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1. Introduction

We study a convex quadratic programming (CQP) relaxation of
the quadratic knapsack problem (QKP),

P i=max  x'Qx
(QKP) s.t. wix <c (1)
x e {0,1}",

where Qe S" is a symmetric n x n nonnegative integer profit ma-
trix, w e ZT, is a vector of positive integer weights for the items,
and c € Z,, is the knapsack capacity with ¢ > w;, for all ie N :=
{1,...,n}. The binary (vector) variable xindicates which items are
chosen for the knapsack, and the inequality in the model, known
as a knapsack inequality, ensures that the selection of items does
not exceed the knapsack capacity. We note that any linear costs in
the objective can be included on the diagonal of Q by exploiting
the {0, 1} constraints and, therefore, are not considered.

The QKP was introduced in Gallo, Hammer, and Simeone
(1980) and was proved to be NP-Hard in the strong sense by re-
duction from the clique problem. The quadratic knapsack problem
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is a generalization of the knapsack problem, which has the same
feasible set of the QKP, and a linear objective function in x. The
linear knapsack problem can be solved in pseudo-polynomial time
using dynamic programming approaches with complexity of O(nc).

The QKP appears in a wide variety of fields, such as biol-
ogy, logistics, capital budgeting, telecommunications and graph
theory, and has received a lot of attentioOn in the last decades.
Several papers have proposed branch-and-bound algorithms for
the QKP, and the main difference between them is the method
used to obtain upper bounds for the subproblems (Billionnet &
Calmels, 1996; Billionnet, Faye, & Soutif, 1999; Caprara, Pisinger, &
Toth, 1999; Chaillou, Hansen, & Mahieu, 1989; Helmberg, Rendl, &
Weismantel, 1996; 2000). The well known trade-off between the
strength of the bounds and the computational effort required to
obtain them is intensively discussed in Pisinger (2007), where
semidefinite programming (SDP) relaxations proposed in Helmberg
et al. (1996) and Helmberg, Rendl, and Weismantel (2000) are
presented as the strongest relaxations for the QKP. The linear
programming (LP) relaxation proposed in Billionnet and Calmels
(1996), on the other side, is presented as the most computation-
ally inexpensive.

Both the SDP and the LP relaxations have a common fea-
ture, they are defined in the symmetric matrix lifted space
determined by the equation X =xxT, and by the replacement of
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the quadratic objective function in QKP with a linear function in
X, namely, trace(QX). As the constraint X = xx is nonconvex, it is
relaxed by convex constraints in the relaxations. The well known
McCormick inequalities (McCormick, 1976), and also the semidef-
inite constraint, X — xx” = 0, have been extensively used to relax
the nonconvex constraint X = xxT, in relaxations of the QKP.

In this paper, we investigate a CQP relaxation for the QKP,
where instead of linearizing the objective function, we perturb
the objective function Hessian Q, and maintain the (concave) per-
turbed version of the quadratic function in the objective, lineariz-
ing only the remaining part derived from the perturbation. Our
relaxation is a parametric convex quadratic problem, defined as
a function of a matrix parameter Qp, such that Q — Qp < 0. This
matrix parameter is iteratively optimized by a primal-dual interior
point method (IPM) to generate the best possible bound for the
QKP. During this iterative procedure, valid cuts are added to the
formulation to strengthen the relaxation, and the search for the
best perturbation is adapted accordingly. Our procedure alternates
between optimizing the matrix parameter and applying cutting
planes generated by valid inequalities. At each iteration of the
procedure, a new bound for the QKP is computed, considering
the updated matrix parameter and the cuts already added to the
relaxation.

