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Abstract

New lower bounds for the quadratic assignment problem QAP are
presented. These bounds are based on the orthogonal relaxation of
QAP. The additional improvement is obtained by making efficient use
of a tractable representation of orthogonal matrices having constant
row and column sums. The new bound is easy to implement and often
provides high quality bounds under an acceptable computational effort.
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1 Introduction

The Quadratic Assignment Problem QAP is a generic model for various
problems arising e.g. in location theory, VLSI design, facility layout, key-
board design and many other areas, see [1] for a recent survey on the QAP.
Formally the QAP consists of minimizing

f(X) = tr(AX Bt + O) X

over the set of permutation matrices. A, B and C are given (real) matrices
defining the QAP. (Throughout, M® denotes the transpose of M, while
trM is the trace of the square matrix M.)

If the quadratic part of f is zero, i.e. A or B is zero, the resulting
problem of minimizing

trC X?

over permutation matrices X is called the Linear Assignment Problem LAP.
While LAP can be solved in O(n®) worst case running time, it is well known
that QAP belongs to the class of NP-hard combinatorial optimization prob-
lems. Therefore the computational effort to solve QAP is very likely to grow
exponentially with the problem size. There are several Branch and Bound
based solution procedures described in the literature to solve the QAP, see
[2, 10, 12]. All these approaches seem to break down on problems of sizes
around n = 15, because the number of nodes in the branching tree becomes
excessively large. All these approaches use, as a basic bounding procedure
for the QAP, a technique proposed by Gilmore and Lawler in the early six-
ties, [6, 8]. This bounding technique is combinatorial in nature and requires
the solution of a LAP, besides sorting the rows of both A and B.

Table 5.1 contains the Gilmore-Lawler-Bound, denoted GLB, for QAPs
of various sizes published in the literature as well as for randomly generated
problems. It turns out that with growing problem size the relative gap
between a feasible solution and GLB gets larger as well. This indicates that
progress to solve larger QAPs is unlikely unless stronger bounding rules are
used.

Recently a lower bound for symmetric QAPs was introduced based on
the eigenvalues of A and B, see [4, 11]. The basic idea to derive this bound
consists in minimizing f(X) over orthogonal rather than just permutation
matrices.

In the present paper this ”orthogonal relaxation” of the QAP will be
further improved. We do this by constraining orthogonal matrices to have



constant row and column sums, just as permutation matrices do. This leads
to new bounds for the symmetric QAP. We also discuss perturbation tech-
niques that allow further improvements of a given bound. The paper is
organized as follows. In Section 2 we review the orthogonal relaxation for
symmetric QAPs along with necessary definitions and preliminaries. In Sec-
tion 3 we describe how the constraints on the row and column sums of X can
be modelled so as to preserve the trace structure of f(X) and the orthogo-
nality of X . Various new bounds are presented in Section 4. These bounds
will basically be derived from a smaller dimensional problem, equivalent to
QAP, where the constraints on the row and column sums of X are automat-
ically satisfied. Finally we conclude with some computational experiments
on published as well as randomly generated data. These experiments in-
dicate that for many problem instances, the new bounds are competitive
with all the existing bounds, if one considers a performance measure that
incorporates not only the quality of a bound, but also the computation time
to obtain it.

2  Orthogonal relaxation of QAP

A QAP is called symmetric, if both matrices A and B are symmetric. From
now on we consider only symmetric QAPs and observe that it is possible
to transform an arbitrary QAP into an Hermitian QAP with (complex)
Hermitian A and B, see [7]. For the sake of simplicity of presentation we
consider just the real symmetric case, even though the results carry over
also to the Hermitian case, but become more complicated. The following
notation will be used throughout.

Aj(M) denotes the j-smallest eigenvalue of the symmetric matrix M,
and

AM) = (A (M), ..., \(M))" € R".

The n—vector of all ones is u := (1,...,1)* € £". The vector of row sums of
the n x n—matrix M is denoted by r(M), while the sum of all the entries
of M is s(M), i.e.

r(M):= Mu, s(M):=u'Mu.
We will use the following sets of n x n-matrices.

O:={X:X'X =1}



denotes the set of orthogonal matrices. Sometimes we also write O, to
indicate the size.

