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TRUST REGIONS and RELAXATIONS for the
QUADRATIC ASSIGNMENT PROBLEM

STEFAN E. KARISCH, FRANZ RENDL, AND HENRY WOLKOWICZ

ABSTRACT. General quadratic matrix minimization problems, with orthog-
onal constraints, arise in continuous relaxations for the (discrete) quadratic
assignment problem (QAP). Currently, bounds for QAP are obtained by
treating the quadratic and linear parts of the objective function, of the
relaxations, separately. This paper handles general objectives as one func-
tion. The objectives can be both nonhomogeneous and nonconvex. The
constraints are orthogonal or Loéwner partial order (positive semidefinite)
constraints. Comparisons are made to standard trust region subproblems.
Numerical results are obtained using a parametric eigenvalue technique.
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1. Introduction

Consider the general, equality constrained, matrix quadratic programming
problem
min tr(AXBX® +2CX?)
(EP) st. XXt=1,

* means transpose, tr stands for trace,

where I denotes the identity matrix, -
and A, B and C are real n x n matrices. This problem can be viewed as a
matrix version of the well known trust region subproblem for unconstrained

minimization, i.e.,
(TR) min q(z) subject to z'z < §, = € R",

where g(z) = z'Qz + c'z is a quadratic, not necessarily convex, function on
R™. Characterizations of optimality and efficient numerical algorithms exist for
(TR). In addition, in the homogeneous case (C = 0, ¢ = 0), both problems
reduce to eigenvalue problems. But the important problem of efficiently solving
the general nonhomogeneous (EP) is still open.

After scaling (TR), the unit ball § < 1, can be assumed. Moreover, the hard

tz = 1, since

part of the trust region subproblem is dealing with the case z
the trivial < 1 case occurs only when ¢ is convex with optimum in the interior
of the ball. A characterization of optimality for (TR) holds without any gap
between necessity and sufficiency, even in the absence of convexity. Eigenvalue
type algorithms can be applied to quickly and efficiently solve the problem. (See
e.g., [10, 25].) This is due to the fact that these problems are implicit convex
problems. In fact, a dual program exists that consists in the maximization of a
concave function over an interval [33]. However, the addition of a second trust
region can create great difficulties both in the theory and the algorithms; see
e.g., [15, 24, 34, 35, 36).

The general matrix quadratic programming problem (EP) has a quadratic
objective function and (n? + n)/2 quadratic constraints. We further relax the
orthogonal constraint XX* — T = 0 to XX* — I = N, where N is negative
semidefinite; equivalently

XXt —I<0,

is the partial ordering given by the positive semidefinite matrices, i.e., the
Loéwner partial order. (We denote this latter problem by (P).) These prob-
lems resemble (TR) visually. Motivated by this, we extend the existing theory
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for (TR) to (P) and (EP). We also present a parametric eigenvalue approach to
bound the solution of (P) and (EP).

The paper is organized as follows. In Section 2 we first present preliminary
definitions and concepts. We also include a motivation for studying the matrix
quadratic problems. We will show that the problems we investigate are relax-
ations of the quadratic assignment problem denoted QAP. We survey the theory
of eigenvalue bounds for QAP that led to this relaxation in Section 2.2. In Sec-
tion 3 we present first and second order optimality conditions for (P) and (EP).
This includes conditions that guarantee orthogonality of the optimum in (P).
In Section 4 we present perturbations of the matrices A, B using the full rank
factorization of the linear term matrix C. This yields a parametric homogeneous
eigenvalue problem, which is used to approximate the optimal solution of the
general problem (P). Thereby, we obtain new lower bounds for QAP. Numerical
tests are included.

2. Preliminary Notations and Motivation

2.1. Notations. We will use the following notation throughout the paper.
If S is symmetric then it has an orthogonal diagonalization S = U DU¢, where
the eigenvalues of S are ordered

Recall that the spectrum of S is real since S is symmetric. We will use A(S) :=
(A:(S)) to denote the vector of eigenvalues. The set of positive semidefinite
matrices is denoted P or psd. We let A < B denote the Loéwner partial order,
i.e., A— B is negative semidefinite (nsd). Similar definitions hold for 4 < B, 4 >
B, A> B.

We denote the vector of all ones of size n by u := (1,...,1)* € R™. The vector
of row sums of the matrix S € R**" is r(9), and the sum of all the entries of S
is s(9), that is 7(S) := Su and s(5) := u*Su.

The vector uy denotes the k-th unit vector, i.e., the k-th column of the identity
matrix; while the matrix Ey := uzul. We let diag(v) denote the diagonal matrix
formed from the vector v and conversely, diag(S) is the vector of the diagonal
elements of the matrix S. For a set K, we let int(K) denote interior and K
denote closure.

We also need to define the minimal scalar product of two vectors @ and 8 € R™.
It is given by

(o, B)_ := min{z a;By(i) : ¢ permutation }.

