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Protein Structure Elastic Network Models and
the Positive Semidefinite Matrix Manifold

Xiao-Bo Li*, Forbes J. Burkowski, and Henry Wolkowicz

Abstract—Elastic network models (ENMs) assume pairs of a-carbons of a protein structure are connected by fictitious Hookean
springs. A protein structure’s potential energy is then a function of distance. If this distance is squared, the potential energy changes to
a function on the positive semidefinite matrix manifold. This change is not trivial as it makes the relationship between ENMs and the
rank 3 positive semidefinite (PSD) matrix manifold explicit; it suggests protein dynamics problems can be formulated as low rank
semidefinite matrix manifold optimization problems. In this paper, we use normal mode analysis and elastic network interpolation to
show the PSD matrix manifold is a reasonable tool for modelling protein dynamics.

Index Terms—elastic network model, Euclidean distance matrix, Gram matrix, positive semidefinite matrix manifold, protein structure,

Riemannian manifold.

1 INTRODUCTION

LASTIC network models (ENM) are a common and effi-
E cient tool for modelling protein dynamics. ENMs were
first introduced by Tirion in the context of normal mode
analysis (NMA) [25]. The author observed slow vibration
normal modes produced by a simple Hookean potential en-
ergy function were in agreement with the modes found from
complicated semi-empirical potentials. Subsequently, Kim
et al. [13], [14], [15], [16], [17] and Jang [11] examined the
generation of realistic transitional pathways between differ-
ent protein conformations using ENMs. Kim [13] proposed
elastic network interpolation (ENI) and showed ENI is more
realistic than both Cartesian coordinate interpolation and
internal coordinate (angle) interpolation by avoiding steric
clashes. Many more authors have contributed to this direc-
tion of research, a detailed discussion is beyond the scope of
this paper.

Under this modelling scheme, pairs of a-carbons are con-
nected by fictitious Hookean springs. The protein structure’s
potential energy is consequently a function of distances
between these a-carbons.

The potential energy can also be formulated using
"distance-squared”. This change is not trivial as it makes
explicit the relation between ENMs and the rank 3 positive
semidefinite (PSD) matrix manifold, a Riemannian manifold
[12], [23], [27] . In classical mechanics, the potential energy,
denoted U, is a function mapping a Riemannian manifold
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M to the set of real numbers R, U : M — R [4], [7].
A linear vector space interpreted as a manifold is called
a linear manifold [1]. While classical ENMs use the linear
manifold, numerous mathematical properties of the PSD
matrix manifold suggest it is a more natural choice for
modelling proteins.

This paper is organized as follows. In Section 2, we
review classical elastic network modelling, limiting the dis-
cussion to NMA and ENI. We then discuss PSD matri-
ces, Euclidean distance matrices, and some mathematical
properties that suggest they are a more natural choice for
modelling protein structures in Sections 3 and 4. Finally, in
Section 5 we present the potential energies for modelling
protein structures on the PSD matrix manifold, again, limit-
ing to NMA and ENIL

2 ELASTIC NETWORK MODELS ON LINEAR MANI-
FOLDS

We will assume a protein is modelled by representing each
amino acid residue by its a-carbon atom, and let n denote
the number of a-carbons.

2.1 Normal Mode Analysis

The following potential energy for NMA was proposed by
Tirion [25]to replace the more complicated semi-empirical
potential energy:

U(y) =Ulyo +9)
C 2
= > 5 (v —wll = llv? w5l
(i,5)eD
¢ 0 0 0 0112
= > 5 (I +0) = (F + )l = lls? —w51)” -

(i,J)€D
)
C' is a constant assumed to be the same for all interacting
pairs [25]; we will assume C' = 1. y; € R3 denote the vector
of Cartesian coordinates of the i-th a-carbon atom. y € R3
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denote the initial, equilibrium coordinates of a-carbon ¢, and
§; € R3 is a perturbation vector. The set D contains pairs of
indices indicating which a-carbons interact.