E:={X: Xu=X'u=u}

contains all matrices having row and column sums equal to one. Finally
N ={X:X>0}

denotes the set of matrices with nonnegative coefficients.
It is well known that the set Il of permutation matrices satisfies

I=0n&ENN. (2.1)

If a,b € R" we denote by < a,b >_ the minimal scalar product of a and b,
which is defined by

<a,b>_:= min{z aiby;) 1 ™ permutation}.
7

We observe that
<a,b>_ = d'b

if a is in nonincreasing and b in nondecreasing order, respectively. We will
make extensive use of this fact. The mazimal scalar product < a,b >, is
defined similarly.

The orthogonal relaxation of symmetric QAPs was introduced in [4, 11]
and makes use of the following result.

Theorem 2.1 [11] Let A and B be real symmetric n x n matrices. Then
<AA)LAB)>_ < tr AXB'X' < <AA)LXB)>; VX e€O.

Moreover, the lower bound is attained for X = PQ", where P,Q € O con-
tain the eigenvectors of A and B in the order prescribed by the minimal
scalar product of the eigenvalues.

We will use Theorem 2.1 later on as a basic tool to bound the quadratic
part of f(X). It seems rather difficult to extend Theorem 2.1 to include
also the linear term present in f(X). This difficulty can be overcome by
separating f(X) into a quadratic term

¢(X) :=tr AXB'X"!



and a linear term

I(X):=tr CX".

The quadratic part can be bounded using Theorem 2.1 while the linear
part is solved independently as a LAP. We let QAP(A,B,C) denote the
optimal objective function value of the QAP defined by matrices A, B, C' and
LAP(C) denote the optimal value of the LAP defined by C. The following

eigenvalue related bound was proposed in [4].
QAP(A,B,C) > < AA),A(B)>- + LAP(C). (2.2)

In Table 5.1 the column EVB contains the lower bounds obtained by (2.2).
Noting that all input matrices for these problems belong to A, a trivial
lower bound is of course 0, thus (2.2) does not seem to be of any advantage.

To improve the bound in (2.2), transformations are applied to A, B and
C that leave f(X) unchanged over II. Two types of transformations are
known to have this property.

a) adding a constant to A or B either row or column-wise and appro-
priately modifiying C', or

b) changing the main diagonal of A or B and appropriately modifying
C.

To be more specific, suppose e, f,r,s € R". We define

A(e,7) := A+ eu’ + ue’ + diag(r),

B(f,s) = B+ fu' + uf* + diag(s),

Cle, f,r,8) = C+2Auft+2eu’ B—2neft—2 Z exufi+diag(A)s'+r diag(B)'—2es'—2r ft—rs’.
k

Then it can easily be verifed, see [4, 5], that

tr (AXB'+C)X" = tr (A(e,7) X B*(f,s)+Cl(e, f,7,5)) X" Ve, f,r,s € ®", VX € 1L
(2.3)

We point out that we add the same constant to the rows and columns to
preserve symmetry of A and B.

Relation (2.3) shows that we may choose any transformation d := (e, f,r,s) €
£7%4 to derive bounds for QAP. We now describe two strategies proposed
in the literature to make ”reasonable” choices for d.

The first strategy is based on the observation that a small ”variance”
of the spectrum of A and B results in small fluctuations for the quadratic



part ¢(X) by Theorem 2.1. The variance of the spectrum of a symmetric
matrix A,var(A), can be defined as

var(4) = \/tr A i(tr A)2.

n n?

In [4, 11] it is shown that
min{var(A(e,r)) :e,r € R"}

is attained for

1 1
A) — -
[r(4) = ark — 5—

(s(A) —tr A)], Vk; 7= apr — 2eg, VEk.

(2.4)
Using these transformations for A and similarly (and independently) f
and s for B we obtain the lower bound EVBI1 contained in Table 5.1.
We note that EVB1 requires essentially the same computational effort as
EVB. The dominating part is the eigenvalue computation for A and B.

e =
n—2

Moreover, the resulting bound has considerably improved, as compared to
EVB. Since e and r is chosen independently of f and s, and independently
of LAP(C(e,f,r,s)), it is reasonable to expect further improvements of the
bound by a more careful choice of the transformation d.

As a second strategy to choose d, an iterative improvement technique is
proposed in [11] that tries to choose d so that the lower bound (2.2), as a
function of d, is as large as possible. This leads to a nonlinear, nonsmooth,
nonconcave maximization problem, so that to find the best possible choice
for d seems at least as difficult as solving the original QAP. The improvement
strategy described in [11] applied to our test data produced the bounds in
column EVB2 of Table 5.1 . This bound constitutes a further improvement
over EVB1 and often yields the best bound available for QAP. We point
out however, that the computational effort to obtain EVB2 is incomparably
higher than for all the previously described bounds. (EVB2 is obtained after
up to 70 iterations where each iteration requires the eigenvalue computations
and the solution of a LAP plus some overhead to carry out the iteration.)
This makes EVB2 a computationally expensive candidate as a bounding rule
in a Branch and Bound scheme to solve QAPs.

