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a b s t r a c t 

We consider a parametric convex quadratic programming (CQP) relaxation for the quadratic knapsack 

problem (QKP). This relaxation maintains partial quadratic information from the original QKP by per- 

turbing the objective function to obtain a concave quadratic term. The nonconcave part generated by 

the perturbation is then linearized by a standard approach that lifts the problem to matrix space. We 

present a primal-dual interior point method to optimize the perturbation of the quadratic function, in a 

search for the tightest upper bound for the QKP. We prove that the same perturbation approach, when 

applied in the context of semidefinite programming (SDP) relaxations of the QKP, cannot improve the 

upper bound given by the corresponding linear SDP relaxation. The result also applies to more general 

integer quadratic problems. Finally, we propose new valid inequalities on the lifted matrix variable, de- 

rived from cover and knapsack inequalities for the QKP, and present separation problems to generate cuts 

for the current solution of the CQP relaxation. Our best bounds are obtained alternating between opti- 

mizing the parametric quadratic relaxation over the perturbation and applying cutting planes generated 

by the valid inequalities proposed. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

We study a convex quadratic programming (CQP) relaxation of

the quadratic knapsack problem (QKP), 

( QKP ) 

p ∗
QKP 

:= max x T Qx 

s.t. w 

T x ≤ c 
x ∈ { 0 , 1 } n , 

(1)

where Q ∈ S 
n is a symmetric n × n nonnegative integer profit ma-

trix, w ∈ Z 

n ++ is a vector of positive integer weights for the items,

and c ∈ Z ++ is the knapsack capacity with c ≥ w i , for all i ∈ N :=
{ 1 , . . . , n } . The binary (vector) variable x indicates which items are

chosen for the knapsack, and the inequality in the model, known

as a knapsack inequality, ensures that the selection of items does

not exceed the knapsack capacity. We note that any linear costs in

the objective can be included on the diagonal of Q by exploiting

the {0, 1} constraints and, therefore, are not considered. 

The QKP was introduced in Gallo, Hammer, and Simeone

(1980) and was proved to be NP-Hard in the strong sense by re-

duction from the clique problem. The quadratic knapsack problem
∗ Corresponding author. 
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s a generalization of the knapsack problem, which has the same

easible set of the QKP, and a linear objective function in x . The

inear knapsack problem can be solved in pseudo-polynomial time

sing dynamic programming approaches with complexity of O ( nc ).

The QKP appears in a wide variety of fields, such as biol-

gy, logistics, capital budgeting, telecommunications and graph

heory, and has received a lot of attentio0n in the last decades.

everal papers have proposed branch-and-bound algorithms for

he QKP, and the main difference between them is the method

sed to obtain upper bounds for the subproblems ( Billionnet &

almels, 1996; Billionnet, Faye, & Soutif, 1999; Caprara, Pisinger, &

oth, 1999; Chaillou, Hansen, & Mahieu, 1989; Helmberg, Rendl, &

eismantel, 1996; 20 0 0 ). The well known trade-off between the

trength of the bounds and the computational effort required to

btain them is intensively discussed in Pisinger (2007) , where

emidefinite programming (SDP) relaxations proposed in Helmberg

t al. (1996) and Helmberg, Rendl, and Weismantel (20 0 0) are

resented as the strongest relaxations for the QKP. The linear

rogramming (LP) relaxation proposed in Billionnet and Calmels

1996) , on the other side, is presented as the most computation-

lly inexpensive. 

Both the SDP and the LP relaxations have a common fea-

ure, they are defined in the symmetric matrix lifted space

etermined by the equation X = xx T , and by the replacement of

https://doi.org/10.1016/j.ejor.2019.08.027
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Table 1 

Equations number corresponding to acronyms. 

QKP (1) CI (27) 

QKP lifted (2) ECI (28) 

LPR (3) LCI (29) 

CQP Q p (5) SCI (32) 

LSDP (21) CILS (34) 

QSDP Q p (15) SCILS (36) 

SKILS (41) 
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a

he quadratic objective function in QKP with a linear function in

 , namely, trace( QX ). As the constraint X = xx T is nonconvex, it is

elaxed by convex constraints in the relaxations. The well known

cCormick inequalities ( McCormick, 1976 ), and also the semidef-

nite constraint, X − xx T � 0 , have been extensively used to relax

he nonconvex constraint X = xx T , in relaxations of the QKP. 

In this paper, we investigate a CQP relaxation for the QKP,

here instead of linearizing the objective function, we perturb

he objective function Hessian Q , and maintain the (concave) per-

urbed version of the quadratic function in the objective, lineariz-

ng only the remaining part derived from the perturbation. Our

elaxation is a parametric convex quadratic problem, defined as

 function of a matrix parameter Q p , such that Q − Q p � 0 . This

atrix parameter is iteratively optimized by a primal-dual interior

oint method (IPM) to generate the best possible bound for the

KP. During this iterative procedure, valid cuts are added to the

ormulation to strengthen the relaxation, and the search for the

est perturbation is adapted accordingly. Our procedure alternates

etween optimizing the matrix parameter and applying cutting

lanes generated by valid inequalities. At each iteration of the

rocedure, a new bound for the QKP is computed, considering

he updated matrix parameter and the cuts already added to the

elaxation. 

In Billionnet, Elloumi, and Lambert (2016) (see also Billionnet,

lloumi, & Lambert, 2012; Billionnet, Elloumi, & Plateau, 2009 for

revious results), a similar parametric convex quadratic problem

as investigated for the more general problem of minimizing a

uadratic function of bounded integer variables subject to a set of

uadratic constraints. However, the authors consider a unique per-

urbation of the Hessian of each quadratic function in the model,

o reformulate it as a mixed integer quadratic programming (MIQP)

roblem with a CQP continuous relaxation. They propose to solve

he reformulated problem by an MIQP solver. To reformulate the

roblem, the authors also seek the best possible perturbations of

he Hessians, which are considered as the ones, such that the solu-

ion of the continuous relaxation of the MIQP is maximal. In other

ords, they seek perturbations that lead to the best bound at the

oot node of a branch-and-bound algorithm. The authors claim that

hese perturbations can be computed from an optimal dual solu-

ion of a standard SDP relaxation of the problem. However, the

ual SDP problem is not correctly formulated in the paper, and

he proof presented is not correct. In this paper, we prove the re-

ult following the idea presented in Billionnet et al. (2009) , which

s based on Lemarchal and Oustry (1999 , Theorem 4.4). Further-

ore, we show that the result is valid to the more general problem

here the feasible set is any bounded polyhedron with nonempty

nterior. We also note that, if no cuts are added to the relaxation

uring the iterations of our interior point method, it becomes an

lternative way of obtaining the optimal perturbation considered

n Billionnet et al. (2016) . 

Another similar approach to handle nonconvex quadratic func-

ions consists in decomposing it as a difference of convex (DC)

uadratic function ( Horst & Thoai, 1999 ). DC decompositions

ave been extensively used in the literature to generate convex

uadratic relaxations of nonconvex quadratic problems. See, for ex-

mple, Fampa, Lee, and Melo (2017) and references therein. Unlike

he approach used in DC decompositions, we do not necessarily

ecompose x T Qx as a difference of convex functions, or equiva-

ently, as a sum of a convex and a concave function. Instead, fol-

owing the approach introduced in Billionnet et al. (2016) , we de-

ompose it as a sum of a concave function and a quadratic term

erived from the perturbation applied to Q . This perturbation can

e any symmetric matrix Q p , such that Q − Q p � 0 . 

In an attempt to obtain stronger bounds, we also investi-

ated the parametric convex quadratic SDP problem, where we

dd to our CQP relaxation, the positive semidefinite constraint
 − xx T � 0 . An IPM could also be applied to this parametric prob-

em in order to generate the best possible bound. Nevertheless,

e prove an interesting result concerning the relaxations, in case

he constraint X − xx T � 0 is imposed: the tightest bound gener-

ted by the parametric quadratic SDP relaxation is obtained when

he perturbation Q p is equal to Q , or equivalently, when we lin-

arize the entire objective function, obtaining the standard linear

DP relaxation. We conclude, therefore, that keeping the (concave)

erturbed version of the quadratic function in the objective of the

DP relaxation does not lead to a tighter bound. A result that could

e derived from our analysis is that the CQP relaxation cannot gen-

rate a tighter bound than the standard linear SDP relaxation. This

esult was already proved in Billionnet et al. (2016) , and we show

hat it still holds for unbounded and nonconvex feasible set. 

Another contribution of this work is the development of valid

nequalities for the CQP relaxation on the lifted matrix variable.

he inequalities are first derived from cover inequalities for the

napsack problem. The idea is then extended to knapsack inequali-

ies. Taking advantage of the lifting X := xx T , we propose new valid

nequalities that can also be applied to more general relaxations

f binary quadratic programming problems that use the same lift-

ng. We discuss how cuts for the quadratic relaxation can be ob-

ained by the solution of separation problems, and investigate pos-

ible dominance relation between the inequalities proposed. 

Finally, we present an algorithmic framework, where we iter-

tively improve the upper bound for the QKP by optimizing the

hoice of the perturbation of the objective function and adding

utting planes to the relaxation. At each iteration, lower bounds for

he problem are also generated from feasible solutions constructed

rom a rank-one approximation of the solution of the CQP relax-

tion. 

In Section 2 , we introduce our parametric convex quadratic re-

axation for the QKP. In Section 3 , we explain how we optimize

he parametric problem over the perturbation of the objective;

.e., we present the IPM applied to obtain the perturbation that

eads to the best possible bound. In Section 4 , we present our con-

lusion about the parametric quadratic SDP relaxation, and relate

ur results to the results presented in Billionnet et al. (2016) . In

ection 5 , we introduce new valid inequalities on the lifted matrix

ariable of the convex quadratic model, and we describe how cut-

ing planes are obtained by the solution of separation problems. In

ection 6 , we present the heuristic used to generate lower bounds

o the QKP. In Section 7 , we discuss our numerical experiments

nd in Section 8 , we present our final remarks. 

otation 

If A ∈ S 
n , then svec( A ) is a vector whose entries come from A

y stacking up its ‘lower half’, i.e., 

vec (A ) := (a 11 , . . . , a n 1 , a 22 , . . . , a n 2 , . . . , a nn ) 
T ∈ R 

n (n +1) / 2 . 