In Billionnet, Elloumi, and Lambert (2016) (see also Billionnet,
Elloumi, & Lambert, 2012; Billionnet, Elloumi, & Plateau, 2009 for
previous results), a similar parametric convex quadratic problem
was investigated for the more general problem of minimizing a
quadratic function of bounded integer variables subject to a set of
quadratic constraints. However, the authors consider a unique per-
turbation of the Hessian of each quadratic function in the model,
to reformulate it as a mixed integer quadratic programming (MIQP)
problem with a CQP continuous relaxation. They propose to solve
the reformulated problem by an MIQP solver. To reformulate the
problem, the authors also seek the best possible perturbations of
the Hessians, which are considered as the ones, such that the solu-
tion of the continuous relaxation of the MIQP is maximal. In other
words, they seek perturbations that lead to the best bound at the
root node of a branch-and-bound algorithm. The authors claim that
these perturbations can be computed from an optimal dual solu-
tion of a standard SDP relaxation of the problem. However, the
dual SDP problem is not correctly formulated in the paper, and
the proof presented is not correct. In this paper, we prove the re-
sult following the idea presented in Billionnet et al. (2009), which
is based on Lemarchal and Oustry (1999, Theorem 4.4). Further-
more, we show that the result is valid to the more general problem
where the feasible set is any bounded polyhedron with nonempty
interior. We also note that, if no cuts are added to the relaxation
during the iterations of our interior point method, it becomes an
alternative way of obtaining the optimal perturbation considered
in Billionnet et al. (2016).

Another similar approach to handle nonconvex quadratic func-
tions consists in decomposing it as a difference of convex (DC)
quadratic function (Horst & Thoai, 1999). DC decompositions
have been extensively used in the literature to generate convex
quadratic relaxations of nonconvex quadratic problems. See, for ex-
ample, Fampa, Lee, and Melo (2017) and references therein. Unlike
the approach used in DC decompositions, we do not necessarily
decompose xTQx as a difference of convex functions, or equiva-
lently, as a sum of a convex and a concave function. Instead, fol-
lowing the approach introduced in Billionnet et al. (2016), we de-
compose it as a sum of a concave function and a quadratic term
derived from the perturbation applied to Q. This perturbation can
be any symmetric matrix Qp, such that Q — Qp < 0.

In an attempt to obtain stronger bounds, we also investi-
gated the parametric convex quadratic SDP problem, where we
add to our CQP relaxation, the positive semidefinite constraint

Table 1
Equations number corresponding to acronyms.
QKP (1) I (27)
QKPiifreq (2) ECI (28)
LPR (3) LCI (29)
CQP,, (5) e (32)
LSDP (21) CILS (34)
QSDP,, (15) SCILS (36)
SKILS (41)

X —xxT = 0. An IPM could also be applied to this parametric prob-
lem in order to generate the best possible bound. Nevertheless,
we prove an interesting result concerning the relaxations, in case
the constraint X —xxT = 0 is imposed: the tightest bound gener-
ated by the parametric quadratic SDP relaxation is obtained when
the perturbation Q, is equal to Q, or equivalently, when we lin-
earize the entire objective function, obtaining the standard linear
SDP relaxation. We conclude, therefore, that keeping the (concave)
perturbed version of the quadratic function in the objective of the
SDP relaxation does not lead to a tighter bound. A result that could
be derived from our analysis is that the CQP relaxation cannot gen-
erate a tighter bound than the standard linear SDP relaxation. This
result was already proved in Billionnet et al. (2016), and we show
that it still holds for unbounded and nonconvex feasible set.

Another contribution of this work is the development of valid
inequalities for the CQP relaxation on the lifted matrix variable.
The inequalities are first derived from cover inequalities for the
knapsack problem. The idea is then extended to knapsack inequali-
ties. Taking advantage of the lifting X :=xx”, we propose new valid
inequalities that can also be applied to more general relaxations
of binary quadratic programming problems that use the same lift-
ing. We discuss how cuts for the quadratic relaxation can be ob-
tained by the solution of separation problems, and investigate pos-
sible dominance relation between the inequalities proposed.

