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2 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZX = (xij)n�n. The entries of each such matrix must satisfy:nXj=1xij = 1; i = 1; : : : ; n;(1.1) nXi=1 xij = 1; j = 1; : : : ; n;(1.2) xij 2 f0; 1g; i = 1; : : : ; n; j = 1; : : : ; n;(1.3) xij = � 1 if facility i is assigned to location j0 otherwise.With the above constraints on x, we have the following equivalent formulationfor the quadratic assignment problem, working on the space of permutationmatrices, min nXi=1 nXj=1 nXk=1 nXl=1 aijbklxikxjl + nXi;j=1 cijxij:(1.4)The paper is organized as follows. In Section 2 we present the mathemati-cal tools and techniques that have proven to be useful for QAP. This includesvarious formulations of the problem and representations of the feasible set. Thevarious representations of the feasible set and objective function lead directly totractable relaxations. We include optimality conditions and representations ofderivatives for QAP and its relaxations. In Section 3, we present several appli-cations of QAP, both theoretical and practical. We also include generalizations.The computational complexity is described in Section 4. A survey of current nu-merical methods is presented in Section 5. Test problem generation with knownoptimal permutation is discussed in Section 6. Concluding remarks are made inSection 7. 2. Mathematics of QAPIn this section we outline the mathematical tools and techniques that areuseful and interesting for QAP.2.1. Formulations. Several formulations have been used in the literature tostudy the QAP. We outline several of these formulations now. (Please see [100]for more details and more formulations.)2.1.1. Koopmans-Beckmann. The QAP was introduced in 1957 by Koopmansand Beckmann [137] using the formulation presented above in equations (1.1) to(1.4). This model was formulated to study the assignment of a set of economicactivities to a set of locations.



THE QUADRATIC ASSIGNMENT PROBLEM 32.1.2. Trace. For simplicity, we mainly use the trace formulation in this paperQAP minX2� f(X) = trace (AXB + C)Xt;where :t denotes transpose, � is the set of permutation matrices, and tracestands for the sum of the diagonal elements. We assume A and B to be realsymmetric n � n matrices and C 2 <n�n. This formulation was introduced in[65, 66]. It allows for easy manipulation and relaxation of the data and trulyillustrates the n dimensional nature of the problem.Several elementary properties of the trace can be exploited. For example:the trace of a symmetric matrix is the sum of the eigenvalues; and the trace ofa product satis�es traceMN = traceNM = traceN tM t: Moreover, the traceprovides a valid inner product on the space of real (or complex) m� n matriceshM;N i = traceM�N;where �� stands for complex conjugate.2.1.3. Kronecker Product. The trace formulation of the objective function isa compact form of representing the quadratic form with the matrix X as thevariable. The Hessian of this quadratic form is the tensor product or Kroneckerproduct A
 B = (aijbkl) = (aijB) ;i.e. the matrix formed from all possible products of elements from A and B.We can use the notation that vec (X) 2 <n2 denotes the vector formed from thecolumns of the matrix X. Then the objective function is equivalent tof(X) = vec (X)t(A 
B)vec (X) + vec (C)tvec (X):Derivatives and algebraic manipulations can all be done via the Kronecker prod-uct. For example, the eigenvalues of the Kronecker product are the n2 eigenval-ues formed from all possible products of the eigenvalues of A and B. However,using the Kronecker product hides the structure of the problem and increasesthe complexity in that we do not take advantage of the hidden fact that we arereally working on an n dimensional problem. For that reason, the Kroneckerproduct is rarely used and we do not study it further. (See [96] for details onmanipulations and calculus involving Kronecker products.)2.2. The Feasible Set and Perturbations. The feasible set for QAP con-sists of all the possible assignments of n objects to n locations. The extremepoints, or vertices, of the bipartite perfect matching polytope (as de�ned by thenonnegative vectors x = (xij) 2 <n2 satisfying the constraints (1.1) and (1.2))are the incidence vectors of all possible assignments. Alternatively, in the traceformulation, the feasible set consists of all the permutation matrices. It is well



4 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZknown that the permutation matrices satisfy� = O \ E \N ;= S \ E \N ;(2.1)where: O = fX : XtX = Ig is the set of orthogonal matrices; S = fX :traceXtX = ng; while E = fX : Xu = Xtu = ug is the set of all matriceshaving row and column sums equal to one; and N = fX : X � 0g is the setof nonnegative matrices. We let D = E \ N denote the set of doubly stochasticmatrices. A well known theorem of Birko� [21] states that the convex hull ofthe permutation matrices is the set of doubly stochastic matrices, conv� = D:Thus the set of doubly stochastic matrices corresponds to the bipartite perfectmatching polytope. (For more details on the above, see e.g. [28].)The properties of the feasible set allow for perturbations of the objectivefunction without changing the optimal solution of the original problem. Theseperturbations do change relaxations for the problem and so are important inimproving bounding techniques. Two standard perturbations, constant row andcolumn perturbations and diagonal perturbations, are known to have this prop-erty. Speci�cally, suppose that e; f; r; s 2 <n and de�neA(e; r) = A + eut + uet + diag (r);B(f; s) = B + fut + uf t + diag (s);C(e; f; r; s) = C + 2Auf t + 2eutB � 2nef t � 2Pk ekuf t+diag (A)st + r diag (B)t � 2est � 2rf t � rst;where diag changes a vector to a diagonal matrix and, conversely, it changes amatrix to a vector formed from the diagonal elements. Thentrace (AXB +C)Xt = trace (A(e; r)XB(f; s) + C(e; f; r; s))Xt; 8X 2 �:(Note that symmetry is preserved by these transformations.)If we keep the constraint X 2 E , i.e. X has row and column sums equal to1, then the constant row and column perturbations are redundant and can beignored, i.e. only the diagonal perturbations need be used. (See e.g. [102] for de-tails. The question of which perturbations are needed, under which relaxations,is discussed in [198].)2.3. Relaxations. Since QAP is an NP-hard problem, the equivalent ex-pression of the constraints in (2.1) are very useful. We immediately get repre-sentations for relaxations. These relaxations remove the combinatorial nature ofthe problem and allow for solutions using continuous optimization techniques.The strategy is to relax the objective function and/or the constraints, in orderto get a tractable problem. These problems do not provide useful approxima-tions in general. But, we can then �nd the best relaxation of a family of theseproblems over the above mentioned perturbations. (More details are providedwhen we discuss lower bounds in Section 5.2.)



THE QUADRATIC ASSIGNMENT PROBLEM 52.3.1. Linearization. If the quadratic term of QAP vanishes, then we have anordinary linear assignment problem which can be solved very e�ciently. In gen-eral, the QAP can be relaxed to a (0,1)-linear integer program. This can be doneby introducing new binary variables yijkl = xijxkl: These new variables replacethe occurrence of quadratic terms in the objective function. New constraints areadded to ensure consistency with the original problem. Typically, the convex hullof the constraint set is used in order to obtain an ordinary linear programmingproblem. See e.g. [143, 155, 154, 132, 8, 18, 55, 34, 81, 2, 100].2.3.2. Quadratic Programming. As stated above in Section 2.2, perturbationsof the objective function can be done without changing the optimum of QAP.But these perturbations can be very useful in forming relaxations. Since diagonalperturbations are allowed, we can perturb the diagonal elements of A and Bin order to make the Hessian of the objective function convex. We can thentake the convex hull of the feasible set, i.e. we relax the feasible set to thedoubly stochastic matrices D: This results in a standard quadratic programmingproblem that can be solved by well known methods. In fact, we do not need tomake the Hessian positive semide�nite on all matrices X, but rather only on thespan of the feasible set, i.e. on the span of the doubly stochastic matrices, orequivalently, on the span of matrices with row and column sums equal to 1.However, this relaxation does not fully exploit the structure of the problem,since it treats the objective function as a quadratic form over <n2 :2.3.3. Trust Region Subproblems. If we use the second representation in (2.1)and relax the constraint set to X 2 S \ E ; then we do not have to worry aboutconvexity of the objective function, i.e. we obtain a tractable problem called atrust region subproblem. (In [241] it is shown that these problems are reallyimplicit convex problems, since their dual problems are concave maximizationproblems.) However, these problems still do not exploit the structure of QAP.2.3.4. Parametrization of Permutation and Orthogonal Groups. The vector eof ones is both a right and left eigenvector corresponding to an eigenvalue of 1,for every permutation matrix. This fact can be exploited to project the feasibleset of QAP onto the span of the doubly stochastic matrices while not losing thespecial trace structure of the objective function.Let the n � (n� 1)�matrix V be such thatV te = 0; V tV = In�1:The columns of V therefore constitute an orthonormal basis of feg?: Further,let v := ekek ; P = [v ... V ] 2 O:Thus Q := V V t = I � vvt describes the orthogonal projection on feg?: Theparametrization of the permutation matrices follows. (See [102].)



