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The Quadratic Assignment Problem: A Survey
and Recent Developments

PANOS M. PARDALOS, FRANZ RENDL, AND HENRY WOLKOWICZ

ABSTRACT. Quadratic Assignment Problems model many applications in
diverse areas such as operations research, parallel and distributed comput-
ing, and combinatorial data analysis. In this paper we survey some of
the most important techniques, applications, and methods regarding the
quadratic assignment problem. We focus our attention on recent develop-
ments.

1. Introduction

Given a set N = {1,2,...,n} and n x n matrices F = (f;;) and D = (dwi),
the quadratic assignment problem (QAP) can be stated as follows:

n

Jnin ; J; figdp(ip(s) + ; Cip(i)»

where I is the set of all permutations of A". One of the major applications of
the QAP is in location theory where the matrix F' = (f;;) is the flow matrix,
i.e. fi; is the flow of materials from facility ¢ to facility j, and D = (dg;) is the
distance matrix, i.e. dg; represents the distance from location k to location [
[62, 67, 187]. The cost of simultaneously assigning facility ¢ to location k and
facility 7 to location [ is f;;dr;. The objective is to find an assignment of all
facilities to all locations (i.e. a permutation p € IIr), such that the total cost of
the assignment is minimized. Throughout this paper we often refer to the QAP
in the context of this location problem.

In addition to its application in facility location problems, the QAP has been
found useful in such applications as scheduling [88], the backboard wiring prob-
lem in electronics [240], parallel and distributed computing [24], and statistical
data analysis [118]. Other applications may be found in [77, 138, 159].

The term ”quadratic” comes from the reformulation of the problem as an
optimization problem with a quadratic objective function. There is a one-to-
one correspondence between Il and the set of n X n permutation matrices

1This paper and a separate bibliography file (bib file) is available by anonymous ftp at
orion.uwaterloo.ca in the directory pub/henry/qap.
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X = (%ij)nxn. The entries of each such matrix must satisfy:

n

(1.1) owi=1,i=1,...,n,

7j=1

n

(1.2) Yoay=1,j=1,...,n

=1

(1.3) zi; €{0,1}, i=1,...,n,j=1,...,n,

- 1 if facility ¢ is assigned to location j
00 otherwise.

With the above constraints on x, we have the following equivalent formulation
for the quadratic assignment problem, working on the space of permutation

matrices,
n n n n n

(1.4) min E E E Eaijbkla?ika?jl‘i‘g CijTij-
i=1 j=1k=11=1 t,j=1

The paper is organized as follows. In Section 2 we present the mathemati-
cal tools and techniques that have proven to be useful for QAP. This includes
various formulations of the problem and representations of the feasible set. The
various representations of the feasible set and objective function lead directly to
tractable relaxations. We include optimality conditions and representations of
derivatives for QAP and its relaxations. In Section 3, we present several appli-
cations of QAP, both theoretical and practical. We also include generalizations.
The computational complexity is described in Section 4. A survey of current nu-
merical methods is presented in Section 5. Test problem generation with known
optimal permutation is discussed in Section 6. Concluding remarks are made in
Section 7.

2. Mathematics of QAP

In this section we outline the mathematical tools and techniques that are
useful and interesting for QAP.

2.1. Formulations. Several formulations have been used in the literature to
study the QAP. We outline several of these formulations now. (Please see [100]
for more details and more formulations.)

2.1.1. Koopmans-Beckmann. The QAP was introduced in 1957 by Koopmans
and Beckmann [137] using the formulation presented above in equations (1.1) to
(1.4). This model was formulated to study the assignment of a set of economic
activities to a set of locations.
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2.1.2. Trace. For simplicity, we mainly use the trace formulation in this paper
QAP minyen f(X) = trace (AXB + C)X?,

where .? denotes transpose, II is the set of permutation matrices, and trace
stands for the sum of the diagonal elements. We assume A and B to be real
symmetric n X n matrices and C € R**". This formulation was introduced in
[65, 66]. It allows for easy manipulation and relaxation of the data and truly
illustrates the n dimensional nature of the problem.

Several elementary properties of the trace can be exploited. For example:
the trace of a symmetric matrix is the sum of the eigenvalues; and the trace of
a product satisfies trace MN = trace NM = trace N*M?. Moreover, the trace
provides a valid inner product on the space of real (or complex) m x n matrices

(M,N) = trace M* N,

*

where -* stands for complex conjugate.

2.1.3. Kronecker Product. The trace formulation of the objective function is
a compact form of representing the quadratic form with the matrix X as the
variable. The Hessian of this quadratic form is the tensor product or Kronecker
product

A® B = (aybpi) = (ai; B),

i.e. the matrix formed from all possible products of elements from A and B.
We can use the notation that vec(X) € R®"" denotes the vector formed from the

columns of the matrix X. Then the objective function is equivalent to
f(X) = vec(X)*(A ® B)vec(X) + vec (C)tvec (X).

Derivatives and algebraic manipulations can all be done via the Kronecker prod-
uct. For example, the eigenvalues of the Kronecker product are the n? eigenval-
ues formed from all possible products of the eigenvalues of A and B. However,
using the Kronecker product hides the structure of the problem and increases
the complexity in that we do not take advantage of the hidden fact that we are
really working on an n dimensional problem. For that reason, the Kronecker
product is rarely used and we do not study it further. (See [96] for details on
manipulations and calculus involving Kronecker products.)

2.2. The Feasible Set and Perturbations. The feasible set for QAP con-
sists of all the possible assignments of n objects to n locations. The extreme
points, or vertices, of the bipartite perfect matching polytope (as defined by the
nonnegative vectors z = (z;;) € R~ satisfying the constraints (1.1) and (1.2))
are the incidence vectors of all possible assignments. Alternatively, in the trace
formulation, the feasible set consists of all the permutation matrices. It is well
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known that the permutation matrices satisfy

I = ONnéENN,
(2.1) = SNENN,

where: O = {X : X'X = I} is the set of orthogonal matrices; S = {X :
trace X*X = n}; while £ = {X : Xu = X’'u = u} is the set of all matrices
having row and column sums equal to one; and N' = {X : X > 0} is the set
of nonnegative matrices. We let D = £ N A denote the set of doubly stochastic
matrices. A well known theorem of Birkoff [21] states that the convex hull of
the permutation matrices is the set of doubly stochastic matrices, conv II = D.
Thus the set of doubly stochastic matrices corresponds to the bipartite perfect
matching polytope. (For more details on the above, see e.g. [28].)

The properties of the feasible set allow for perturbations of the objective
function without changing the optimal solution of the original problem. These
perturbations do change relaxations for the problem and so are important in
improving bounding techniques. Two standard perturbations, constant row and
column perturbations and diagonal perturbations, are known to have this prop-
erty. Specifically, suppose that e, f,r, s € R and define

A(e,7) = A + eu® + uet + diag (r),

B(f,s) = B+ fu' + uf* + diag (s),
Cle, f,r,s) = C+2Auft+ 2eu'B —2neft — 2, epuft
+diag (A)s + r diag (B)* — 2es® — 27 ft — rst,
where diag changes a vector to a diagonal matrix and, conversely, it changes a
matrix to a vector formed from the diagonal elements. Then

trace (AXB + C)X* = trace (A(e,r) X B(f,s) + C(e, f,7,8))X?, VX €1I.

(Note that symmetry is preserved by these transformations.)

If we keep the constraint X € £, i.e. X has row and column sums equal to
1, then the constant row and column perturbations are redundant and can be
ignored, i.e. only the diagonal perturbations need be used. (See e.g. [102] for de-
tails. The question of which perturbations are needed, under which relaxations,
is discussed in [198].)

2.3. Relaxations. Since QAP is an NP-hard problem, the equivalent ex-
pression of the constraints in (2.1) are very useful. We immediately get repre-
sentations for relaxations. These relaxations remove the combinatorial nature of
the problem and allow for solutions using continuous optimization techniques.
The strategy is to relax the objective function and/or the constraints, in order
to get a tractable problem. These problems do not provide useful approxima-
tions in general. But, we can then find the best relaxation of a family of these
problems over the above mentioned perturbations. (More details are provided
when we discuss lower bounds in Section 5.2.)
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2.3.1. Linearization. If the quadratic term of QAP vanishes, then we have an
ordinary linear assignment problem which can be solved very efficiently. In gen-
eral, the QAP can be relaxed to a (0,1)-linear integer program. This can be done
by introducing new binary variables ;551 = 2;;2r;. These new variables replace
the occurrence of quadratic terms in the objective function. New constraints are
added to ensure consistency with the original problem. Typically, the convex hull
of the constraint set is used in order to obtain an ordinary linear programming
problem. See e.g. [143, 155, 154, 132, 8, 18, 55, 34, 81, 2, 100].