=1

The mazimal scalar product (a,,@')_l_ is defined analogously.
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2.2. A Survey on Eigenvalue Bounds for the QAP. The quadratic
assignment problem (QAP) consists in minimizing a quadratic over the set of
permutations. In the trace formulation QAP is the problem

. _ t t
QAP Inin, f(X) =t(AXB" + C)X*,

where II is the set of permutation matrices. We assume in addition that 4 and
B are real symmetric n x n matrices and C € R**™,

The QAP is an NP-hard combinatorial optimization problem since the special
case of QAP, the travelling salesman problem, is well known to be NP-hard.
QAP even belongs to the hard core of NP-hard problems since finding an e-
approximation of the optimal solution proves to be NP-hard. For the complexity
proofs, see [31]. QAP is a very hard problem in practice as well, since instances
of size » > 15 can prove to be intractable; see e.g., [30].

Since current solution techniques employ branch and bound methods, one
has to improve the quality of lower bounds in order to be able to solve larger
problems. The remainder of this section will show that (P) can also be seen as a
relaxation of QAP, which therefore yields bounds for QAP. A different approach
for obtaining bounds is presented in this proceedings in [19].

Eigenvalue bounds employ the trace formulation of QAP and use the obser-
vation that the set of permutation matrices satisfies

(2.1) I=0Nn&ENN.

Here O := {X : X*X = I} is the set of orthogonal matrices, while & := {X :
Xu = X'u = u} is the set of all matrices having row and column sums equal to
one, and N := {X : X > 0} is the set of nonnegative matrices.

The basic idea for eigenvalue bounds is to enlarge the feasible set II to get a
tractable problem. The orthogonal relaxation (i.e., optimizing over O instead of
II) was applied to the QAP in [7, 29] and makes use of the following fact, which
can be viewed as a variant of a classical inequality commonly referred to as the
“Hoffman- Wielandt Inequality”.

THEOREM 2.1 ([5, 7, 29]). Let A and B be real symmetric n X n matrices.
Then
(A(A),A(B))_ < trAXBX*' < (A(4),A(B)),, VX € O.

Moreover, the lower (upper) bound is attained for X = PQ?, where P,Q € O
contain the eigenvectors of A and B, respectively, in the order prescribed by the
minimal (mazimal) scalar product of the eigenvalues.

This result can be used as the basis for the calculation of eigenvalue bounds.
The basic bound proposed in [7] was obtained by bounding the quadratic part
of QAP by Theorem 2.1 and by solving the linear part separately. This yields
the following lower bound for QAP

(2.2) QAP(A,B,C) > (A(A),A(B))_ + LSAP(C).
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LSAP(C) stands for the solution of the linear sum assignment problem with cost
matrix C.

The quality of this bound is in general rather poor and was further improved
by transformations of the objective function, called “shifts” and “reductions”.
These transformations consist in adding constants to the quadratic part and in
appropriately modifying the linear part in order to keep the objective function
value unchanged over the permutation matrices. A simple way to select these
transformations was proposed in [7] and led to the bound labeled EVB2; see
Table 1 below.

In [29] an iterative improvement technique was developed to find shifts and
reductions for making the sum of the quadratic and linear bounds in (2.2) as
large as possible. The parametric programming approach that was given in [29]
resulted in a new bound EVB3. EVB3 is in most cases the best eigenvalue bound
available. But since it is computationally very expensive, it is not suitable for
branch and bound methods. Again we refer to Table 1.

Recently in [14], the relaxation of the feasible set was strengthened by op-
timizing over the smaller set X € O NE. This is done by elimination of the
constraints £ and yields an equivalent projected problem PQAP. For the projec-
tion, an n X (n—1) matrix V such that Viu = 0and V'V = I,_; was introduced.
The new (n — 1)-dimensional problem was then

PQAP min tr(fiYBt + C’)Yt + const
s.t. Y €On_1, VYV > —uul/n.

where A = V*AV, B = V'BV, € = f—LVtr(A)rt(B)V + ViCV, and const =
[s(4)s(B)/n + s(C)] /n.

By ignoring the projected nonnegativity constraints VY V? > —uut/n, we
obtain the eigenvalue bound EVB4

(2.3)
QAP(4,B,C) = PQAP(A, B,0) > (A(4),A(B)) +LSAP(C)+ const.

Before closing this section we look at the rank of the linear term of PQAP.
Both r(4) and 7(B) are at most rank 1, therefore Vr(A)r*(B)V is also at most
rank 1. The rank of the second part in ¢ depends strongly on C, since

rank C — 2 < rank (V*CV) < min(rank V,rank C).

We can see that if QAP is pure quadratic, that is C' = 0, the linear part will
become at most rank 1. Below we exploit this rank 1 property when finding
bounds using perturbed problems. The problem is further simplified if ¢ = 0,
which occurs if C' = 0 and either 7(A) or r(B) are constant vectors.
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2.3. Loéwner Partial Order. The above provides motivation for the study
of (EP). In the context of QAP we can think of (EP) as being the relaxation
of the projected instance PQAP of an (n + 1) x (n + 1) dimensional QAP. By
treating the quadratic and linear parts of (EP) together one should expect better
bounds, as shown in [29] for EVBS3.