6 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZProposition 2.1. Let X be n � n and Y be (n � 1)� (n � 1): Suppose thatX and Y satisfy X = P � 1 00 Y �P t:(2.2)Then X 2 E ;X 2 N () V Y V t � �vvt;X 2 On () Y 2 On�1:Conversely, if X 2 E ; then there is a Y such that ( 2.2) holds.Relaxing the constraints to X 2 O or to X 2 O\E removes the combinatorialnature of the problem. The resulting problem can be split into an eigenvalueproblem for the quadratic part of the objective function and a standard linearprogramming problem for the linear part. (This is discussed in detail in thesection on bounds, Section (5.2.2).)In addition, one can parametrize the orthogonal constraint X 2 O by notingthat it is equivalent to the matrix exponential X = expS for some skew symmetricmatrix S, see e.g. [172, 60]. This results in an unconstrained problem over thespace of skew symmetric matrices.2.3.5. Semide�nite Programming. The orthogonal constraint can be relaxedto XXt � I, i.e. XXt is negative semide�nite. This relaxation is discussed indetail in an accompanying paper in these proceedings [129].2.4. Derivatives and Optimality Conditions. QAP is an NP-hard prob-lem. It is therefore not surprising that verifying optimality is also an NP-hardproblem. In fact, even checking local optimality is a hard problem. (See Section4.2.) However there are tractable optimality conditions for the relaxations.2.4.1. Di�erentials. We �rst present the derivatives of the functions involvedin QAP. Letk(X) = XBXt; g(X) = XtX � I; f(X) = traceAXBXt :Then the corresponding di�erentials in the (matrix) direction h aredk(X;h) = XBht + hBXt;dg(X;h) = Xht + htX;df(X;h) = traceA(dk(X;h)) = traceA(XBht + hBXt):



THE QUADRATIC ASSIGNMENT PROBLEM 72.4.2. Optimality Conditions. First, consider the relaxation of QAP whenC = 0 and the constraint set consists of the orthogonal matrices. From theabove notation this corresponds tomin f(X) subject to g(X) = 0:The Lagrangian for this problem isf(X) + trace Sg(X);where the Lagrange multiplier S is a symmetric matrix. We can di�erentiate theLagrangian using the above di�erentials. If we set the derivative to 0, we get thecondition that AXB + XS = 0 or XtAXB = �S: We conclude from S = St,that XtAX and B commute and so are mutually diagonalizable. This yieldsthe minimum scalar product of the eigenvalues used in the bounds in Theorem5.1. An improved bound can be obtained by projecting the feasible set ontothe span of the doubly stochastic matrices. This uses a parametrization of thepermutation matrices, see 2.3.4. (More details can be found in [210, 102, 129].)2.4.3. Global Optimality. If we relax QAP to a quadratic (convex) program,i.e. we relax the constraint set to the set of doubly stochastic matrices D whileperturbing the objective function to make it convex on the span of D, then theKarush-Kuhn-Tucker optimality conditions characterize optimality. This is wellknown for convex programming problems where a constraint quali�cation holds.The primal relaxed problem is equivalent to the min-max of the LagrangianminX2N max�1;�22<n trace �(AXB +C)Xt� + �t1(Xe � e) + �t2(Xte � e);(2.3)while the dual is the max-min problemmax�1;�22<n minX2N trace �(AXB +C)Xt� + �t1(Xe � e) + �t2(Xte � e):(2.4)The above relaxation provides lower bounds for QAP. Thus, for each pertur-bation de�ned in Section 2.2, with the above convexity assumption on the spanof D, the dual problem provides lower bounds for QAP because we can e�ectivelycharacterize global optimality for it. This is no longer true if we do not makethe convexity assumptions on the objective function.Statements about global optimality for nonconvex problems, such as QAPitself, are much harder to make. A characterization for general problems can befound in [114].2.4.4. Local Optimality. For the general quadratic programming relaxation,even in the nonconvex case, i.e. for a general objective function constrainedto D, we still get necessary and su�cient local optimality conditions. This isdue to the quadratic nature of the problem, i.e. the second order optimalityconditions are necessary and su�cient. However, this is not the case for problemswith nonnegativity constraints. It has been shown in [191] that the problem of



8 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZchecking local optimality (and the problem of checking if a local minimum isstrict) in quadratic programming with linear constraints is NP-hard. Pardalosand Vavasis [192] have also shown that quadratic programming with one negativeeigenvalue (all others zero) remains an NP-hard problem.2.5. Nonsymmetric QAP. Applications for QAP usually involve symmet-ric matrices A;B. If one of A or B is symmetric, then we can still get an equiv-alent symmetric QAP by symmetrizing the other, e.g. replace B by (B +Bt)=2:If both A and B are not symmetric, then we can still symmetrize the quadraticform by using the Kronecker product, but we then lose the trace structure of theproblem.However, even if both A and B are not symmetric, we can still obtain mean-ingful bounds by moving into the space of Hermitian matrices. See [103].3. Applications, Generalizations and special casesApplications for QAP are many and varied. Several are mentioned in theintroduction above. We also point out that [33] summarizes recently publishedapplications of quadratic assignment problem.We will describe now �rst some generalizations of the quadratic assignmentproblem, and then discuss some interesting special cases.3.1. The 3-indexAssignmentProblem. The three-index (or 3-dimensional)assignment problem of order n can be stated as a (0,1)-programming problem ofthe following form:min Pfcijkxijk : i 2 I; j 2 J; k 2 Kg;s:t: Pfxijk : j 2 J; k 2 Kg = 1; 8i 2 I;Pfxijk : i 2 I; k 2 Kg = 1; 8j 2 J;Pfxijk : i 2 I; j 2 Jg = 1; 8k 2 K;xijk 2 f0; 1g; 8i; j; k;(3.1)where I, J and K are disjoint index sets with jIj = jJ j = jKj = n. Note thatthe number of variables of the three-dimensional assignment problem of order nis n3.From the complexity point of view, it has been shown that the three-dimensionalassignment problem is NP-hard [131]. Most ot the proposed algorithms for thisproblem are implicit enumeration methods. Some of the proposed algorithmsinclude those of Vlach [247], Pierskalla [196, 197] and Leue [145]; a primal-dual algorithm described by Hansen and Kaufman [106]; a branch and boundalgorithm using a Lagrangian dual and subgradient optimization implementedby Fr�ohlich [83] and discussed by Burkard and Fr�ohlich [38]. Also see Burkardand Rudolf [42]. More recently, Balas and Saltzman [11] developed a branchand bound algorithm that also uses facet-de�ning inequalities in a Lagrangianfashion with subgradient optimization.



THE QUADRATIC ASSIGNMENT PROBLEM 9Let A be the coe�cient matrix of the constraint set of (3.1). Then R =I [J [K is the row index set of A. Let S be the column index set of A. Let GAbe the intersection graph of A, i.e., the graph that has a vertex for every columnof A and an edge for every pair of non-orthogonal columns. LetP = fx 2 Rn3 : Ax = e; x � 0g;where e = (1; :::; 1)t 2 R3n. ThenPI = conv fx 2 f0; 1gn3 : x 2 Pgis the three-index assignment polytope of order n.Balas and Saltzman [10] started to study the facial structure of PI . They gavean O(n4) procedure to detect whether there is a clique facet of PI , violated bya given noninteger point x. In [1], Balas and Qi gave an O(n3) procedure to dothis. Since the number of variables of (3.1) is n3, an O(n3) separation algorithmfor a facet class of PI is linear-time and its complexity is best possible. Balasand Qi [9], Gwan and Qi [99] also gave linear-time separation algorithms forother two facet classes of PI , identi�ed in [10]. More recent results can be foundin [202]].Other papers on the three-index assignment problem include [43, 68, 80, 81]and [219].3.2. The Quadratic Semiassignment Problem. The quadratic semias-signment problem (QSA) uni�es some interesting combinatorial optimizationproblems. The general problem has the form:min Pmk=1Pni=1Pnj=1 cijxikxjks:t: Pmk=1 xjk = 1; j = 1; : : : ; nxjk 2 f0; 1g; 8j; k;(3.2)Some special cases of this problem include the clustering problem, the equipar-tition problem, and the m-coloring problem on graphs [234], [235].Given n objects and an n � n dissimilarity matrix C = (cij), the \clusteringproblem" is to �nd a partition of the objects into m classes (clusters) whichminimizes the sum of the dissimilarities between objects belonging to the sameclass.The \equipartition problem" is the following: Given n objects with weightswi, i = 1; : : : ; n, �nd a partition of the objects into m classes so as to minimizethe variance of the class weights. This problem can be formulated as a quadraticsemiassignment problem with cij = wiwj for all i and j.The \m-coloring problem" is also a special case of the (QSA) problem. Givena graph G(V;A), the graph admits a coloration of its vertices with m colors