The operator sMat is the inverse of svec, i.e., sMat ( svec (A )) = A .

We also denote by λmin ( A ), the smallest eigenvalue of A and by

i ( A ) the i th largest eigenvalue of A . 

To facilitate the reading of the paper, Table 1 relates the

cronyms used with the associated equations numbers. 
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Table 2 

List of abbreviations. 

CQP Convex Quadratic Programming 

QKP Quadratic Knapsack Problem 

SDP Semidefinite Programming 

MIQP Mixed Integer Quadratic Programming 

MILP Mixed Integer Linear Programming 
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We also show the standard abbreviations used in the paper in

Table 2 . 

2. A parametric convex quadratic relaxation 

In order to construct a convex relaxation for QKP , we start by

considering the following standard reformulation of the problem

in the lifted space of symmetric matrices, defined by the lifting

X := xx T . 

( QKP lifted ) 

p ∗
QKP lifted 

:= max trace (QX ) 

s.t. w 

T x ≤ c 

X = xx T 

x ∈ { 0 , 1 } n . 
(2)

We consider an initial LP relaxation of QKP , given by 

( LPR ) 
max trace (QX ) 
s.t. (x, X ) ∈ P, 

(3)

where P ⊂ [0 , 1] n × S 
n is a bounded polyhedron, such that 

{ (x, X ) : w 

T x ≤ c, X = xx T , x ∈ { 0 , 1 } n } ⊂ P . 

2.1. The perturbation of the quadratic objective 

Next, we propose a convex quadratic relaxation with the same

feasible set as LPR , but maintaining a concave perturbed version of

the quadratic objective function of QKP , and linearizing only the

remaining nonconcave part derived from the perturbation. More

specifically, we choose Q p ∈ S 
n such that 

Q − Q p � 0 , (4)

and we get 

x T Qx = x T (Q − Q p ) x + x T Q p x = x T (Q − Q p ) x + trace (Q p xx T ) 

= x T (Q − Q p ) x + trace (Q p X ) . 

Finally, we define the parametric convex quadratic relaxation of

QKP : 

( CQP Q p ) 
p ∗

CQP 
(Q p ) := max x T (Q − Q p ) x + trace (Q p X ) 

s.t. (x, X ) ∈ P . 

(5)

3. Optimizing the parametric problem over the parameter Q p 

The upper bound p ∗
CQP 

(Q p ) in the convex quadratic problem

CQP Q p depends on the feasible perturbation Q p of the Hessian Q .

To find the best upper bound, we consider the parametric problem

param 

∗
QKP 

:= min 

Q−Q p �0 
p ∗

CQP 
(Q p ) . (6)

We solve (6) with a primal-dual interior-point method (IPM), and

we describe in this section how the search direction of the algo-

rithm is obtained at each iteration. 

We start with minimizing a log-barrier function. We use the

barrier function, B μ( Q p , Z ) with barrier parameter, μ> 0, to obtain

the barrier problem 

min B μ(Q p , Z) := p ∗
CQP 

(Q p ) − μ log det Z 

s.t. Q − Q p + Z = 0 (: �) 
Z 	 0 , 

(7)
here Z ∈ S 
n and �∈ S 

n denote, respectively, the slack and the dual

ymmetric matrix variables. We consider the Lagrangian function 

 μ(Q p , Z, �) := p ∗
CQP 

(Q p ) − μ log det Z + trace ((Q − Q p + Z)�) . 

Some important points should be emphasized here. We first

ote that the objective function for p ∗
CQP 

(Q p ) is linear in Q p ,

.e., this function is the maximum of linear functions over feasible

oints x , X . Therefore, this is a convex function. 

Moreover, as will be detailed next, the search direction of the

PM, computed at each iteration of the algorithm, depends on

he optimum solution x = x (Q p ) , X = X(Q p ) of CQP Q p , for a fixed

atrix Q p . At each iteration of the IPM, we have Z 	0, and there-

ore Q − Q p ≺ 0 . Thus, problem CQP Q p maximizes a strictly con-

ave quadratic function, subject to linear constraints over a com-

act set P, and consequently, has a unique optimal solution (see

.g. Turlach & Wright, 2015 ). From standard sensitivity analysis re-

ults, e.g. Fiacco (1983 , Corollary 3.4.2), Hogan (1973) , and Danskin

1966 , Theorem 1), as the optimal solution x = x (Q p ) , X = X(Q p ) is

nique, the function p ∗
CQP 

(Q p ) is differentiable, and therefore, the

agrangian function is also differentiable. 

Since Q p appears only in the objective function in CQP Q p , and 

 

T (Q − Q p ) x + trace (Q p X ) = x T Qx + trace (Q p (X − xx T )) , 

e have 

p ∗
CQP 

(Q p ) = X − xx T . (8)

The optimality conditions for (7) are obtained by differentiating

he Lagrangian L μ with respect to Q p , �, Z , respectively, 

∂L μ

∂Q p 
: ∇p ∗

CQP 
(Q p ) − � = 0 , 

∂L μ

∂�
: Q − Q p + Z = 0 , 

∂L μ

∂Z 
: −μZ −1 + � = 0 , ( or ) Z� − μI = 0 . 

(9)

his gives rise to the nonlinear system 

 μ(Q p , �, Z) = 

⎛ 

⎝ 

∇p ∗
CQP 

(Q p ) − �

Q − Q p + Z 

Z� − μI 

⎞ 

⎠ = 0 , Z, � 	 0 . (10)

We use a BFGS approximation for the Hessian of p ∗
CQP 

, since it

s not guaranteed to be twice differentiable everywhere, and up-

ate it at each iteration (see Lewis & Overton, 2013 ). We denote

he approximation of ∇ 

2 
BFGS 

p ∗
CQP 

(Q p ) by B , and begin with the ap-

roximation B 0 = I. Recall that if Q 

k 
p , Q 

k +1 
p are two successive it-

rates with gradients ∇ p ∗
CQP 

(Q 

k 
p ) , ∇ p ∗

CQP 
(Q 

k +1 
p ) , respectively, with

urrent Hessian approximation B k ∈ S 
n (n +1) / 2 , then we set 

 k := ∇p ∗
CQP 

(Q 

k +1 
p ) − ∇p ∗

CQP 
(Q 

k 
p ) , S k := Q 

k +1 
p − Q 

k 
p , 

nd, 

:= 〈 Y k , S k 〉 , ω := 〈 svec (S k ) , B k svec (S k ) 〉 . 
inally, we update the Hessian approximation with 

 k +1 := B k + 

1 

υ

(
svec (Y k ) svec (Y T k ) 

)
− 1 

ω 

(
B k svec (S k ) svec (S k ) 

T B k 

)
. 

e note that the curvature condition υ > 0 should be verified

o guarantee the positive definiteness of the updated Hessian. In

ur implementation, we address this by skipping the BFGS update

hen υ is negative or too close to zero. 

The equation for the search direction is 

 

′ 
μ(Q p , �, Z) 

( 

�Q p 

��
�Z 

) 

= −G μ(Q p , �, Z) , (11)
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Algorithm 1 Updating the perturbation Q p . 

Input: k , Q 

k 
p , Z 

k , �k , x (Q 

k 
p ) , X(Q 

k 
p ) , ∇p ∗

CQP 
(Q 

k 
p ) , B k , μ

k , τα := 

0 . 95 , τμ := 0 . 9 . 

Compute the residuals: ( 

R d 

R p 

R c 

) 

:= 

⎛ 

⎝ 

∇p ∗
CQP 

(Q 

k 
p ) − �k 

Q − Q 

k 
p + Z k 

Z k �k − μk I 

⎞ 

⎠ . 

Solve the linear system for �Q p : 

Z k sMat (B k svec (�Q p )) + (�Q p )�
k = −R c − Z k R d + R p �

k . 

Set: 

�� := sMat (B k svec (�Q p )) + R d , �Z := −R p + �Q p . 

Update Q p , Z and �: 

Q 

k +1 
p := Q 

k 
p + ˆ αp �Q p , Z k +1 := Z k p + ˆ αp �Z, �k +1 := �k + ˆ αd ��, 

where 

ˆ αp := τα × min { 1 , argmax αp 
{ Z k p + αp �Z � 0 }} , 

ˆ αd := τα × min { 1 , argmax αd 
{ �k + αd �� � 0 }} . 

Obtain the optimal solution x (Q 

k +1 
p ) , X(Q 

k +1 
p ) of relaxation 

CQP Q p , where Q p := Q 

k +1 
p . 

Update the gradient of p ∗
CQP 

: 

∇p ∗
CQP 

(Q 

k +1 
p ) := X (Q 

k +1 
p ) − x (Q 

k +1 
p ) x (Q 

k +1 
p ) T . 

Update the Hessian approximation of p ∗
CQP 

(if υ > 0 ): 

Y k := ∇p ∗
CQP 

(Q 

k +1 
p ) − ∇p ∗

CQP 
(Q 

k 
p ) , S k := Q 

k +1 
p − Q 

k 
p , 

υ := 〈 Y k , S k 〉 , ω := 〈 svec (S k ) , B k svec (S k ) 〉 , 
B k +1 := B k + 

1 

υ

(
svec (Y k ) svec (Y T k ) 

)
− 1 

ω 

(
B k svec (S k ) svec (S k ) 

T B k 

)
. 

Update μ: 

μk +1 := τμ
trace (Z k +1 �k +1 ) 

n 

. 