In order to extract the normal modes from equation
(1), we need to find the Hessian matrix. Expanding the
summand of equation (1) to second order gives:

Ulyo+0)~ Y (6 —8;)"Gi(5i —6;) . @
(4,5)€D
Where:
() =))W —y))"
() =T (W) — )
When equation (2) is expressed using matrix multiplication,
0T G6, G is the desired Hessian matrix. The set D is chosen to
keep G sparse. For a protein with n a-carbons, G is a 3n x 3n
matrix with 3 x 3 blocks that have a Laplacian structure. The
(i, 7)-th block, for i # j and (i, j) € D is given by:
Gij=—Gy i#jand(i,j)€D. @

If (4,7) ¢ D, G(i,j) is a 3 x 3 zero matrix. The (¢,4)-th
diagonal block is given by,

Gij = ®)

> G

i—1
Gii = Z Gri +
k=1 k=i+1 (5)

> G

kk£i

For example, n = 3 gives the following special 9 x 9
Laplacian matrix of 3 x 3 blocks of G;;:

G2+ Gis —Gh2 —Gi3
G= —Gh2 G2+ Gas —Go3 . (6
—Gi3 —Go3 Gz + Ga3

Then, given a vector § = (6,7, 61)T € R, we have:

§TGs = (6 — 6;)"Gi;(5: — ;) - @)

i<j

Since 6 = (6f,...,60)T is an R3" vector of all pertur-
bations, both y and yq are also vectors in R3". Further,
no additional requirements are placed on y and yo, thus
classical ENMs are defined on the linear manifold R3" [1].

2.2 Elastic Network Interpolation

In order to generate intermediate conformations between
two given protein conformations, Kim et al. [13], [14], [15],
[16], [17] proposed the following potential energy:

1 2
Ui(0) = 5 Do w46 =y +6) 1| =i (1)° 5 ©®
(4,5)€D
where J; is the optimal step size to arrive at the time ¢ inter-
mediate conformation from time ¢ — 1 a-carbon coordinates

yi's, and l;; (t) is the linearly interpolated targeted distance.
L) = A=t [lyd —=of I+t gl —w; | - )

The superscripts in ! and y} index the two end conforma-
tions.

2

As was the case for NMA, equation (8) can be expanded to
second order:

1
U(0) mg D (0= 0;)" Ai(0i — 05)
(i,5)eD
+ > Bij(6i—6;) (10)
(i-))€D
+ > Gy
(i-)€D
Where:
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Aij I Lij (t) (Ig . (yz y])(yz ;97) ) ,
i —y; |l Iy —y; |l
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Yi — Yj
By = (s = 5 | =1 (0) (20 an
v J

1 2
Cij = 5 (g =5 | =l (®)” -
I5 is the 3 x 3 identity matrix. A;; is a 3 x 3 matrix, B;; is
a 1 x 3 vector, and C}; is a scalar. Whenever (3, j) ¢ D, A;;
will be a zero matrix, B;; a zero vector, and C;; a zero scalar.
This can be expressed more concisely in matrix notation:
1

U (0) = §5TA6 +B6 +c, (12)
where A is a 3n X 3n matrix with a Laplacian structure
similar to equations (4) and (5) and ¢ € R is a constant. The
vector B is given by:

B=(B,..

., Bp) e RSB (13)

where:

i—1
B =— Z By +
k=1

Equation (12) is minimized by the optimal displacement §*
that solves the linear system:

i Bik= Y Bi i=1,...n. (14

k=i+1 kik#i

As* =B, (15)

which sets the derivative of equation (12) to zero. Note
the similarity between equations (1) and (8). Both potential
energies are the sum of squared difference of distances.