2.3.2. Quadratic Programming. As stated above in Section 2.2, perturbations
of the objective function can be done without changing the optimum of QAP.
But these perturbations can be very useful in forming relaxations. Since diagonal
perturbations are allowed, we can perturb the diagonal elements of A and B
in order to make the Hessian of the objective function convex. We can then
take the convex hull of the feasible set, i.e. we relax the feasible set to the
doubly stochastic matrices D. This results in a standard quadratic programming
problem that can be solved by well known methods. In fact, we do not need to
make the Hessian positive semidefinite on all matrices X, but rather only on the
span of the feasible set, i.e. on the span of the doubly stochastic matrices, or
equivalently, on the span of matrices with row and column sums equal to 1.

However, this relaxation does not fully exploit the structure of the problem,
since it treats the objective function as a quadratic form over R’

2.3.3. Trust Region Subproblems. If we use the second representation in (2.1)
and relax the constraint set to X € SN &, then we do not have to worry about
convexity of the objective function, i.e. we obtain a tractable problem called a
trust region subproblem. (In [241] it is shown that these problems are really
implicit convex problems, since their dual problems are concave maximization
problems.) However, these problems still do not exploit the structure of QAP.

2.3.4. Parametrization of Permutation and Orthogonal Groups. The vector e
of ones is both a right and left eigenvector corresponding to an eigenvalue of 1,
for every permutation matrix. This fact can be exploited to project the feasible
set of QAP onto the span of the doubly stochastic matrices while not losing the
special trace structure of the objective function.

Let the n x (n — 1)—matrix V be such that

Vie=0; V'V = I,_1.

The columns of V therefore constitute an orthonormal basis of {e}~. Further,
let

3

Thus @ := VV?* = I — vv® describes the orthogonal projection on {e}~. The
parametrization of the permutation matrices follows. (See [102].)
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PROPOSITION 2.1. Let X ben xn and Y be (n — 1) x (n — 1). Suppose that
X and Y satisfy

_ 10 t
(2.2) X_P[OY]P.
Then
Xeg,

XeEN < VYV > —wt,

XeO, <—YcO0,_.

Conversely, if X € £, then there is a Y such that (2.2) holds.

Relaxing the constraints to X € O or to X € ONE removes the combinatorial
nature of the problem. The resulting problem can be split into an eigenvalue
problem for the quadratic part of the objective function and a standard linear
programming problem for the linear part. (This is discussed in detail in the
section on bounds, Section (5.2.2).)

In addition, one can parametrize the orthogonal constraint X € O by noting
that it is equivalent to the matrix exponential X = exp® for some skew symmetric
matrix S, see e.g. [172, 60]. This results in an unconstrained problem over the
space of skew symmetric matrices.

2.3.5. Semidefinite Programming. The orthogonal constraint can be relaxed
to XXt < I, i.e. XX is negative semidefinite. This relaxation is discussed in
detail in an accompanying paper in these proceedings [129].

2.4. Derivatives and Optimality Conditions. QAP is an NP-hard prob-
lem. It is therefore not surprising that verifying optimality is also an NP-hard
problem. In fact, even checking local optimality is a hard problem. (See Section
4.2.) However there are tractable optimality conditions for the relaxations.

2.4.1. Differentials. We first present the derivatives of the functions involved
in QAP. Let

k(X) = XBX', g(X)=X'X — I, f(X) = trace AXBX".
Then the corresponding differentials in the (matrix) direction h are

dk(X;h) = XBh'+hBX?;
dg(X;h) = Xh'+h'X;
df(X;h) = trace A(dk(X;h)) = trace A(XBh* + hBX?).
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2.4.2. Optimality Conditions. First, consider the relaxation of QAP when
C = 0 and the constraint set consists of the orthogonal matrices. From the
above notation this corresponds to

min f(X) subject to g(X) = 0.
The Lagrangian for this problem is
F(X) + trace Sg(X),

where the Lagrange multiplier S is a symmetric matrix. We can differentiate the
Lagrangian using the above differentials. If we set the derivative to 0, we get the
condition that AXB + XS = 0 or X*AXB = —S. We conclude from § = S¢,
that X*AX and B commute and so are mutually diagonalizable. This yields
the minimum scalar product of the eigenvalues used in the bounds in Theorem
5.1. An improved bound can be obtained by projecting the feasible set onto
the span of the doubly stochastic matrices. This uses a parametrization of the
permutation matrices, see 2.3.4. (More details can be found in [210, 102, 129].)

2.4.3. Global Optimality. If we relax QAP to a quadratic (convex) program,
1.e. we relax the constraint set to the set of doubly stochastic matrices D while
perturbing the objective function to make it convex on the span of D, then the
Karush-Kuhn-Tucker optimality conditions characterize optimality. This is well
known for convex programming problems where a constraint qualification holds.
The primal relaxed problem is equivalent to the min-max of the Lagrangian

. ¢ ¢ _ toyt,
(2.3) )Iglel}\lfh’l;\l?exmntrace [(AXB + C)X?'] + Ai(Xe —€) + Ai(Xte —¢),

while the dual is the max-min problem

(2.4) Alglggc%n )Iglei}\l/trace [(AXB + C)X'] + Al (Xe —€) + A5 (X'e —e).

The above relaxation provides lower bounds for QAP. Thus, for each pertur-
bation defined in Section 2.2, with the above convexity assumption on the span
of D, the dual problem provides lower bounds for QAP because we can effectively
characterize global optimality for it. This is no longer true if we do not make
the convexity assumptions on the objective function.

Statements about global optimality for nonconvex problems, such as QAP
itself, are much harder to make. A characterization for general problems can be
found in [114].

2.4.4. Local Optimality. For the general quadratic programming relaxation,
even in the nonconvex case, i.e. for a general objective function constrained
to D, we still get necessary and sufficient local optimality conditions. This is
due to the quadratic nature of the problem, i.e. the second order optimality
conditions are necessary and sufficient. However, this is not the case for problems
with nonnegativity constraints. It has been shown in [191] that the problem of
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checking local optimality (and the problem of checking if a local minimum is
strict) in quadratic programming with linear constraints is NP-hard. Pardalos
and Vavasis [192] have also shown that quadratic programming with one negative
eigenvalue (all others zero) remains an NP-hard problem.

2.5. Nonsymmetric QAP. Applications for QAP usually involve symmet-
ric matrices A4, B. If one of 4 or B is symmetric, then we can still get an equiv-
alent symmetric QAP by symmetrizing the other, e.g. replace B by (B + B*)/2.
If both A and B are not symmetric, then we can still symmetrize the quadratic
form by using the Kronecker product, but we then lose the trace structure of the
problem.

However, even if both A and B are not symmetric, we can still obtain mean-
ingful bounds by moving into the space of Hermitian matrices. See [103].

3. Applications, Generalizations and special cases

Applications for QAP are many and varied. Several are mentioned in the
introduction above. We also point out that [38] summarizes recently published
applications of quadratic assignment problem.

We will describe now first some generalizations of the quadratic assignment
problem, and then discuss some interesting special cases.

3.1. The 3-index Assignment Problem. The three-index (or 3-dimensional)
assignment problem of order n can be stated as a (0,1)-programming problem of
the following form:

min E{Cijka:ijk el je J ke K},
s.t. E{aﬁijk:jEJ,kEK}Il, Viel,
(31) E{aﬁijk:iEI,kEK}Il, vy € J,
E{aﬁijk:iEI,jEJ}Il, Vk € K,
Tijk € {07 1}7 Vi, 3, k,

where I, J and K are disjoint index sets with |I| = |J| = |[K| = n. Note that
the number of variables of the three-dimensional assignment problem of order n
is n®.

From the complexity point of view, it has been shown that the three-dimensional
assignment problem is NP-hard [131]. Most ot the proposed algorithms for this
problem are implicit enumeration methods. Some of the proposed algorithms
include those of Vlach [247], Pierskalla [196, 197] and Leue [145]; a primal-
dual algorithm described by Hansen and Kaufman [106]; a branch and bound
algorithm using a Lagrangian dual and subgradient optimization implemented
by Frohlich [83] and discussed by Burkard and Frohlich [38]. Also see Burkard
and Rudolf [42]. More recently, Balas and Saltzman [11] developed a branch
and bound algorithm that also uses facet-defining inequalities in a Lagrangian
fashion with subgradient optimization.
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Let A be the coefficient matrix of the constraint set of (3.1). Then R =
TUJ UK is the row index set of A. Let S be the column index set of A. Let G4
be the intersection graph of 4, i.e., the graph that has a vertex for every column
of A and an edge for every pair of non-orthogonal columns. Let

P:{a:ER”s:Aa::e,a:ZO},
where e = (1,...,1)" € R®*. Then
Pr = conv {z € {0, 1}”3 :z € P}

is the three-index assignment polytope of order n.