Output: Q 

k +1 
p , Z k +1 , �k +1 , x (Q 

k +1 
p ) , X(Q 

k +1 
p ) , ∇p ∗

CQP 
(Q 

k +1 
p ) , 

B k +1 , μ
k +1 . 

w

T  

Q

M

P

here 

 μ(Q p , �, Z) = 

( ∇p ∗
CQP 

(Q p ) − �

Q − Q p + Z 
Z� − μI 

) 

=: 

( 

R d 

R p 

R c 

) 

. (12)

If B is the current estimate of the Hessian, then (11) becomes 

 

sMat (B svec (�Q p )) − �� = −R d , 

−�Q p + �Z = −R p , 

Z�� + �Z� = −R c . 

e can substitute for the variables �� and �Z in the third equa-

ion of the system. The elimination gives us a simplified system,

nd therefore, we apply it, using the following two equations for

limination and backsolving, 

�� = sMat (B svec (�Q p )) + R d , �Z = −R p + �Q p . (13) 

ccordingly, we have a single equation to solve, and the system

nally becomes 

 sMat (B svec (�Q p )) + (�Q p )� = −R c − ZR d + R p �. 

We emphasize that to compute the search direction at each it-

ration of our IPM, we need to update the residuals defined in (12) ,

nd therefore we need the optimal solution x = x (Q p ) , X = X(Q p )

f the convex quadratic relaxation CQP Q p for the current perturba-

ion Q p . Problem CQP Q p is thus solved at each iteration of the IPM

ethod, each time for a new perturbation Q p , such that Q − Q p ≺
 . 

In Algorithm 1 , we present in details an iteration of the IPM.

he algorithm is part of the complete framework used to generate

ounds for QKP , as described in Section 7 . 

emark 1. Algorithm is an interior-point method with a quasi-

ewton step (BFGS). The object function we are minimizing is

ifferentiable with exception possibly at the optimum. A com-

lete convergence analysis of the algorithm is not in the scope of

his paper, however, convergence analysis for some similar prob-

ems can be found in the literature. In Armand, Gilbert, and Jégou

20 0 0) , it is shown that if the objective function is always differen-

iable and strongly convex, then it is globally convergent to the an-

lytic center of the primal-dual optimal set when μ tends to zero

nd strict complementarity holds. 

. The parametric quadratic SDP relaxation 

In an attempt to obtain tighter bounds, a promising approach

ight seem to be to include the positive semidefinite constraint

 − xx T � 0 in our parametric quadratic relaxation CQP Q p , and

olve a parametric convex quadratic SDP relaxation, also using

n IPM. Nevertheless, we show in this section that the convex

uadratic SDP relaxation cannot generate a better bound than the

inear SDP relaxation, obtained when we set Q p equal to Q . In fact,

s shown below, the result applies not only to the QKP, but to more

eneral problems as well. We emphasize here that the same result

oes not apply for CQP Q p . We could observe with our computa-

ional experiments that the best bounds were obtained by CQP Q p ,

hen we had Q − Q p � = 0 , for all instances considered. 

Consider the linear SDP problem given by 

 LSDP ) 
p ∗

LSDP 
:= sup trace (QX ) 

s.t. (x, X ) ∈ F 

X − xx T � 0 , 

(14) 

here x ∈ R 

n , X ∈ S 
n , and F is any subset of R 

n × S 
n . 
We now consider the parametric SDP problem given by 

( QSDP Q p ) 

p ∗
QSDP Q p 

:= sup x T (Q − Q p ) x + trace (Q p X ) 

s.t. (x, X ) ∈ F 

X − xx T � 0 , 

(15) 

here Q − Q p � 0 . 

heorem 2. Let F be any subset of R 

n × S 
n . For any choice of matrix

 p satisfying Q − Q p � 0 , we have 

p ∗
QSDP Q p 

≥ p ∗
LSDP 

. (16) 

oreover, inf { p ∗
QSDP Q p 

: Q − Q p � 0 } = p ∗
LSDP 

. 

roof. Let ( ̃  x , ˜ X ) be a feasible solution for LSDP . We have 

p ∗
QSDP Q p 

≥ ˜ x T (Q − Q p ) ̃  x + trace (Q p ̃  X ) (17) 
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= trace ((Q − Q p )( ̃  x ̃  x T − ˜ X )) + trace ((Q − Q p ) ̃  X ) + trace (Q p ̃  X ) 
(18)

= trace ((Q − Q p )( ̃  x ̃  x T − ˜ X )) + trace (Q ̃

 X ) (19)

≥ trace (Q ̃

 X ) . (20)

The inequality (17) holds because ( ̃  x , ˜ X ) is also a feasible solution

for QSDP Q p . The inequality in (20) holds because of the negative

semidefiniteness of Q − Q p and ˜ x ̃ x T − ˜ X . Because p ∗
QSDP Q p 

is an up-

per bound on the objective value of LSDP at any feasible solu-

tion, we can conclude that p ∗
QSDP Q p 

≥ p ∗
LSDP 

. Clearly, Q p = Q satis-

fies Q − Q p = 0 � 0 and LSDP is the same as QSDP Q p for this choice

of Q p . Therefore, inf { p ∗
QSDP Q p 

: Q − Q p � 0 } = p ∗
LSDP 

. �

Notice that in Theorem 2 we do not require that F be convex

nor bounded. Also, in principle, for some choices of Q p , we could

have p ∗
QSDP Q p 

= + ∞ with p ∗
LSDP 

= + ∞ or not. 

Remark 3. As a corollary from Theorem 2 , we have that the upper

bound for QKP , given by the solution of the quadratic relaxation

CQP Q p , cannot be smaller than the upper bound given by the so-

lution of the SDP relaxation obtained from it, by adding the SDP

constraint X − xx T � 0 and setting Q p equal to Q . 

In Billionnet et al. (2016 , Theorem 1), this result was already

proven for the case where F is a particular convex set. The authors

also claim that in this particular case, the best bound obtained by

the CQP relaxation is exactly the same as the bound given by the

linear SDP relaxation, and that the best perturbation can be de-

rived from the optimal dual variables of the SDP problem. Never-

theless the proof presented in Billionnet et al. (2016) is based on

an incorrect formulation of the dual SDP problem. In the follow-

ing, we prove that the result holds, following the same idea used

in Billionnet et al. (2009) , which is based on Lemarchal and Oustry

(1999 , Theorem 4.4). Furthermore, we show that the result is valid

to the more general problem where the feasible set is any bounded

polyhedron with nonempty interior. The result then applies to the

CQP relaxations that we use in this work. 

Theorem 4. Consider F ⊂ R 

n × S 
n as a bounded polyhedron with

nonempty interior, defined by: 

F := { (x, X ) : trace (
k X ) + γ T 
k x ≤ b k , k = 1 , . . . , q } , 

where 
k ∈ S 
n and γk ∈ R 

n , for k = 1 , . . . , q . 

Define 

p ∗
polCQP 

(Q p ) := max { x T (Q − Q p ) x + trace (Q p X ) : (x, X ) ∈ F} , 
where Q − Q p � 0 , and 

p ∗
polSDP 

:= max { trace (QX ) : (x, X ) ∈ F, X − xx T � 0 } . (21)

Then 

min 

Q−Q p �0 
p ∗

polCQP 
(Q p ) = p ∗

polSDP 
. 

Proof. First we consider the parametric problem 

min 

Q−Q p �0 
p ∗

polCQP 
(Q p ) 

= min 

Q−Q p �0 
max 

x,X 
x T (Q − Q p ) x + trace (Q p X ) 

s.t. trace (
k X ) + γ T 
k 

x ≤ b k , k = 1 , . . . , q. 

(: y k ≥ 0) 

(22)

Considering Q n := Q n (Q p ) := Q − Q p , the Lagrangian function of

the inner maximization problem in (22) is defined as 
 (x, X, y ) := x T Q n x + trace (Q p X ) 

+ 

q ∑ 

k =1 

y T k (b k − trace (
k X ) − γ T 
k x ) . 

he Lagrangian dual function is then defined as 

g(y ) := max 
x,X 

L (x, X, y ) 

= max 
x,X 

x T Q n x + trace (Q p X ) + 

q ∑ 

k =1 

y k (b k − trace (
k X ) − γ T 
k x ) 

= max 
x,X 

trace 

( ( 

Q p −
q ∑ 

k =1 

y k 
k 

) 

X 

) 

+ x T Q n x −
q ∑ 

k =1 

y k γ
T 

k x + 

q ∑ 

k =1 

y k b k 

= max 
x 

⎧ ⎨ 

⎩ 

x T Q n x −
q ∑ 

k =1 

y k γ
T 

k x + 

q ∑ 

k =1 

y k b k , if Q p −
q ∑ 

k =1 

y k 
k = 0 , 

+ ∞ , otherwise. 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

− 1 
4 

( 

q ∑ 

k =1 

y k γk 

) 

T Q 

† 
n 

( 

q ∑ 

k =1 

y k γk 

) 

+ y T b, 

if Q p −
q ∑ 

k =1 

y k 
k = 0 and 

q ∑ 

k =1 

y k γk ∈ range (Q n ) , 

+ ∞ , otherwise, 

here Q 

† 
n is the pseudo-inverse of Q n . 

As F has nonempty interior, the Slater condition holds for the

nner maximization problem in (22) . Therefore, problem (22) has

he same optimal value as 

min 

Q p ,Q n ,y 
− 1 

4 

( 

q ∑ 

k =1 

y k γk 

) 

T Q 

† 
n 

( 

q ∑ 

k =1 

y k γk 

) 

+ y T b 

s.t. Q p −
q ∑ 

k =1 

y k 
k = 0 , 

q ∑ 

k =1 

y k γk ∈ range (Q n ) , 

Q n = Q − Q p � 0 , y ≥ 0 , 

hich is equivalent to 

− max 
t,Q p ,y 

t 

s.t. 1 
4 

( 

q ∑ 

k =1 

y k γk 

) 

T (Q − Q p ) † 
q ∑ 

k =1 

y k γk − y T b − t ≥ 0 , 

Q − Q p � 0 , 
q ∑ 

k =1 

y k γk ∈ range (Q − Q p ) , 

Q p −
q ∑ 

k =1 

y k 
k = 0 , 

y ≥ 0 . 

y Schur complement ( Horn & Zhang, 2005 ), this is equivalent to

he following SDP problem 

− max 
t,Q p ,y 

t 

s.t. 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−t − y T b 

( 

q ∑ 

k =1 

y k γk 

) 

T / 2 ( 

q ∑ 

k =1 

y k γk 

) 

/ 2 Q p − Q 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

� 0 , 

Q p −
q ∑ 

k =1 

y k 
k = 0 , 

y ≥ 0 . 
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fter substitution, this is equivalent to 

min 

t,y 
−t 

s.t. 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−t − y T b 

( 

q ∑ 

k =1 

y k γk 

) 

T / 2 ( 

q ∑ 

k =1 

y k γk 

) 

/ 2 

q ∑ 

k =1 

y k 
k − Q 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

� 0 . 

