r :Since Z depends on the choice of � and � we will denote the optimal solutionby Z(�; �). The following theorem shows that the optimal solution can be usedto bound (EP ).



14 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZTheorem 4.1. Suppose Z(�; �) solves (P�;�) and �X solves (EP ). Thenf( �X) � q�;�(Z(�; �)) � tr��:(4.13)Proof. Since �X is the solution of (EP ) with �X �Xt = I,Z = � Ir 00 �X �is feasible but not necessarily optimal for (P�;�) and soq�;�(Z) = f( �X ) + tr�� � q�;�(Z(�; �))by optimality of Z(�; �). This proves the desired inequality. �We are now interested in choosing good values for � and � in order to maximizethe lower bound h(�; �) := minftr �AZ �BZt : ZZt = Ig � tr��:This is a parametric programming problem, i.e., we want tomax�;� h(�; �)(4.14)or equivalently max�;� f
�( �A); �( �B)�� � tr��g:(4.15)We can use the techniques from [29] to maximize this function, i.e., we aremaximizing the sum of two functions on <r2+r , where the �rst one is the minimalscalar product, while the second is a simple quadratic with the Hessian beinga matrix of ones except for a zero diagonal. Both functions are in general notconcave, and the �rst function does not have to be di�erentiable when there aremultiple eigenvalues. However, we can still apply subdi�erentiable optimizationand ignore the lack of concavity. (In [29], the �rst function was the minimalscalar product for the bound for the quadratic part; while the second functionwas the optimal value of the LSAP, i.e., the bound for the linear part.)For completeness we now include the di�erentials of the bound h(�; �). Asmentioned in Section 2.3 the bound is di�erentiable if the eigenvalues are simple.We assume simple eigenvalues and suppose that �( �A) and �( �B) are ordered non-decreasingly and nonincreasingly, respectively. Then the di�erentials of h(�; �)with respect to � and � become@h(�; �)@�ij = diag(P tEijP )t�( �B) � �ji@h(�; �)@�ij = diag�( �A)t(QtEijQ)� �ji;(4.16)where P and Q contain the eigenvectors of �A and �B in appropriate order, re-spectively. For multiple eigenvalues subgradients are used instead of gradients.



TRUST REGIONS AND QAP 15The numerics showed that there do not occur problems with using subgradientdirections in practice.The above theorem provides a lower bound for (EP). However, we do not nec-essarily obtain a feasible solution for (EP) from the optimal solution of (P�;�).But, if the matrices �; � are diagonal, ordered appropriately, and large in abso-lute value, then the trace in (4.15) will essentially cancel with part of the minimalscalar product.To accomplish this, we choose� = diag((rt1; (r � 1)t1; � � � ; 2t1; t1)t);(4.17)and � = diag((rt2; (r� 1)t2; � � � ; 2t2; t2)t);(4.18)with t1; t2 2 <. Recall that r = rankC. Then, fort1 !�1; t2 ! +1the solution Z of (P�;�) takes the formZ(�; �) = � Ir 00 Y � ;where Y is orthogonal and therefore feasible for (EP) in the limit. We leave itto the interested reader to work out the details.Let us now consider the objective function of (P�;�).q�;�(Z) = tr �AZ �BZt= tr� � ata A �� w utv Y �� � btb B �� wt vtu Y t �= tr�w�wt + �wbtu+ atv�wt + atvbtu+�utbwt + �utBu + atY bwt + atY Bu+aw�vt + awbtY t +Av�vt + AvbtY t+autbvt + autBY t + AY bvt + AY BY t= trAY BY t + 2awbtY t + �w�wt+2�wbtu+ 2atv�w + 2atvbtu+ �utBu+Av�vt + 2atY Bu+ 2AY bvt= trAY BY t + 2awbtY t + �w�wt + g�;�(w; u; v; Y )with g�;�(w; u; v; Y ) := tr2�wbtu+ 2atv�w + 2atvbtu+ �utBu+Av�vt + 2atY Bu+ 2AY bvt;which we call the error term of (P�;�). We can see that the �rst two terms in q�;�are almost in the form of the objective function of (EP ), f(X) = trAXBXt +2CXt; if w ! Ir and C = abt. So for � and � given as in (4.17) and (4.18) we