Balas and Saltzman [10] started to study the facial structure of P;. They gave
an O(n*) procedure to detect whether there is a clique facet of Py, violated by
a given noninteger point z. In [1], Balas and Qi gave an O(n?®) procedure to do
this. Since the number of variables of (3.1) is n3, an O(n®) separation algorithm
for a facet class of Pr is linear-time and its complexity is best possible. Balas
and Qi [9], Gwan and Qi [99] also gave linear-time separation algorithms for
other two facet classes of Py, identified in [10]. More recent results can be found
in [202]].

Other papers on the three-index assignment problem include [43, 68, 80, 81]
and [219].

3.2. The Quadratic Semiassignment Problem. The quadratic semias-
signment problem (QSA) unifies some interesting combinatorial optimization
problems. The general problem has the form:

min Y70, ST, E?:l CijTikTik
(3.2) st. dop,zirk=1,7=1,...,n
zjr €{0,1}, Vi, k,

Some special cases of this problem include the clustering problem, the equipar-
tition problem, and the m-coloring problem on graphs [234], [235].

Given n objects and an n x n dissimilarity matrix C = (¢;;), the “clustering
problem” is to find a partition of the objects into m classes (clusters) which
minimizes the sum of the dissimilarities between objects belonging to the same
class.

The “equipartition problem” is the following: Given n objects with weights
w;, ¢t = 1,...,n, find a partition of the objects into m classes so as to minimize
the variance of the class weights. This problem can be formulated as a quadratic
semiassignment problem with ¢;; = w;w; for all 7 and j.

The “m-coloring problem” is also a special case of the (QSA) problem. Given
a graph G(V, A), the graph admits a coloration of its vertices with m colors
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(adjacent vertices have different colors) if and only if the following problem

min S, D (i,5)ea TikTik
(33) E?:la:jk:l? 7=1,...,n
s.t. Tk € {0, 1}, Vi, k,

has optimal function value zero.

3.3. The Biquadratic Assignment Problem. Recently Burkard, Cela
and Klinz [35] (see the paper in this volume) introduced a fourth order general-
ization of the quadratic assignment problem. Let A = (a; k1) and B = (bp p,s.¢)
be two arrays of n* elements. Then the biquadratic assignment problem asks to
minimize

Z @i i k,1bm p,s t Tim T pThs Tt
%,7,k,l,m,p,s,t
over all permutation matrices X. This problem arises in the field of VLSI syn-
thesis. In [35] various formulations of this problem are described. Also, lower
bounds and some methods to construct instances with known optimal solution
are presented. There are still many open problems related to this generalized
model of the quadratic assignment problem. In particular it would be interesting
to explore eigenvalue related techniques to this problem.

After having described some relatives of the quadratic assignment problem,
which typically are at least as hard or harder to solve we will now focus on
specially structured quadratic assignment problems which lead to simplifications
of the problem.

3.4. Special Cases. The quadratic assignment problem can be formulated
very naturally in a graph theoretical context. This formulation was investigated
first by Christofides and Gerrard [54], and later by Bokhari [23] and Rendl [208].
We review this formulation and present several applications to other optimization
problems on graphs that can be derived from this formulation.

Let G = (V,F) and G' = (V', E') be graphs. G is isomorphic to G' (G ~ G’

for short), if there exists an adjacency preserving bijection p: V — V', ie.
ij € E < p(i)p(y) € E'.

We denote by II(G, G') the set of adjacency preserving mappings between G and
G'. Furthermore we denote by M (G, G') the set of all subgraphs H of G', which
are isomorphic to G,i.e.

M(G,G') = {H : H subgraph of G', H ~ G}.

The graph theoretic formulation of quadratic assignment problem was pro-
posed by Christofides and Gerrards as follows.
Let G and G' be graphs with edge weights a: E— R, b: ' — R.
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Hezlt}l(lg &) rell(G. H), Z @i br(i)r(s)-

(To avoid trivialities one has to assume |[V| < |V’| .) Note that if both
G and G’ are isomorphic to the complete graph K,,, then M(G,G) = {G'}
and II(G, G') contains all permutations of n elements, leading to the standard
quadratic assignment problem.

The graph theoretic formulation provides many possibilities to generate spe-
cial cases of the standard quadratic assignment problem. The complexity issues
related to these special cases will be addressed in subsection 4. Here we will re-
late other difficult optimization problems on graphs to the quadratic assignment
problem.

It is well known that the traveling salesman problem and the matching prob-
lem can be formulated as a special quadratic assignment problem, see [75]. Per-
haps less known are the connections of the quadratic assignment problem to
the bandwidth problem in graphs. To see this connection we first introduce the
bandwidth problem (we refer to [201] for a survey on the topic):

Let G be an undirected (and unweighted) graph on n nodes. A permutation =
of n elements is called a labeling of the nodes of G. The bandwidth of a labeling
w is defined as

max (i) — 7(7)].

The bandwidth o of G is the minimum of this number over all labelings. In terms
of matrices, the bandwidth problem asks for a simultaneous permutation of the
rows and columns of the adjacency matrix of G such that all nonzero entries are
as close as possible to the main diagonal.

Suppose the bandwidth of a given graph G is at most k. Let us denote by
P, 1, the graph on n vertices with edges ij whenever |¢ — j| < k. Then clearly G
must be isomorphic to some subgraph of P, . Conversely, if the bandwidth of G
is larger than k, then there cannot exist a subgraph of P, ; which is isomorphic
to G. If we denote the adjacency matrix of G by A and the adjacency matrix of
P, by B, then we conclude:

The bandwidth of G is at most k if and only if max,cn Eij aiibr(iye(iy = 2|E|.
Therefore if some upper bound on this quadratic assignment problem has a
value less than 2|E| for a fixed value of k, one immediately concludes that the
bandwidth is larger than k. This idea was used in [110] to derive lower bounds
on the bandwidth of graphs. In particular the following simple lower bound on
the bandwidth is proved.

o(@) > nAy(L)/Aa(L) — 1

Here L denotes the Laplacian matrix of the graph, which is related to A by
L = Diag(A4e) — A. (Recall that Ae is the vector of row sums of A4.)
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A similar approach works also for the problem of bounding the I-sum of a
graph, which is the same as the bandwidth except that one minimizes

> In(@) = x(j)I-

ijE€E

over all permutations w. Finally the problem of determining whether a vertex
separator of some given size k exists in a graph can be modeled as a quadratic
assignment problem. We refer to further details in [110].

In [166, 209] it is pointed out that the general graph partition problem can
be modeled as a quadratic assignment problem. (See Section 4.3 for details.) It
turns out however, that exploiting the special structure of the partition prob-
lem leads to more powerful results than treating this problem as a quadratic
assignment problem.

4. Complexity Issues and Asymptotic Behavior

From the computational point of view the QAP is one of the most difficult
problems to solve. In this section several aspects regarding the complexity of
the QAP are discussed. Although computational complexity characterizes worst
case instances, it also plays an important role in developing new algorithms for
solving combinatorial optimization problems, analyzing their intrinsic difficulty,
and revealing surprising connections among problems and their solutions.

4.1. Computational Complexity. In 1976, Sahni and Gonzalez showed
that the QAP is N P-complete, which implies that finding a polynomial-time
algorithm to solve it is unlikely [221]. In addition, they have also shown that
QAP belongs even to the hardest core of this complexity class, in the sense that
the problem of finding an e-approximate solution of QAP remains N P-complete.

Many well known N P-Complete problems, such as the traveling salesman
problem (TSP), the graph partitioning problem (GP), the maximum clique prob-
lem (MCP), can be easily formulated as special cases of the QAP:

e The traveling salesman problem (TSP): The distance matrix corresponds
to the distance matrix of the TSP, the flow matrix corresponds to the
adjacency matrix of a cycle of length n.

e The graph partitioning problem (GP): The distance matrix corresponds
to the adjacency matrix of the GP, the flow matrix corresponds to the
adjacency matrix of two disjoint complete graphs of size n/2 (assuming
n is even).

e The maximum clique problem (MCP): To identify the existence of a
clique of size k, one constructs a distance matrix corresponding to the
adjacency matrix of the graph for the MCP, a flow matrix corresponds
to the adjacency matrix of a clique of size k. The maximum clique can
be found by solving a set of n QAPs, one for each k,1 < k < n.
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There are a few polynomial-time solvable special cases for the QAP. Christofides
and Gerrard [53] investigated the conditions under which the QAP can be solved
in polynomial time. They show that if both matrices A and B are weighted ad-
Jacency matrices of a tree, the problem can be solved in a dynamic programming
fashion, in polynomial time. But if only 1 of the 2 matrices is a weighted adja-
cency matrix of a tree, the problem remains to be N P-complete since the TSP
can be reduced to such a form.

Moreover, the following case is solved in O(nlog n) running time by Adolphson
and Hu in 1973 [53]: consider the case in which one matrix represents the
weighted adjacency matrix of a tree, while the other one represents the distance
matrix of a grid graph G = (V, E), where the distances between nodes ¢ and j is
defined as follows

b 1, if (¢,7) € E,
77| length of the short path between i and j, if (4, 5) € E.