(
: 

[
s z T 

z Z 

]
� 0 

)
y ≥ 0 . 

(23) 

e can now derive the dual problem of (23) , considering the La-

rangian function, defined as 

 (t, y, s, z, Z) 

 −t − trace 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

[
s z T 

z Z 

]
⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−t − y T b 

( 

q ∑ 

k =1 

y k γk 

) 

T 

/
2 ( 

q ∑ 

k =1 

y k γk 

) /
2 

q ∑ 

k =1 

y k 
k − Q 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎞
⎟⎟⎟⎟⎠

 −t − s (−t − y T b) −
( 

q ∑ 

k =1 

y k γk 

) 

T z − trace 

( 

Z 

( 

q ∑ 

k =1 

y k 
k − Q 

) ) 

 t(s − 1) + sy T b −
( 

q ∑ 

k =1 

y k γk 

) 

T z − trace 

( 

Z 

( 

q ∑ 

k =1 

y k 
k − Q 

) ) 

 t(s − 1) + 

q ∑ 

k =1 

y k (sb k − γ T 
k z − trace (
k Z)) + trace (QZ) . 

he Lagrangian dual function is defined as 

h (s, z, Z) := min 
y ≥0 ,t 

L (t, y, s, z, Z) 

= min 
y ≥0 ,t 

t(s − 1) + 

q ∑ 

k =1 

y k (sb k − γ T 
k z − trace (
k Z)) + trace (QZ) 

= 

{ 

trace (QZ) , 
if s = 1 , sb k − γ T 

k 
z − trace (
k Z) ≥ 0 , k = 1 , . . . , q, 

−∞ , otherwise. 

herefore, the dual problem of (23) is given by the maximization

f the Lagrangian dual function over the SDP cone, as in 

max 
z,Z 

trace (QZ) 

s.t. trace (
k Z) + γ T 
k 

z ≤ b k , k = 1 , . . . , q, [
1 z T 

z Z 

]
� 0 . 

(24) 

e finally note that problems (24) and (21) are the same. Since

has nonempty interior, then (21) is strictly feasible. Therefore,

trong duality holds for problem (21) , and the result of the theo-

em follows. �

. Valid inequalities 

We are now interested in finding valid inequalities to

trengthen relaxations of QKP in the lifted space determined by

he lifting X := xx T . Let us denote by CRel , any convex relaxation of

KP in the lifted space, where the equation X = xx T was relaxed

n some manner, by convex constraints, i.e., any convex relaxation

f QKP lifted 

We note that if the inequality 

T x ≤ β (25) 

s valid for QKP , where τ ∈ Z 

n + and β ∈ Z + , then, as x is nonnega-

ive and X := xx T , 

( x X ) 

(
−β
τ

)
≤ 0 (26) 
s a valid inequality for QKP lifted . In this case, we say that (26) is

 valid inequality for QKP lifted derived from the valid inequality

25) for QKP . 

.1. Preliminaries: knapsack polytope and cover inequalities 

We begin by recall the concepts of knapsack polytopes and

over inequalities. 

The knapsack polytope is the convex hull of the feasible points

f the knapsack problem, 

F := { x ∈ { 0 , 1 } n : w 

T x ≤ c} . 
efinition 5 (Zero-one knapsack polytope) . 

Pol := conv ( KF ) = conv ({ x ∈ { 0 , 1 } n : w 

T x ≤ c} ) . 
roposition 6. The dimension 

im ( KPol ) = n, 

nd KPol is an independence system, i.e., 

 ∈ KPol , y ∈ { 0 , 1 } n , y ≤ x ⇒ y ∈ KPol . 

roof. Recall that w i ≤ c, ∀ i . Therefore, all the unit vectors e i ∈ R 

n ,

s well as the zero vector, are feasible, and the first statement fol-

ows. The second statement is clear. �

Cover inequalities were originally presented in Balas (1975) ,

olsey (1975) , see also Nemhauser and Wolsey (1988 , Section II.2).

hese inequalities can be used in general optimization problems

ith knapsack inequalities and binary variables and, particularly,

n QKP . 

efinition 7 (Cover inequality, CI) . The subset C ⊆ N is a cover if it

atisfies 
 

j∈ C 
w j > c. 

he (valid) CI is 
 

j∈ C 
x j ≤ | C| − 1 . (27)

 cover C is minimal if no proper subset of C is a cover. 

efinition 8 (Extended CI, ECI) . Let w 

∗ := max j∈ C w j and define

he extension of C as 

(C) := C ∪ { j ∈ N\ C : w j ≥ w 

∗} . 
he ECI is ∑ 

j∈ E(C) 

x j ≤ | C| − 1 . (28)

efinition 9 (Lifted CI, LCI) . Given a cover C , let αj ≥ 0, ∀ j ∈ N \ C ,
nd αj > 0, for some j ∈ N \ C , such that 

 

j∈ C 
x j + 

∑ 

j∈ N\ C 
α j x j ≤ | C| − 1 , (29)

s a valid inequality for KF . Inequality (29) is a LCI . 

Cover inequalities are extensively discussed in Hammer,

ohnson, and Peled (1975) , Balas and Zemel (1978) , Balas (1975) ,

olsey (1975) , Nemhauser and Wolsey (1988) , and Atamtürk

2005) . Details about the computational complexity of LCI is pre-

ented in Zemel (1989) and Gu, Nemhauser, and Savelsbergh

1998) . Algorithm 2 ( Wolsey, 1998 , p.17), shows how to lift a LCI . It

rovides a facet-defining inequality for KPol when C is a minimal

over and t̄ = 1 . 
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Algorithm 2 Procedure to Lift Cover Inequalities. 

Input: A cover C and a valid inequality 

t̄ −1 ∑ 

j=1 

αi j x i j + 

∑ 

i ∈ C 
x i ≤ | C| − 1 , 

for KF , for some t̄ ∈ [1 , r] , where r := | N \ C| . 
Sort the elements i ∈ N \ C in ascending w i order, defining 

{ i 1 , i 2 , . . . , i r } . 
For: t = t̄ to r 

ζt = max 

t−1 ∑ 

j=1 

αi j x i j + 

∑ 

i ∈ C 
x i 

s.t. 

t−1 ∑ 

j=1 

w i j x i j + 

∑ 

i ∈ C 
w i x i ≤ c − w i t 

x ∈ { 0 , 1 } | C| + t−1 . 

(30) 

Set αi t 
= | C| − 1 − ζt . 

End 
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5.2. Adding cuts to the relaxation 

Given a solution ( ̄x , X̄ ) of CRel , our initial goal is to obtain

a valid inequality for QKP lifted derived from a CI that is violated

by ( ̄x , X̄ ) . A CI is formulated as αT x ≤ e T α − 1 , where α ∈ {0, 1} n

and e denotes the vector of ones. We then search for the CI that

maximizes the sum of the violations among the inequalities in
¯
 cut (α) ≤ 0 , where Ȳ := 

(
x̄ X̄ 

)
and 

cut (α) = 

(
−e T α + 1 

α

)
. 

To obtain such a CI , we solve the following linear knapsack prob-

lem, 

v ∗ := max 
α

{ e T Ȳ cut (α) : w 

T α ≥ c + 1 , α ∈ { 0 , 1 } n } . (31)

Let α∗ solve (31) . If v ∗ > 0 , then at least one valid inequality

in the following set of n scaled cover inequalities, denoted in the

following by SCI , is violated by ( ̄x , X̄ ) . 

( x X ) 

(
−e T α∗ + 1 

α∗

)
≤ 0 . (32)

Based on the following theorem, we note that to strengthen cut

(32) , we may apply Algorithm 2 to the CI obtained, lifting it to an

LCI , and finally add the valid inequality (26) derived from the LCI

to CRel . 

Theorem 10. The valid inequality (26) for QKP lifted , which is derived

from a valid LCI , dominates all inequalities derived from a CI that can

be lifted to the LCI . 

Proof. Consider the LCI (29) derived from a CI (27) for QKP . The

corresponding scaled cover inequalities (26) derived from the CI

and the LCI are, respectively, ∑ 

j∈ C 
X i j ≤ (| C| − 1) x i , ∀ i ∈ N, 

and ∑ 

j∈ C 
X i j + 

∑ 

j∈ N\ C 
α j X i j ≤ (| C| − 1) x i , ∀ i ∈ N, 

where αj ≥ 0, ∀ j ∈ N \ C . Clearly, as all X ij are nonnegative, the second
inequality dominates the first, for all i ∈ N . � f
.3. New valid inequalities in the lifted space 

As discussed, after finding any valid inequality in the form of

25) for QKP , we may add the constraint (26) to CRel when aim-

ng at better bounds. We observe now, that besides (26) we can

lso generate other valid inequalities in the lifted space by taking

dvantage of the lifting X := xx T , and also of the fact that x is bi-

ary. In the following, we show how the idea can be applied to

over inequalities. 

Let
 

j∈ C 
x j ≤ β, (33)

here C ⊂ N and β < | C |, be a valid inequality for KPol . 