10 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZ(adjacent vertices have di�erent colors) if and only if the following problemmin Pmk=1P(i;j)2A xikxjkPmk=1 xjk = 1; j = 1; : : : ; ns:t: xjk 2 f0; 1g; 8j; k;(3.3)has optimal function value zero.3.3. The Biquadratic Assignment Problem. Recently Burkard, Celaand Klinz [35] (see the paper in this volume) introduced a fourth order general-ization of the quadratic assignment problem. Let A = (ai;j;k;l) and B = (bm;p;s;t)be two arrays of n4 elements. Then the biquadratic assignment problem asks tominimize Xi;j;k;l;m;p;s;tai;j;k;lbm;p;s;tximxjpxksxltover all permutation matrices X. This problem arises in the �eld of VLSI syn-thesis. In [35] various formulations of this problem are described. Also, lowerbounds and some methods to construct instances with known optimal solutionare presented. There are still many open problems related to this generalizedmodel of the quadratic assignment problem. In particular it would be interestingto explore eigenvalue related techniques to this problem.After having described some relatives of the quadratic assignment problem,which typically are at least as hard or harder to solve we will now focus onspecially structured quadratic assignment problems which lead to simpli�cationsof the problem.3.4. Special Cases. The quadratic assignment problem can be formulatedvery naturally in a graph theoretical context. This formulation was investigated�rst by Christo�des and Gerrard [54], and later by Bokhari [23] and Rendl [208].We review this formulation and present several applications to other optimizationproblems on graphs that can be derived from this formulation.Let G = (V;E) and G0 = (V 0; E0) be graphs. G is isomorphic to G0 (G � G0for short), if there exists an adjacency preserving bijection p : V 7! V 0, i.e.ij 2 E () p(i)p(j) 2 E0:We denote by �(G;G0) the set of adjacency preserving mappings between G andG0. Furthermore we denote by M (G;G0) the set of all subgraphs H of G0, whichare isomorphic to G,i.e.M (G;G0) = fH : H subgraph of G0;H � Gg:The graph theoretic formulation of quadratic assignment problem was pro-posed by Christo�des and Gerrards as follows.Let G and G0 be graphs with edge weights a : E 7! <; b : E0 7! <.



THE QUADRATIC ASSIGNMENT PROBLEM 11minH2M(G;G0) min�2�(G;H) Xij2E aijb�(i)�(j):(To avoid trivialities one has to assume jV j � jV 0j .) Note that if bothG and G0 are isomorphic to the complete graph Kn, then M (G;G0) = fG0gand �(G;G0) contains all permutations of n elements, leading to the standardquadratic assignment problem.The graph theoretic formulation provides many possibilities to generate spe-cial cases of the standard quadratic assignment problem. The complexity issuesrelated to these special cases will be addressed in subsection 4. Here we will re-late other di�cult optimization problems on graphs to the quadratic assignmentproblem.It is well known that the traveling salesman problem and the matching prob-lem can be formulated as a special quadratic assignment problem, see [75]. Per-haps less known are the connections of the quadratic assignment problem tothe bandwidth problem in graphs. To see this connection we �rst introduce thebandwidth problem (we refer to [201] for a survey on the topic):Let G be an undirected (and unweighted) graph on n nodes. A permutation �of n elements is called a labeling of the nodes of G. The bandwidth of a labeling� is de�ned as maxij2E j�(i) � �(j)j:The bandwidth � of G is the minimum of this number over all labelings. In termsof matrices, the bandwidth problem asks for a simultaneous permutation of therows and columns of the adjacency matrix of G such that all nonzero entries areas close as possible to the main diagonal.Suppose the bandwidth of a given graph G is at most k. Let us denote byPn;k the graph on n vertices with edges ij whenever ji� jj � k. Then clearly Gmust be isomorphic to some subgraph of Pn;k. Conversely, if the bandwidth of Gis larger than k, then there cannot exist a subgraph of Pn;k which is isomorphicto G. If we denote the adjacency matrix of G by A and the adjacency matrix ofPn;k by B, then we conclude:The bandwidth of G is at most k if and only if max�2�Pij aijb�(i)�(j) = 2jEj:Therefore if some upper bound on this quadratic assignment problem has avalue less than 2jEj for a �xed value of k, one immediately concludes that thebandwidth is larger than k. This idea was used in [110] to derive lower boundson the bandwidth of graphs. In particular the following simple lower bound onthe bandwidth is proved. �(G) � n�2(L)=�n(L) � 1Here L denotes the Laplacian matrix of the graph, which is related to A byL = Diag(Ae) � A. (Recall that Ae is the vector of row sums of A.)



12 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZA similar approach works also for the problem of bounding the 1-sum of agraph, which is the same as the bandwidth except that one minimizesXij2E j�(i) � �(j)j:over all permutations �. Finally the problem of determining whether a vertexseparator of some given size k exists in a graph can be modeled as a quadraticassignment problem. We refer to further details in [110].In [166, 209] it is pointed out that the general graph partition problem canbe modeled as a quadratic assignment problem. (See Section 4.3 for details.) Itturns out however, that exploiting the special structure of the partition prob-lem leads to more powerful results than treating this problem as a quadraticassignment problem.4. Complexity Issues and Asymptotic BehaviorFrom the computational point of view the QAP is one of the most di�cultproblems to solve. In this section several aspects regarding the complexity ofthe QAP are discussed. Although computational complexity characterizes worstcase instances, it also plays an important role in developing new algorithms forsolving combinatorial optimization problems, analyzing their intrinsic di�culty,and revealing surprising connections among problems and their solutions.4.1. Computational Complexity. In 1976, Sahni and Gonzalez showedthat the QAP is NP -complete, which implies that �nding a polynomial-timealgorithm to solve it is unlikely [221]. In addition, they have also shown thatQAP belongs even to the hardest core of this complexity class, in the sense thatthe problem of �nding an �-approximate solution of QAP remains NP -complete.Many well known NP -Complete problems, such as the traveling salesmanproblem (TSP), the graph partitioning problem (GP), the maximum clique prob-lem (MCP), can be easily formulated as special cases of the QAP:� The traveling salesman problem (TSP): The distance matrix correspondsto the distance matrix of the TSP, the 
ow matrix corresponds to theadjacency matrix of a cycle of length n.� The graph partitioning problem (GP): The distance matrix correspondsto the adjacency matrix of the GP, the 
ow matrix corresponds to theadjacency matrix of two disjoint complete graphs of size n=2 (assumingn is even).� The maximum clique problem (MCP): To identify the existence of aclique of size k, one constructs a distance matrix corresponding to theadjacency matrix of the graph for the MCP, a 
ow matrix correspondsto the adjacency matrix of a clique of size k. The maximum clique canbe found by solving a set of n QAPs, one for each k; 1 � k � n.



THE QUADRATIC ASSIGNMENT PROBLEM 13There are a few polynomial-time solvable special cases for the QAP. Christo�desand Gerrard [53] investigated the conditions under which the QAP can be solvedin polynomial time. They show that if both matrices A and B are weighted ad-jacency matrices of a tree, the problem can be solved in a dynamic programmingfashion, in polynomial time. But if only 1 of the 2 matrices is a weighted adja-cency matrix of a tree, the problem remains to be NP -complete since the TSPcan be reduced to such a form.Moreover, the following case is solved in O(n logn) running time by Adolphsonand Hu in 1973 [53]: consider the case in which one matrix represents theweighted adjacency matrix of a tree, while the other one represents the distancematrix of a grid graph G = (V;E), where the distances between nodes i and j isde�ned as followsbij = � 1; if (i; j) 2 E;length of the short path between i and j, if (i; j) 62 E:Other polynomial-time solvable cases include the case in which one of thematrix is the weighted adjacency matrix of a double star (see Christo�des andGerrard [53]). When both distance and 
ow matrices are weighted adjacencymatrices of series-parallel graphs containing no bipartite graph K2;2, then againthe corresponding QAP is solved in polynomial time [208].4.2. Complexity of Local Search. Next we show that �nding a locallyoptimal permutation is a di�cult problem from the complexity point of view.A local search algorithm starts with an initial feasible solution and successivelymoves to neighboring solutions until no further improvement is possible. Tocharacterize the complexity of solving combinatorial optimization problems suchas the QAP with local search algorithms, a Polynomial-time Local Search (PLS)class has been de�ned [126] that captures the structure of NP problems at thelevel of their feasible solutions and neighborhoods. Similar to NP-completeness,the concept of PLS-completeness has been de�ned to capture the class of thehardest problems in PLS. For certain NP-complete problems, the correspondingPLS problems have already been shown to be PLS-complete [126, 223]. Inregard to the complexity of local search, see also [181] and [191].4.2.1. A K-L Type Local Search Algorithm. Next we describe a new localsearch algorithm for the QAP and establish the connection between the newalgorithm and the Kernighan-Lin heuristic algorithm for the (GP).The local search algorithm for the QAP starts with a random permutation as acurrent permutation. For a current permutation p0, a sequence of permutations,p1; : : : ; pl, is constructed in a greedy sense. Each of the permutations in thesequence is obtained from the previous one by swapping (interchanging) twoassignments and has cost lower than the current permutation. A local search isperformed in the sequence, replacing the current permutation by the permutationwith the lowest cost in the sequence (the algorithm stops if the sequence is empty