We now further relax the orthogonal constraint X € O to XX* — 1 = N
where N is a negative semidefinite matrix. For notional convenience we add a
factor of 2 to the linear part. We then get the following relaxation to QAP

(P) min f(X) =trAXBX* +2CX?

(2:4) s.t. g(X)=XX*-1=0,

where < refers to the Loéwner partial order defined above, see e.g., [16].

Let us now look at some of the properties of the constraint g(X) of (P), which
defines an operator from R™*™ to the space of n X n symmetric matrices. Note
that g is P-convex, i.e., for any X1, X5 € R®*" and any A € [0, 1] we have

Ag(X1) + (1= A)g(X2) = g(AX1 + (1 - M) X3)
or equivalently
Ag(X1)+ (1= AN)g(X2) —g(AX1 + (1 - A)X2) €P.

When the eigenvalues of S are ordered

A(8) > As(8) > .. > An(S),
then we can see that

S =<0 if and only if A1(S) < 0.
Thus we can replace the cone constraint in (P) by the scalar constraint

AL = Ar(g(X)) <.

The function A;(g(X)) is a convex function of X. We can find the derivative
of Ax(g(X)) using the corresponding normalized eigenvector vy of g(X). If Ay is
simple, see e.g., [17], then

Melo(X))  _ ¢ 99X)
0X;; koX;
= %vi(Eint + XE'fj)vk

(2.5) = v (8)(Xx),

where E;; is the zero matrix with 1 in the ¢, j-position, X ; is the j-th column of
X and vg(7) is the i-th component of v;. If Ay is not simple, then the function
Ar may not be differentiable. Since we want X orthogonal at the solution, we
can expect multiple eigenvalues of 1. It is well known that the largest eigenvalue
is convex and so we can obtain expressions for the subdifferentials of the largest
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eigenvalue if its multiplicity is > 1, see e.g., [8], [138],[27, 28]. These subdiffer-
entials are just the convex hull, of the expression given above for the derivative,
over all normalized eigenvectors vy.

Note that the differentials at X in the direction h of the above functions in
(P) are:

&
——
>
-
A2
I

trA(X Bh! + hB'X*) + 2Ch*
(2.6) dg(X;h) = Xh'+hX
Moreover

df(X;h) = tr 2AX Bh' 4 2Ch?,

since A and B are symmetric.
We use the inner-product

(8, T) = t1ST*

on the space of n X n matrices. In the space of symmetric matrices with this
inner-product, P is a closed convex cone with nonempty interior, int? # 0.
Moreover, P is self polar, i.e., the polar cone

Pt ={T=T':t:8T >0, VScP}="P

see e.g., [20].
We will also need the singular values of an n x n matrix £ which we denote
by
c1(E) > ... > o,(E).

The corresponding singular value decomposition of E is ULV = E, where U
and V are orthogonal n x n matrices and ¥ is a diagonal matrix containing the
singular values of E.

We should mention that optimization over a partial order like the Loéwner
order is an important problem. There are many applications which occur for
example in control theory and combinatorial problems. Some applications were
presented at the Fourth SIAM Conference on Optimization in Chicago in May
1992; see e.g., [1, 3].

3. Optimality Conditions

3.1. First Order Conditions. In this section we present the first order
optimality conditions for the relaxed matrix quadratic programming problem
(P) min f(X) =ttAXBX' +20X"
s.t. g(X)=XX*-I=<0,
with A, B,C € ®**™; A and B are symmetric.

This relaxation provides, under certain circumstances, conditions which guar-
antee that the optimal solution is orthogonal. Thus we will see that under
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controlled assumptions, we do not weaken our bound by relaxing the constraint
XXt —T=0to XX*—1T=<0. First we show the following.

LEMMA 3.1. Y is an extreme point of the feasible set
F={X:XX*'-1=<0},
if and only if it is an orthogonal matriz.

Proof. Suppose that the n x n matrix ¥ € F is not orthogonal. Let
Y = UZV? be its singular value decomposition with the diagonal matrix &
containing the singular value 0 < o3 < 1. Then we get

0= (YL eUE V)Y £eUE VY <1,

for some ¢, i.e., Y is not an extreme point.

Conversely, suppose Y is orthogonal, but ¥ = 68Y; + (1 — 8)Y3, for some
0<8<1l,and Y; € F, : = 1,2. Then the singular value decomposition of Y
satisfies © = I = 0Z; +(1—0)Z,, where Z, = U'Y;V, i = 1,2. Since Z;, i = 1,2,
are still feasible and so have norm < 1, we conclude that Z; = I, i = 1,2, i.e.,
Y =Y;, :=1,2. Thus Y is an extreme point.

O
Equivalent formulations of Lemma 3.1 can be found in [6, 27]. Although the
formulations are slightly different, the resulting feasible set and its extreme points
are the same.