Finally, we present an algorithmic framework, where we iter-
atively improve the upper bound for the QKP by optimizing the
choice of the perturbation of the objective function and adding
cutting planes to the relaxation. At each iteration, lower bounds for
the problem are also generated from feasible solutions constructed
from a rank-one approximation of the solution of the CQP relax-
ation.

In Section 2, we introduce our parametric convex quadratic re-
laxation for the QKP. In Section 3, we explain how we optimize
the parametric problem over the perturbation of the objective;
i.e., we present the IPM applied to obtain the perturbation that
leads to the best possible bound. In Section 4, we present our con-
clusion about the parametric quadratic SDP relaxation, and relate
our results to the results presented in Billionnet et al. (2016). In
Section 5, we introduce new valid inequalities on the lifted matrix
variable of the convex quadratic model, and we describe how cut-
ting planes are obtained by the solution of separation problems. In
Section 6, we present the heuristic used to generate lower bounds
to the QKP. In Section 7, we discuss our numerical experiments
and in Section 8, we present our final remarks.

Notation
If AeS" then svec(A) is a vector whose entries come from A
by stacking up its ‘lower half’, i.e.,

svec(A) := (a1, .., n1s 022y -+ Gp2s + ., Q)T € RPOFD/2,

The operator sMat is the inverse of svec, i.e., sMat(svec(A)) = A.

We also denote by Ai(A), the smallest eigenvalue of A and by
Xi(A) the ith largest eigenvalue of A.

To facilitate the reading of the paper, Table 1 relates the
acronyms used with the associated equations numbers.
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Table 2
List of abbreviations.

cQpr Convex Quadratic Programming

QKP Quadratic Knapsack Problem

SDP Semidefinite Programming

MIQP  Mixed Integer Quadratic Programming
MILP Mixed Integer Linear Programming

We also show the standard abbreviations used in the paper in
Table 2.

2. A parametric convex quadratic relaxation

In order to construct a convex relaxation for QKP, we start by
considering the following standard reformulation of the problem
in the lifted space of symmetric matrices, defined by the lifting
X:=xx".

Poxp,,.,, ‘= Max  trace(QX)
st. wix<c
(QKPireq) X — xxT (2)
x e {0, 1}

We consider an initial LP relaxation of QKP, given by

max trace(QX) (3)
s.t. x,X) eP,

where P c [0, 1]" x S" is a bounded polyhedron, such that
{(x,X) : wix<c, X=xxT, xe{0,1}"} c P.

2.1. The perturbation of the quadratic objective

(LPR)

Next, we propose a convex quadratic relaxation with the same
feasible set as LPR, but maintaining a concave perturbed version of
the quadratic objective function of QKP, and linearizing only the
remaining nonconcave part derived from the perturbation. More
specifically, we choose Q, € S" such that

Q-Qy=0, (4)

and we get

xTQx = xT(Q — Qp)x +xTQpx = X7 (Q — Qp)x + trace(QuxxT)
=xT(Q — Qp)x + trace(QpX).

Finally, we define the parametric convex quadratic relaxation of
QKP :

Pegp(Qp) 1= max xT(Q — Qp)x + trace(QpX)

(CQPy,) st. (x,X)eP.

(3)

3. Optimizing the parametric problem over the parameter Q,

The upper bound ijQP(Qp) in the convex quadratic problem
QP depends on the feasible perturbation Q, of the Hessian Q.
To find the best upper bound, we consider the parametric problem

paramgyp = Qg}zipllo Pop(Qp)- (6)

We solve (6) with a primal-dual interior-point method (IPM), and
we describe in this section how the search direction of the algo-
rithm is obtained at each iteration.

We start with minimizing a log-barrier function. We use the
barrier function, B, (Qp, Z) with barrier parameter, >0, to obtain
the barrier problem

min B, (Qp,2) := p’EQP(Qp) — nlogdetZ

S.t. Q_Qp+Z:0
Z >0,

GA) (7)

where ZeS" and A €S" denote, respectively, the slack and the dual
symmetric matrix variables. We consider the Lagrangian function

Lu(Qp,Z, A) := pgop(Qp) — logdetZ + trace((Q — Qp +2)A).