It is the purpose of the present paper to describe alternate ways of mak-
ing the bound (2.2) work, that are computationally more tractable.



3 Projection of QAP

In this section we eliminate the constraints defining £ by providing a tractable
representation of the linear manifold spanned by £. This is a standard way

of treating equality constraints in optimization, often referred to as gradi-

ent projection or reduced gradient methods. More precisely, if the linear

equality constraints which define £ are described by the linear operator L,

then we need to find the linear operator T such that X = T'(Y), for some

Y € ®*, if and only if L(X) = 0. In this case

E={X:X=X+T(Y), Y € R},

where X is some matrix in £. We can then substitute for X in the objective
function and eliminate the constraints that define £. However, there is no
guarantee that the permutation matrices are mapped to the orthogonals by
the substitution. Moreover, the operator T' must have special structure to
preserve the trace structure of f. Our way of doing the projection preserves
orthogonality of X as well as the important trace formulation of f. The
technique is based on a simple characterization of permutation matrices
given below.
Let the n X (n — 1)—matrix V' be such that

Viu=0; V'V =1I,_,.

The columns of V therefore constitute an orthonormal basis of {u}+. Fur-
ther, let

Thus Q := VV*! =T — vv* describes the orthogonal projection on {u}*.

Lemma 3.1 Let X be nxn and Y be (n—1) X (n—1). Suppose that X
and Y satisfy

_ 10 ¢
X_P[OY]P. (3.1)
Then
X eé,

X eN <= VYV > —vf,
Xc0,<=YcO,.
Conversely, if X € £, then there is a Y such that (3.1) holds.



Proof. Expanding (3.1) we get the equivalent relation
X =vt+ VYV (3.2)
Thus Xu = vv'u = u, and similarly «'X = u’. Next note that by (3.2)
X >0 VYVt > —vot,

Moreover

Xe(’)m:)[l O]GOH@YEOn_l.

0Y
Finally, if X € £ then v is a right and left singular vector of X, correspond-
ing to the singular value 1, because X*Xv = v, v!X*X = v*. Therefore X
can be written in the form (3.1). ]

The representation in (3.2) illustrates the projection that we are us-
ing. The matrix X = vv* € &, while the linear operator T(Y) = VYV*
yields the null space of the linear operator L which describes the manifold
€. As a consequence we have

E={vt +VYVt:Y € R-Ux(r-1)y,

Substitution for X in f using this representation allows us to maintain the
trace structure of f as well as guarantee that each permutation matrix X
corresponds to an orthogonal matrix Y. We get

f(X) = tr[A(vv* + VY V)B4 C(vot + VYV?)
= tr{A'v'vtBt'vvt + AvotBtVY VI + AVYVEBtowl + AVYVIBIVYVE 4+ Covt+
CVY'vt}
= 2As(B) | 2O 4 4 [(VEAV)Y (VEBIV) 4 VICV + 2Vir(A)rt(B)V}Y™.

n2

Let A:=V'AV, B:=V*!BV,C:=V*!'CV and D := 2Vir(A)r(B)V +
C. We define the ” projected” problem PQAP by minimizing

A)s(B) , s(C)

AV Bt + D)yt + &

such that
YeO,1, VYVt > vt

In view of the Lemma and the characterization of II from (2.1), we have
proved the following Theorem.



Theorem 3.1 Let X and Y be related by (3.1). Then X solves QAP <
Y solves PQAP.

We note that PQAP has a structure similar to QAP, but is smaller in
dimension. Moreover, there is a linear term in PQAP due to the projection,
even if C' =0 in QAP.