Other polynomial-time solvable cases include the case in which one of the
matrix is the weighted adjacency matrix of a double star (see Christofides and
Gerrard [53]). When both distance and flow matrices are weighted adjacency
matrices of series-parallel graphs containing no bipartite graph K3 3, then again
the corresponding QAP is solved in polynomial time [208].

4.2. Complexity of Local Search. Next we show that finding a locally
optimal permutation is a difficult problem from the complexity point of view.

A local search algorithm starts with an initial feasible solution and successively
moves to neighboring solutions until no further improvement is possible. To
characterize the complexity of solving combinatorial optimization problems such
as the QAP with local search algorithms, a Polynomial-time Local Search (PLS)
class has been defined [126] that captures the structure of NP problems at the
level of their feasible solutions and neighborhoods. Similar to NP-completeness,
the concept of PLS-completeness has been defined to capture the class of the
hardest problems in PLS. For certain NP-complete problems, the corresponding
PLS problems have already been shown to be PLS-complete [126, 223]. In
regard to the complexity of local search, see also [181] and [191].

4.2.1. A K-L Type Local Search Algorithm. Next we describe a new local
search algorithm for the QAP and establish the connection between the new
algorithm and the Kernighan-Lin heuristic algorithm for the (GP).

The local search algorithm for the QAP starts with a random permutation as a
current permutation. For a current permutation pg, a sequence of permutations,
P1,---,P1, 1s constructed in a greedy sense. Each of the permutations in the
sequence is obtained from the previous one by swapping (interchanging) two
assignments and has cost lower than the current permutation. A local search is
performed in the sequence, replacing the current permutation by the permutation
with the lowest cost in the sequence (the algorithm stops if the sequence is empty
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for the current permutation). In the description of the local search algorithm
below, instead of using the cost C(py) of a permutation py in the sequence of
permutations corresponding to a current permutation pg, we use the cumulative
gain G(k) of the permutation py, where G(k) = C(po) — C(pr). Hence, the larger
the cumulative gain of a permutation, the lower the cost is.

Algorithm 1: A Local Search Algorithm for the QAP
Input: », n X n matrices F, D, and a permutation p of size n.
Output: A local optimal permutation p for the QAP.

(1) Set po = p and calculate its cost C(po). Set : =0,g; = 0, and G(i) =0,
where g; and G (%) are the step gain and the cumulative gain, respectively.

(ii) ¢ = 1. Initially, select a pair of facilities such that, by exchanging their
locations, a positive step gain is obtained, i.e., g1 = C(po) — C(p1) > 0.
If no such pair exists then go to 7, otherwise set G(1) = g;.

(i) ¢ = ¢+ 1. For each pair of facilities not already selected, evaluate the step
gain by exchanging their locations. Then, select the pair with maximum
gain g; = C(pi—1) — C(pi)- If all facilities have been selected then set
t=1¢—1and go to 5.

(iv) Compute the cumulative gain, G(3) = E:z; gk- If G(?) > 0; then go to
3.

(v) Select k, such that G(k) is maximum for 0 < k < <.

(vi) If £ > 0 then set po = p; and go to 2.

(vil) We have reached a local optimum for the QAP. Set p = po and output
p and C(p).

Now let us review the (KL) heuristic algorithm for the GP for an undirected
graph G(V, E) (assuming |V| = 2n) with edge weights w(e), e € E. For conve-
nience, a partition of the set V always means a partition into two sets (4, B)
with |[A] = |B| = |V|/2 in the rest of the paper. Then, the problem GP is
to find a partition (4, B) of the set V' with the minimum cost C(4, B), which
is defined to be the sum of the weights of all edges between A and B. As
one of the most successful heuristic algorithms for the GP, the Kernighan-Lin
heuristic starts with a random partition of the set V. A sequence of partitions,
(A1, B1),.-., (41, By), is constructed for a current partition (4o, Bo) in a greedy
sense. Each partition (A4g, Bx),1 < k <, in the sequence is obtained from the
previous one (Ar_1, Bx_1) by swapping one vertex in Ap_; with one vertex in
Br_1 and has cost lower than the current partition. A local search is performed
in the set of partitions of this sequence, replacing the current partition by the
partition with the lowest cost in the sequence (the algorithm stops if the sequence
is empty for the current partition). Similar to the description of Algorithm 1,
we use the cumulative gain G(k) for a partition py.
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Algorithm 2: Kernighan-Lin heuristic for the GP
Input: n, G = (V, E) with |V| = 2n, W = (w;;), and a partition (4, B) of V.
Output: A locally optimal partition (4, B) of V'

(i) Set 49 = A and By = B, obtain its cost C(A4g, Bo). Set ¢ = 0,¢9; = 0,
and G(i) = 0, where g; and G(7) are step gain and cumulative gain,
respectively.

(i) i = 1. Initially, select a pair of vertices a; € Ag and b; € By such that,
by swapping them, the resulting partition (A1, B1) produces a positive
step gain g1, i.e., g1 = C(4o, Bo) — C(A41, B1) > 0. If such a pair does
not exist then go to 7, otherwise set G(1) = g;.

(i) ¢ = ¢+ 1. Among the vertices not selected so far, choose a pair a; € 4;_1
and b; € B;_; and swap them to obtain A; and B; with maximum step
gain g; = C(4;_1, Bi—1)—C(4;, B;). If all the vertices have been selected
then set ¢ =2 — 1 and go to 5.

(iv) Compute the cumulative gain G(3) = :zll gk- If G(i) > 0; then go to
3.

(v) Choose k, such that G(k) is maximum for 0 < k < <.

(vi) If k > 0 then set Ag = Ay and By = By and go to 2.

(vil) We have reached a local optimum for the GP; set A = Ag and B = By.
Output 4, B and C(4, B).

Comparing the above algorithm with the local search algorithm for the QAP,
one can easily see the similarity between them. Instead of working with partitions
in the GP, we work with permutations in the QAP. The reduction from the GP to
the QAP in the next section reveals why the adaptation of (KL) algorithm to the
QAP can be effective. Furthermore, extensive computational results in section
3 indicate that the proposed local search algorithm (Algorithm 1) performs very
well.

4.3. PLS-completeness and the QAP. For many combinatorial optimiza-
tion problems, local search gives rise to some of the most successful heuristics.
A classical example in this regard is the Linear Programming Problem for which
the Simplex method can be viewed as a local search algorithm, in which a local
search step is to go from the current basis to an adjacent basis which differs from
the current one by one column vector. Based on the pivoting rule, worst-case
examples can be constructed that force the Simplex method to take exponential
time. Whether there can be a pivoting rule under which the Simplex method
takes only polynomial time is a major open question.

In order to characterize the complexity of such local search algorithms, a new
complexity class, the Polynomial-time Local Search class, was introduced and
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studied in [126]. A problem P is in PLS if, for each instance = € I (the set
of all instances), we have a set of feasible solutions F(z) such that it is easy to
decide whether s € F(z) for any solution s. Then, given @ € I, we can produce
a feasible solution s € F(z) in polynomial time. Next, given z € I and s € F(z)
we can compute the cost C(s,z) of s in polynomial time. In addition, every
solution s € F(x) has a set of neighboring solutions N (s, ). Finally, given € I
and s € F(z), we can test in polynomial time whether s is locally optimal, and if
not, produce a solution belonging to N (s, z) with a better cost value (A solution
s is locally optimal if it does not have a strictly better neighbor).

More formally, a local search problem P in PLS is defined as follows: Given
an input @, find a locally optimal solution s € F(z). For the problem P, the
following three polynomial time algorithms should also exist.

(i) Algorithm A, on input z € I, computes an initial feasible solution sg €
(ii) Algorithm B, on input = € I and s € F(z) computes C(s, z).
(iii) Algorithm C, on input z € I and s € F(x), either determines that s is
locally optimal or finds a better solution in N (s, z).

A problem P € PLS is PLS-reducible to another problem @ € PLS, if there
are polynomial time computable functions f and g, such that f maps an instance
z of P to an instance f(z) of @ and for any locally optimal solution s for f(z),
g(s, z) produces a locally optimal solution for . A problem P in PLS is PLS-
complete, if every other problem in PLS is PLS-reducible to P.

An example of a PLS-complete problem is the GP with the (KL) neighborhood
structure defined in Algorithm 2 [126]. The (KL) neighborhood of a partition
for the GP can be defined as follows. A swap of a partition (4, B) is a par-
tition (AI, BI), where A and A’ have a symmetric difference of 2, i.e., (AI, BI)
is obtained from (A4, B) by swapping one element of 4 with one element of B.
(AI, BI) is a greedy swap if C(4, B) — C’(AI, BI) is maximized over all swaps of
(4, B). If in fact (AI, BI) is the lexicographically smallest over all greedy swaps,
we say that (AI, BI) is the lexicographic greed swap of (4, B). Let (4;, B;) be a
sequence of partitions, each of which is a swap of the one preceding it, starting
from (Ao, Bo). We call it monotonic, if the differences of A; — 4g and B; — Bg
are monotonically increasing (that is, no vertex is switched back to its original
set (Ao, Bo)). Finally, we say that a partition (AI, BI) is a neighbor of (4, B) if
it occurs in the unique maximal monotonic sequence of lexicographically greedy
swaps starting with (4, B). Note that such a sequence will consist of |[V|/2 + 1
partitions, with the last one equal to (B, A). Thus, each partition has |V|/2
neighbors. The algorithm performs local search over this neighborhood struc-
ture, replacing the current partition by the partition with the lowest cost in the
neighborhood.