3 PoSITIVE SEMIDEFINITE MATRICES AND EuU-
CLIDEAN DISTANCE MATRICES

In the above discussion on ENMs, we used the vector
y = (yf,...,yD)T € R to represent all the a-carbon
coordinates of the protein. Consider the following change,
let Y be an n x 3 matrix whose rows are 1 x 3 blocks
containing a-carbon coordinates:

yi

Y = e R™3 (16)

Y
The Gram matrix, denoted X, for this set of a-carbons is
then given by X = YY7T. A Gram matrix is centered if the

centroid of all the a-carbons ¥4, . . ., yj, is the origin. We will
assume the Gram matrix is centered.
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The Euclidean Distance Matrix (EDM), D, for this same set
of a-carbon atoms is defined as the matrix whose ij-th entry
is given by the distance-squared between a-carbon i and j,

Dij = (yi —y;)* = (i —u))" (vi — yj) - 17)
Gram matrices and EDMs are important objects in semidef-
inite programming. The following papers are only a small
sample of research using these objects: [2], [3], [6], [18], [22],
[23].

4 MATHEMATICAL SIGNIFICANCE

In this section, we discuss some mathematical properties of
PSD matrices and EDMs not available to the linear manifold
currently used by classical ENMs. These properties suggest
PSD matrices may be a more “natural” choice for modelling
proteins.

4.1 The Gram Matrix is Invariant to Rotation

A rotation matrix @ is a 3 x 3 orthogonal matrix, QQT =
QTQ = I. When all the atomic coordinates of a protein are
rotated together, the protein structure has no net change.
This property is exactly reflected in the Gram matrix since:

YQIYQ)' =yQQ'Y" =YY", (18)

The linear manifold does not capture this invariance.

4.2 Each Gram Matrix can be Linearly Mapped to an
Unique Euclidean Distance Matrix

The centered Gram matrix and its corresponding EDM are
intimately related via the linear bijective mapping, often de-
noted K(-) [8], [9], [18]. Thus, each Gram matrix X = Y'Y
uniquely maps to an EDM, D, K(X) = D. Let e € R" be
the vector of all ones. Let diag(-) be the operator extracting
the diagonal of a matrix. The mapping K(X) is given by:

K(X) = diag(X)e” + ediag(X)" — 2X . (19)
No such bijective linear map is known between linear man-
ifolds and the matrix of distances.

4.3 The Set of n x n EDMs is a Convex Cone

The set of n x n Gram matrices forms a convex cone, the
PSD cone. Further, for a given n > 0, the set of n x n EDMs
also forms a convex cone. See [9], [18] for a more detailed
discussion.

However, when we take the square root of the entries of
these EDMs to get matrices containing distances, this set of
n x n v EDM matrices is no longer convex for n > 3 [9].
Equation (9) attempts to interpolate between the v EDM
matrices of the two end conformations, dispite the cone
being nonconvex.

3

4.4 The Set of Fixed Rank PSD Matrices Form a Rie-
mannian Manifold

A protein structure lies in 3 dimensional space, therefore
its Gram matrix is rank 3. The set of such fixed rank PSD
matrices is a Riemannian manifold. This manifold structure
was first discussed in the context of optimization algorithms
on matrix manifolds, for example: [12], [22], [23], [27]. The
geometry of a fixed rank PSD matrix manifold is not unique,
see the discussion in [27]. Since the Gram matrix is invariant
to rotation, the geometry relevant to this paper’s discussion
is the quotient geometry discussed in Section 6.6.2 of [27].

This fact is important because classical mechanics re-
quires the potential energy to be defined on a Riemmannian
manifold [4], [7]. That the set of rank 3 PSD matrices is also
a Riemannian manifold, implies this mathematical structure
and the corresponding EDMs may be considered as tools for
modelling proteins.

4.4.1 Rank Constraint is not Convex

Although the PSD cone and EDM cone are convex, when
we require solutions of a certain rank, for proteins this
is 3, the problem to be solved is no longer convex. Rank
constraint is often left out in semidefinite optimization or
treated with heuristics; matrix manifold algorithms are one
such heuristic. It is beyond the scope of this paper to discuss
these heuristics in detail.