16 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZcan bound (EP ) from above and below at the same time. These considerationslead to the following approximation for (EP ).Lemma 4.1. Let (EP ) and (P�;�) be given as above with diagonal matrices� and � as in ( 4.17) and ( 4.18), respectively. Suppose Z = � w utv Y � solves(P�;�) and �X solves (EP ), and let t1 !�1 and t2 !1. Thenf(Y ) � f( �X) � f(Y ) + g�;�(w; u; v; Y ) + �(w � Ir)�(w + Ir)t:(4.19)Proof. The proof for the lower bound is analogous to the proof of Theorem(4.1).Let Z = � w utv Y � be a solution of QS . By the previous observation weknow that Y is orthogonal for t1 ! �1 and t2 ! 1. Thus we have a feasiblesolution for (EP ) and f(Y ) � f( �X ) follows. �So in order to �nd a good approximation to (EP) one has to make the gapbetween lower and upper bound, g�;�(w; u; v; Y ) + �(w � Ir)�(w + Ir)t, small.One way would be a parametric approach equivalent to the one presented above.An alternative would be applying nonsymmetric border perturbations on A andB. We brie
y want to present this idea in the remainder of this subsection.Let the full rank decomposition of C be now given byC = �abt:We then perturb A and B nonsymmetrically that isÂN = � � at�a A � and B̂N = � � bt�b B �and de�ne the (n+ r) dimensional minimization problem(PN ) min qN (Z) = trÂNZB̂tNZts.t. ZZt = In+rwith Z de�ned as in (4.12).Since ÂN and B̂N are not symmetric, (PN ) is not as tractable a problem as(P�;�). But the advantage of this approach is that the objective function of (PN )becomes qN (Z) = trÂNZB̂tNZt= trAY BY t + 2awbtY t + �w�wt + gN (w; u; v; Y )with gN (w; u; v; Y ) = tr2atvbtu+ �utBu + �vtAv:



TRUST REGIONS AND QAP 17Size Sol. GLB EVB2 EVB3 EVB4 EVB512 578 439 446 498 472 46915 1150 963 927 1002 973 98020 2570 2057 2075 2286 2196 221730 6124 4539 4982 5443 5266 531210 4954 3586 2774 4541 4079 397810 8082 6139 6365 7617 7211 709910 8649 7030 6869 8233 7837 770810 8843 6840 7314 8364 8006 752610 9571 7627 8095 8987 8672 848010 936 878 885 895 887 88612 1652 1536 1562 1589 1573 157514 2724 2492 2574 2630 2609 261116 3720 3358 3518 3594 3560 357218 5358 4776 5035 5150 5104 511020 6922 6166 6533 6678 6625 661942 15812 11311 n.a. 14202 13830 1393849 23386 16161 n.a. 21230 20715 2089756 34458 23321 n.a. 31496 30701 30857Table 1. Lower Bounds for QAPWe see that some terms cancelled and so the error term gN becomes at leastsmaller than g�;� in number of terms. It also seems that we got rid of thedominating terms of g�;�. This fact was also shown by numerical experiments.One approach for tackling (PN ), which uses the fact that Â and B̂ are almostsymmetric, is the theory of inde�nite inner products, e.g., Gohberg et. al. [12].So the application of this theory would be a future research direction.4.2. Numerical Results. The remainder of this paper discusses preliminarynumerical experiments. We �rst used the bound derived in Theorem 4.1 andapplied the parametric programming approach discussed above to achieve a neweigenvalue bound for QAP. This new bound will be denoted by EVB5. Wecalculated the bound for four groups of instances of QAP. The results are givenin Table 1. Note that some of the results in the table are taken from [14].The �rst group of instances is from to [26]. These data are the most widelyused for QAP. The instances are pure quadratic, i.e., C = 0. The second groupof problems comes from [4]. The problems all have linear term C 6= 0. The thirdand the fourth group contain again pure quadratic problem instances of QAP.The examples in the third group are taken from [14] while the examples of thelast group are due to [32].The table is structered as follows. The �rst and second columns give, re-spectively, the size and the best known solution of the problem instances. Forproblems of size � 15 the solutions are optimal. The other columns compare the