We will now express the linear term in PQAP through the original vari-
able X . This representation will be used later on. Let

D := ~r(A)r'(B)+C.
n
Lemma 3.2
trDY* = trDX* — 2S(A); (B) _s(©). (3.3)
n n
Proof. A
trDY? = tr[2r(A)r'(B) + CIVY'V?

trD(X*t — vo?)
= trDX'— 25(A)s(B) — Ls(C). O

Therefore we can formulate PQAP in the following equivalent form

PQAP min{trAYBth—}—trD[vvt—l—VYtVt]—%S(A)S(B) Y € 0, VYV > —vo'}
(3.4)
We conclude this section with the following technical note. The matrix
V representing an orthogonal basis of {u}* is not uniquely determined. We
point out that PQAP is unaffected by the particular choice of V' because any
two representations V' and V; are related by V = V1 U for some U € O,,_; .
Noting that the linear map UY U? for U fixed is an automorphism on O
as well as on the set VYV? > —vv? shows the equivalence of PQAP under
different choices for V. A very simple representation of V' is given by

1+=z T T
V= z 1+=z T ,
T T 1+=z

where z = —1/(n+ y/n),y = —1//n.



4 Bounds derived from the projected program

The program PQAP, which we have shown to be equivalent to QAP, gives
rise to new lower bounds for QAP. First we point out that the elimination
of the constraints describing £ introduces a linear term in the objective
function of PQAP. A simple way to bound PQAP consists in bounding the
quadratic part of PQAP using Theorem 2.1 and solving the linear term
independently as a LAP. We get the following new bound.

Theorem 4.1 Let a symmetric QAP with matrices A,B and C be given.
Then, in the notation above

QAP(A,B,C)> < AA),A\B)>_ + LAP(D) — s(A)s(B)/n

Proof. Since any feasible solution Y for PQAP is orthogonal, the quadratic
part of (3.4) can be bounded using Theorem 2.1, contributing the first sum-

mand. The linear term is treated independently as a LAP in the original
X -space. a

Since we minimize two terms independently there will in general not

be a matrix X for which the bound is actually attained. In the following
special case however, we are able to treat the objective function of PQAP

as a whole.

Corollary 4.1 Under the conditions of Theorem 4.1 suppose that C = 0
and u is an eigenvector of A. Then

QAP(AB0) > <AAAB) > + s(A)s(B)/n’.
Moreover the lower bound is attained for X € O N E, where

X = vt + VPQV

Here P,Q € O,_1 contain the eigenvectors of A and B in the order pre-
scribed by the minimal scalar product of the eigenvalues.

Proof. @ We show that in this case the linear term in PQAP is constant.
We have, using Au = Au, Viu=0

trD(vo' + VYV = tr(2Auu’B)(Euu’ + VY'VY)

= n%trutAuutBu + %tr)\VtuutBVYt
= n%s(A)s(B).

10



Therefore the objective function of PQAP is purely quadratic and we can
apply Theorem 2.1 to get the result. The minimizer is obtained using (3.2).
O

So in this special case the only constraint possibly violated by X is the
nonnegativity condition, due to (2.1).

We note that the minimizer X in Corollary 4.1 is not unique, even if all
eigenvalues are distinct, because the unit eigenvectors could be multiplied
individually by —1 without affecting the orthogonality properties.

The following special case allows a computational simplification of The-
orem 4.1.

Corollary 4.2 Under the assumptions of Theorem 4.1 assume that C' = 0.
Then ) )
QAP(A,B,0)> < MALANB)>_ + L <r(4),r(B)>_ — s(A)s(B)/n?.

Proof. Note that in this case the linear term simplifies to
¢ 2 t t
trDX" = —tr r(A)r*(B)X".
n

Therefore the minimum over all X € II is just the minimal scalar product
of r(A) and r(B). ]

In Table 5.1 the column PB contains the bound from Theorem 4.1. Com-
paring with the other bounds it turns out that this bound is competitive
with all existing bounds except possibly EVB2. We have to note however,
that the computational effort to obtain EVB2 exceeds by far the computa-
tion to get PB, which is of the same order of magnitude as the other bounds.
Under the aspect of ”quality over time” the new bound clearly is the favorite
among all bounds presented so far.

We conclude this section with a discussion of various improvement tech-
niques for the new bound PB that parallel those outlined in Section 2 for
the eigenvalue bound (2.2). Let PB(A,B,C) denote the bound described in
Theorem 4.1. We first observe that PB is invariant under constant row and
column transformations given by e and f.

Lemma 4.1 PB(A,B,C) = PB(A(e,0),B(f,0),C(e,f,0,0)) Ve, f € R".
Proof. First note that due to the properties of V' we have

V(eu' + ue’)V = 0.