Inequality (33) can be either a cover inequality, CI , an extended

over inequality, ECI , or a particular lifted cover inequality, LCI ,

here αj ∈ {0, 1}, ∀ j ∈ N \ C in (29) . Furthermore, given a general LCI ,

here α j ∈ Z + , for all j ∈ N \ C , a valid inequality of type (33) can be

onstructed by replacing each αj with min { αj , 1} in the LCI . 

efinition 11 (Cover inequality in the lifted space, CILS ) . Let C ⊂ N

nd β < | C | as in inequality (33) , and also consider here that β > 1.

e define ∑ 

, j∈ C,i< j 

X i j ≤
(

β

2 

)
. (34)

s the CILS derived from (33) . 

heorem 12. If inequality (33) is valid for QKP , then the CILS (34) is

 valid inequality for QKP lifted . 

roof. Considering (33) , we conclude that at most 
(
β
2 

)
products

f variables x i x j , where i , j ∈ C , can be equal to 1. Therefore, as

 ij := x i x j , the result follows. �

emark 13. When β = 1 , inequality (33) is well known as a clique

ut, widely used to model decision problems, and frequently used

s a cut in branch-and-cut algorithms. In this case, using similar

dea to what was used to construct the CILS , we conclude that it

s possible to fix 

 i j = 0 , for all i, j ∈ C, i < j. 

Given a solution ( ̄x , X̄ ) of CRel , the following MIQP problem is

 separation problem, which searches for a CILS violated by X̄ . 

z ∗ := max α,β,K trace ( ̄X K) − β(β − 1) , ( MIQP 1 ) 
s.t. w 

T α ≥ c + 1 , 

β = e T α − 1 , 

K(i, i ) = 0 , i = 1 , . . . , n, 

K(i, j) ≤ αi , i, j = 1 , . . . , n, i < j, 
K(i, j) ≤ α j , i, j = 1 , . . . , n, i < j, 
K(i, j) ≥ 0 , i, j = 1 , . . . , n, i < j, 
K(i, j) ≥ αi + α j − 1 , i, j = 1 , . . . , n, i < j, 
α ∈ { 0 , 1 } n , β ∈ R , K ∈ S 

n . 

If α∗, β∗, K 

∗ solves MIQP 1 , with z ∗ > 0, the CILS given by

race (K 

∗X ) ≤ β∗(β∗ − 1) is violated by X̄ . The binary vector α∗ de-

nes the CI from which the cut is derived. The CI is specifically

iven by α∗T x ≤ e T α∗ − 1 and β∗(β∗ − 1) determines the right-

and side of the CILS . The inequality is multiplied by 2 because

e consider the variable K as a symmetric matrix, in order to sim-

lify the presentation of the model. 

heorem 14. The valid inequality CILS for QKP lifted , which is derived

rom a valid LCI in the form (33) , dominates any CILS derived from a

I that can be lifted to the LCI . 

roof. As X is nonnegative, it is straightforward to verify that if X

atisfies a CILS derived from a LCI , X also satisfies any CILS derived

rom a CI that can be lifted to the LCI . �
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Any feasible solution of MIQP 1 such that trace ( ̄X K) > β(β − 1)

enerates a valid inequality for QKP lifted that is violated by X̄ .

herefore, we do not need to solve MIQP 1 to optimality to gener-

te a cut. Moreover, to generate distinct cuts, we can solve MIQP 1 

everal times (not necessarily to optimality), each time adding to

t, the following “no-good” cut to avoid the previously generated

uts: 
 

i ∈ N 
ᾱ(i )(1 − α(i )) ≥ 1 , (35)

here ᾱ is the value of the variable α in the solution of MIQP 1 

hen generating the previous cut. 

We note that, if α∗, β∗, K 

∗ solves MIQP 1 , then α∗T x ≤ e T α∗ − 1

s a valid CI for QKP , however it may not be a minimal cover.

iming at generating stronger valid cuts, based in Theorem 14 , we

ight add to the objective function of MIQP 1 , the term −δe T α,

or some weight δ > 0. The objective function would then favor

inimal covers, which could be lifted to a facet-defining LCI , that

ould finally generate the CILS . We should also emphasize that if

he CILS derived from a CI is violated by a given X̄ , then clearly,

he CILS derived from the LCI will also be violated by X̄ . 

Now, we also note that, besides defining one cover inequality

n the lifted space considering all possible pairs of indexes in C ,

e can also define a set of cover inequalities in the lifted space,

onsidering for each inequality, a partition of the indexes in C into

ubsets of cardinality 1 or 2. In this case, the right-hand side of

he inequalities is never greater than β/2. The idea is made precise

elow. 

efinition 15 (Set of cover inequalities in the lifted space,

CILS ) . Let C ⊂ N and β < | C | as in inequality (33) . Let 

1. C s : = { (i 1 , j 1 ) , . . . , (i p , j p ) } be a partition of C , if | C | is even. 

2. C s : = { (i 1 , j 1 ) , . . . , (i p , j p ) } be a partition of C �{ i 0 } for each

i 0 ∈ C , if | C | is odd and β is odd. 

3. C s : = {(i 0 , i 0 ) , (i 1 , j 1 ) , . . . , (i p , j p )} , where {(i 1 , j 1 ) , . . . , (i p , j p )}
is a partition of C �{ i 0 } for each i 0 ∈ C , if | C | is odd and β is

even. 

In all cases, i k < j k for all k = 1 , . . . , p. 

The inequalities in the SCILS derived from (33) are given by 

∑ 

i, j) ∈ C s 
X i j ≤

⌊
β

2 

⌋
, (36) 

or all partitions C s defined as above. 

heorem 16. If inequality (33) is valid for QKP , then the inequalities

n the SCILS (36) are valid for QKP lifted . 

roof. The proof of the validity of SCILS is based on the lifting

elation X i j = x i x j . We note that if the binary variable x i indicates

hether or not the item i is selected in the solution, the variable

 ij indicates whether or not the pair of items i and j , are both se-

ected in the solution. 

1. If | C | is even, C s is a partition of C in exactly | C |/2 subsets

with two elements each, and therefore, if at most β ele-

ments of C can be selected in the solution, clearly at most⌊ 
β
2 

⌋ 
subsets of C s can also be selected. 

2. If | C | and β are odd, C s is a partition of C �{ i 0 } in exactly

| C − 1 | / 2 subsets with two elements each, where i 0 can be

any element of C . In this case, if at most β elements of C

can be selected in the solution, clearly at most β−1 
2 

(
= 

⌊ 
β
2 

⌋ )
subsets of C s can also be selected. 

3. If | C | is odd and β is even, C s is the union of {( i 0 , i 0 )} with

a partition of C �{ i 0 } in exactly | C − 1 | / 2 subsets with two

elements each, where i can be any element of C . In this
0 
case, if at most β elements of C can be selected in the so-

lution, clearly at most β
2 

(
= 

⌊ 
β
2 

⌋ )
subsets of C s can also be

selected. 

�

Given a solution ( ̄x , X̄ ) of CRel , we now present a mixed linear

nteger programming (MILP) separation problem, which searches

or an inequality in SCILS that is most violated by X̄ . Let A ∈
 0 , 1 } n × n (n +1) 

2 . In the first n columns of A we have the n × n identity

atrix. In the remaining n (n − 1) / 2 columns of the matrix, there

re exactly two elements equal to 1 in each column. All columns

re distinct. For example, for n = 4 , 

 := 

⎛ 

⎜ ⎝ 

1 0 0 0 1 1 1 0 0 0 

0 1 0 0 1 0 0 1 1 0 

0 0 1 0 0 1 0 1 0 1 

0 0 0 1 0 0 1 0 1 1 

⎞ 

⎟ ⎠ 

. 

he columns of A represent all the subsets of items in N with one

r two elements. Let 

z ∗ := max α, v ,K,y trace ( ̄X K) − 2 v , ( MILP 2 ) 
s.t. w 

T α ≥ c + 1 , 

K(i, i ) = 2 y (i ) , i = 1 , . . . , n, 
n ∑ 

i =1 

y (i ) ≤ 1 , 

K(i, j) = 

n (n +1) / 2 ∑ 

t= n +1 

A (i, t) A ( j, t )) y (t ) , i, j = 1 , . . . , n, i < j, 

v ≥ (e T α − 1) / 2 − 0 . 5 , 

v ≤ (e T α − 1) / 2 , 

y (t) ≤ 1 − A (i, t) + α(i ) , i = 1 , . . . , n, 

t = 1 , . . . , 
n (n +1) 

2 
, 

α ≤ Ay ≤ α + 

(
n (n +1) 

2 

)
(1 − α) , 

α ∈ { 0 , 1 } n , y ∈ { 0 , 1 } n (n +1) 
2 , 

v ∈ Z , K ∈ S 
n . 

If α∗, v ∗, K 

∗, y ∗ solves MILP 2 , with z ∗ > 0, then the particular in-

quality in SCILS given by 

race (K 

∗X ) ≤ 2 v ∗ (37)

s violated by X̄ . The binary vector α∗ defines the CI from which

he cut is derived. As the CI is given by α∗x ≤ e T α∗ − 1 , we can

onclude that the cut generated either belongs to case (1) or (3) in

efinition 15 . This fact is considered in the formulation of MILP 2 .

he vector y ∗ defines a partition C s as presented in case (3), if
 n 
i =1 y (i ) = 1 , and in case (1), otherwise. We finally note that the

umber 2 in the right-hand side of (37) is due to the symmetry of

he matrix K 

∗. 

We now may repeat the observations made for MIQP 1 . 

Any feasible solution of MILP 2 such that trace ( ̄X K) > 2 v gener-

tes a valid inequality for CRel , which is violated by X̄ . Therefore,

e do not need to solve MILP 2 to optimality to generate a cut.

oreover, to generate distinct cuts, we can solve MILP 2 several

imes (not necessarily to optimality), each time adding to it, the

ollowing suitable “no-good” cut to avoid the previously generated

uts: 

n (n +1) 
2 ∑ 

i =1 

ȳ (i )(1 − y (i )) ≥ 1 , (38)

here ȳ is the value of the variable y in the solution of MILP 2 ,

hen generating the previous cut. 