We define the Lagrangian of (P)

L(X,S) = f(X) +txSq(X)
and the first order optimality conditions

(i
(3.1) (ii

(sid

) AXB+C=-5X
) t1S(XX*-1)=0
) XXt <1

(3v) S > 0.

Note that the Lagrange multiplier is a psd symmetric matrix S, since g(X) is
symmetric and P = PT.

THEOREM 3.1. Suppose that X is a local minimizer of (P). Then (3.1) holds
for some S.

Proof. Since I € intP, the zero matrix satisfies the Slater constraint
qualification, i.e., g(0) < 0. Since X is a local minimizer of (P), the standard
Lagrange multiplier theorem, see e.g., [21], states that there exists § € PT such
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that complementary slackness trS(X X* —1I) = 0 holds and, for all n x n matrices
h

o
Il

(VL(X,S),h)
= trA(XBA' + hBX*) + S(Xh' + hX*) + 2Ch*
= 2tr(AXB+C + SX)h',
ie, AXB+C+ 58X =0.
O
From Lemma 3.1, we see that the solution X is orthogonal if it is an extreme
point of the feasible set. This can be guaranteed by perturbations which make

the objective function f concave. However, the above first order conditions
provide us with a better means to guarantee orthogonality.

THEOREM 3.2. Suppose that A and B are nonsingular and the smallest sin-
gular value

(3.2) on(ATTCB™Y) > 1.
Then, if X solves (P), it is orthogonal and the associated Lagrange multiplier
S > 0.

Proof. Suppose that X solves (P). To prove that S and X are nonsingular,
the first order conditions (3.1)(i) implies that we need only show

(3.3) X + A~*CB™! is nonsingular,
since nonsingularity of S and X implies SX = AXB + C is also nonsingular.
Let

UA™'CB H)YWVi=3%
be the singular value decomposition of A='CB~!. Then (3.3) holds if and only
if

Y + X is nonsingular,

where Y = UXV*. Now (3.1)(iii) implies that
(3.4) YY! = UXX'Ut < UIU' = I,
since U and V are orthogonal. Now for ||z|| = 1 we get

(Y +X)z > z'YVz+o,
AT +YY)

2
_Jl(Y) +1, (e'g'a [23] pg. 240])
0,

z+1

(VAR AVAREAY/
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by (3.4). This yields (3.3) and so S >~ 0. Now 3.1(ii) implies that
0 = tS(X'X 1)
trSY( XX — I)SY/?
and 3.1(iii) implies that
SYYXtX — I)SY? <.

Thus, XX — I = 0.
O
In the pure quadratic case, i.e., C = 0, we do not have to apply the relaxation
XX? < I but can use XX* = I. This yields the eigenvalue decomposition
bounds of Theorem (2.1).
In the case that 4 = B = 0, the problem (P) can be solved explicitly, see e.g.,
[16], pg. 429.

COROLLARY 3.1. Suppose that A = B = 0. Then the optimum X for problem
(P) is obtained from the polar decomposition of C,

(3.5) C = SX,

where X is orthogonal and S > 0. Moreover, the optimal value
trCX' =" ai(C).
=1

Proof. Since f(X) is linear, the optimum X is an extreme point of the feasible
set F, i.e., it is orthogonal. Thus (3.5) follows from the first order optimality
condition for (P).

O

Note that if f(X) is convex, i.e., A ® B is psd, then Theorem 3.1 yields a first
order characterization of optimality.

3.2. Second Order Conditions. We now present optimality conditions for
(P) using second order information. We also present a conjecture that a charac-
terization of optimality exists that has no gap between necessity and sufficiency
independent of convexity of the objective function f. This would extends known
results on trust region methods and methods for quadratic objectives with a
single quadratic constraint. Note that the relaxation has (n? + n)/2 constraints.

We first present a test for optimality in (P) which compares different solutions
of the first order optimality conditions (3.1). This extends the result in [9] which
deals with a single real valued quadratic constraint.

THEOREM 3.3. Suppose that X;,S;,1 = 1,2, are solutions of the first order
optimality conditions (3.1) with S; = 0,1 =1,2. Then

4(f(X2) — f(X1)) = tr(X1 — X2)(S1 — S2) (X1 — Xo)".
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Proof. From the first order conditions (3.1) we get
trAX; BX! + CX! = — 1S, X: X!, i = 1,2,
and, after subtracting,
(3.6) ttAX, BXE — trAX; BX! + C(Xy — X1)t = t2(S1 X1 X! — Sy X, XE).

Also, (3.1) implies that

tI‘AXlBX; + CX; = - t1‘51X1X;

tI‘AXzBX{' + CX{' = - tI‘SzXzX{' = — trSzXlXé
which, after subtracting, yields
(37) tI‘C(Xz - Xl)t = — t1‘51X1X; + trSzXlXé.
Subtracting (3.6) and (3.7) we get

2(f(X2) - f(Xl)) = t1‘51X1X{' - tI‘SzXzX; - tI‘(Sl - Sz)X1X§
= tI‘(Sl - Sz)(I - X1X;)
tI‘(S1 — Sz)

g ([ = XX, +1 - XaX}),

since S > 0 implies X1 X? = X, X{ =1I.
O

We now characterize the feasible directions at a feasible point X.