In the remaining part of this section, we show that the QAP with the neigh-
borhood structure defined in Algorithm 1 is PLS-complete by reduction from
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the GP with the (KL) neighborhood structure. First, we show that the local
search problem for the QAP is in PLS. Since the set of feasible solutions of the
QAP is the set of permutations, an initial feasible solution can be produced in
linear time. Computing the cost of a permutation for the QAP can be done
in polynomial time. The neighborhood structure defined for the QAP in Algo-
rithm 1 is quite similar to the (KL) neighborhood structure for the GP. For a
given permutation for the QAP, there are |n/2] neighbors. We can determine
in polynomial time if the permutation is locally optimal, and if not, produce
a better permutation among the |n/2| neighboring permutations. Hence, with
this neighborhood structure, finding a local optimum for the QAP is in PLS.

To prove PLS-completeness, we show that the GP is PLS-reducible to the
QAP. Given an instance of the GP of size 2n, we can create an instance of the
QAP with the same size in polynomial time. Furthermore, for each local optimal
permutation of the QAP, there is a natural local optimal partition for the cor-
responding GP. More specifically, suppose for the GP, the graph G = (V, E) has
edge weights w(e) and vertex set V with |V| = 2n. We construct, in polynomial
time, an instance of the QAP with 2n x 2n matrices F = (f;;) and D = (dg)
defined below:

fi; = w(s,7) if (4,j) € E; otherwise f;; =0,

dry=01if k1€ Aork,l € B; otherwise djp = 1,

where A ={1,2,...,n},B={n+1,n+2,...,2n}.

This reduction defines a one-one correspondence between a permutation pi of
the QAP with a partition (A, By) of the vertex set V of the corresponding GP.
The set of facilities allocated to locations 1 to n in p; constitutes the set Ajg.
The set of facilities allocated to locations n+1 to 2n in pg constitutes the set By.
The cost of pg, for the QAP is exactly twice the cost of the partition (A, By) for
the GP. Let the partition corresponding to a permutation pg be (4o, Bo), then
a permutation py is a neighboring permutation of po if, and only if, (A, Bi) is
a neighboring partitions of (4o, Bo). Hence, for any local optimal permutation
of the QAP, the corresponding partition is a local optimal partition for the GP
and can be recovered in polynomial time. By definition, the local search problem
for the QAP with the neighborhood structure defined in Algorithm 1 is PLS-
complete.

We should also mention that, at present, there are no known local criteria
in deciding how good a local optimal solution is, in relation to the global opti-
mum. From the complexity point of view, it can be shown that, if there exists a
polynomial time algorithm for checking whether a given permutation is globally
optimal, then P = NP [177].
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4.4. Asymptotic Behavior. A nice feature of the QAP is that the relative
difference between the worst and optimal solutions becomes arbitrarily small
with a probability tending to 1 as the problem size tends to infinity. Burkard
and Finke discovered this behavior for the QAP in the plane, i.e., the distance
matrix B corresponds to Euclidean distances in the plane. Later they showed
that this behavior holds also for the QAP in general in 1985. The result can be
stated in the following theorem.

THEOREM 4.1. Fori,j, k,l € {1,---n}, let ¢;jr1 be identically distributed ran-

2 > 0. For every

dom variables in [0, 1] with ezpected value E and variance o
fized permutation p € 11, let c;pi)jp(j) be independently distributed. For given
€>0and0<e <o? and 0 < (E+€)/(E —eo) <1+e,
F-I-
P2 <146 > 1 2nle—don”,
c

2
where Ag = 2((e00)/ (0 + 20'2))2,1imn_,oo nle=20™" =0, and Fg and Fg are the
mazimum end minimum objective function values for the QAP with cost matriz

C.

Several other researchers, including Frenk, van Houweninge, and Rinnooy Kan
[78], and Rhee [211, 212] improved the order of convergence and showed that
the convergence holds almost everywhere.

5. Methods of Solution

5.1. Exact Algorithms. In this section, we describe different methods used
to find an optimal solution of QAP. The methods include dynamic programming,
cutting plane, and branch-and-bound techniques.

Among these methods, branch-and-bound is the most successful one, on which
this section is focused the most. Currently, problems of size greater than 15 are
generally difficult to solve. This is due to the inherent difficulty of the QAP,
characterized by the lack of sharp lower bounding techniques for moderate and
large size problems. For this reason, a separate section is devoted to lower
bounding techniques for the QAP.

Cutting plane methods for the QAP were introduced by Bazaraa and Sherali
[19]. Although the computational experience was not satisfactory, such methods
can be used to find good suboptimal solutions, see e.g., Burkard and Bénniger
[84]. In Bazaraa and Sherali [20], cutting plane procedures were investigated
for solving the concave quadratic minimization formulation of the QAP. Sev-
eral heuristics derived from the cutting plane procedures produce good quality
solutions in early stage of the search procedure.

Christofides and Benavent [52] used a special dynamic programming approach
for the special case of the QAP in which the flow matrix is the weighted adjacency
matrix of a tree. Problems of sizes up to 30 were solved.
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Branch-and-bound is a general technique for solving combinatorial optimiza-
tion problems. To solve the QAP with branch-and-bound, currently there are 3
types of algorithms: single assignment algorithms, pair assignment algorithms,
and the relative positioning algorithm. They all start with the empty permuta-
tion as the initial partial permutation; during the execution of the algorithms,
the partial permutation is extended to a full permutation. Single assignment
algorithms date back to Gilmore [89] and were extended to the general QAP by
Lawler [143]. In this approach, as described in the work by Gilmore and Lawler,
a facility is assigned to a location at each node of the branch-and-bound search
tree. Some of the earliest branch and bound algorithms for solving QAPs are
described in [36], [66], [180] and [218].

Pair assignment algorithms were developed by Gavett and Plyter [86], Land
[141], and Nugent et al. [171], etc. At each node of the branch-and-bound
search tree, a fixed pair of facilities is allocated to a pair of locations. The last
algorithm, the relative positioning algorithm, was developed by Mirchandani
and Obata [160]. In their approach, the levels of the branch-and-bound search
tree do not correspond to the assignments of facilities to locations. The partial
permutations at each level are determined in terms of distances between facilities,
1.e., their relative positions.

Numerical experiences indicate that among the 3 types of branch-and-bound
algorithms the single assignment algorithms are the best. The pair assignment
algorithms were shown to be not computationally efficient. The authors of the
relative positioning algorithm claimed favorable behavior of the algorithm for
problems with sparse matrices.

5.2. Lower Bounds. Lower bounds are keys to the success of a branch-and-
bound type algorithm in combinatorial optimization. The ideal lower bounds
should be sharp and should be fast to compute. For the QAP, there are roughly
3 categories of lower bounds. The first category includes the classical Gilmore-
Lawler bound (GLB) and related bounds [89, 143]. The second category in-
cludes the eigenvalue based bounds [74, 102, 101, 210, 103]. The rest of the
bounds are mostly based on reformulations of the QAP and generally involves
solving a number of linear assignment problems [5, 47, 54, 82]. It is generally
acknowledged that the eigenvalue based bounds are the best but also the most
expensive to compute. In the following, a brief discussion of the 3 categories of
lower bounds is given.

5.2.1. Gilmore-Lawler Bound (GLB) and Related Bounds. The GLB is com-
puted by using the minimal vector product and the mazimal vector product,
denoted (z,y)_ and (z,y),, defined below

(@,9)- = min(z, Py), (z,y)+ = max(a, Py),

where the set II denotes the set of all permutations of N and z,y € R*. In
fact, (z,y)_ can be computed as the inner product of =¥ and y~, where ¢ is
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obtained by ordering the components of # ascendingly and y~ is obtained by
ordering the components of y descendingly. (z,y)+ can be computed similarly.

Let a;,b;, 1 = 1,...,n, represent the row vectors of matrices 4, B, respectively.
Let d@; be the vector consisting of the (n — 1) components of a;, not including a;;.
Let i), be the vector consisting of the (n — 1) components of b;, not including b;;.
Define a matrix L = (I;;) as follows

lij = aiibjj =+ <&i,i)j>_, i,j = 1, ey M

Then GLB(A,B), the GLB for QAP(A,B), is defined to be the solution to the

linear assignment problem (LAP) with cost matrix L, i.e.
GLB(A,B) = mi Lip(i)-
(4, B) ggg; (i)

5.2.2. Eigenvalue Based Bounds. Bounds based on eigenvalues of the flow and
distance matrices A and B have been proposed in a series of papers by Finke
et al. [74], Hadley et al. [102, 101], and Rendl and Wolkowicz [210]. These
bounds, denoted by EVB, are based on the trace formulation of the QAP, see
(2.1.2).