11



Therefore the quadratic term in the objective function of PQAP is unaf-
fected by the transformations e and f. The remaining part of the ob-
jective function is bilinear in e and f, so its Hessian is indefinite. Since
PB(A(e,0),B(f,0),C(e,f,0,0)) is bounded from above by QAP(A,B,C), this
part of the objective function must also be independent of e and f. O

To get further improvements of PB we therefore focus on choosing r and
s appropriately. It seems tempting to select r and s so that the variance of
Vi(A+ diag(r))V is minimized. It turns out however, that first minimizing
the variance and then projecting leads to the same bound as first projecting
and then minimizing the variance. The interested reader is invited to work
out the details. In view of this observation we do not pursue this approach
any further, because the corresponding transformation (2.4) was already
investigated in [4, 11].

In general it is rather difficult to provide comparisons of different bounds.
It is therefore interesting to see that there exists a transformation r, s such
that PB(A(0,r), B(0,s), C(0,0,r,s)) is not worse than the bound EVBI, ob-

tained through minimizing the spectral variance of A and B.

Theorem 4.2 There ezists a transformation r,s such that

PB(A(0,r), B(0,s), C(0,0,r,s)) > EVBI.

Proof. @ We use the transformation (2.4). This transformation has the
property that A(e,r) and B(f,s) each have row sums equal to 0, see [4].
Therefore the objective function of PQAP simplifies to

trA(e, r)YB(f, 8)Y* +trCle, f,r,5) X"
In the X —space we have
trA(e,7) X B(f,s) X'+ trC(e, f, 7, 8) X".
Since the linear terms coincide we have to show that
<AA),ANB)>- > <AA),\B)>_.

(For clarity of presentation we omit indicating the dependence on e, f,r,s.)
Since Au = 0, as mentioned above, u is eigenvector of A corresponding
to the eigenvalue 0. A being symmetric there exist orthonormal eigenvec-
tors wy,...,w,_1 of A, orthogonal to u with corresponding eigenvalues

12



AL, ..., An_1. Therefore we have w; = V's; for some nonzero s; € 771, We
conclude that Aw; = A\;w; implies

Asi =V'AVs; = \;\ViVs; = \;s;.

Thus we have proved that the eigenvalues of A are those of A and an
additional eigenvalue 0. A similar argument applies to B. Therefore

<AA)ANB)>- > <A(A),\B)>_

with equality holding if and only if 0 is a k-largest eigenvalue of A and a
k-smallest eigenvalue of B for some integer k. a

Finally we observe that an improvement strategy similar to the one lead-
ing to EVB2 can also be applied to get ”optimal” choices for the transforma-
tions r, s. In fact, the computational scheme to get EVB2 can be applied in
a straightforward manner also to PB. We do not investigate this any further
because the point that we want to make consists in the observation, that
PB without any additional improvement strategy already yields a highly
competitive bound at low computational cost.

5 Numerical Experiments and Discussion

We conclude with some numerical experiments comparing the new bound
PB with several existing bounding strategies. The first group of QAP in-
stances in Table 5.1 is taken from [9]. These data are commonly used in the
literature. The second group of instances, all of size n = 10 , is taken from
[3]. According to the authors, these problems were generated as follows:
A is symmetric with entries drawn uniformly from the integers 0,1, ..., 10;
matrix C also has entries drawn at random from 0,1,...,10, while B rep-
resents the squared Euclidean distances of 10 points drawn randomly from
the integer lattice (0,1,...,10)%. The last group of instances is randomly
generated in the following way: C' = 0. B is a symmetric matrix with en-
tries drawn uniformly from 1,...,10. Finally, A represents the [; —distance
of a connected cellular complex of n cells in the plane. These data therefore
imitate the QAP as a floor planning problem.

The meaning of the columns is as follows. First comes the size n of
the problem. Then we provide the objective function value of a good fea-
sible solution. For problems with n < 15 this solution is provably optimal.
Then we include the classical bound from Gilmore and Lawler in the col-
umn headed GLB. The subsequent three columns show eigenvalue related

13



Size | Opt. | GLB EVB | EVB1 | EVB2 | PB
12 | 578 | 493 -909 446 498 | 472
15 | 11560 | 963 | -1745 927 | 1002 | 973
20 | 2570 | 2057 | -3198 | 2075 | 2286 | 2196
30 | 6124 | 4539 | -T7836 | 4982 | 5443 | 5266
10 | 4954 | 3586 | -12791 2774 | 4541 | 4079
10 | 8082 | 6139 | -13750 | 6365 | 7617 | 7211
10 | 8649 | 7030 | -14647 | 6869 | 8233 | 7837
10 | 8843 | 6840 | -13546 | 7314 | 8364 | 8006
10 | 9571 | 7627 | -156748 | 8095 | 8987 | 8672
10 | 936 | 878 =777 885 895 | 887
12 | 1652 | 1536 | -1407 | 1562 1589 | 15673
14 | 2724 | 2492 | -2488 | 2574 | 2630 | 2609
16 | 3720 | 3358 | -3271 3518 | 3594 | 3560
18 | 53568 | 4776 | -4422 | 5035 | 5150 | 5104
20 | 6922 | 6166 | -5785 | 6533 | 6678 | 6625