LEMMA 3.2. Let F = {X : XX < I} denote the feasible set of (P). Then F
18 a convez set. Moreover, let X € F and denote the set of feasible directions at
X by
Dx ={V € R™™™:30 > 0 with (X +0V)(X +6V)* < I}.
Then:
a) 0 #£intDx ={V: XV* + VX is nd on N(XX* - I)};
and
b) Dx = {V : XV' + VX" is nsd on N(XX* - I)},
where - denotes closure.
Proof. Note that, for each S € P, the Hessian of trSXX? = T ® S is
psd and so the constraint ¢ is P-convex and the feasible set F' is a convex set.
Moreover, g(0) < 0i.e., X = 0 is in the interior of F. Therefore Dy = R™*™.

Thus the result holds in the trivial case X = 0. Now suppose that 0 # X X* < I.
Then the direction V = —X points into the interior of the feasible set, i.e.,

(X +0V)(X +6V)i=(1-6)’XX" <1,

for 0 < 8 < 1. Thus V = —X 1is in the interior of the convex cone Dx.
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Suppose h is a feasible direction. Then,
Va = AR+ (1 - X)(—X),

for 0 < A < 1, is a feasible direction pointing into the interior of the feasible set
le., V) €int Dx. Therefore,

(X + 0\ (X +0n) —T=0(XVi+ NX) + WMV + XXt — 1

is nsd for small, # > 0. Since V3 Vy is psd, this implies that XV} + V3 X* is nd
on N(XX?* —I)} and thus Xh®* + hX* is nsd on N (XX?* — I)}. Thus we have
shown that int Dx # ¢ and

Dx C{V:XV*+VX'is nd on N(XX* - I)}.

Conversely, suppose that Xh* + hX? is nd on N(XX?* — I)}. Then 6(Xh* +
hX?®) + 6%hht is nd on N(XX® — I)}, for small § > 0. This implies that

(X + 6R)(X + 6h)* = 6(Xh' + hX*) + 6°RR* + X X* — I

is nsd, for small 6§ > 0, see e.g., [2] or [22], i.e., h € Dx. We can perturb h and
still maintain that Xh® + hX* is nd on N (XX* — I)}. Therefore h € intDx.
This proves a). Since intDx # 0 and we are dealing with convex sets, b) follows
from a continuity argument.

d

COROLLARY 3.2. If XXt < I, then
0£{V:XV 4+ VX" isnd on N(XX* - 1)}

We now present second order optimality conditions for (P). Note that (3.8)
differs from the standard conditions in the literature and allows for sufficiency
for a global optimum to hold. In this respect, it is close to the standard trust
region results.

THEOREM 3.4. Suppose X is feasible for (P). Define the optimality condi-
tions

(2) S>0
(3.8) (%) AXB+C+SX =0
(idd) #rS(XXt — 1) = 0
(v) trAhBA* + Shht >0, if Xh* + hX?* is nsd on N (X X' — I)}.

Then the following holds:

a) if (3.8) holds for some S, then X is a global minimum for (P) ;

b) if (3.8) holds for some S = 0, then X is a global minimum of (P) and
XXt=1
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Proof. Now suppose (3.8) holds. If Y is feasible for (P) and f(Y) < f(X),
then
L(Y,S) fY)+ tS(YY*'—1I)
(X)
f(X)+ tS(XXt —1)
- £(X,9).

A
~

(3.9)

We can assume that YY? —I is negative definite. (Use a small perturbation of Y
into the interior of the feasible set and maintain f(Y) < f(X).) Let V=X -Y
and ¥p = X — 0V, and so Yj is a convex combination of X and Y for 0 <6 < 1.
Then YoV} — I = —0(XV' + VX' +6?VV! + XX* — I is negative definite for
small 8 > 0. Therefore, XV* + VX" is positive definite on N (X X* — I) which,
by hypothesis, implies that

(V,V’L(X,S)V) = ttAVBV*' + SVV* > 0.
But by (3.9) and the stationarity condition VL(X,S) = 0 in (3.8), we have
L(Y,S) = L(X,8)+ (V,V’L(X,8)V) < L(X, 5),

a contradiction. This proves (a).
(b) follows from complementary slackness, ie., S > 0, XX* — I < 0 and
trS(X Xt —I) =0 imply XX* - I =0.
O

COROLLARY 3.3. Suppose that
(3.10) on(ATTCB™Y) > 1.

Then the second order conditions (3.8) characterize optimality of X for (P),
with X orthogonal, i.e., X is orthogonal and solves (P) if and only if the first
order conditions (3.8) hold and

(3.11) trAhBh? 4+ Shh' > 0 if Xh' + hX" is nsd.