4.5 The PSD Cone has Faces

A set of atoms whose mutual distances stay fixed regardless
of the protein’s conformation is called a rigid cluster in the
context of ENMs [11], [17] and a clique in the context of
sensor network localization [18], [19].

Krisklock and Wolkowicz [18], [19] showed how such
cliques can be used to find the face of the Gram matrix,
this process is called facial reduction and allows semidefinite
problems to be strictly feasible and also more efficient to
solve.

Faces of a Gram matrix are relevant to proteins since
proteins contain many rigid clusters. These rigid clusters
restrict the protein’s Gram matrix to be on a certain face
of the rank 3 PSD matrix manifold; this property is further
suggesting that the PSD matrix manifold can “naturally”
express a protein’s structural properties.

5 ELASTIC NETWORK MODELS ON THE POSITIVE
SEMIDEFINITE MATRIX MANIFOLD

5.1 Normal Mode Analysis

By squaring the distances in equation (1), we get the follow-
ing potential energy:

U(Y) = U(Yo+4)

= Y Wi—v) Wi —y) — @ =y W =)
(i,5)€D

= > (W +0) — () + )" (v +6:) — (4§ + ;) — Dyy)?

(i,5)€D

= 3 (=) (Yo + B)(¥o + A)T(es — ) = DY)
(i,5)€D
(20)
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where:

()"
Yo = : e R"*3 | 1)
(o)
and:
(61)"
A= | eRrR™, 22)
(0,)T
Following the convention of equation (17),
DY = () =y (W) — oY) 23)

are the entries of the equilibrium EDM. e; € R™ has a 1
at position ¢ and zero otherwise. This is actually the same
format as the objective function seen in Meyer [22] for
solving low rank distance matrix completion. Due to the
K(X) relation, equation (20) can be expressed concisely in
terms of the rank 3 PSD matrix as seen in [23], and in fact
is a well-known objective function for Euclidean distance
matrix completion first seen in [2].

U(A) =[| H® (K((Yo +A)(Yo +A)T) = Do) I . (24)

H is a matrix such that H;; = 1if (§,5) € D and H;; =0
otherwise. ©® is elementwise multiplication. This potential
energy gives the following value for G;; in the second order
Taylor expansion:

Gij =4y =y —y)" .

Compared to equation (3), equation (25) is missing the
division by (y{ — y9)"(yf — ). We first discussed the
potential for NMA on the PSD matrix manifold in [21].
There, we referred to “distance-squared” as “quadrance”
following terminology from [28]

(25)

5.1.1 The Potential Energy Defined using Distance and
Distance-Squared Agrees with Each Other

Tirion [25] justified the use of the Hookean potential energy
by showing the density of eigenvalues and the root mean
square (rms) fluctuations given by equation (1) agreed with
the semi-empirical potential. We first made the same obser-
vation for the potential energy on the positive semidefinite
matrix manifold, equation (20), in [21]. Tirion’s analysis
mainly focused on the G-Actin protein, pdb id 1ATN, there-
fore we will use this same protein in the current discussion.
In [21], we gave examples of other proteins, and the con-
clusion is very similar. We will not repeat those figures here
due to space limitations.

Ben-Avraham [5] observed the eigenvalues have a den-
sity graph that is similar for many globular proteins,
a shape he called the “universal curve”. Tirion showed
1ATN’s lower modes given by the Hookean potential en-
ergy matched the universal curve. In Figure 1, we show
that for 1ATN, this universal curve shape is seen for both
distance and distance-squared eigenvalue densities. These
histograms were generated using pyplot [10].

Tirion [25] also examined the root mean square (rms)
deviations of a-carbons from equilibrium. Two measures of
deviation were given. The first is the rms fluctuation of all
a-carbons as as function of mode, the second is the rms

4

fluctuation per residue for all modes. We denote these oy,
o' respectively following [13]. See also [26].

oy, drops off because lower modes represent high ampli-
tude motions. The same shape is given by both distance and
distance-squared potential energies in Figure 2.

The o' graph is given in Figure 3, as can be seen, distance
and distance-square potential energies give the same shape.