The CI α∗T x ≤ e T α∗ − 1 may not be a minimal cover. Aiming at

enerating stronger valid cuts, we might add again to the objective

unction of MILP 2 , the term −δe T α, for some weight δ > 0. The ob-

ective function would then favor minimal covers, which could be
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lifted to a facet-defining LCI . In this case, however, after computing

the LCI , we have to solve MILP 2 again, with α fixed at values that

represent the LCI , and v fixed so that the right-hand side of the in-

equality is equal to the right-hand side of the LCI . All components

of y that were equal to 1 in the previous solution of MILP 2 should

also be fixed at 1. The new solution of MILP 2 would indicate the

other subsets of N to be added to C s . One last detail should be

taken into account. If the cover C corresponding to the LCI , is such

that | C | is odd and the right-hand side of the LCI is also odd, then

the cut generated should belong to case (2) in Definition 15 , and

MILP 2 should be modified accordingly. Specifically, the second and

third constraints in MILP 2 , should be modified respectively to 

K(i, i ) = 0 , i = 1 , . . . , n, 
n ∑ 

i =1 

y (i ) = 1 . 

Remark 17. Let γ := | C |. Then, the number of inequalities in the

SCILS is 

γ ! 

2 

( γ2 ) ( γ
2 

!) 
, 

if γ is even, or 

γ × (γ − 1)! 

2 

( γ −1 
2 ) ( γ −1 

2 
!) 

, 

if γ is odd. 

Finally, we extend the ideas presented above to the more gen-

eral case of knapsack inequalities. We note that the following dis-

cussion applies to a general LCI , where α j ∈ Z + , ∀ j ∈ N\ C. 

Let ∑ 

j∈ N 
α j x j ≤ β. (39)

be a valid knapsack inequality for KPol , with α j , β ∈ Z + , β ≥
α j , ∀ j ∈ N. 

Definition 18 (Set of knapsack inequalities in the lifted space,

SKILS) . Let αj be the coefficient of x j in (39) . Let { C 1 , . . . , C q } be the

partition of N , such that αu = αv , if u, v ∈ C k for some k , and αu � =
αv , otherwise. The knapsack inequality (39) can then be rewritten

as 

q ∑ 

k =1 

( 

˜ αk 

∑ 

j∈ C k 
x j 

) 

≤ β. (40)

Now, for k = 1 , . . . , q, let C l k := { (i k 1 , j k 1 ) , . . . , (i k p k 
, j k p k 

) } , where

i < j for all (i, j) ∈ C l k , and 

• C l k is a partition of C k , if | C k | is even. 
• C l k is a partition of C k \ { i k 0 } , where i k 0 ∈ C k , if | C k | is odd. 

The inequalities in the SKILS corresponding to (39) are given by

q ∑ 

k =1 

⎛ 

⎝ ˜ αk X i k 0 
i k 0 

+ 2 ̃  αk 

∑ 

(i, j) ∈ C l k 

X i j 

⎞ 

⎠ ≤ β, (41)

for all partitions C l k , k = 1 , . . . , q, defined as above, and for all i k 0 ∈
 k \ C l k . (If | C k | is even, C k \ C l k = ∅ , and the term in the variable

X i k 0 i k 0 
does not exist.) 

Remark 19. Consider { C 1 , . . . , C q } as in Definition 18 . For k =
1 , . . . , q, let γ k := | C k | and define 

NC l k := 

γk ! 

2 

( 
γk 
2 ) ( γk !) 

, 
2 
f γ k is even, or 

C l k := γk ×
(γk − 1)! 

2 

( 
γk −1 

2 ) ( γk −1 
2 

!) 
, 

f γ k is odd. 

Then, the number of inequalities in SKILS is 

q ∏ 

 =1 

NC l k . 

emark 20. If ˜ αk is even for every k , such that γ k := | C k | is odd,

hen the right-hand side β of inequality (41) may be replaced with

 ×
⌊ 

β
2 

⌋ 
, which will strengthen the inequality in case β is odd. 

Note that the case where γ k is even for every k , is a particular

ase contemplated by this remark, where the the tightness of the

nequality can also be applied. 

orollary 21. If inequality (39) is valid for QKP , then the inequalities

41) , in the SKILS , are valid for QKP lifted , whether or not the modifi-

ation suggested in Remark 20 is applied. 

roof. The result is again verified, by using the same argument

sed in the proof of Theorem 16 , i.e., considering that X i j = 1 , iff

 i = x j = 1 . �

.4. Dominance relation among the new valid inequalities 

We start this subsection investigating whether SCILS dominates

ILS or vice versa. 

heorem 22. Let C be the cover in (33) and consider γ := | C | to be

ven. 

1. If β = γ − 1 , then the sum of all inequalities in SCILS is equiv-

alent to CILS . Therefore, in this case, the set of inequalities in

SCILS dominates CILS . 

2. If β < γ − 1 , there is no dominance relation between SCILS

and CILS . 

roof. Let sum ( SCILS ) denote the inequality obtained by adding

ll inequalities in SCILS , and let rhs (sum ( SCILS )) denote its right-

and side (rhs). We have that rhs (sum ( SCILS )) is equal to the

umber of inequalities in SCILS multiplied by the rhs of each in-

quality, i.e.: 

hs (sum ( SCILS )) = 

γ ! 

2 

( γ2 ) ( γ
2 

!) 
×
⌊

β

2 

⌋
. 

he coefficient of each variable X ij in sum ( SCILS ) ( coef ij ) is given

y the number of inequalities in the set SCILS in which X ij appears,

.e.: 

oe f i j = 

(γ − 2)! 

2 

( (γ −2) 
2 ) ( (γ −2) 

2 
!) 

ividing rhs (sum ( SCILS )) by coef ij , we obtain 

hs (sum ( SCILS )) /coe f i j = (γ − 1) ×
⌊

β

2 

⌋
. (42)

n the other side, the rhs of CILS is: 

hs ( CILS ) = 

(
β

2 

)
= 

β(β − 1) 

2 

. (43)

1. Replacing β with γ − 1 , and 

⌊ 
β
2 

⌋ 
with 

β−1 
2 (since β is odd),

we obtain the result. 
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2. Consider, for example, C = { 1 , 2 , 3 , 4 , 5 , 6 } and β = 3 ( β <

γ − 1 and odd). In this case, the CILS becomes: 

X 12 + X 13 + X 14 + X 15 + X 16 + X 23 + X 24 

+ X 25 + X 26 + X 34 + X 35 + X 36 + X 45 + X 46 + X 56 ≤ 3 . 

And a particular inequality in SCILS is 

X 12 + X 34 + X 56 ≤ 1 . (44)

The solution X 1 j = 1 , for j = 2 , . . . , 6 , and all other variables

equal to zero, satisfies all inequalities in SCILS , because only

one of the positive variables appears in each inequality in

the set. However, the solution does not satisfy CILS . On the

other side, the solution X 12 = X 34 = X 56 = 1 , and all other

variables equal to zero, satisfies CILS , but does not satisfy

(44) . 

Now, consider C = { 1 , 2 , 3 , 4 , 5 , 6 } and β = 4 ( β < γ − 1 and

even). In this case, the CILS becomes: 

X 12 + X 13 + X 14 + X 15 + X 16 + X 23 + X 24 

+ X 25 + X 26 + X 34 + X 35 + X 36 + X 45 + X 46 + X 56 ≤ 6 . 

And a particular inequality in SCILS is 

X 12 + X 34 + X 56 ≤ 2 . (45)

The solution X 1 j = 1 , for j = 2 , . . . , 6 , X 2 j = 1 , for j =
3 , . . . , 6 , and all other variables equal to zero, satisfies all

inequalities in SCILS , because at most two of the positive

variables appear in each inequality in the set. However, the

solution does not satisfy CILS . On the other side, the so-

lution X 12 = X 34 = X 56 = 1 , and all other variables equal to

zero, satisfies CILS , but does not satisfy (45) . 

�

heorem 23. Let C be the cover in (33) and consider γ := | C | to be

dd. Then there is no dominance relation between SCILS and CILS . 

roof. Consider, for example, C = { 1 , 2 , 3 , 4 , 5 } and β = 3 ( β odd).

n this case, the CILS becomes: 

 12 + X 13 + X 14 + X 15 + X 23 + X 24 + X 25 + X 34 + X 35 + X 45 ≤ 3 . 

nd a particular inequality in SCILS is 

 23 + X 45 ≤ 1 . (46)

he solution X 1 j = 1 , for j = 1 , . . . , 5 , and all other variables equal

o zero, satisfies all inequalities in SCILS , because only one of the

ositive variables appears in each inequality in the set. However,

he solution does not satisfy CILS . On the other side, the solution

 23 = X 45 = 1 , and all other variables equal to zero, satisfies CILS ,

ut does not satisfy (46) . 

Now, consider C = { 1 , 2 , 3 , 4 , 5 } and β = 4 ( β even). In this case,

he CILS becomes: 

 12 + X 13 + X 14 + X 15 + X 23 + X 24 + X 25 + X 34 + X 35 + X 45 ≤ 6 . 

nd a particular inequality in SCILS is 

 11 + X 23 + X 45 ≤ 2 . (47)

he solution X 1 j = 1 , for j = 1 , . . . , 5 , X 2 j = 1 , for j = 2 , . . . , 5 , and

ll other variables equal to zero, satisfies all inequalities in SCILS ,

ecause at most two of the positive variables appear in each in-

quality in the set. However, the solution does not satisfy CILS . On

he other side, the solution X 11 = X 23 = X 45 = 1 , and all other vari-

bles equal to zero, satisfies CILS , but does not satisfy (47) . �

Now, we investigate if SCILS is just a particular case of SKILS ,

hen αj ∈ {0, 1}, for all j ∈ N in (39) . 

heorem 24. In case the modification suggested in Remark 20 is ap-

lied, then if | C | is even in (33) , SCILS becomes just a particular case
f SKILS . In case | C | is odd, however, the inequalities in SCILS are

tronger. 

roof. If | C | is even, the result is easily verified. If | C | is odd, the

nequalities in SCILS become 

 

∑ 

(i, j) ∈ C s 
X i j ≤ β − 1 , 

f β is odd, and 

 X i 0 i 0 + 2 

∑ 

(i, j) ∈ C s 
X i j ≤ β, 

f β is even, and the inequalities in SKILS become 

 i 0 i 0 + 2 

∑ 

(i, j) ∈ C s 
X i j ≤ β, 

or all β . In all cases, C s is a partition of C �{ i 0 }, where i 0 ∈ C . 