A lower bound for the quadratic part of QAP, based on eigenvalues of 4 and
B, is given by relaxing the constraint set of permutation matrices to 0. This
results in the following theorem (see [70, 74]).

THEOREM b.1. Let A and B be symmetric matrices, and Ay < Ag... < A, be
the eigenvalues of A, and p1 < pa... < p, be the eigenvalues of B. For any

pell
Z Aifhrn—ip1 < Z Z aijbp(i)p() < Z Aipti.
=1 i=1j=1 =1
The linear part of QAP is bounded exactly by solving a linear sum assignment

problem, denoted LSAP(C). We get the following bound for QAP

n
EVB{A,B} = Aiptn_it1 + LSAP(C).
i=1
Certain reductions of the original matrices have to be performed before using
the eigenvalues to obtain lower bounds for the QAP. These involve diagonal,
or constant row and column, perturbations of the matrices. Several such lower
bounds, EVB1, EVB2, EVB3, and IVB, were developed in [74, 101].
The strengthened relaxation of the constraint set of permutation matrices to
O N & was done in [101]. This relaxation proved to be particularly efficient and
made the constant row and column reductions redundant. Rendl and Wolkow-
icz [210] recently proposed a new lower bound (MEVB) based on eigenvalue
decomposition in conjunction with a steepest ascent algorithm. The bound is
obtained iteratively, with each iteration taking O(n?®) running time. This latter
technique attempted to combine the bounds for the linear and quadratic parts.
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(A further attempt to avoid taking the sum of two minima obtained by treating
the quadratic and linear parts separately is given in the paper by Karisch, Rend],
and Wolkowicz in these proceedings.)

5.2.3. Reformulation Based Bounds. There are also other types of lower bounds
for the QAP. Assad and Xu [5] proposed a bound (AX) for a class of quadratic
0-1 programs, including the QAP. The bound is obtained iteratively. In each
iteration, n? + 1 assignment problems of size n are solved. Hence the run-
ning time to compute the bound is O(kn®) where k is the number of iteration.
Christofides and Gerrard [54] proposed a lower bound (CG) by solving O(n*)
linear assignment problems corresponding to pairs of assignments, resulting in a
O(n") procedure. Frieze and Yadegar [82] obtained 2 lower bounds by solving
the Lagrangian relaxation of a related linear integer formulation of the QAP.
The bounds are denoted by FY1 and FY2 respectively. Finally, Carraresi and
Malucelli [47] proposed a new lower bound (CM) for the QAP through an itera-
tive process. In each iteration, at most O(n?) linear assignment problems related
with an equivalent reformulation of the QAP are solved. Hence the procedure
has a time complexity of O(kn®) where k is the number of iterations used.

5.2.4. A New Class of Lower Bounds. A class of lower bounds based on opti-
mal reduction schemes for the QAP was proposed in Li, Pardalos, Ramakrishnan
and Resende [149]. For a given QAP(A,B), consider a partition of 4 into two
matrices 4; = (al(»;)) and 4, = (al(»f»)) such that A = A; + A, and a partition of
B into two matrices B; = (bg;)) and By = (bg)) such that B = B; 4+ Bsy. For
each pair (4,7), 4,7 = 1,...,n, consider the following minimization problem

. 1),(1 2 2 2),(2
(5.1) min E aEk)bgp)(k) + Z aéi)bp(k)j + Z akib,(,(i)j - E aéi)b,(,(i)j
k=1 k=1 k=1 k=1

where p € II and p(i) = j.

Define a n x n matrix L = (l;;) where [;; is the optimal objective function value
of (5.1). The following theorem defines a new lower bound [149, Theorem 4.1].

THEOREM b.2. Let the matriz L be defined as above. Then the solution of

the linear assignment problem with cost matriz L ts a lower bound for the corre-
sponding QAP.

The classical Gilmore-Lawler bound is a special case in which both matrices
A and B are not partitioned. Different ways of partitioning the matrices 4 and
B (we also refer to this as reduction) yield different lower bounds. The common
reduction techniques used in the literature choose A, and B, with constant
column sums (which we call constant columns). We refer to such techniques as
constant column reductions.

Let M = (m;;) be a matrix in R**™. We treat a row vector m;, 1 < ¢ < n,
of M as a 1 x n matrix and a column vector m;», 1 <j<nasan x 1 matrix.
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For convenience of discussion, we use the following notation for average y(M),
variance V (M), and total variance T(M, A) of M:

1 n n 1 n n
M):ﬁzz:mija :n_z_:z_: mz] 27

i=1j=1
T(M,A) =AY V(a)+ (1= AV(M), for 0 <A< 1,
i=1

Note that the statistical total variance used here is the convex combination of
two variances, (a) average row variance, (b) variance of the entire matrix, i.e.

T = %zn:V(mi)-F(l—/\)V(M)
= —E me) =iV + 2 30 Y (r(34) — i)
_ %T(M,/\).

In our reduction scheme, we considered the partition A = A; + A, where 4; =
A+ A and A; = —A, such that the variances of A; and A5, the sum of variances
of the rows of 47, and the sum of variances of the rows of A, are minimized.
This minimization problem has been formulated as follows:

min (A + A, A) + (1 — O)T(—A*, N)
such that A e R*"

where 0 < 6 < 1.

Motivated by the observation that for QAP(A,B) the smaller the variances
of A and B are the tighter the GLB is, the following reduction schemes were
proposed in Li, Pardalos, Ramakrishnan and Resende [149]:

R-1) a ( D — = aij — 0(ann — a;j) and a( )= =0(ann —ai5),5,5=1,...,n
R2) olb) = oy ~0(y(a) ~7(a5)) and a2 = B(y(a) ~7(a5)), 4.5 = 1,0

One new lower bound proposed in [149] is to use the reduction scheme R-
1. We denote this lower bound by LB1(6). The other new lower bound that
we propose is to use the reduction scheme R-2. This lower bound is denoted
LB2(8). Both new lower bounds are dependent on the parameter §. Note that,
LB1(0.0) = GLB(A, B) and LB1(1.0) = GLB(A?, BY).

For LB1(8), we found in our computational experiments that § = 0.5 is a
good choice. For LB2(8), we used # = 1.0. The latter was expected since the
column variance of the matrix A is already zero when computing LB2(6).

The new lower bounds can be computed quite efficiently. Computing the
matrix A to partition matrices A and B takes only O(n?) time. By presorting
the rows of the flow and distance matrices A and B, one can compute l;;,%,j =
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1,...,n,in O(n®) [149]. Hence the total running time is O(n?®), which is the same
as that for computing GLB. Furthermore, the constant factor is small.

Recently, Jansen [122] has derived an analytical closed form solution to (5.2—
5.2). That solution is given by

o 1-98 B(1 — A) + 6A%(1 — 6) — 62A%(1 — 6)
b = OATgyv(e)+ Ty v(4)
x(1-8)
g 6/\7(aj) — Bayj.

Note that, as & — 1, this partitioning scheme approaches the constant col-
umn reduction partitioning. Experimentally, we have observed that the column
reduction partitioning scheme is more effective and is easier to implement. For
an efficient implementation of the lower bound and computational results of a
branch and bound algorithm that uses the new bound see [148].

5.3. Suboptimal Algorithms. As exact algorithms can only solve small
size instances of the QAP, and finding an e-approximate solutions of the QAP
remains N P-complete, heuristics with good performance in both solution time
and solution quality are highly desirable. Research in this direction abounds
in literature. Basically, there are 5 types of heuristics including construction
methods which start from an empty permutation p and expand p to a subop-
timal permutation according to certain criteria, limited enumeration methods
which perform partial enumeration with the expectation that good solutions
are generally found in early stages of enumeration, improvement methods which
start from a permutation p and try to get an improved permutation by using
some techniques, simulation approaches and genetic algorithms which belong to
stochastic search techniques.

5.3.1. Construction Methods. Construction methods, as the name suggests,
construct a suboptimal permutation step by step. The basic idea was first in-
troduced by Gilmore [89]. The general scheme for a construction method is as
follows. It starts with a partial permutation p which is empty. Then p is ex-
panded by repetitively selecting a pair of assignment (3, 5) such that ¢ ¢ M and
j & p(M) according to certain heuristic, where M is the index set containing
the indices of p for which the corresponding assignments are done and p(M) is
the set {p(3) | + € M}. This process is repeated until p becomes a complete
permutation.