The formulas for o), and ¢! been described previously in
for example [13], [26].

1
n o 2\ 2
Ok = (Z( k) > y (26)
=
where
U;i = v,i% , (27)

and v, = ((v1)T, ..., (v1)T)T € R3" is the eigenvector for
mode k. The authors in [13], [26] have used an «y value of:

(28)

where \; is the k-th eigenvalue, kg is the Boltzmann con-
stant, and T is temperature. However, since the constants
do not affect the shape of the RMS plots, we have ignored
them and used an «;, value of:

1

= —. 29
W= (29)
The o is given by:
o' = (Z(O’]Z)Q) . (30)
k=7

The first 6 eigenvalues our zero, so the summation ignores
them.

The agreement in the shape of the rms fluctuation curve
is consistent for many proteins. In Figure 4, we present some
more protein examples.

5.2 Elastic Network Interpolation

Squaring the distance in equation (8) gives:

Ui(9)
1
=5 > (lw+8)— @ +5) P -Dy(0)* . C
(i,5)€D
with:
H (yz+5z) (yj +6]) H 32)

= ((yi +01) — (yj +6;)" ((wi + 6:) — (y; +65)) -
In the NMA case, the equilibrium coordinates, Y,, were
perturbed. In the ENI case, the Y matrix are the coordinates
from the previous time period, ¢ — 1, and we seek the best
perturbation to get as close as possible to the time ¢t D;;(¢)

value. We redefine equation (9) to be the targeted distance-
squared D;;(t):

Dij(t) = (L=t)(w —yD" () — ) +t(y) —y))" (i — 1/(}3)3)
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(a) “Universal curve” taken from [5].

(b) Density for distance.

Eigenvalues Eigenvalues

(c) Density for distance-squared.

Fig. 1. The density of eigenvalues for 1ATN. Note that distance-squared follow the “universal curve”.

o, for Classical Mode with Threshold Distance 11 A (1ATN)

200 400 600 800 1000 1200
Mode

(a) Distance potential.

o, for Quadrance Mode with Threshold Distance 11 A (LATN)
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(b) Distance-squared potential.

Fig. 2. RMS fluctuation per mode for 1ATN has the same shape for distance and distance-squared potentials.

5.0 for Classical Mode with Threshold Distance 11 4 (1ATN)

4.5

4.0

35

3.0
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(a) Distance potential.

0.7 for Quadrance Mode with Threshold Distance 11 A (1ATN)

0.6

05

0.4

50 100 150 200 250 300 350 400
Residue

(b) Distance-squared potential.

Fig. 3. RMS fluctuation per residue for 1ATN has the same shape for distance and distance-squared potentials.

The superscripts in 3 and y; index the two end conforma-
tions as before. As in the case of normal mode analysis, we
can use the K(-) map to concisely express equation (31) in
matrix form:

U(D) =[ Ho (K((Y + A)(Y +A)T) = Do) |7 . (34

D; is now a convex combination of the two end EDMs, D,
and D;:

D, = (1—1t)Do +tD; . (35)

Since the EDM cone is convex, D, will always lie in the
cone. As mentioned in Section 4.4.1, rank constraint is not

convex. This means the matrix D; might not be representing
a 3 dimension EDM. However, the potential energy given
by equation (31) and (34) will finding the best rank 3
approximation. We first discussed the potential for ENI on
the PSD matrix manifold in [20].

This potential energy gives the following values for A;;,
B;j, and Cj; in the second order Taylor expansion:
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o' for Classical Mode with Threshold Distance 11 A (2kt6)
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(a) 2KT6 o*, distance potential.

o' for Classical Mode with Threshold Distance 11 A (2avm)
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(c) 2AVM ¢*, distance potential.

0.40 o' for Quadrance Mode with Threshold Distance 11 A (2kt6)

0.35]

0.30]

0.25

0.20

0.15f

0.10f

0.05,

. . . . . . . .
0 10 20 30 40 50 60 70 80 90
Residue

(b) 2KT6 o*, distance-squared potential.