Some important points should be emphasized here. We first
note that the objective function for p’EQP(Qp) is linear in Qp,
i.e., this function is the maximum of linear functions over feasible
points x, X. Therefore, this is a convex function.

Moreover, as will be detailed next, the search direction of the
IPM, computed at each iteration of the algorithm, depends on
the optimum solution x = x(Qp), X =X (Qp) of cQPy,. for a fixed
matrix Qp. At each iteration of the IPM, we have Z>-0, and there-
fore Q — Qp < 0. Thus, problem CQPq, maximizes a strictly con-
cave quadratic function, subject to linear constraints over a com-
pact set P, and consequently, has a unique optimal solution (see
e.g. Turlach & Wright, 2015). From standard sensitivity analysis re-
sults, e.g. Fiacco (1983, Corollary 3.4.2), Hogan (1973), and Danskin
(1966, Theorem 1), as the optimal solution x = x(Qp), X = X(Qp) is
unique, the function p’EQP(Qp) is differentiable, and therefore, the
Lagrangian function is also differentiable.

Since Qp appears only in the objective function in cQpP,,. and

xT(Q — Qp)x + trace(Q,X) = xTQx + trace(Qp (X — xx7)),
we have
VpéQP(QP) =X_XXT. (8)

The optimality conditions for (7) are obtained by differentiating
the Lagrangian L, with respect to Qp, A, Z, respectively,

oL

ﬁ D Vpip(Q)—A = 0,

aL,

. — = 9
TN Q-Q+Z 0, 9)
E;LZ” : —uZ '+ A = 0, (or)ZA-pul=0.

This gives rise to the nonlinear system
Vpegp(Qp) — A

Q-Q+7Z =0,
ZA —pul

Gu(Qp, A Z) = Z A>0. (10)

We use a BFGS approximation for the Hessian of Pegp- since it
is not guaranteed to be twice differentiable everywhere, and up-
date it at each iteration (see Lewis & Overton, 2013). We denote
the approximation of VgFGSp’EQP(Qp) by B, and begin with the ap-
proximation By = I. Recall that if Q",QI’§+1 are two successive it-
erates with gradients Vp’EQP(Q’I;), VpEQP(Q}j“), respectively, with
current Hessian approximation By, € S*™+1)/2_ then we set
Y = VPEQP(QSH) - VP’EQP(QI;), Sk = Qg“ - QE,
and,

v = (Y Si), w := (svec(Sy), Bysvec(Sy)).

Finally, we update the Hessian approximation with
1 1
Biq := By + E(svec(Yk)svec(Y,f)) - 6(Bksvec(Sk)svec(Sk)TBk).

We note that the curvature condition v > 0 should be verified
to guarantee the positive definiteness of the updated Hessian. In
our implementation, we address this by skipping the BFGS update
when v is negative or too close to zero.

The equation for the search direction is

AQy
GL(Qp,A,Z)(AA) = —Gu(Qp. A.2). (1)
AZ
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where

Vpiop(Qp) — A Ry
Gu(Qp.AZ)=| Q-Q+Z |={Rp] (12)
ZA ~ ul R

If B is the current estimate of the Hessian, then (11) becomes

sMat(B svec(AQ,)) — AA = —Ry,

—AQp + AZ = —R),

ZAAN + AZA = —R..
We can substitute for the variables AA and AZ in the third equa-
tion of the system. The elimination gives us a simplified system,
and therefore, we apply it, using the following two equations for
elimination and backsolving,

AA =sMat(B svec(AQp)) + Ry, AZ=—-Rp+ AQ,. (13)
Accordingly, we have a single equation to solve, and the system
finally becomes

Z sMat(B svec(AQp)) + (AQp)A = —R. — ZRy + RpA.