Proof. Necessity follows directly from the previous theorem and holds
without (3.10). By Theorem 3.4, the first order conditions and (3.11) are suffi-
cient for X to be a global optimum for (P). But Theorem 3.2 and (3.10) imply
that if X solves (P) then it is orthogonal and the associated Lagrange multiplier
S > 0. This proves sufficiency.

O

We now present a conjecture that the above sufficient conditions are in fact
necessary. This would provide a characterization of optimality that parallels
the one for the standard trust region subproblem TR. Recall that the standard
second order necessary conditions differ from (3.8) in that the Hessian of the
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Lagrangian is positive semidefinite on the tangent space, i.e. for all A such that

Xht+hXt=0.

CONJECTURE 3.1. X is a global minimum for (P) only if (3.8) holds for some
S.

4. Parametric Trust Region Bounds

In this section we present a parametric approach for solving (EP). We form
bordered matrices by augmenting the matrices 4 and B using the full rank
factorization of the linear term. We obtain a (larger) pure quadratic problem,
which enables us to apply the eigenvalue bounds discussed above. Preliminary
numerical results are given in Section 4.2.

We consider the matrix quadratic programming problem (EP) throughout
this section, i.e.,

(EP) min  f(X) = ttAXBX® 4+ 2CX"
st.  XXt=1,

where A, B are (real) symmetric n x n matrices and C € £**" with r := rankC.
With respect to QAP this is again the orthogonal relaxation of PQAP, that
is we assume again that the elimination of the linear equality constraints (the
projection) was already done.

4.1. Symmetric Border Perturbations. Let C = ab® be a full rank fac-
torization of C with a,b € R**". With this factorization of C' we define the
following symmetric border perturbations of 4, B

_ a a _ 8 b
A._[aA]andB._[bB],

where a,f3 are symmetric matrices in R7*". We will describe below how we
choose these matrices a and 3. Furthermore, we partition

(4.12) Z:<1:: ;f)

with w,v € R"*" and w € R"*". We now introduce the following (n + r)
dimensional eigenvalue problem

(Pa,p) min 90,8(Z) == t1AZBZ*
s.t. ZZt =dpyr.
Since Z depends on the choice of « and 3 we will denote the optimal solution

by Z(a,3). The following theorem shows that the optimal solution can be used
to bound (EP).
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THEOREM 4.1. Suppose Z(a,B) solves (Pa,p) and X solves (EP). Then

(4.13) f(X) = qa,p(Z(a, B)) — tra.
Proof. Since X is the solution of (EP) with X Xt = I,

I, 0
Z‘(o X’)

is feasible but not necessarily optimal for (P, g) and so

9a,6(Z) = f(X) + traf > ga,8(Z(x, B))

by optimality of Z(«, 3). This proves the desired inequality.

O
We are now interested in choosing good values for o and 3 in order to maximize
the lower bound

h(e,B) := min{trAZBZ" : ZZ* = I} — traf3.

This is a parametric programming problem, i.e., we want to

(4.14) m%xh(a,,@)
or equivalently
(4.15) m%x{<)\(fi), A(B))_ — trap}.

We can use the techniques from [29] to maximize this function, i.e., we are
maximizing the sum of two functions on §RT2+T, where the first one is the minimal
scalar product, while the second is a simple quadratic with the Hessian being
a matrix of ones except for a zero diagonal. Both functions are in general not
concave, and the first function does not have to be differentiable when there are
multiple eigenvalues. However, we can still apply subdifferentiable optimization
and ignore the lack of concavity. (In [29], the first function was the minimal
scalar product for the bound for the quadratic part; while the second function
was the optimal value of the LSAP, i.e., the bound for the linear part.)

For completeness we now include the differentials of the bound h(a,3). As
mentioned in Section 2.3 the bound is differentiable if the eigenvalues are simple.
We assume simple eigenvalues and suppose that A(4) and A(B) are ordered non-
decreasingly and nonincreasingly, respectively. Then the differentials of h(a, 3)
with respect to a and 3 become

M = diag(P'E;; P)!A(B) — B
(4.16) aha(iij )
— = diagA(4)Y(Q'E;;Q) — i,
0B;;

where P and @ contain the eigenvectors of A and B in appropriate order, re-
spectively. For multiple eigenvalues subgradients are used instead of gradients.
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The numerics showed that there do not occur problems with using subgradient
directions in practice.

The above theorem provides a lower bound for (EP). However, we do not nec-
essarily obtain a feasible solution for (EP) from the optimal solution of (Pq,g).
But, if the matrices «, 3 are diagonal, ordered appropriately, and large in abso-
lute value, then the trace in (4.15) will essentially cancel with part of the minimal
scalar product.