07 o' for Quadrance Mode with Threshold Distance 11 A (2avm)
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(d) 2AVM ¢, distance-squared potential.

Fig. 4. More examples of o* graph shapes agreeing. “Quadrance” refers to distance-squared.

Ay =2((yi — y;)" (i — y;) — Dij(t))I3
+ 4y — i) (Wi —us)"
Big =2 (i = )" (i — ) — Dis®)) (i — )",
1 2

Cij = 3 ((yi —y) (i —yj) — Dij(t))

(36)

5.3 Sample Transition Comparison

Consider the two lattice protein structures in Figure 5 for
illustrative purposes. We interpolated from the initial to the
final conformation by solving the linear system in equation
(15) using both distance and distance-squared formulas
from Section 2.2 and 5.2. To ensure the bond length is pre-
served, we explicitly ensured the vector difference between
a carbon ¢ and ¢ + 1 with coordinates y; and y;+1, given by
ti = Yi+1 — Vi, always has length one, the original lattice
structure bond length. The vector ¢; is called the tangent
vector.

We observe that the distance-squared transition pathway
in Figure 7 is in agreement with the distance transition
pathway in Figure 6.

In our previous publication [20], the tCG algorithm
produced a different pathway when we did not restrict the
tangent vector length. However, when we did restrict the
tangent length, we found the tCG algorithm also gave the
same pathway for this case, but the time for these transitions
is different. This is shown in Figure 8. The tCG algorithm is
found in [1] with the Hessian and gradient formulas given
by Meyer [22].

Finally, we note that all of the above ending conforma-
tions are chirally different from the targeted conformation.

Consider now the following two conformations given by
figure 9. We interpolated these structures using the linear
manifold and the PSD matrix manifold just as we done for
the structures in Figure 5. The results are given in Figure 10
and 11 respectively. In this case, the figures are not the same.
However the linear manifold has ended up with the correct
chirality.

5.4 Remarks and Considerations for Futures Research

In this current paper, we generated the lattice transitions, for
both the linear and PSD matrix manifold, using the python
scripting environment in UCSF Chimera [24]. Matlab was
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o

(a) Initial conformation. (b) Targeted conformation.

Fig. 5. First pair of lattice structures for illustrating ENI.

L

(a) t = 0.15. (b) t = 0.26. (c) t =0.33. (d) Stable ending confor-
mation reached by ¢t =
0.49.

Fig. 6. Transition on the linear manifold. Figure 6 and 7 are consistent. The ending conformation is chirally different from the targeted one.

2 44

(a) t =0.15. )t = 0.26. (c)t =0.33. (d) Stable ending conforma-
tion reached by ¢t = 0.49.

Fig. 7. Transition on the rank 3 PSD matrix manifold. Figure 6 and 7 are consistent. The ending conformation is chirally different from the targeted

1 L J 4P

(a) t = 0.39. (b) t = 0.45. (c) t = 0.50. (d) Stable ending conforma-
tion reached by ¢ = 0.80.

Fig. 8. Transition on the rank 3 PSD matrix manifold using the tCG algorithm as in [20] with bond length constraints. Consistent with Figure 6 and
7, but times are very different. The ending conformation is chirally different from the targeted one.
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—

(a) Initial conformation.

Fig. 9. Second pair of lattice structures for illustrating ENI.

U
JU

(a) t = 0.20. (b) t = 0.28.

(b) Targeted conformation.

(c)t =0.37. (d) Stable
conformation
reached by ¢t = 0.47.

ending

Fig. 10. Transition on the linear manifold. Figure 10 and 11 are not consistent. The ending conformation is chirally the same as the targeted one.

s

(a) t = 0.20. (o) t = 0.28.

A

—
(c)t =0.37. (d) Stable ending
conformation

reached by ¢t = 0.47.