14 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZfor the current permutation). In the description of the local search algorithmbelow, instead of using the cost C(pk) of a permutation pk in the sequence ofpermutations corresponding to a current permutation p0, we use the cumulativegain G(k) of the permutation pk, where G(k) = C(p0)�C(pk). Hence, the largerthe cumulative gain of a permutation, the lower the cost is.Algorithm 1: A Local Search Algorithm for the QAPInput: n, n� n matrices F;D, and a permutation p of size n.Output: A local optimal permutation p for the QAP.(i) Set p0 = p and calculate its cost C(p0). Set i = 0; gi = 0, and G(i) = 0,where gi and G(i) are the step gain and the cumulative gain, respectively.(ii) i = 1. Initially, select a pair of facilities such that, by exchanging theirlocations, a positive step gain is obtained, i.e., g1 = C(p0) �C(p1) > 0.If no such pair exists then go to 7, otherwise set G(1) = g1.(iii) i = i+1. For each pair of facilities not already selected, evaluate the stepgain by exchanging their locations. Then, select the pair with maximumgain gi = C(pi�1) � C(pi). If all facilities have been selected then seti = i� 1 and go to 5.(iv) Compute the cumulative gain, G(i) =Pk=ik=1 gk. If G(i) > 0; then go to3.(v) Select k, such that G(k) is maximum for 0 � k � i.(vi) If k > 0 then set p0 = pk and go to 2.(vii) We have reached a local optimum for the QAP. Set p = p0 and outputp and C(p).Now let us review the (KL) heuristic algorithm for the GP for an undirectedgraph G(V;E) (assuming jV j = 2n) with edge weights w(e), e 2 E. For conve-nience, a partition of the set V always means a partition into two sets (A;B)with jAj = jBj = jV j=2 in the rest of the paper. Then, the problem GP isto �nd a partition (A;B) of the set V with the minimum cost C(A;B), whichis de�ned to be the sum of the weights of all edges between A and B. Asone of the most successful heuristic algorithms for the GP, the Kernighan-Linheuristic starts with a random partition of the set V . A sequence of partitions,(A1; B1); : : : ; (Al; Bl), is constructed for a current partition (A0; B0) in a greedysense. Each partition (Ak; Bk); 1 � k � l, in the sequence is obtained from theprevious one (Ak�1; Bk�1) by swapping one vertex in Ak�1 with one vertex inBk�1 and has cost lower than the current partition. A local search is performedin the set of partitions of this sequence, replacing the current partition by thepartition with the lowest cost in the sequence (the algorithm stops if the sequenceis empty for the current partition). Similar to the description of Algorithm 1,we use the cumulative gain G(k) for a partition pk.



THE QUADRATIC ASSIGNMENT PROBLEM 15Algorithm 2: Kernighan-Lin heuristic for the GPInput: n;G = (V;E) with jV j = 2n;W = (wij), and a partition (A;B) of V .Output: A locally optimal partition (A;B) of V(i) Set A0 = A and B0 = B, obtain its cost C(A0; B0). Set i = 0; gi = 0,and G(i) = 0, where gi and G(i) are step gain and cumulative gain,respectively.(ii) i = 1. Initially, select a pair of vertices a1 2 A0 and b1 2 B0 such that,by swapping them, the resulting partition (A1; B1) produces a positivestep gain g1, i.e., g1 = C(A0; B0) � C(A1; B1) > 0. If such a pair doesnot exist then go to 7, otherwise set G(1) = g1.(iii) i = i+1. Among the vertices not selected so far, choose a pair ai 2 Ai�1and bi 2 Bi�1 and swap them to obtain Ai and Bi with maximum stepgain gi = C(Ai�1; Bi�1)�C(Ai; Bi). If all the vertices have been selectedthen set i = i � 1 and go to 5.(iv) Compute the cumulative gain G(i) =Pk=ik=1 gk. If G(i) > 0; then go to3.(v) Choose k, such that G(k) is maximum for 0 � k � i.(vi) If k > 0 then set A0 = Ak and B0 = Bk and go to 2.(vii) We have reached a local optimum for the GP; set A = A0 and B = B0.Output A;B and C(A;B).Comparing the above algorithm with the local search algorithm for the QAP,one can easily see the similarity between them. Instead of working with partitionsin the GP, we work with permutations in the QAP. The reduction from the GP tothe QAP in the next section reveals why the adaptation of (KL) algorithm to theQAP can be e�ective. Furthermore, extensive computational results in section3 indicate that the proposed local search algorithm (Algorithm 1) performs verywell.4.3. PLS-completeness and the QAP. For many combinatorial optimiza-tion problems, local search gives rise to some of the most successful heuristics.A classical example in this regard is the Linear Programming Problem for whichthe Simplex method can be viewed as a local search algorithm, in which a localsearch step is to go from the current basis to an adjacent basis which di�ers fromthe current one by one column vector. Based on the pivoting rule, worst-caseexamples can be constructed that force the Simplex method to take exponentialtime. Whether there can be a pivoting rule under which the Simplex methodtakes only polynomial time is a major open question.In order to characterize the complexity of such local search algorithms, a newcomplexity class, the Polynomial-time Local Search class, was introduced and



16 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZstudied in [126]. A problem P is in PLS if, for each instance x 2 I (the setof all instances), we have a set of feasible solutions F (x) such that it is easy todecide whether s 2 F (x) for any solution s. Then, given x 2 I, we can producea feasible solution s 2 F (x) in polynomial time. Next, given x 2 I and s 2 F (x)we can compute the cost C(s; x) of s in polynomial time. In addition, everysolution s 2 F (x) has a set of neighboring solutions N (s; x). Finally, given x 2 Iand s 2 F (x), we can test in polynomial time whether s is locally optimal, and ifnot, produce a solution belonging to N (s; x) with a better cost value (A solutions is locally optimal if it does not have a strictly better neighbor).More formally, a local search problem P in PLS is de�ned as follows: Givenan input x, �nd a locally optimal solution s 2 F (x). For the problem P , thefollowing three polynomial time algorithms should also exist.(i) Algorithm A, on input x 2 I, computes an initial feasible solution s0 2F (x).(ii) Algorithm B, on input x 2 I and s 2 F (x) computes C(s; x).(iii) Algorithm C, on input x 2 I and s 2 F (x), either determines that s islocally optimal or �nds a better solution in N (s; x).A problem P 2 PLS is PLS-reducible to another problem Q 2 PLS, if thereare polynomial time computable functions f and g, such that f maps an instancex of P to an instance f(x) of Q and for any locally optimal solution s for f(x),g(s; x) produces a locally optimal solution for x. A problem P in PLS is PLS-complete, if every other problem in PLS is PLS-reducible to P .An example of a PLS-complete problem is the GP with the (KL) neighborhoodstructure de�ned in Algorithm 2 [126]. The (KL) neighborhood of a partitionfor the GP can be de�ned as follows. A swap of a partition (A;B) is a par-tition (A0 ; B0 ), where A and A0 have a symmetric di�erence of 2, i.e., (A0 ; B0)is obtained from (A;B) by swapping one element of A with one element of B.(A0 ; B0 ) is a greedy swap if C(A;B) �C(A0 ; B0) is maximized over all swaps of(A;B). If in fact (A0 ; B0) is the lexicographically smallest over all greedy swaps,we say that (A0 ; B0) is the lexicographic greed swap of (A;B). Let (Ai; Bi) be asequence of partitions, each of which is a swap of the one preceding it, startingfrom (A0; B0). We call it monotonic, if the di�erences of Ai � A0 and Bi � B0are monotonically increasing (that is, no vertex is switched back to its originalset (A0; B0)). Finally, we say that a partition (A0 ; B0 ) is a neighbor of (A;B) ifit occurs in the unique maximal monotonic sequence of lexicographically greedyswaps starting with (A;B). Note that such a sequence will consist of jV j=2 + 1partitions, with the last one equal to (B;A). Thus, each partition has jV j=2neighbors. The algorithm performs local search over this neighborhood struc-ture, replacing the current partition by the partition with the lowest cost in theneighborhood.In the remaining part of this section, we show that the QAP with the neigh-borhood structure de�ned in Algorithm 1 is PLS-complete by reduction from