We emphasize that to compute the search direction at each it-
eration of our IPM, we need to update the residuals defined in (12),
and therefore we need the optimal solution x = x(Qp), X = X(Qp)
of the convex quadratic relaxation cQpP,, for the current perturba-
tion Qp. Problem CQPy, is thus solved at each iteration of the IPM
method, each time for a new perturbation Qp, such that Q — Q, <
0.

In Algorithm 1, we present in details an iteration of the IPM.
The algorithm is part of the complete framework used to generate
bounds for QKP, as described in Section 7.

Remark 1. Algorithm is an interior-point method with a quasi-
Newton step (BFGS). The object function we are minimizing is
differentiable with exception possibly at the optimum. A com-
plete convergence analysis of the algorithm is not in the scope of
this paper, however, convergence analysis for some similar prob-
lems can be found in the literature. In Armand, Gilbert, and Jégou
(2000), it is shown that if the objective function is always differen-
tiable and strongly convex, then it is globally convergent to the an-
alytic center of the primal-dual optimal set when u tends to zero
and strict complementarity holds.

4. The parametric quadratic SDP relaxation

In an attempt to obtain tighter bounds, a promising approach
might seem to be to include the positive semidefinite constraint
X —xxT =0 in our parametric quadratic relaxation QP and
solve a parametric convex quadratic SDP relaxation, also using
an IPM. Nevertheless, we show in this section that the convex
quadratic SDP relaxation cannot generate a better bound than the
linear SDP relaxation, obtained when we set Qp equal to Q. In fact,
as shown below, the result applies not only to the QKP, but to more
general problems as well. We emphasize here that the same result
does not apply for €QPy,. We could observe with our computa-
tional experiments that the best bounds were obtained by cQpPy,.
when we had Q — Qp # 0, for all instances considered.

Consider the linear SDP problem given by

Dispp -=Sup  trace(QX)
(LSDP) st. (x,X)eF (14)
X —xxT =0,

where x ¢ R", X € S", and F is any subset of R" x S".

Algorithm 1 Updating the perturbation Qp.

Input: k, Qf, Z*, Ak, x(Q}), X(QE), VPigp(Q)), By, 1, Ta =
0.95, 7, :=0.9.
Compute the residuals:

Rc] VPEQP(Q;;) - Ak
Ry ) =
Rc

Q- Qf+2*
VAL |
Solve the linear system for AQp:
Z¥ sMat(By svec(AQp)) + (AQy)A¥ = —R. — ZFRy + Ry AK.
Set:
AA :=sMat(By svec(AQp)) + Ry, AZ:=—Rp+ AQp.
Update Qp, Z and A:
Qi1 = Qk + @y AQy, ZM = ZE+ @pAZ, AR = AR+ agAA,

where
@p =T, x min{1, argmax, {Zy + apAZ > 0}},

@4 1= Ty x min{1, argmax, {A* + oz AA = 0}}.

Obtain the optimal solution x(Qf™!), X(Q5™!) of relaxation
CQP,, where Qp := Q},f*l.

Update the gradient of Plgp:

Vpegr(Q™h) 1= X(Q5") = x(Qp Hx(Qs™).

Update the Hessian approximation of Pigp (if v > 0):

Y = VpéQp(Qé“) - VPEQP(Qg): S = 1’5” - Qk,

v = (Y, Sk), w = (svec(Sy), Brsvec(Sy)),

1
Biy1 =By + o (svec(Ye)svec(Y)))

1
— (B TB,).
—(Bi svec(S)svec(S) " By)

Update u:

ko1 . trace(ZKTAkH)
p =

Output: Qf*T, Z+1, AR, x(QK*1), X(QE).Vpgp(Qf),
B k+1
k1o M.