Fig. 11. Transition on the rank 3 PSD matrix manifold. Figure 10 and 11 are not consistent. The ending conformation is chirally different from the

targeted one.

not used, and we did not observe some of the anomalies
for using the linear manifold as described in our previous
publication [20] when using the code provided by Kim '.
Thus, it seems the anomalies were due to the linear algebra
libraries and not because of the use of distance in the
potential energy.

However, as the previous section showed, we still ob-
served chirality differences and the possibility of a different
pathway.

Since lattice proteins are not realistic proteins, we leave
as the subject of future research the investigation of any
differences in interpolating real protein pathways and any
improvements to these algorithms.

The close relationship between ENMs and Semidefinite
programming is the focus of this current paper.

6 CONCLUSION

The mathematical properties of the PSD matrix manifold
suggests that this matrix manifold is suitable for modelling

1. Matlab code for ENI is available from the KOSMOS web-
site http://bioengineering.skku.ac.kr/kosmos/tutorial.php. This code
does not handle rigid clusters.

protein dynamics. Working with this manifold is equivalent
to using distance-squared instead of distance in the cur-
rently popular ENMs. We presented a potential energy on
this manifold, which has already been used in semidefinite
optimization as an objective function for distance matrix
completion. This potential energy has the general form:

UX) =| K(X) =D % - 37)
X is a PSD matrix. Both K(X) and D are EDMs. || - ||%
denote the Frobenius norm. The entries of D depend on the
application.

When applied to NMA, this potential energy is in agree-
ment with the Hookean potential energy introduced by
Tirion. When applied to ENI, D is an interpolated EDM, a
convex combination on a convex EDM cone. This potential
energy may propose a different transitional pathway than
the one using distances introduced by Kim. However, we
have only looked at unrealistic lattice structures in this
paper; further investigation of real protein structures will be
the subject of future research. For this, we require rigid clus-
ters, groups of atoms in a protein that move concurrently, to
be accommodated by the model; this will also be the subject
of future research.
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ENMs are closely related to semidefinite matrix man-
ifolds; we are still in the early stages of examining and
exploiting this relationship.

APPENDIX

DERIVATIVE OF DISTANCE

Letx € R™.

dll z| T

2t (38)

dx [ 2 ||
DERIVATIVE OF DISTANCE SQUARED
Let x € R™.
d 2 dT
|z _da"s) _, -

dzr dzx

DERIVATIVE OF DISTANCE TIMES VECTOR

Let x € R" and I,, be the n X n identity matrix. Note that
|| z || is a scalar so the order of multiplication does not
matter. The following expression uses to product rule for
taking derivatives.
d(@ =) _ d( = || =)
= = x| I,

raT
(K

(40)

SECOND ORDER EXPANSION FOR DISTANCES

Let d € R be a scalar and x € R"™ be a vector, and the
function to be expanded be:

76 =5 (x5 ~d)* )
The second order expansion is:
f(8) = £(0) + grad f(0)7'6 + %5THess £(0)5 . (42)
The constant term f(0) is given by:
7(0) =5 (x| ~d)* )
grad f(0) is an n x 1 vector given by:
grad f(0) = (I | =) (44)

Hess f(0) is an n X n matrix given by, using the product rule
on grad f(0):

T
H‘THIn_ﬁ xaT

| [ | [

T
:LL,L(IN%> _
|z |l |z |l

Hessf(0) = (|| || —d)
(45)
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SECOND ORDER EXPANSION FOR DISTANCES-
SQUARED

Let d € R be a scalar and x € R"™ be a vector, and the
function to be expanded be:

76 =5 ((+ ) +6) —d)” (46)
The second order expansion is:
f(6) = f(0) + gradf(0)"6 + %(5THess f0)5. 47
The constant term is given by:
£(0) = % (xTx - d)2 (48)
The first derivative term is an n x 1 vector given by:
gradf(0) =2 (CETZ' - d) T . (49)

The second derivative term is an 7 x n matrix given by:

Hessf(0) = 2 (xTx - d) I, + 4xz? . (50)
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