THE QUADRATIC ASSIGNMENT PROBLEM 17the GP with the (KL) neighborhood structure. First, we show that the localsearch problem for the QAP is in PLS. Since the set of feasible solutions of theQAP is the set of permutations, an initial feasible solution can be produced inlinear time. Computing the cost of a permutation for the QAP can be donein polynomial time. The neighborhood structure de�ned for the QAP in Algo-rithm 1 is quite similar to the (KL) neighborhood structure for the GP. For agiven permutation for the QAP, there are bn=2c neighbors. We can determinein polynomial time if the permutation is locally optimal, and if not, producea better permutation among the bn=2c neighboring permutations. Hence, withthis neighborhood structure, �nding a local optimum for the QAP is in PLS.To prove PLS-completeness, we show that the GP is PLS-reducible to theQAP. Given an instance of the GP of size 2n, we can create an instance of theQAP with the same size in polynomial time. Furthermore, for each local optimalpermutation of the QAP, there is a natural local optimal partition for the cor-responding GP. More speci�cally, suppose for the GP, the graph G = (V;E) hasedge weights w(e) and vertex set V with jV j = 2n. We construct, in polynomialtime, an instance of the QAP with 2n � 2n matrices F = (fij) and D = (dkl)de�ned below: fij = w(i; j) if (i; j) 2 E; otherwise fij = 0;dkl = 0 if k; l 2 A or k; l 2 B; otherwise dlk = 1;where A = f1; 2; : : : ; ng; B = fn+ 1; n+ 2; : : : ; 2ng:This reduction de�nes a one-one correspondence between a permutation pk ofthe QAP with a partition (Ak; Bk) of the vertex set V of the corresponding GP.The set of facilities allocated to locations 1 to n in pk constitutes the set Ak.The set of facilities allocated to locations n+1 to 2n in pk constitutes the set Bk.The cost of pk for the QAP is exactly twice the cost of the partition (Ak; Bk) forthe GP. Let the partition corresponding to a permutation p0 be (A0; B0), thena permutation pk is a neighboring permutation of p0 if, and only if, (Ak; Bk) isa neighboring partitions of (A0; B0). Hence, for any local optimal permutationof the QAP, the corresponding partition is a local optimal partition for the GPand can be recovered in polynomial time. By de�nition, the local search problemfor the QAP with the neighborhood structure de�ned in Algorithm 1 is PLS-complete.We should also mention that, at present, there are no known local criteriain deciding how good a local optimal solution is, in relation to the global opti-mum. From the complexity point of view, it can be shown that, if there exists apolynomial time algorithm for checking whether a given permutation is globallyoptimal, then P = NP [177].



18 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZ4.4. Asymptotic Behavior. A nice feature of the QAP is that the relativedi�erence between the worst and optimal solutions becomes arbitrarily smallwith a probability tending to 1 as the problem size tends to in�nity. Burkardand Finke discovered this behavior for the QAP in the plane, i.e., the distancematrix B corresponds to Euclidean distances in the plane. Later they showedthat this behavior holds also for the QAP in general in 1985. The result can bestated in the following theorem.Theorem 4.1. For i; j; k; l 2 f1; � � �ng, let cijkl be identically distributed ran-dom variables in [0; 1] with expected value E and variance �2 > 0. For every�xed permutation p 2 �, let cip(i)jp(j) be independently distributed. For given� > 0 and 0 < �0 � �2 and 0 < (E + �0)=(E � �0) � 1 + �,P (F+CF�C < 1 + �) � 1� 2n!e��0n2;where �0 = 2((�0�)=(�0 + 2�2))2; limn!1 n!e��0n2 = 0, and F+C and F�C are themaximum and minimum objective function values for the QAP with cost matrixC.Several other researchers, including Frenk, van Houweninge, and Rinnooy Kan[78], and Rhee [211, 212] improved the order of convergence and showed thatthe convergence holds almost everywhere.5. Methods of Solution5.1. Exact Algorithms. In this section, we describe di�erent methods usedto �nd an optimal solution of QAP. The methods include dynamic programming,cutting plane, and branch-and-bound techniques.Among these methods, branch-and-bound is the most successful one, on whichthis section is focused the most. Currently, problems of size greater than 15 aregenerally di�cult to solve. This is due to the inherent di�culty of the QAP,characterized by the lack of sharp lower bounding techniques for moderate andlarge size problems. For this reason, a separate section is devoted to lowerbounding techniques for the QAP.Cutting plane methods for the QAP were introduced by Bazaraa and Sherali[19]. Although the computational experience was not satisfactory, such methodscan be used to �nd good suboptimal solutions, see e.g., Burkard and B�onniger[34]. In Bazaraa and Sherali [20], cutting plane procedures were investigatedfor solving the concave quadratic minimization formulation of the QAP. Sev-eral heuristics derived from the cutting plane procedures produce good qualitysolutions in early stage of the search procedure.Christo�des and Benavent [52] used a special dynamic programming approachfor the special case of the QAP in which the 
owmatrix is the weighted adjacencymatrix of a tree. Problems of sizes up to 30 were solved.



THE QUADRATIC ASSIGNMENT PROBLEM 19Branch-and-bound is a general technique for solving combinatorial optimiza-tion problems. To solve the QAP with branch-and-bound, currently there are 3types of algorithms: single assignment algorithms, pair assignment algorithms,and the relative positioning algorithm. They all start with the empty permuta-tion as the initial partial permutation; during the execution of the algorithms,the partial permutation is extended to a full permutation. Single assignmentalgorithms date back to Gilmore [89] and were extended to the general QAP byLawler [143]. In this approach, as described in the work by Gilmore and Lawler,a facility is assigned to a location at each node of the branch-and-bound searchtree. Some of the earliest branch and bound algorithms for solving QAPs aredescribed in [36], [66], [180] and [218].Pair assignment algorithms were developed by Gavett and Plyter [86], Land[141], and Nugent et al. [171], etc. At each node of the branch-and-boundsearch tree, a �xed pair of facilities is allocated to a pair of locations. The lastalgorithm, the relative positioning algorithm, was developed by Mirchandaniand Obata [160]. In their approach, the levels of the branch-and-bound searchtree do not correspond to the assignments of facilities to locations. The partialpermutations at each level are determined in terms of distances between facilities,i.e., their relative positions.Numerical experiences indicate that among the 3 types of branch-and-boundalgorithms the single assignment algorithms are the best. The pair assignmentalgorithms were shown to be not computationally e�cient. The authors of therelative positioning algorithm claimed favorable behavior of the algorithm forproblems with sparse matrices.5.2. Lower Bounds. Lower bounds are keys to the success of a branch-and-bound type algorithm in combinatorial optimization. The ideal lower boundsshould be sharp and should be fast to compute. For the QAP, there are roughly3 categories of lower bounds. The �rst category includes the classical Gilmore-Lawler bound (GLB) and related bounds [89, 143]. The second category in-cludes the eigenvalue based bounds [74, 102, 101, 210, 103]. The rest of thebounds are mostly based on reformulations of the QAP and generally involvessolving a number of linear assignment problems [5, 47, 54, 82]. It is generallyacknowledged that the eigenvalue based bounds are the best but also the mostexpensive to compute. In the following, a brief discussion of the 3 categories oflower bounds is given.5.2.1. Gilmore-Lawler Bound (GLB) and Related Bounds. The GLB is com-puted by using the minimal vector product and the maximal vector product,denoted hx; yi� and hx; yi+, de�ned belowhx; yi� = minP2�hx; Pyi; hx; yi+ = maxP2�hx; Pyi;where the set � denotes the set of all permutations of N and x; y 2 Rn. Infact, hx; yi� can be computed as the inner product of x+ and y�, where x+ is



20 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZobtained by ordering the components of x ascendingly and y� is obtained byordering the components of y descendingly. hx; yi+ can be computed similarly.Let ai; bi; i = 1; :::; n, represent the row vectors of matrices A;B, respectively.Let âi be the vector consisting of the (n�1) components of ai, not including aii.Let b̂i be the vector consisting of the (n� 1) components of bi, not including bii.De�ne a matrix L = (lij) as followslij = aiibjj + hâi; b̂ji�; i; j = 1; :::; n:Then GLB(A,B), the GLB for QAP(A,B), is de�ned to be the solution to thelinear assignment problem (LAP) with cost matrix L, i.e.GLB(A;B) = minp2� nXi=1 lip(i):5.2.2. Eigenvalue Based Bounds. Bounds based on eigenvalues of the 
ow anddistance matrices A and B have been proposed in a series of papers by Finkeet al. [74], Hadley et al. [102, 101], and Rendl and Wolkowicz [210]. Thesebounds, denoted by EVB, are based on the trace formulation of the QAP, see(2.1.2).A lower bound for the quadratic part of QAP, based on eigenvalues of A andB, is given by relaxing the constraint set of permutation matrices to O. Thisresults in the following theorem (see [70, 74]).Theorem 5.1. Let A and B be symmetric matrices, and �1 � �2::: � �n bethe eigenvalues of A, and �1 � �2::: � �n be the eigenvalues of B. For anyp 2 �, nXi=1 �i�n�i+1 � nXi=1 nXj=1 aijbp(i)p(j) � nXi=1 �i�i:The linear part of QAP is bounded exactly by solving a linear sum assignmentproblem, denoted LSAP(C). We get the following bound for QAPEV BfA;Bg = nXi=1 �i�n�i+1 + LSAP (C):Certain reductions of the original matrices have to be performed before usingthe eigenvalues to obtain lower bounds for the QAP. These involve diagonal,or constant row and column, perturbations of the matrices. Several such lowerbounds, EVB1, EVB2, EVB3, and IVB, were developed in [74, 101].The strengthened relaxation of the constraint set of permutation matrices toO \ E was done in [101]. This relaxation proved to be particularly e�cient andmade the constant row and column reductions redundant. Rendl and Wolkow-icz [210] recently proposed a new lower bound (MEVB) based on eigenvaluedecomposition in conjunction with a steepest ascent algorithm. The bound isobtained iteratively, with each iteration taking O(n3) running time. This lattertechnique attempted to combine the bounds for the linear and quadratic parts.