We now consider the parametric SDP problem given by

xT(Q — Qp)x + trace(QpX)
x,X) e F
X —xxT =0,

paSDPQP 1= sup
(QSDP,,) st
(15)

where Q — Qp < 0.

Theorem 2. LetF be any subset of R" x S™. For any choice of matrix
Qp satisfying Q — Qp < 0, we have

paSDPQP > DPlspp- (16)
Moreover, inff{ pasm,qp :Q - Qp = 0} = pigpp-

Proof. Let (% X) be a feasible solution for LSDP. We have

Pasorg, = &' (Q — Qp)X + trace(QpX) (17)
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= trace((Q — Qp) (XX — X)) + trace((Q — Q)X) + trace(Q,X)

(18)
= trace((Q — Q) (&&" — X)) + trace(QX) (19)
> trace(QX). (20)

The inequality (17) holds because (%, X) is also a feasible solution
for QSDPq,. The inequality in (20) holds because of the negative

semidefiniteness of Q — Qp and %&" — X. Because paSDPQ is an up-

per bound on the objective value of LSDP at any feasible solu-
tion, we can conclude that pBSDPQ > p*gpp- Clearly, Qp = Q satis-
P

fies Q — Qp = 0 < 0 and LSDP is the same as QSDPQp for this choice
of Qp. Therefore, inf{paSDpQ 1 Q—-Qp=0}=pigpp. O
P

Notice that in Theorem 2 we do not require that F be convex
nor bounded. Also, in principle, for some choices of Qp, we could
have pBSDPQp = +o0 with pjpp = 400 or not.

Remark 3. As a corollary from Theorem 2, we have that the upper
bound for QKP, given by the solution of the quadratic relaxation
CQPq,, cannot be smaller than the upper bound given by the so-
lution of the SDP relaxation obtained from it, by adding the SDP
constraint X — xx” > 0 and setting Qp equal to Q.

In Billionnet et al. (2016, Theorem 1), this result was already
proven for the case where F is a particular convex set. The authors
also claim that in this particular case, the best bound obtained by
the CQP relaxation is exactly the same as the bound given by the
linear SDP relaxation, and that the best perturbation can be de-
rived from the optimal dual variables of the SDP problem. Never-
theless the proof presented in Billionnet et al. (2016) is based on
an incorrect formulation of the dual SDP problem. In the follow-
ing, we prove that the result holds, following the same idea used
in Billionnet et al. (2009), which is based on Lemarchal and Oustry
(1999, Theorem 4.4). Furthermore, we show that the result is valid
to the more general problem where the feasible set is any bounded
polyhedron with nonempty interior. The result then applies to the
CQP relaxations that we use in this work.

Theorem 4. Consider F Cc R" x S" as a bounded polyhedron with

nonempty interior, defined by:
Fi={xX) :trace(l'X) +ylx <b,, k=1,....q}

where T’y e S" and y, e R", for k=1,...,q.
Define

DPhorcop(Qp) 1= max{x" (Q — Qp)x + trace(QpX) : (x.X) e F},

where Q — Qp < 0, and

Drowspp := Max{trace(QX) : (x,X) e F, X —xx" > 0}. (21)
Then

QEnQillo Prorcap(Qp) = Prowspp-

Proof. First we consider the parametric problem

Q[PQEO Prowcor (@)
— i T _
= Qr_anpr;O rrg(x X' (Q — Qp)x + trace(QpX)
s.t. trace(TX) + ylx <by. k=1,....q.
(ye=0)

(22)

Considering Qn := Qn(Qp) := Q — Qp, the Lagrangian function of
the inner maximization problem in (22) is defined as

L(x,X,y) := X" Qux + trace(Q,pX)

q
+ ) Vi (by — trace(TyX) — ¥/ x).
P

The Lagrangian dual function is then defined as

g8y) = max L(x,X.y)

= max
x.X

q
X7 Qux + trace(QpX) + ) yi(by — trace(I'X) — y/ %)
k=1

q q q
_ _ TO v T
= max trace((Qp Zkuk>X) +XTQux =Y yivdx+ Y yiebr

k=1 k=1 k=1

q q q
XTQux = D" yieyi X+ yibi. ifQp =Y ml =0,
X k=1 k=1 k=1
+00, otherwise.

q q
-1 (2:)’:&%)”2;1r (Z)’k}’k) +y7b,

k=1 k=1

q
ifQy— Y Ik =0and Y yy € range(Qn),
k=1 k=1
+o0, otherwise, )

where Q] is the pseudo-inverse of Q.