18 S.E. KARISCH, F. RENDL, AND H. WOLKOWICZclassical Gilmore{Lawler bound (GLB) [11, 18], the eigenvalue bounds EVB2through EVB4 discussed in the introduction, and EVB5, the new bound. Therewere no solutions available for EVB2 for problems of the last group.We should give some technical notes about the computation of EVB5. Wecalculated the lower bound given in Theorem (4.1) and then maximized h(�; �)with respect to � and �.Speci�cally, we selected � and � to be diagonal matrices. For the purequadratic problems (groups 1,2 and 4) we used as starting values �0 = minf�(A)gand �0 = maxf�(B)g. For the examples in the second group it proved to bepreferable to choose j�0j and j�0j large. (Since the problems from this grouptypically have a full rank linear term, these were the hardest for the presentapproach.) Then we proceeded iteratively. In each iteration we calculated asubgradient and followed the subgradient direction with a �xed stepsize. If theobjective function decreased, we reduced the stepsize- factor, and otherwise weincreased it. We stopped after a �xed number of iterations. In each computation100 iterations into the direction of the (sub)gradient were made. We point outthat about 10 to 20 iterations are su�cient to calculate bounds that are close tothe values of EVB5 that are reported in Table 1.It proved that subgradient directions were su�cient to improve the bound.By choosing the stepsizes carefully at each iteration we were able to �nd animprovement in the following iterations.The comparisons of the di�erent bounds show that EVB5 is in general a com-petitive bound compared to EVB2 and EVB4. The only exception are problemsthat have nonzero linear parts. This comes from the fact that EVB4 solves thelinear part over the set of permutation matrices while EVB5 only uses orthogonalmatrices.The main point to consider lies in the fact that EVB5 allows further im-provements by shifts or reductions. This might make EVB5 also competitiveto EVB3 for which shifts and reductions were already selected to maximize thelower bound. So these �rst numerical results are very promising and encouragingfor future work into this direction.We also did numerical experiments for the approximation of (P), the generalmatrix quadratic programming problem. The results are shown in Table 2. The�rst and second column in the table give the size of the example and the rankof the linear term, respectively. The third column contains a lower bound whilethe fourth column gives an upper bound of the given instance. The last twocolumns represent the gap between lower and upper bounds, where the secondlast column contains the absolute gap while the last column shows the relativegap.The problem instances were generated as follows. The elements ofA and B areuniformly distributed real numbers on the interval [1; 10]. C was constructed byC = abt, with a and b being n� r matrices whose elements where also generateduniformly on the interval [1; 10].



TRUST REGIONS AND QAP 19n r Lower Bd. Upper Bd. Abs. Gap Rel. Gap10 1 -5865.50 -5770.21 95.29 1.66 %10 2 -5099.63 -4770.10 329.53 6.91 %20 1 -18601.73 -18304.06 297.67 1.63 %20 2 -20056.09 -19240.64 815.45 4.24 %20 3 -19143.17 -17886.03 1257.14 7.03 %20 4 -20801.24 -18986.02 1815.22 9.57 %30 1 -36190.12 -35704.43 485.69 1.37 %30 2 -40985.36 -39875.45 1109.91 2.79 %30 3 -38647.93 -36909.37 1738.56 4.72 %30 4 -42747.06 -40267.14 2479.20 6.15 %40 1 -64111.57 -63427.04 684.53 1.08 %40 2 -60088.59 -58548.47 1540.12 2.64 %40 3 -64844.81 -62810.69 2034.12 3.24 %40 4 -62945.42 -59930.75 3014.67 5.04 %Table 2. Lower and upper bounds for (P)One can observe that the quality of the approximation depends on the in
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