Table 5.1: Lower Bounds for QAP

bounds, based on the orthogonal relaxation of QAP. Column EVB contains
the bound (2.2) applied to the original data. In EVB1 we first apply the
transformations (2.4) to minimize the spectral variance of A and B. EVB2
is obtained as an iterative improvement of EVB and often yields the best
bound available for symmetric QAPs. This bound however is computation-
ally extremely involved and we provide it merely to show how far things can
be pushed using nonlinear optimization. Finally the last column contains
the bound PB, derived in the present paper.

The computational cost to obtain these bounds is as follows. GLB, EVB,
EVB1 and PB each have worst case running time O(n®), but in practice
GLB can be computed considerably faster than the eigenvalue bounds each
of which essentially requires a spectral decomposition of two symmetric ma-
trices. The number of iterations to get EVB2 was limited to 70, so this
bound takes about 70 times longer than the other eigenvalue bounds. To
put it more colorful, if PB takes a minute, than EVB2 takes more than a
hour.

Let us now compare the different bounds. As mentioned already, EVB
is of no practical use. We included this bound merely to show the drastic

14



improvement obtained by additionally constraining X to £ leading to PB.
On these examples it turns out that GLB is outperformed by the eigenvalue
bounds EVB1, EVB2 and PB. As we have shown in Theorem 4.2 we can
always choose a transformation so that PB is not worse than EVB1. In all
the problems considered, PB applied to the original data was already better
than EVBI1 so this transformation is not needed.

Finally we note that PB very often is just slightly worse than EVB2. This
makes PB a promising candidate in a Branch and Bound scheme, where
the computational cost to obtain the lower bounds plays a crucial role.
Summarizing, the bound PB constitutes an improvement in the computation
of lower bounds for symmetric QAPs because it often produces a high quality
bound within reasonable computation times.

There is one more technical point to be addressed. To seriously apply
PB when solving QAPs makes it necessary that the bound can also be
applied in intermediate nodes of the branching tree. We point out that
this does not cause any complications because fixing assignments leads to a
QAP of smaller size that is symmetric, if the original problem is symmetric.
Forbidding assignments, i.e. forcing z;; = 0 for some ¢ and j does not
reduce the problem in size. However setting c;; to a high number in the
linear term effectively reflects the forbidden assignment. Thus the bound
PB can readily be applied in a Branch and Bound scheme if the branching
is done by either fixing or forbidding assignments.

Appendix

We include a MATLAB routine that computes the new bound PB of a
symmetric QAP for the case that the linear term C=0, see Corollary 4.2.
For the problem of size n = 30 in Table 5.1 this routine takes less than 15
seconds on an MS-DOS PC with a 80286 processor.

function 1bd = pb(a,b)

% pb: projection bound of a symmetric QAP given by two

% symmetric matrices a,b; the linear term c is assumed to be 0
% input arguments: a,b: symmetric n by n matrices

[/

[m,n] = size(a); % get the size n of the matrices
A

% sort row sums of a and b

A

15



ra = sum( a)’; ra = sort( ra); ) ra is ordered nondecreasingly
rb = sum( -b)’; rb = -sort( rb); ) rb is ordered nonincreasingly
h

% set up the projection matrix v

h

x = -1/(n + sqrt(n)); y = -1/sqrt(n);
v(1, 1:n-1) = y * ones(1,n-1);
v(2:n, 1:n-1) = x * ones(n-1) + eye(n-1);

h

% sort eigenvalues of v’ * a * v and v’ * b * v

h

al = v’* a*x v; al = (al + al’)/2; /) make sure al is numerically symmetric
bl = v’* bx v; bl = (bl + b1’)/2; J, make sure bl is numerically symmetric
11 = eig( al ); 11 = sort( 11);

12 = eig( -bl ); 12
A
1bd = 11’ * 12 + ra’ * rb * 2 / n - sum( sum( a)) * sum( sum( b)) / (n*n);

-sort( 12);
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