THE QUADRATIC ASSIGNMENT PROBLEM 21(A further attempt to avoid taking the sum of two minima obtained by treatingthe quadratic and linear parts separately is given in the paper by Karisch, Rendl,and Wolkowicz in these proceedings.)5.2.3. Reformulation Based Bounds. There are also other types of lower boundsfor the QAP. Assad and Xu [5] proposed a bound (AX) for a class of quadratic0-1 programs, including the QAP. The bound is obtained iteratively. In eachiteration, n2 + 1 assignment problems of size n are solved. Hence the run-ning time to compute the bound is O(kn5) where k is the number of iteration.Christo�des and Gerrard [54] proposed a lower bound (CG) by solving O(n4)linear assignment problems corresponding to pairs of assignments, resulting in aO(n7) procedure. Frieze and Yadegar [82] obtained 2 lower bounds by solvingthe Lagrangian relaxation of a related linear integer formulation of the QAP.The bounds are denoted by FY1 and FY2 respectively. Finally, Carraresi andMalucelli [47] proposed a new lower bound (CM) for the QAP through an itera-tive process. In each iteration, at most O(n2) linear assignment problems relatedwith an equivalent reformulation of the QAP are solved. Hence the procedurehas a time complexity of O(kn5) where k is the number of iterations used.5.2.4. A New Class of Lower Bounds. A class of lower bounds based on opti-mal reduction schemes for the QAP was proposed in Li, Pardalos, Ramakrishnanand Resende [149]. For a given QAP(A,B), consider a partition of A into twomatrices A1 = (a(1)ij ) and A2 = (a(2)ij ) such that A = A1 + A2 and a partition ofB into two matrices B1 = (b(1)ij ) and B2 = (b(2)ij ) such that B = B1 + B2. Foreach pair (i; j); i; j = 1; :::; n, consider the following minimization problemmin nXk=1a(1)ik b(1)jp(k) + nXk=1a(2)ki bp(k)j + nXk=1akib(2)p(k)j � nXk=1a(2)ki b(2)p(k)j(5.1)where p 2 � and p(i) = j:De�ne a n� n matrix L = (lij) where lij is the optimal objective function valueof (5.1). The following theorem de�nes a new lower bound [149, Theorem 4.1].Theorem 5.2. Let the matrix L be de�ned as above. Then the solution ofthe linear assignment problem with cost matrix L is a lower bound for the corre-sponding QAP.The classical Gilmore-Lawler bound is a special case in which both matricesA and B are not partitioned. Di�erent ways of partitioning the matrices A andB (we also refer to this as reduction) yield di�erent lower bounds. The commonreduction techniques used in the literature choose A2 and B2 with constantcolumn sums (which we call constant columns). We refer to such techniques asconstant column reductions.Let M = (mij) be a matrix in Rn�n. We treat a row vector mi; 1 � i � n,of M as a 1� n matrix and a column vector mtj ; 1 � j � n as a n� 1 matrix.



22 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZFor convenience of discussion, we use the following notation for average 
(M ),variance V (M ), and total variance T (M;�) of M :
(M ) = 1n2 nXi=1 nXj=1mij; V (M ) = 1n2 nXi=1 nXj=1 (
(M ) �mij)2;T (M;�) = � mXi=1 V (ai) + (1 � �)V (M ); for 0 � � � 1:Note that the statistical total variance used here is the convex combination oftwo variances, (a) average row variance, (b) variance of the entire matrix, i.e.T = �n nXi=1 V (mi) + (1� �)V (M )= �n nXi=1(
(mi)�mij)2 + �n2 nXi=1 nXj=1(
(M ) �mij)2= 1n2T (M;�):In our reduction scheme, we considered the partition A = A1 +A2, where A1 =A+� and A2 = ��, such that the variances of A1 and A2, the sum of variancesof the rows of A1, and the sum of variances of the rows of A2 are minimized.This minimization problem has been formulated as follows:min �T (A +�; �) + (1 � �)T (��t; �)such that � 2 Rn�nwhere 0 � � � 1.Motivated by the observation that for QAP(A,B) the smaller the variancesof A and B are the tighter the GLB is, the following reduction schemes wereproposed in Li, Pardalos, Ramakrishnan and Resende [149]:R-1) a(1)ij = aij � �(ann � aij) and a(2)ij = �(ann � aij); i; j = 1; :::; n:R-2) a(1)ij = aij � �(
(atn)� 
(atj)) and a(2)ij = �(
(atn)� 
(atj )); i; j = 1; :::; n:One new lower bound proposed in [149] is to use the reduction scheme R-1. We denote this lower bound by LB1(�). The other new lower bound thatwe propose is to use the reduction scheme R-2. This lower bound is denotedLB2(�). Both new lower bounds are dependent on the parameter �. Note that,LB1(0.0) = GLB(A;B) and LB1(1.0) = GLB(At; Bt).For LB1(�), we found in our computational experiments that � = 0:5 is agood choice. For LB2(�), we used � = 1:0. The latter was expected since thecolumn variance of the matrix � is already zero when computing LB2(�).The new lower bounds can be computed quite e�ciently. Computing thematrix � to partition matrices A and B takes only O(n2) time. By presortingthe rows of the 
ow and distance matrices A and B, one can compute lij ; i; j =



THE QUADRATIC ASSIGNMENT PROBLEM 231; :::; n, in O(n3) [149]. Hence the total running time is O(n3), which is the sameas that for computing GLB. Furthermore, the constant factor is small.Recently, Jansen [122] has derived an analytical closed form solution to (5.2{5.2). That solution is given by�ij = �� 1� �1 � ��
(ai) + �(1� �) + ��2(1 � �) � �2�2(1� �)(1� ��)(1 � �+ ��) 
(A)� ��(1 � �)1� �+ ��
(atj )� �aij:Note that, as � ! 1, this partitioning scheme approaches the constant col-umn reduction partitioning. Experimentally, we have observed that the columnreduction partitioning scheme is more e�ective and is easier to implement. Foran e�cient implementation of the lower bound and computational results of abranch and bound algorithm that uses the new bound see [148].5.3. Suboptimal Algorithms. As exact algorithms can only solve smallsize instances of the QAP, and �nding an �-approximate solutions of the QAPremains NP -complete, heuristics with good performance in both solution timeand solution quality are highly desirable. Research in this direction aboundsin literature. Basically, there are 5 types of heuristics including constructionmethods which start from an empty permutation p and expand p to a subop-timal permutation according to certain criteria, limited enumeration methodswhich perform partial enumeration with the expectation that good solutionsare generally found in early stages of enumeration, improvement methods whichstart from a permutation p and try to get an improved permutation by usingsome techniques, simulation approaches and genetic algorithms which belong tostochastic search techniques.5.3.1. Construction Methods. Construction methods, as the name suggests,construct a suboptimal permutation step by step. The basic idea was �rst in-troduced by Gilmore [89]. The general scheme for a construction method is asfollows. It starts with a partial permutation p which is empty. Then p is ex-panded by repetitively selecting a pair of assignment (i; j) such that i 62M andj 62 p(M ) according to certain heuristic, where M is the index set containingthe indices of p for which the corresponding assignments are done and p(M ) isthe set fp(i) j i 2 Mg. This process is repeated until p becomes a completepermutation.One of the oldest heuristics used is the CRAFT (Computerized Relative Al-location of Facilities Technique) [4, 231, 30]. This is a well-known heuristic fordesigning the layout of facilities that has been in use for over 25 years. Givena set of departments, locations, a matrix of 
ows between departments, anda matrix of costs to transport one item between two departments a unit dis-tance, CRAFT iteratively improves an initial, user-supplied, layout by a seriesof department exchanges. At each step CRAFT considers either all possible 2-