Either with β even or odd, it becomes clear that SCILS is

tronger than SKILS . �

. Lower bounds from solutions of the relaxations for QKP lifted 

In order to evaluate the quality of the upper bounds obtained

ith CRel , we compare them with lower bounds for QKP , given

y feasible solutions constructed by a heuristic. We assume in this

ection that all variables in CRel are constrained to the interval

0,1]. 

Let ( ̄x , X̄ ) be a solution of CRel . We initially apply principal

omponent analysis (PCA) ( Jolliffe, 2010 ) to construct an approx-

mation to the solution of QKP and then apply a special round-

ng procedure to obtain a feasible solution from it. PCA selects the

argest eigenvalue and the corresponding eigenvector of X̄ , denoted

y λ̄ and v̄ , respectively. Then λ̄v̄ ̄v T is a rank-one approximation of

¯
 . We set x̄ = λ̄

1 
2 v̄ to be an approximation of the solution x of QKP .

e note that λ̄ > 0 because X̄ ii > 0 for at least one index i in the

ptimal solutions of the relaxations, and therefore, X̄ is not nega-

ive semidefinite. Finally, we round x̄ to a binary solution that sat-

sfies the knapsack capacity constraint, using the simple approach

escribed in Algorithm 3 . 

lgorithm 3 A heuristic for the QKP. 

Input: the solution X̄ from CRel , the weight vector w , the

capacity c. 

Let λ̄ and v̄ be, respectively, the largest eigenvalue and the

corresponding eigenvector of X̄ . 

Set x̄ = λ̄
1 
2 v̄ . 

Round x̄ to ˆ x ∈ { 0 , 1 } n . 
While w 

T ˆ x > c 

Set i = argmin j∈ N { ̄x j | ̄x j > 0 } . 
Set x̄ i = 0 , ˆ x i = 0 . 

End 

Output: a feasible solution ˆ x of QKP . 

. Numerical experiments 

We summarize our algorithmic framework in Algorithm 4 ,

here at each iteration we update the perturbation Q p of the para-

etric relaxation and, at every m iterations, we add to the relax-

tion, the valid inequalities considered in this paper, namely, SCI ,

efined in (32) , CILS , defined in (34) , and SCILS , defined in (36) . 

The numerical experiments performed had the following main

urposes, 
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Algorithm 4 A cutting plane algorithm for the QKP. 

Input: Q ∈ S 
n , max.n cuts . 

k := 0 , B 0 := I, μ0 := 1 . 

Let λi (Q ) , v i be the i th largest eigenvalue of Q and corre- 

sponding eigenvector. 

Q n : = 

∑ n 
i =1 ( −| λi (Q ) | −1) v i v T i (or Q n : = 

∑ n 
i =1 ( min { λi , −10 −6 }) 

v i v T i ), Q 

0 
p := Q − Q n . 

Solve CQP Q p , with Q p := Q 

0 
p , and obtain x (Q 

0 
p ) , X(Q 

0 
p ) . 

∇p ∗
CQP 

(Q 

0 
p ) := X(Q 

0 
p ) − x (Q 

0 
p ) x (Q 

0 
p ) 

T . 

Z 0 := Q 

0 
p − Q . 

�0 := ∇p ∗
CQP 

(Q 

0 
p ) + (2 | λmin (∇p ∗

CQP 
(Q 

0 
p ) | + 0 . 1) I. 

While (stopping criterium is violated) 

Run Algorithm 1, where Q 

k +1 
p is obtained and re- 

laxation CQP Q p , with Q p := Q 

k +1 
p is solved. Let 

(x (Q 

k +1 
p ) , X(Q 

k +1 
p )) be its optimal solution. 

upper.bound k +1 := p ∗
CQP 

(Q 

k +1 
p ) . 

Run Algorithm 3, where ˆ x is obtained. 

lower.bound k +1 := ˆ x T Q ̂  x . 

If k mod m == 0 

Solve problem (31) and obtain cuts SCI in (32). 

Add the max { n, max.n cuts } cuts SCI with the 

largest violations at (x (Q 

k +1 
p ) , X(Q 

k +1 
p )) , to 

CQP Q p . 

n cuts := 0 . 

While ( n cuts < max.n cuts & MIQP 1 feasible) 

Solve MIQP 1 and add the CI and CILS ob- 

tained to CQP Q p . 

Add the “no-good” cut (35) to MIQP 1 . 

n cuts := n cuts + 1 . 

End 

n cuts := 0 . 

While ( n cuts < max.n cuts & MILP 2 feasible) 

Solve MILP 2 and add the CI and SCILS ob- 

tained to CQP Q p . 

Add the “no-good” cut (38) to MILP 2 . 

n cuts := n cuts + 1 . 

End 

End 

k := k + 1 . 

End 

Output: Upper bound upper.bound k , lower bound 

lower.bound k , and feasible solution ˆ x to QKP . 
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C  
• verify the impact of the valid inequalities, SCI , CILS , and SCILS ,

when iteratively added to cut the current solution of a relax-

ation of QKP , 

• verify the effectiveness of the IPM described in Section 3 in de-

creasing the upper bound while optimizing the perturbation Q p ,
• compute the upper and lower bounds obtained with the pro-

posed algorithmic approach described in Algorithm 4 , and com-

pare them, with the optimal solutions of the instances. 

We coded Algorithm 4 in MATLAB, version R2016b, and ran the

code on a notebook with an Intel Core i5-4200U CPU 2.30 giga-

hertz, 6 gigabytes RAM, running under Windows 10. We used the

primal-dual IPM implemented in Mosek, version 8, to solve the re-

laxation CQP Q p , and, to solve the separation problems MIQP 1 and

MILP 2 , we use Gurobi, version 8. 

The input data used in the first iteration of the IPM described

in Algorithm 1 ( k = 0 ) are: B 0 = I, μ0 = 1 . We start with a matrix

Q 

0 
p , such that Q − Q 

0 
p is negative definite. By solving CQP Q p , with

Q p := Q 

0 
p , we obtain x (Q 

0 
p ) , X(Q 

0 
p ) , as its optimal solution, and

set ∇p ∗
CQP 

(Q 

0 
p ) := X(Q 

0 
p ) − x (Q 

0 
p ) x (Q 

0 
p ) 

T . Finally, the positive defi-

niteness of Z 0 and �0 are assured by setting: Z 0 := Q 

0 
p − Q and

�0 := ∇p ∗
CQP 

(Q 

0 
p ) + (2 | λmin (∇p ∗

CQP 
(Q 

0 
p ) | + 0 . 1) I. 

Our randomly generated test instances were also used by

Cunha, Simonetti, and Lucena (2016) , who provided us with the

instances data and with their optimal solutions. Each weight w j ,

for j ∈ N , was randomly selected in the interval [1, 50], and the ca-

pacity c , of the knapsack, was randomly selected in [50 , 
∑ n 

j=1 w j ] .

The procedure used by Cunha to generate the instances was based

on previous works ( Billionnet & Calmels, 1996; Caprara et al., 1999;

Chaillou et al., 1989; Gallo et al., 1980; Michelon & Veillieux, 1996 ).

The following labels identify the results presented in Tables 3 ,

5 and 6 . 

• OptGap (%): = ((upper bound − opt)/opt) × 100, where opt is

the optimal solution value (the relative optimality gap), 
• Time (seconds) (the computational time to compute the

bound), 
• DuGap (%) : = (upper bound − lower bound)/(lower bound)

× 100, where the lower bound is computed as described in

Section 6 (the relative duality gap), 
• Iter (the number of iterations), 
• Cuts (the number of cuts added to the relaxation), 
• Time MIP (seconds) (the computational time to obtain cuts CILS

and SCILS ). 

To get some insight into the effectiveness of the cuts proposed,

we initially applied them to 10 small instances with n = 10 . In

Table 3 we present average results for this preliminary experiment,

where we iteratively add the cuts to the following linear relaxation

( ˜ LPR ) 

max trace (QX ) 

s.t. 

n ∑ 

j=1 

w j x j ≤ c, 

0 ≤ X i j ≤ 1 , ∀ i, j ∈ N 

0 ≤ x i ≤ 1 , ∀ i ∈ N 

X ∈ S 
n . 

(48)

In the first row of Table 3 , the results correspond to the solution

of the linear relaxation 

˜ LPR with no cuts. In SCI 1 , we add only the

most violated cut from the n cuts in SCI to ˜ LPR at each iteration,

and in the SCI we add all n cuts. In CIL S and SCIL S , we solve MIQP

and MILP problems to find the most violated cut of each type. The

last row of the table (All) corresponds to results obtained when we

add all n cuts in SCI , and one cut of each type, CILS and SCILS . In

these initial tests, we run up to 50 iterations, and in most cases,

stop the algorithm when no more cuts are found to be added to

the relaxation. 
Fig. 1 depicts the optimality gaps from Table 3 . There is a trade-

ff between the quality of the cuts and the computational time

eeded to find them. Considering a unique cut of each type, we

ote that SCILS is the strongest cut (OptGap = 9 . 121% ), but the

omputational time to obtain it, if compared to CILS and SCI , is

igger. Nevertheless, a decrease in the times could be achieved

ith a heuristic solution for the separation problems, and also by

he application of better stopping criteria for the cutting plane al-

orithm. We point out that using all cuts together we find a bet-

er upper bound than using each type of cut separately (OptGap

 3 . 315% ). 

We now analyze the effectiveness of our IPM in decreasing the

pper bound while optimizing the perturbation Q p . To improve

he bounds obtained, besides the constraints in (48) , we also con-

ider in the initial relaxation, the valid equations X ii = x i , the Mc-

ormick inequalities X ij ≤ X ii , and the valid inequalities obtained by
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Fig. 1. Average optimality gaps from Table 3 . 

Table 3 

Impact of the cuts added to ˜ LPR on 10 small instances ( n = 10 ). 

Method OptGap Time Iter Cuts Time MIP 

(%) (seconds) (seconds) 

˜ LPR 38.082 0.35 1.0 

SCI 1 36.703 32.38 1.1 28.4 

SCI 10.036 39.98 3.0 364.1 

CILS 19.719 9.00 2.7 82.2 6.91 

SCILS 9.121 266.81 50.0 794.3 198.12 

ALL 3.315 315.82 28.3 646.6 264.91 

m  

a  

X

 

o  

p  

g

 

 

 

2  

S  

t  
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t  

t  

Table 4 

SDP bound vs IPM bound at iterations 1 and 20, for two initial matrices Q 0 p . 