To accomplish this, we choose

(4:17) a = diag((rtl, (T‘ — 1)t1, ey 2t1, tl)t),
and
(4:18) ,8 = diag((rtz, (T‘ — 1)t2, ey 2t2, tz)t),

with ¢;,%2 € R. Recall that r = rankC. Then, for
tl — — 00, tz — +00

the solution Z of (Pq,g) takes the form

I, 0
2= (5 y ).
where Y is orthogonal and therefore feasible for (EP) in the limit. We leave it

to the interested reader to work out the details.
Let us now consider the objective function of ( Py g).

4ap(Z) = tr1AZBZ
e nE e
a A v Y b B u Y?
= trawfw?® + awblu + atvBw® + alvblut
autbwt + au'Bu + a'Ybw' 4+ 'Y Bu+
awfBvt + awb’Yt + AvBvt + Avb'Y 4
autbv® + au’BY't + AY bv® + AY BY?
= trAY BY?! 4 20wb'Y? 4+ awfBwi+
20wblu + 2atvBw + 2atvblu + oul Bu+
AvBvt + 2a'Y Bu + 2AY byt
= trAY BY? + 2awb'Y? + awpw® + go,p(w, u,v,Y)

with

gap(w,u,v,Y) = tr2awb'u + 2a*vBw + 2a’vb'u + au' Bu+
AvBrvt + 2a'Y Bu 4+ 2AY bvt,

which we call the error term of (P, g). We can see that the first two terms in g g
are almost in the form of the objective function of (EP), f(X) = trAXBX"® +
2CX* if w — I, and C = ab’. So for a and S given as in (4.17) and (4.18) we
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can bound (EP) from above and below at the same time. These considerations
lead to the following approximation for (EP).

LEMMaA 4.1. Let (EP) and (Pa,g) be given as above with diagonal matrices
t

o and B as in (4.17) and (4.18), respectively. Suppose Z = < 1;) 1;, > solves

(Pa,p) and X solves (EP), and let t; — —o0 and t3 — oo. Then

(4.19) f(Y)> f(X) > f(Y) + ga,p(w,u,v,Y) + a(w — L) B(w + I ).
Proof. The proof for the lower bound is analogous to the proof of Theorem
(4.1).
w ul
Let Z = < v > be a solution of @Qs. By the previous observation we
v

know that Y is orthogonal for {; — —oco and ¢; — co. Thus we have a feasible
solution for (EP) and f(Y) > f(X) follows.
|

So in order to find a good approximation to (EP) one has to make the gap
between lower and upper bound, go s(w,,v,Y) + a(w — I,)8(w + I, )?, small.
One way would be a parametric approach equivalent to the one presented above.
An alternative would be applying nonsymmetric border perturbations on 4 and
B. We briefly want to present this idea in the remainder of this subsection.

Let the full rank decomposition of C' be now given by

C = —ab'.

We then perturb 4 and B nonsymmetrically that is

. o at . 8 b
AN_<—a A>andBN_<_b B>

and define the (n + r) dimensional minimization problem

(PN) min qN(Z) = tI‘fiNZB;'VZt
s.t. ZZt = ip4r
with Z defined as in (4.12).
Since Ay and By are not symmetric, (Py) is not as tractable a problem as

(Pa,s). But the advantage of this approach is that the objective function of (Py)
becomes

an(Z) = trAyZB4 7
= trAY BY" 4 2awb'Y"* + awpuw® + gn(w, u,v,Y)

with gy (w, u,v,Y) = tr2atvb’u + au’ Bu + Bvt Av.
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Size Sol. | GLB | EVB2 | EVB3 | EVB4 | EVB5)
12 578 439 446 498 472 469
15| 1150 963 927 | 1002 973 980
20 | 2570 | 2057 | 2075 | 2286 | 2196 | 2217
30| 6124 | 4539 | 4982 | 5443 | 5266 | 5312
10 | 4954 | 3586 | 2774 | 4541 | 4079 | 3978
10 | 8082 | 6139 | 6365 | 7617 | 7211 | 7099
10 | 8649 | 7030 | 6869 | 8233 | 7837 | 7708
10 | 8843 | 6840 | 7314 | 8364 | 8006 | 7526
10 | 9571 | 7627 | 8095 | 8987 | 8672 | 8480
10 936 878 885 895 887 886
12| 1652 | 1536 | 1562 | 1589 | 1573 | 1575
14 | 2724 | 2492 | 2574 | 2630 | 2609 | 2611
16 | 3720 | 3358 | 3518 | 3594 | 3560 | 3572
18 | 5358 | 4776 | 5035 | 5150 | 5104 | 5110
20 | 6922 | 6166 | 6533 | 6678 | 6625 | 6619
42 | 15812 | 11311 n.a. | 14202 | 13830 | 13938
49 | 23386 | 16161 n.a. | 21230 | 20715 | 20897
56 | 34458 | 23321 n.a. | 31496 | 30701 | 30857

TABLE 1. Lower Bounds for QAP

We see that some terms cancelled and so the error term gy becomes at least
smaller than g, s in number of terms. It also seems that we got rid of the
dominating terms of g, g. This fact was also shown by numerical experiments.