As F has nonempty interior, the Slater condition holds for the
inner maximization problem in (22). Therefore, problem (22) has
the same optimal value as

q q
Jnin -~ (Zykyk)TQi (Znn) +y'h

k=1 k=1

q
> Vi¥i € range(Qu),
k=1
h=Q-Qy=x0,y=>0,
which is equivalent to

—max t
t.Qp.y

q q
st. 3 (Zykyk>T(Q ~Q)'Y v —y'h—t =0,
k=1 k=1
Q-Qp =0,
q
> Yk € range(Q — Qp).

I

Q- wlk=0,
k=1

y=0.

By Schur complement (Horn & Zhang, 2005), this is equivalent to
the following SDP problem

—max t
t,Qp.y

q
—t—-y'b (ZYka)T/Z
s.t. k=1
q
(Zykyk)/Z Q-Q

k=1

=0,

q

Q-Y wlk=0,
k=1

y=0.
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After substitution, this is equivalent to

min —t
ty
q
—t—y'b > v )2
s k=1

-
P
E=]

q
Z}’Wk)/z > nl-Q (23)

k=1 k=1
= 0)

s 2
. o ( [ Z}
We can now derive the dual problem of (23), considering the La-

y=0.
grangian function, defined as
q
—t—yb > vk T/2
k=1

L(t,y,s.2,Z)
;7]
= —t — trace
z q
(Z}’Wk) /2 > nl-Q
k=1
q q
=—t—s(-t—y'b) - (Z ka) — trace <Z<Z}’/<Fk - Q))
=1 k=1
q
=t(s—1)+sy’b— (Zykyk) Tz — trace (z(Zy,(rk - Q))
k=1 k=1

q
=t(s—-1)+ Zyk(sbk — ysz — trace(I'y2)) + trace(QZ).
k=1
The Lagrangian dual function is defined as
h(s,z,Z) := mér} L(t,y,s,z,Z)
y=0,

q

= m(l)l} ts—1)+ Zyk(sbk - y,fz — trace(I'yZ)) + trace(QZ)
y=0, =

trace(QZ2),

= ifs=1, Sbk

—o0, otherwise.

ykz—trace(FkZ) >0,k=1,...,q,

Therefore, the dual problem of (23) is given by the maximization
of the Lagrangian dual function over the SDP cone, as in

trace(QZ2)
st. trace(I'Z) + [z < by,

[1 zT:| -0
, >

max

zZ
k=1,...,q, (24)
Z

We finally note that problems (24) and (21) are the same. Since
F has nonempty interior, then (21) is strictly feasible. Therefore,
strong duality holds for problem (21), and the result of the theo-
rem follows. O

5. Valid inequalities

We are now interested in finding valid inequalities to
strengthen relaxations of QKP in the lifted space determined by
the lifting X :=xx". Let us denote by CRel, any convex relaxation of
QKP in the lifted space, where the equation X = xxT was relaxed
in some manner, by convex constraints, i.e., any convex relaxation

of QKPyigeq
We note that if the inequality

tTx< B (25)

is valid for QKP, where 7 € Z and B € Z,, then, as xis nonnega-
tive and X :=xx,

(xX)<_T’3) <0 (26)

is a valid inequality for QKPjseq. In this case, we say that (26) is
a valid inequality for QKPjseq derived from the valid inequality
(25) for QKP.