Q 0 p Inst n gap 1 (%) gap 20 (%) 

Q a p I1 50 0.30 0.01 

I2 50 0.73 0.03 

I3 50 0.14 0.00 

I4 50 1.02 0.21 

I5 50 0.59 0.09 

I1 100 1.47 0.14 

I2 100 0.59 0.04 

I3 100 0.51 0.05 

I4 100 1.38 0.26 

I5 100 0.73 0.06 

Q b p I1 50 0.01 0.00 

I2 50 0.30 0.09 

I3 50 0.08 0.03 

I4 50 0.10 0.02 

I5 50 0.03 0.03 

I1 100 0.04 0.00 

I2 100 0.02 0.01 

I3 100 0.03 0.01 

I4 100 0.12 0.04 

I5 100 0.02 0.01 

Table 5 

Results for Algorithm 4 ( n = 50 ). 

Inst OptGap Time DuGap Iter Time MIP 

(%) (seconds) (%) (seconds) 

I1 0.23 1013.50 0.27 100 641.98 

I2 0.00 632.50 0.00 64 411.67 

I3 0.00 392.55 0.00 44 205.70 

I4 0.00 289.97 0.00 31 160.37 

I5 0.21 1093.60 0.37 10 698.04 

Table 6 

Results for Algorithm 4 ( n = 100 ). 

Inst OptGap Time DuGap Iter Time MIP 

(%) (seconds) (%) (seconds) 

I1 0.00 2035.30 0.00 20 737.86 

I2 0.25 2177.30 0.65 20 919.41 

I3 0.00 2007.10 0.00 20 773.00 

I4 0.12 1885.90 0.84 20 828.98 

I5 0.04 2309.50 0.20 20 970.49 

Q  

t

g

g
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T  

b  
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s  
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w
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s  

o  

I  
ultiplying the capacity constraint by each nonnegative variable x i ,

nd also by (1 − x i ) , and then replacing each bilinear term x i x j by

 ij . We then start the algorithm solving the following relaxation. 

( QPR ) 

max x T (Q − Q 

0 
p ) x + trace (Q 

0 
p X ) 

s.t. 

n ∑ 

j=1 

w j x j ≤ c, 

n ∑ 

j=1 

w j X i j ≤ cX ii , ∀ i ∈ N 

n ∑ 

j=1 

w j (X j j − X i j ) ≤ c(1 − X ii ) , ∀ i ∈ N 

X ii = X ii , ∀ i ∈ N 

X i j ≤ X ii , ∀ i, j ∈ N 

0 ≤ X i j ≤ 1 , ∀ i, j ∈ N 

0 ≤ x i ≤ 1 , ∀ i ∈ N 

X ∈ S 
n . 

(49) 

In order to evaluate the influence of the initial decomposition

f Q on the behavior of the IPM, we considered two initial decom-

ositions. In both cases, we compute the eigendecomposition of Q ,

etting Q = 

∑ n 
i =1 λi v i v T i . 

• For the first decomposition, we set Q n := 

∑ n 
i =1 (−| λi | − 1) v i v T i ,

and Q 

0 
p := Q − Q n / 2 . We refer to this initial matrix Q 

0 
p as Q 

a 
p . 

• For the second, we set Q n := 

∑ n 
i =1 ( min { λi , −10 −6 } ) v i v T i , and

Q 

0 
p := Q − Q n / 2 . We refer to this initial matrix Q 

0 
p as Q 

b 
p . 

In Table 4 , we compare the bounds obtained by our IPM after

0 iterations ( boundIPM 20 ), with the bounds given from the linear

DP relaxation obtained by taking Q 

0 
p = Q in (49) , and adding to it

he semidefinite constraint X − xx T � 0 ( boundSDP ). As mentioned

n Section 4 , these are the best possible bounds that can be ob-

ained by the IPM algorithm. We also show in Table 4 how close

o boundSDP , the bound computed with the initial decomposition
 

0 
p ( boundIPM 1 ) in relaxation (49) is. The values presented in the

able are 

ap 1 (%) = (boundIP M 1 − boundSDP ) /boundSDP ∗ 100 

ap 20 (%) = (boundIP M 20 − boundSDP ) /boundSDP ∗ 100 

For the experiment reported in Table 4 , we consider 10

nstances with n = 50 and 100. We see from the results in

able 4 that in 20 iterations, the IPM closed the gap to the SDP

ounds for all instances. When starting from Q 

a 
p , we end up with

n average bound less than 0.1% of the SDP bound, while when

tarting from Q 

b 
p , this percentage decreases to only 0.03%. We also

tart from better bounds when considering Q 

b 
p , and therefore, we

se this matrix as the initial decomposition for the IPM in the next

xperiments. The results in Table 4 show that the IPM developed

n this paper is effective to solve the parametric problem (6) , con-

erging to bounds very close to the solution of the SDP relaxation,

hich are their minimum possible values. 

We finally present results obtained from the application of

lgorithm 4 , considering the parametric quadratic relaxation, the

PM, and the cuts. In Tables 5 and 6 we show the results for the

ame instances with n = 50 and n = 100 considered in the previ-

us experiment. The cuts are added at every m iterations of the

PM and the numbers of cuts added at each iteration are n SCI ,
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5 CILS and 5 SCILS . Note that when solving each MIQP or MILP

problem, besides the cut CIL S or SCIL S , we also obtain a cover in-

equality CI . We check if this CI was already added to the relax-

ation, and if not, we add it as well. We stop Algorithm 4 when a

maximum number of iterations is reached or when DuGap is suf-

ficiently small. 

For the results presented in Table 5 ( n = 50 ), we set the max-

imum number of iterations of the IPM equal to 100, and m = 10 .

The execution of each separation problem was limited to 3 sec-

onds, and the best solutions obtained in this time limit was used

to generate the cuts. 

For the results presented in Table 6 ( n = 100 ), we set the max-

imum number of iterations of the IPM equal to 20, and m = 4 . In

this case, the execution of each separation problem was limited to

10 seconds. 

We note from the results in Tables 5 and 6 , that the alterna-

tion between the iterations of the IPM to improve the perturba-

tion Q p of the relaxation and the addition of cuts to the relaxation,

changing the search direction of the IPM, is an effective approach

to compute bounds for QKP . Considering the stopping criterion im-

posed to Algorithm 4 , it was able to converge to the optimum so-

lution of three out of five instances with n = 50 and of two out

of five instances with n = 100 . The average optimality gap for all

ten instances is less than 0.1%. The heuristic applied also computed

good solutions for the problem. The average duality gap for the 10

instances is less than 0.25%. 

We note that our algorithm spends a high percentage of its run-

ning time solving the separation problems, and also solving the

linear systems to define the direction of improvement in the IPM

algorithm. The running time of both procedures can be improved

by a more judicious implementation. There are two parameters in

Algorithm 4 that can also be better analyzed and tuned to improve

the results, namely, m and the time limit for the execution of the

separation problems. As mentioned before, these problems could

still be solved by heuristics. Finally, we note that the alternation

between the IPM iterations and addition of cuts to the relaxation

could be combined with a branch-and-bound algorithm in an at-

tempt to converge faster to the optimal solution. In this case, the

cuts added to the relaxations would include the cuts that define

the branching and the update on Q p would depend on the branch

of the enumeration tree. These are directions for the continuity of

the research on this work. 

8. Conclusion 

In this paper we present a cutting plane algorithm (CPA) to iter-

atively improve the upper bound for the quadratic knapsack prob-

lem (QKP). The initial relaxation for the problem is given by a para-

metric convex quadratic problem, where the Hessian Q of the ob-

jective function of the QKP is perturbed by a matrix parameter Q p ,

such that Q − Q p � 0 . Seeking for the best possible bound, the con-

cave term x T (Q − Q p ) x, is then kept in the objective function of

the relaxation and the remaining part, given by x T Q p x is linearized

through the standard approach that lifts the problem to space of

symmetric matrices defined by X := xx T . 

We present a primal-dual interior point method (IPM), which

update the perturbation Q p at each iteration of the CPA aiming at

reducing the upper bound given by the relaxation. We also present

new classes of cuts that are added during the execution of the CPA,

which are defined on the lifted variable X , and derived from cover

inequalities and the binary constraints. 

We show that both the IPM and the cuts generated are effec-

tive in improving the upper bound for the QKP and note that these

procedures could be applied to more general binary indefinite

quadratic problems as well. The separation problems described to
enerate the cuts could also be solved heuristically, in order to ac-

elerate the process. 

We note that the search for the best perturbation Q p , by our

PM, is updated with the inclusion of cuts to the relaxation. In

he set of cuts added, we could also consider cuts defined by

he branching procedure in a branch-and-bound algorithm. In this

ase, we could have the perturbation Q p optimized during all the

escend on the branch-and-bound tree, considering the cuts the

ave been added to the relaxations. 

Finally, we show that if the positive semidefinite constraint

 − xx T � 0 was introduced in the relaxation of the QKP, or any

ther indefinite quadratic problem (maximizing the objective func-

ion), then the decomposition of objective function, that leads to a

onvex quadratic SDP relaxation, where a perturbed concave part

f the objective is kept, and the remaining part is linearized, is not

ffective. In this case the best bound is always attained when the

hole objective function is linearized, i.e., when the perturbation

 p is equal to Q . This observation also relates to the well known DC

difference of convex) decomposition of indefinite quadratics that

ave been used in the literature to generate bounds for indefinite

uadratic problems. Once more, in case the positive semidefinite

onstraint is added to the relaxation, the DC decomposition is not

ffective anymore, and the alternative linear SDP relaxation leads

o the best possible bound. As corollary from this result, we see

hat the bound given by the convex quadratic relaxation cannot be

etter than the bound given by the corresponding linear SDP re-

axation. This last result was already proved in the literature, as

entioned in Section 4 . 
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