One approach for tackling (Py), which uses the fact that A and B are almost
symmetric, is the theory of indefinite inner products, e.g., Gohberg et. al. [12].
So the application of this theory would be a future research direction.

4.2. Numerical Results. The remainder of this paper discusses preliminary
numerical experiments. We first used the bound derived in Theorem 4.1 and
applied the parametric programming approach discussed above to achieve a new
eigenvalue bound for QAP. This new bound will be denoted by EVB5. We
calculated the bound for four groups of instances of QAP. The results are given
in Table 1. Note that some of the results in the table are taken from [14].

The first group of instances is from to [26]. These data are the most widely
used for QAP. The instances are pure quadratic, i.e., C = 0. The second group
of problems comes from [4]. The problems all have linear term C' # 0. The third
and the fourth group contain again pure quadratic problem instances of QAP.
The examples in the third group are taken from [14] while the examples of the
last group are due to [32].

The table is structered as follows. The first and second columns give, re-
spectively, the size and the best known solution of the problem instances. For
problems of size < 15 the solutions are optimal. The other columns compare the
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classical Gilmore-Lawler bound (GLB) [11, 18], the eigenvalue bounds EVB2
through EVB4 discussed in the introduction, and EVB5, the new bound. There
were no solutions available for EVB2 for problems of the last group.

We should give some technical notes about the computation of EVB5. We
calculated the lower bound given in Theorem (4.1) and then maximized h(a, )
with respect to a and (3.

Specifically, we selected « and B to be diagonal matrices. For the pure
quadratic problems (groups 1,2 and 4) we used as starting values ag = min{A(4)}
and By = max{A(B)}. For the examples in the second group it proved to be
preferable to choose |ag| and |Bg| large. (Since the problems from this group
typically have a full rank linear term, these were the hardest for the present
approach.) Then we proceeded iteratively. In each iteration we calculated a
subgradient and followed the subgradient direction with a fixed stepsize. If the
objective function decreased, we reduced the stepsize- factor, and otherwise we
increased it. We stopped after a fixed number of iterations. In each computation
100 iterations into the direction of the (sub)gradient were made. We point out
that about 10 to 20 iterations are sufficient to calculate bounds that are close to
the values of EVB5) that are reported in Table 1.

It proved that subgradient directions were sufficient to improve the bound.
By choosing the stepsizes carefully at each iteration we were able to find an
improvement in the following iterations.

The comparisons of the different bounds show that EVB5 is in general a com-
petitive bound compared to EVB2 and EVB4. The only exception are problems
that have nonzero linear parts. This comes from the fact that EVB4 solves the
linear part over the set of permutation matrices while EVBb) only uses orthogonal
matrices.

The main point to consider lies in the fact that EVB5 allows further im-
provements by shifts or reductions. This might make EVB5 also competitive
to EVB3 for which shifts and reductions were already selected to maximize the
lower bound. So these first numerical results are very promising and encouraging
for future work into this direction.

We also did numerical experiments for the approximation of (P), the general
matrix quadratic programming problem. The results are shown in Table 2. The
first and second column in the table give the size of the example and the rank
of the linear term, respectively. The third column contains a lower bound while
the fourth column gives an upper bound of the given instance. The last two
columns represent the gap between lower and upper bounds, where the second
last column contains the absolute gap while the last column shows the relative
gap.

The problem instances were generated as follows. The elements of A and B are
uniformly distributed real numbers on the interval [1, 10]. C was constructed by
C = abt, with a and b being n x » matrices whose elements where also generated
uniformly on the interval [1, 10].
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n | 7 | Lower Bd. | Upper Bd. | Abs. Gap | Rel. Gap
10 |1 -5865.50 -5770.21 95.29 1.66 %
10 | 2 -5099.63 -4770.10 329.53 6.91 %
20 | 1| -18601.73 | -18304.06 297.67 1.63 %
20 | 2 | -20056.09 | -19240.64 815.45 4.24 %
20 | 3| -19143.17| -17886.03 1257.14 7.03 %
20 | 4| -20801.24 | -18986.02 1815.22 9.57 %
30 | 1| -36190.12 | -35704.43 485.69 1.37 %
30 | 2 | -40985.36 | -39875.45 1109.91 2.79 %
30 | 3| -38647.93 | -36909.37 1738.56 4.72 %
30 | 4| -42747.06 | -40267.14 2479.20 6.15 %
40 | 1| -64111.57| -63427.04 684.53 1.08 %
40 | 2 | -60088.59 | -58548.47 1540.12 2.64 %
40 | 3 | -64844.81 | -62810.69 2034.12 3.24%
40 | 4| -62945.42 | -59930.75 3014.67 5.04 %

TABLE 2. Lower and upper bounds for (P)

One can observe that the quality of the approximation depends on the influ-
ence of the linear term of the given instance. Problems with a linear term of
small rank typically yield a much smaller interval containing the correct opti-
mum, than problems with linear term of full rank.
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