24 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZway, 3-way, or both 2-way and 3-way exchanges. It chooses the exchange thatprovides the most improvement in minimizing total cost, and then repeats theprocess until no improving exchange can be found.5.3.2. Limited Enumeration Methods. The argument for such type of methodsis that a good suboptimal solution may be produced early in an enumerativesearch procedure, while �nding the optimal solution takes much longer time. Forexample, it was observed in an experiment that one of the Nugent test problems,of size n equal to 15, the optimal solution was found after 23.48 seconds on aCDC Cyber 76, yet it took more than an hour to prove the optimality of thesolution.There are several ways to limit enumeration of the set of all possible permuta-tions. One simple way is to put a time limit on the search procedure. Enumera-tion stops when a predetermined time limit is reached or there is no improvementwithin a certain time limit. Another way is to decrease the requirements for op-timality. For example, whenever an improvement is not obtained after a giventime period, the upper bound is decreased by a certain speci�ed percentage, re-sulting in deeper cuts in the enumeration tree. Although it is possible that theoptimal solution may be cut o�, the enumeration process is speeded up. Fur-thermore, one can estimate that the optimal value di�ers from the suboptimalone by not more than some speci�ed percentage.5.3.3. Improvement Methods. The majority of the heuristic solution methodsfor the QAP falls into the category of improvement methods. An improvementmethod starts with a solution and tries to move to a better solution while im-proving the solution quality. Local search algorithms and tabu search belong tosuch type of methods. There is rich literature on local search algorithms for sub-optimal solutions for the QAP. Local search algorithms are iterative algorithms.At each iteration, a local search algorithm generates the next solution by �ndinga better solution in the neighborhood of the current solution. The algorithmterminates when there is no better solution in the neighborhood of the currentsolution.Tabu search was introduced by Glover [90, 91] as a technique to overcome lo-cal optimality in combinatorial search. The underlying idea is to limit the searchdirections for each search step to obtain good quality solutions in an e�ectiveway. This approach has been applied successfully to a number of combinato-rial optimization problems including the TSP. Adaptations of tabu search to theQAP have been studied by Skorin-Kapov [238] and Taillard [242]. The basicidea is as follows.To improve a given initial permutation tabu search seeks, among the set ofpermutations obtained by a pair exchange of assignments, a permutation withthe best heuristic evaluation. In the simplest case, such an evaluation dictatesthe choice of a permutation which give the best objective function value. Everychoice of a neighboring permutation represents an exchange of a pair of facilities.



THE QUADRATIC ASSIGNMENT PROBLEM 25A tabu list with a speci�ed size is maintained to forbid certain choices of neigh-boring permutations, i.e., to forbid certain exchanges between facilities. Thetabu list is essentially a list of pair exchanges occurring in the search process.As certain valuable exchanges of facilities may be prohibited by the tabu list, anaspiration function is introduced to allow exchanges prohibited by the tabu listto be chosen if they are judged to be valuable.5.3.4. Simulation Approaches. An interesting analogy between problems incombinatorial optimization and statistical mechanics has been developed andhas proven useful in solving some traditional optimization problems, such ascomputer design, partitioning, component placement, wiring, and the travelingsalesman problem. The analogy has resulted in a methodology, termed simulatedannealing, which is used to overcome local optimality (see Kirkpatrick, Gelatti,and Vecchi [135]).The term \annealing" refers to the process of a thermal system by �rst melt-ing at high temperatures and then lowering the temperatures slowly based onan annealing schedule. The process is continued until the vicinity of the solidi�-cation temperature is reached, where the system is allowed to reach the \groundstate" (the lowest energy state of the system). Simulated annealing is a MonteCarlo approach to simulate the behavior of this system to achieve thermal equi-librium at a given temperature in a given annealing schedule. This analogy hasbeen applied in solving combinatorial optimization problems. According to theabove authors:Iterative improvement, commonly applied to such problems, is much like themicroscopic rearrangement process modeled by statistical mechanics, with thecost function playing the role of energy. However, accepting only rearrangementsthat lower the cost function of the system is like extremely rapid quenching hightemperatures to T = 0. So, it should not be surprising that resulting solutionsare usually metastable. The Metropolis procedure from statistical mechanicsprovides a generalization of iterative improvement in which controlled uphillsteps can also be incorporated in the search for a better solution.Simulated Annealing is applied to the QAP [253] as follows:� Given any feasible solution (a permutation of locations in relation tothe facilities), randomly select two facilities, make a pair exchange andevaluate the consequent change (�f) in the total cost (f)� Repeat the above step as long as �f < 0. Otherwise, select a ran-dom variable x from a uniform distribution U (0; 1). If x < P (�f) =EXP (��f=ti) (where P represents the probability obtained from theexponential distribution (EXP)), then accept the pair exchange and re-peat the process. Here ti represents the annealing schedule temperatureat stage i where t1 > t2 > : : : > tr represents the annealing schedule.For example ti = 10� (0:9)(i�1).� The system remains at stage i until a predetermined number of pair



26 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZexchanges have been considered before going to the next stage.� If all the temperatures in the annealing schedule have been used, i.e. ifi > r, then stop.In the search process for an optimal permutation for the QAP, the simulatedannealing searches through the 2-change neighborhood of a present permutation.It uses Monte Carlo sampling to occasionally accept solutions which increaserather than decrease the objective function value. Such a choice of neighboringpermutation is counter to the normal steepest descent strategy. However, it is ar-gued in the analogy that by taking such controlled ascent steps, the optimizationalgorithm needs not get stuck on poor solutions.Burkard and Rendl [41] applied simulated annealing to the QAP and reportedfavorable computational results. Wilhelm and Ward [253] further investigatedthe procedure. Essential to the success of the adaptation of simulated annealingto the QAP is the annealing schedule as discussed in their work [41, 253].In the paper [183], computational results with four heuristics, the CRAFT,simulating annealing, tabu search, and a local search based on graph partitioningare reported.5.3.5. Genetic Algorithms. Genetic algorithms, like simulated annealing, formanother type of stochastic search technique. While simulated annealing is basedon thermodynamic process, genetic algorithms are based on the mechanics ofnatural selection and natural adaptation. A genetic algorithm maintains a pop-ulation consisting of a subset of individuals (solutions). Through means of biasedselection and genetic operations, the algorithm replaces a population with a newpopulation of individuals with better �tness values on the average.Genetic algorithms have been developed by John Holland et al. at the Uni-versity of Michigan in 1975. However, genetic algorithms did not have a majorin
uence at that time. With the advent of parallel computers, there has beenincreasing interest in genetic algorithms since they are inherently parallel. Anumber of researchers have tried to apply genetic algorithms to solve combina-torial optimization problems, such as the the graph partitioning problem andthe traveling salesman problem [161].5.4. Greedy Randomized Adaptive Search Procedures (GRASP).GRASP is an iterative randomized sampling technique in which each iterationprovides an approximate solution to the problem at hand. The incumbent solu-tion over all GRASP iterations is kept as the �nal result. There are two phaseswithin each GRASP iteration: the �rst constructs an initial solution via an adap-tive randomized greedy function; the second applies a local search technique tothe constructed solution in hope of �nding an improvement. A comprehensivesurvey of GRASP can be found in [73].In [71] GRASP has been applied to a quadratic assignment problem thatmodels the positioning of intermodal highway trailers on railcars. The GRASP is



THE QUADRATIC ASSIGNMENT PROBLEM 27incorporated within a branch and bound algorithm to compute optimal solutions.In Li, Pardalos et al (see the paper in this volume), the GRASP has been appliedto solve the general QAP. The GRASP was tested on 88 instances of QAPs (mostof which are from QAPLIB) and found the best known solution of almost all theinstances, and improved on the best known solution in a few cases.6. Test Problem GenerationIn this section we consider the problem of generating QAPs with a knownoptimal permutation. The problems will be of the form: Given a set N =f1; 2; : : : ; ng and two (n� n) matrices F = (fij) and D = (dkl), �nd a permu-tation p of the set N that minimizes:QFD(p) =Xi Xj fijdp(i)p(j):Test problem generators are very important in computational optimization.The e�ciency of an algorithm for a given problem is determined by severalcriteria including the accuracy of the solution, the speed of the algorithm, and thee�ectiveness of the algorithm with respect to di�erent problem classes. However,for many di�cult problems, existing theory cannot itself provide measurementfor these criteria. Hence, empirical computational experimentation is necessary.Evaluation and test of an algorithm can be done by using test problems witha known optimal solution. Test problems also provide a standard platform onwhich di�erent algorithms for the same problem can be compared. For generalreferences on this subject, see e.g., Pardalos [178, 179], Pardalos and Rosen[190], and Floudas and Pardalos [76].6.1. Palubetskis' Generator for QAPs with a Known Solution. Next,we discuss the generation of test problems for the quadratic assignment problem.One of the �rst methods for constructing test problems with a known optimalpermutation was proposed by Palubetskis [175]. Assume that the distance ma-trix is taken from a grid graph.Input: w, a value to initialize the F matrix, and z < w, to obtain random valuesbetween [0; z].Output: Matrices F and D and an optimal permutation p�.(i) Construct the matrix D = (dij), of which the elements are the distancesbetween the knots of the two dimensional grid r�s, where rs = n, usingrectilinear distances. If (i; j) are neighboring knots, then dij = 1.(ii) Set F = (fij) where fij = w (an input parameter to the algorithm).Compute gij = 2� dij.(iii) While for any i; j = 1; : : : ; n such that gij � 0.(iv) Choose the pair l;m, such that dlm = maxfdijg where the max is takenover every (i; j) for which gij � 0. If no such pair exists, then go to 8.