One of the oldest heuristics used is the CRAFT (Computerized Relative Al-
location of Facilities Technique) [4, 231, 30]. This is a well-known heuristic for
designing the layout of facilities that has been in use for over 25 years. Given
a set of departments, locations, a matrix of flows between departments, and
a matrix of costs to transport one item between two departments a unit dis-
tance, CRAFT iteratively improves an initial, user-supplied, layout by a series
of department exchanges. At each step CRAFT considers either all possible 2-
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way, 3-way, or both 2-way and 3-way exchanges. It chooses the exchange that
provides the most improvement in minimizing total cost, and then repeats the
process until no improving exchange can be found.

5.3.2. Limited Enumeration Methods. The argument for such type of methods
is that a good suboptimal solution may be produced early in an enumerative
search procedure, while finding the optimal solution takes much longer time. For
example, it was observed in an experiment that one of the Nugent test problems,
of size n equal to 15, the optimal solution was found after 23.48 seconds on a
CDC Cyber 76, yet it took more than an hour to prove the optimality of the
solution.

There are several ways to limit enumeration of the set of all possible permuta-
tions. One simple way is to put a time limit on the search procedure. Enumera-
tion stops when a predetermined time limit is reached or there is no improvement
within a certain time limit. Another way is to decrease the requirements for op-
timality. For example, whenever an improvement is not obtained after a given
time period, the upper bound is decreased by a certain specified percentage, re-
sulting in deeper cuts in the enumeration tree. Although it is possible that the
optimal solution may be cut off, the enumeration process is speeded up. Fur-
thermore, one can estimate that the optimal value differs from the suboptimal
one by not more than some specified percentage.

5.3.3. Improvement Methods. The majority of the heuristic solution methods
for the QAP falls into the category of improvement methods. An improvement
method starts with a solution and tries to move to a better solution while im-
proving the solution quality. Local search algorithms and tabu search belong to
such type of methods. There is rich literature on local search algorithms for sub-
optimal solutions for the QAP. Local search algorithms are iterative algorithms.
At each iteration, a local search algorithm generates the next solution by finding
a better solution in the neighborhood of the current solution. The algorithm
terminates when there is no better solution in the neighborhood of the current
solution.

Tabu search was introduced by Glover [90, 91] as a technique to overcome lo-
cal optimality in combinatorial search. The underlying idea is to limit the search
directions for each search step to obtain good quality solutions in an effective
way. This approach has been applied successfully to a number of combinato-
rial optimization problems including the TSP. Adaptations of tabu search to the
QAP have been studied by Skorin-Kapov [238] and Taillard [242]. The basic
idea is as follows.

To improve a given initial permutation tabu search seeks, among the set of
permutations obtained by a pair exchange of assignments, a permutation with
the best heuristic evaluation. In the simplest case, such an evaluation dictates
the choice of a permutation which give the best objective function value. Every
choice of a neighboring permutation represents an exchange of a pair of facilities.
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A tabu list with a specified size is maintained to forbid certain choices of neigh-
boring permutations, i.e., to forbid certain exchanges between facilities. The
tabu list is essentially a list of pair exchanges occurring in the search process.
As certain valuable exchanges of facilities may be prohibited by the tabu list, an
aspiration function is introduced to allow exchanges prohibited by the tabu list
to be chosen if they are judged to be valuable.

5.3.4. Simulation Approaches. An interesting analogy between problems in
combinatorial optimization and statistical mechanics has been developed and
has proven useful in solving some traditional optimization problems, such as
computer design, partitioning, component placement, wiring, and the traveling
salesman problem. The analogy has resulted in a methodology, termed simulated
annealing, which is used to overcome local optimality (see Kirkpatrick, Gelatti,
and Vecchi [135]).

The term “annealing” refers to the process of a thermal system by first melt-
ing at high temperatures and then lowering the temperatures slowly based on
an annealing schedule. The process is continued until the vicinity of the solidifi-
cation temperature is reached, where the system is allowed to reach the “ground
state” (the lowest energy state of the system). Simulated annealing is a Monte
Carlo approach to simulate the behavior of this system to achieve thermal equi-
librium at a given temperature in a given annealing schedule. This analogy has
been applied in solving combinatorial optimization problems. According to the
above authors:

Iterative improvement, commonly applied to such problems, is much like the
microscopic rearrangement process modeled by statistical mechanics, with the
cost function playing the role of energy. However, accepting only rearrangements
that lower the cost function of the system is like extremely rapid quenching high
temperatures to 7' = 0. So, it should not be surprising that resulting solutions
are usually metastable. The Metropolis procedure from statistical mechanics
provides a generalization of iterative improvement in which controlled uphill
steps can also be incorporated in the search for a better solution.

Simulated Annealing is applied to the QAP [253] as follows:

e Given any feasible solution (a permutation of locations in relation to
the facilities), randomly select two facilities, make a pair exchange and
evaluate the consequent change (6f) in the total cost (f)

e Repeat the above step as long as §f < 0. Otherwise, select a ran-
dom variable # from a uniform distribution U(0,1). If ¢ < P(6f) =
EXP(—6f/t;) (where P represents the probability obtained from the
exponential distribution (EXP)), then accept the pair exchange and re-
peat the process. Here ¢; represents the annealing schedule temperature
at stage ¢ where #; > &5 > ... > %, represents the annealing schedule.
For example t; = 10 x (0.9)(~1),

e The system remains at stage ¢ until a predetermined number of pair



26 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZ

exchanges have been considered before going to the next stage.
e If all the temperatures in the annealing schedule have been used, i.e. if
¢ > r, then stop.

In the search process for an optimal permutation for the QAP, the simulated
annealing searches through the 2-change neighborhood of a present permutation.
It uses Monte Carlo sampling to occasionally accept solutions which increase
rather than decrease the objective function value. Such a choice of neighboring
permutation is counter to the normal steepest descent strategy. However, it is ar-
gued in the analogy that by taking such controlled ascent steps, the optimization
algorithm needs not get stuck on poor solutions.

Burkard and Rendl [41] applied simulated annealing to the QAP and reported
favorable computational results. Wilhelm and Ward [253] further investigated
the procedure. Essential to the success of the adaptation of simulated annealing
to the QAP is the annealing schedule as discussed in their work [41, 253].
In the paper [183], computational results with four heuristics, the CRAFT,
simulating annealing, tabu search, and a local search based on graph partitioning
are reported.

5.3.5. Genetic Algorithms. Genetic algorithms, like simulated annealing, form
another type of stochastic search technique. While simulated annealing is based
on thermodynamic process, genetic algorithms are based on the mechanics of
natural selection and natural adaptation. A genetic algorithm maintains a pop-
ulation consisting of a subset of individuals (solutions). Through means of biased
selection and genetic operations, the algorithm replaces a population with a new
population of individuals with better fitness values on the average.

Genetic algorithms have been developed by John Holland et al. at the Uni-
versity of Michigan in 1975. However, genetic algorithms did not have a major
influence at that time. With the advent of parallel computers, there has been
increasing interest in genetic algorithms since they are inherently parallel. A
number of researchers have tried to apply genetic algorithms to solve combina-
torial optimization problems, such as the the graph partitioning problem and
the traveling salesman problem [161].

5.4. Greedy Randomized Adaptive Search Procedures (GRASP).
GRASP is an iterative randomized sampling technique in which each iteration
provides an approximate solution to the problem at hand. The incumbent solu-
tion over all GRASP iterations is kept as the final result. There are two phases
within each GRASP iteration: the first constructs an initial solution via an adap-
tive randomized greedy function; the second applies a local search technique to
the constructed solution in hope of finding an improvement. A comprehensive
survey of GRASP can be found in [73].

In [71] GRASP has been applied to a quadratic assignment problem that
models the positioning of intermodal highway trailers on railcars. The GRASP is
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incorporated within a branch and bound algorithm to compute optimal solutions.
In Li, Pardalos et al (see the paper in this volume), the GRASP has been applied
to solve the general QAP. The GRASP was tested on 88 instances of QAPs (most
of which are from QAPLIB) and found the best known solution of almost all the
instances, and improved on the best known solution in a few cases.

6. Test Problem Generation

In this section we consider the problem of generating QAPs with a known
optimal permutation. The problems will be of the form: Given a set N =
{1,2,...,n} and two (n x n) matrices F = (f;;) and D = (dy;), find a permu-
tation p of the set N that minimizes:

Qrp(p) = Z Z Fizdp(iyp()-
i j

Test problem generators are very important in computational optimization.
The efficiency of an algorithm for a given problem is determined by several
criteria including the accuracy of the solution, the speed of the algorithm, and the
effectiveness of the algorithm with respect to different problem classes. However,
for many difficult problems, existing theory cannot itself provide measurement
for these criteria. Hence, empirical computational experimentation is necessary.
Evaluation and test of an algorithm can be done by using test problems with
a known optimal solution. Test problems also provide a standard platform on
which different algorithms for the same problem can be compared. For general
references on this subject, see e.g., Pardalos [178, 179], Pardalos and Rosen
[190], and Floudas and Pardalos [76].