28 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZ(v) Randomly select a grid point k on one of the shortest ways from l tom, such that, j dlk � dmk j � 1. Then, choose randomly, � 2 [0; z < w]where w and z are the input parameters to the algorithm.(vi) Set flm := �; flk := flk + (w ��); fmk := fmk + (w � �) and glm :=glk := gmk := 1.(vii) Endwhile.(viii) Finally, generate the random permutation p� = p�(i); i = 1; 2; : : : ; n,where P � will be the optimal permutation. Form the matrix F = (cij)in which fij = fuv where i = p�(u) and j = p�(v).(ix) Output F , D and p� and optimal cost w(PP dij).Next, we provide the proof of correctness of the above algorithm [165]. Be-fore applying Step #8, the identity permutation is an optimal permutationfor the QAP with input data, the matrices F and D and the optimal cost,C = w(PPdij).The proof is by induction on the number of iterations.Base: To start with, let F (0) = (fij = w) be the 
ow matrix. Obviously, forthis F (0) all permutations are optimal and the corresponding cost is C.Hypothesis: At the end of the i-th iteration, for the 
ow matrix F (i), theidentity permutation is optimal and the corresponding cost is C.To prove: at the end of the (i + 1)-th iteration, for the 
ow matrix F (i+1),the identity permutation is optimal and the corresponding cost is the same asat the end of the i-th iteration i.e., C.During the (i + 1)-th iteration, let dlm = maxfdijg over all i; j such thatgij � 0. Also, let a grid point k be selected such that k is on the shortestpath between l and m, i.e. dlk + dmk = dlm (Comment: k need not satisfythe condition j dlk � dmk j � 1 as stated in the algorithm. It is su�cient ifdlk + dmk = dlm). Then, F (i+1) = F (i) + F̂where F̂ = (f̂ij) and̂fij = 8>><>>: w �� if i = l and j = k;w �� if i = m and j = k;��w if i = l and j = m;0 otherwise.It is obvious that



THE QUADRATIC ASSIGNMENT PROBLEM 29opt(F (i+1)) � opt(F (i)) + opt(F̂ ):From the hypothesis opt(F (i)) = C and it can be easily proved that opt(F̂ ) =0. Hence, opt(F (i+1)) � C:But, again from the hypothesis, the identity permutation is optimal for F (i)and it can be checked easily to show that it is also optimal for F̂ . Hence, theidentity permutation must be optimal for F (i+1) and the optimal cost must bethe same as at the end of the i-th iteration, i.e. C.Next, we provide two test problems constructed using the above generator.Example 1: Here, n = 10 and the grid dimensions are: r = 5 and s = 2.Also, the input parameters to the generator are: w = 9 and z = 3. The generatedmatrices F and D are as follows:F = 26666666666666664 9 3 2 1 16 3 41 9 0 3215 9 0 16 18 2 3 9 40 310 2 9 22 58 9 43 0 1 31 1 0 9 15 9 33 1 17 2517 0 1 2 9 2 30 1 16 180 0 9 35 3 9 39 3 38 327 2 9 15 16 3 9 2 16 333 9 0 3 40 0 18 9 15 1716 2 3 15 15 3 17 2 9 2530 9 0 29 18 1 3 0 9 9
37777777777777775D = 26666666666666664 0 1 1 2 2 3 3 4 4 51 0 2 1 3 2 4 3 5 41 2 0 1 1 2 2 3 3 42 1 1 0 2 1 3 2 4 32 3 1 2 0 1 1 2 2 33 2 2 1 1 0 2 1 3 23 4 2 3 1 2 0 1 1 24 3 3 2 2 1 1 0 2 14 5 3 4 2 3 1 2 0 15 4 4 3 3 2 2 1 1 0

37777777777777775For this problem, the known optimal cost is 1890 and the optimal permutationof the facilities in relation to the locations is (8 2 1 10 5 9 7 4 3 6). The resultsobtained by our algorithm are: cost due to our algorithm is 1890, which is



30 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZsame as the optimal value and the corresponding permutation of the facilities is(7 10 1 4 5 2 3 9 6 8).Example 2: The grid for this example is r = 2, s = 5 and n = 10. The inputparameters to the generator are: w = 9 and z = 5. The generated 
ow matrixF is given below.F = 26666666666666664 9 21 29 17 1 17 20 16 2 19 9 18 34 2 2 34 14 0 45 13 9 15 3 2 16 24 18 25 26 20 9 9 4 2 2 27 31 0 47 22 9 0 5 2 31 269 19 5 4 0 9 27 26 27 11 24 22 2 3 9 9 9 24 51 0 16 4 1 17 18 9 21 175 0 5 18 0 5 33 13 9 182 0 0 26 9 4 2 41 35 9
37777777777777775D = 26666666666666664 0 1 2 3 4 1 2 3 4 51 0 1 2 3 2 1 2 3 42 1 0 1 2 3 2 1 2 33 2 1 0 1 4 3 2 1 24 3 2 1 0 5 4 3 2 11 2 3 4 5 0 1 2 3 42 1 2 3 4 1 0 1 2 33 2 1 2 3 2 1 0 1 24 3 2 1 2 3 2 1 0 15 4 3 2 1 4 3 2 1 0

37777777777777775Optimal cost for this example is also 1890. Our algorithm cost is the same as theoptimal cost and the corresponding permutation in both the cases is the identitypermutation.6.2. Li & Pardalos Generator for QAPs with a Known Solution. Liand Pardalos [150] have generalized the results of Palubetskis and constructedtest problems for more general types of QAPs. Their generator includes Palubet-skis' procedure [175] as a special case, in which the distance matrix is taken froma grid graph. The fortran generator described in [150] is available by e-mail fromthe authors (the fortran code can also be obtained by sending an e-mail messageto \coap@math.u
.edu", and in the body of the message put \send 92006").6.3. QAP-LIB. Finally we point out that a collection of more than 130 in-stances of quadratic assignment problems is contained in a library called the"QAP-LIB", [39]. This library consists of two parts. The data part containsvarious instances given by the input matrices A, B and C, if C 6= 0. Then



THE QUADRATIC ASSIGNMENT PROBLEM 31there is a documentation, corresponding to [39]. This documentation is updatedregularly, the last update being from February 1994. The documentation con-tains the following information on each of the instances: the best known feasiblesolution value is given, along with some information on who found it and bywhich method. Secondly the best currently available lower bounds on the objec-tive function is provided. The two parts are available via anonymous ftp fromftp.tu-graz.ac.at in the directory /pub/papers/qaplib.
6.4. OR-Library. QAP instances can be also obtained from the OR-Library(o.rlibrary@ic.ac.uk) - see the �le qapinfo. For details see [123]. Informationabout test problems for quadratic assignment problems as well as other combi-natorial problems can be obtained by sending email to o.rlibrary@ic.ac.uk withthe email message being the �le name for the problem areas you are interestedin.

7. Concluding RemarksIn this paper we gave a survey regarding the most recent results and applica-tions on QAP. In addition, an up-to-date bibliography is included which includespapers on QAP and realted problems as well as applications in diverse areas.



32 P.M. PARDALOS, F. RENDL, AND H. WOLKOWICZAppendix A. Notationsn The size of an instance of the QAPe The column vector of onesA The 
ow matrixB The distance matrixQAP (A;B) An instance of the QAP with 
ow matrix A and distance matrix B�m The set of permutationsf(p) The objective function value of QAP (A;B) corresponding to pf 0A;B The maximum objective function value of QAP (A;B)f�A;B The minimum objective function value of QAP (A;B)GLB(A;B) A permutation yielding the maximum objective function value of QAP (A;B)EV B(A;B) The Eigenvalue bound for the QAP (A;B)hx; yi The inner product of vectors x and yhx; yi+ The maximum permuted inner product of vectors x and yhx; yi� The minimum permuted inner product of vectors x and yx+ The vector obtained by reordering the components of x ascendinglyx� The vector obtained by reordering the components of x descendinglyAt The transpose of the matrix AtraceA The trace of the matrix Adiag (A) The vector formed from the diagonal elements of Adiag (v) The diagonal matrix formed from the vector v� The set of permutation matricesP The set of positive semide�nite symmetric matricesD The set of doubly stochastic matricesO The set of orthogonal matricesN The set of nonnegative (elementwise) matricesE The set of matrices with row and column sums 1S The set of matrices with the sum of the squares of all elements equal to nReferences1. E. Aarts and J. Korst, Simulated annealing and Boltzman machines: A stochastic ap-proach to combinatorial optimization and neural computing, John Wiley and Sons, 1989.2. W.P. Adams and H.D. Sherali, A tight linearization and an algorithm for zero-onequadratic programming problems, Management Science 32 (1986), no. 10, 1274{1290.3. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Some recent advances in network 
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