6.1. Palubetskis’ Generator for QAPs with a Known Solution. Next,
we discuss the generation of test problems for the quadratic assignment problem.
One of the first methods for constructing test problems with a known optimal
permutation was proposed by Palubetskis [175]. Assume that the distance ma-
trix is taken from a grid graph.

Input: w, a value to initialize the F' matrix, and z < w, to obtain random values
between [0, z].
Output: Matrices ¥ and D and an optimal permutation p*.

(1) Construct the matrix D = (d;;), of which the elements are the distances
between the knots of the two dimensional grid r x s, where rs = n, using
rectilinear distances. If (4, j) are neighboring knots, then d;; = 1.

(ii) Set F = (fi;) where f;; = w (an input parameter to the algorithm).
Compute g;; = 2 — d;;.

(i) While for any ¢,5 = 1,...,n such that g;; <0.

(iv) Choose the pair I, m, such that d;,, = max{d,;} where the max is taken
over every (%, j) for which g;; < 0. If no such pair exists, then go to 8.
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(v) Randomly select a grid point k on one of the shortest ways from ! to
m, such that, | djx — dmz | < 1. Then, choose randomly, A € [0,z < w]
where w and z are the input parameters to the algorithm.

(vi) Set fim := A, fue := fix + (w — A), fmk 1= fmk + (w — A) and gp, =
gk := gmg = 1.

(vii)) Endwhile.
(viii) Finally, generate the random permutation p* = p*(i),s = 1,2,...,n,
where P* will be the optimal permutation. Form the matrix F = (¢;;)
in which f;; = fu» where i = p*(u) and 7 = p*(v).
(ix) Output F, D and p* and optimal cost w(}_ Y d;j).

Next, we provide the proof of correctness of the above algorithm [165]. Be-
fore applying Step #8, the identity permutation is an optimal permutation
for the QAP with input data, the matrices F and D and the optimal cost,

C =w(} X dij)-
The proof is by induction on the number of iterations.

Base: To start with, let F(°) = (fij = w) be the flow matrix. Obviously, for
this F(© all permutations are optimal and the corresponding cost is C.

Hypothesis: At the end of the i-th iteration, for the flow matrix F*), the
identity permutation is optimal and the corresponding cost is C.

To prove: at the end of the (¢ + 1)-th iteration, for the flow matrix FG+1),
the identity permutation is optimal and the corresponding cost is the same as
at the end of the i-th iteration i.e., C.

During the (¢ + 1)-th iteration, let dj,, = max{d,;} over all ¢, 7 such that
gij < 0. Also, let a grid point k& be selected such that k is on the shortest
path between ! and m, i.e. dip + dmr = dim (Comment: k need not satisfy
the condition | dix — dmi | < 1 as stated in the algorithm. It is sufficient if
dix +dmp = dlm)- Then,

pltl) — p@) 4 7
where F' = (f:]) and
ift:=1and j =k,

if: =mand j = k,

|
g b Db

fij =

if: =1 and j = m,

<P g g
I

otherwise.

It is obvious that



THE QUADRATIC ASSIGNMENT PROBLEM 29

opt(F(H'l)) > opt(F(i)) + opt(ﬁ').

From the hypothesis opt(F()) = C and it can be easily proved that opt(ﬁ') =
0. Hence,

opt(F(H'l)) > C.

But, again from the hypothesis, the identity permutation is optimal for F(*)
and it can be checked easily to show that it is also optimal for F. Hence, the
identity permutation must be optimal for F(*1) and the optimal cost must be
the same as at the end of the -th iteration, i.e. C.

Next, we provide two test problems constructed using the above generator.

Example 1: Here, n = 10 and the grid dimensions are: » = 5 and s = 2.
Also, the input parameters to the generator are: w = 9and z = 3. The generated
matrices F' and D are as follows:

T 9 3 2 1 16 3 41 9 0 327

15 9 0 16 18 2 3 9 40 31

0 2 9 22 58 9 43 0 1 3

1 10 9 15 9 33 1 17 25

F_| 101 2 9230 1 16 18

009 35 3 9 39 3 38 3

27 2 9 15 16 3 9 2 16 3

33 9 0 3 40 0 18 9 15 17

16 2 3 15 15 3 17 2 9 25

30 9 0 29 18 1 3 0 9 9
"0 1 1 2 2 3 3 4 4 57
102 13 2 435 4
120112 233 4
2 1102 13 2 4 3
2312011223
322 110 213 2
3423120112
43322110 21
453 4231201
|5 4 4 332 211 0]

For this problem, the known optimal cost is 1890 and the optimal permutation
of the facilities in relation to the locations is (8 21 10 5 9 7 4 3 6). The results
obtained by our algorithm are: cost due to our algorithm is 1890, which is
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same as the optimal value and the corresponding permutation of the facilities is

(7101452396 8).

Example 2: The grid for this example is r = 2, s = 5 and n = 10. The input
parameters to the generator are: w = 9 and z = 5. The generated flow matrix
F is given below.

(9 21 29 17 1 17 20 16 2 17
9 9 18 34 2 2 34 14 0 4
5 13 9 15 3 2 16 24 18 2
5 26 20 9 9 4 2 2 271 3
7o 1 0 47 22 9 0 5 2 31 26
9 19 5 4 0 9 27 26 27 1
1 24 22 2 3 9 9 9 24 5
1 0 16 4 1 17 18 9 21 17
5 0 5 18 0 5 33 13 9 18
| 2 0 0 26 9 4 2 41 35 9 |
[0 1 2 3 4 1 2 3 4 57
101 2 3 2 1 2 3 4
210123 2123
3 21014 3 2 1 2
D 4 3 2105 4 3 21
123 45 01 2 3 4
212 3 410123
3 2123 2 101 2
4 3 21 2 3 2101
| 5 4 3 2 1 4 3 2 1 0

Optimal cost for this example is also 1890. Our algorithm cost is the same as the
optimal cost and the corresponding permutation in both the cases is the identity
permutation.

6.2. Li & Pardalos Generator for QAPs with a Known Solution. Li
and Pardalos [150] have generalized the results of Palubetskis and constructed
test problems for more general types of QAPs. Their generator includes Palubet-
skis’ procedure [175] as a special case, in which the distance matrix is taken from
a grid graph. The fortran generator described in [150] is available by e-mail from
the authors (the fortran code can also be obtained by sending an e-mail message
to “coap@math.ufl.edu”, and in the body of the message put “send 92006”).

6.3. QAP-LIB. Finally we point out that a collection of more than 130 in-
stances of quadratic assignment problems is contained in a library called the
”QAP-LIB”, [39]. This library consists of two parts. The data part contains
various instances given by the input matrices 4, B and C, if C # 0. Then
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there is a documentation, corresponding to [39]. This documentation is updated
regularly, the last update being from February 1994. The documentation con-
tains the following information on each of the instances: the best known feasible
solution value is given, along with some information on who found it and by
which method. Secondly the best currently available lower bounds on the objec-
tive function is provided. The two parts are available via anonymous ftp from
ftp.tu-graz.ac.at in the directory /pub/papers/qaplib.

6.4. OR-Library. QAP instances can be also obtained from the OR-Library
(o.rlibrary@ic.ac.uk) - see the file qapinfo. For details see [123]. Information
about test problems for quadratic assignment problems as well as other combi-
natorial problems can be obtained by sending email to o.rlibrary@ic.ac.uk with
the email message being the file name for the problem areas you are interested
in.

7. Concluding Remarks

In this paper we gave a survey regarding the most recent results and applica-
tions on QAP. In addition, an up-to-date bibliography is included which includes
papers on QAP and realted problems as well as applications in diverse areas.
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Appendix A. Notations

n The size of an instance of the QAP
e The column vector of ones
A The flow matrix
B The distance matrix
QAP(A,B) An instance of the QAP with flow matrix 4 and distance matrix B
I, The set of permutations
f(p) The objective function value of QAP(A, B) corresponding to p
A’B The maximum objective function value of QAP(A, B)
fis The minimum objective function value of QAP (A4, B)

GLB(A,B) A permutation yielding the maximum objective function value of QAP(A4, B)
EVB(A,B) The Eigenvalue bound for the QAP(A, B)

(z,y) The inner product of vectors = and y

(z, y)_I_ The maximum permuted inner product of vectors # and y

(z,y)_ The minimum permuted inner product of vectors # and y

zt The vector obtained by reordering the components of z ascendingly
x” The vector obtained by reordering the components of  descendingly
At The transpose of the matrix A

trace A The trace of the matrix 4

diag (4) The vector formed from the diagonal elements of 4

diag (v) The diagonal matrix formed from the vector v

I The set of permutation matrices

P The set of positive semidefinite symmetric matrices

D The set of doubly stochastic matrices

o The set of orthogonal matrices

N The set of nonnegative (elementwise) matrices

& The set of matrices with row and column sums 1

S The set of matrices with the sum of the squares of all elements equal to n
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