5.1. Preliminaries: knapsack polytope and cover inequalities

We begin by recall the concepts of knapsack polytopes and
cover inequalities.

The knapsack polytope is the convex hull of the feasible points
of the knapsack problem,

KF:={x e {0,1}" : wlx < c}.

Definition 5 (Zero-one knapsack polytope).

KPol := conv(KF) = conv({x € {0, 1}" : w'x < c}).
Proposition 6. The dimension

dim(KPol ) = n,

and KPol is an independence system, i.e.,

xeKPol,y € {0,1}",y <x =y € KPol.

Proof. Recall that w; < c, Vi. Therefore, all the unit vectors e; € R",
as well as the zero vector, are feasible, and the first statement fol-
lows. The second statement is clear. O

Cover inequalities were originally presented in Balas (1975),
Wolsey (1975), see also Nemhauser and Wolsey (1988, Section I1.2).
These inequalities can be used in general optimization problems
with knapsack inequalities and binary variables and, particularly,
in QKP.

Definition 7 (Cover inequality, CI). The subset CCN is a cover if it
satisfies

> wisc

jeC

The (valid) CI is

Y x<|Cl-1. (27)
jeC

A cover C is minimal if no proper subset of C is a cover.

Definition 8 (Extended CI, ECI). Let w* := max;,cw; and define
the extension of C as

E(C) :=Cu{j e N\C:w;>w'}.
The ECI is

PIRIE

JEE(©)

Ic| - 1. (28)

Definition 9 (Lifted Cl, LCI). Given a cover C, let «;>0, Vje N\C,
and «; >0, for some je N\C, such that

doxi+ Y ax <

jeC JjeN\C

Icl -1, (29)

is a valid inequality for KF. Inequality (29) is a LCIL.

Cover inequalities are extensively discussed in Hammer,
Johnson, and Peled (1975), Balas and Zemel (1978), Balas (1975),
Wolsey (1975), Nemhauser and Wolsey (1988), and Atamtiirk
(2005). Details about the computational complexity of LCI is pre-
sented in Zemel (1989) and Gu, Nemhauser, and Savelsbergh
(1998). Algorithm 2 (Wolsey, 1998, p.17), shows how to lift a LCL It
provides a facet-defining inequality for KPol when C is a minimal
cover and f = 1.
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Algorithm 2 Procedure to Lift Cover Inequalities.
Input: A cover C and a valid inequality

Za’Jx’J + ZX' =

ieC

ICl -1,

for KF, for some f € [1, r], where r:= [N\ C|.
Sort the elements i € N\ C in ascending w; order, defining

{in. iy ... ).
For:t=ttor
&= max X:oe,Jx,J +) %
ieC
(30)
s.t. Zwllxl +Y wixi <c—w,
ieC
Xe {0, 1}ICl+t=1,
Set o, = |C| -1- t.

End

5.2. Adding cuts to the relaxation

Given a solution (x,X) of CRel, our initial goal is to obtain
a valid inequality for QKPjseq derived from a CI that is violated
by (%,X). A CI is formulated as a"x < eTo — 1, where « {0, 1}"
and edenotes the vector of ones. We then search for the CI that
maximizes the sum of the violations among the inequalities in
Yeut(o) <0, where Y := ()2 X) and

cut(a) = (“*Tg + 1).

To obtain such a CI, we solve the following linear knapsack prob-
lem,

V= maax{eT}_’cut(oe) wla > c+1, a € {0,1}"). (31)

Let a* solve (31). If v* > 0, then at least one valid inequality
in the following set of nscaled cover inequalities, denoted in the
following by SCI, is violated by (X, X).

(XX)<_eTa: * 1) <0. (32)

o

Based on the following theorem, we note that to strengthen cut
(32), we may apply Algorithm 2 to the CI obtained, lifting it to an
LCI, and finally add the valid inequality (26) derived from the LCI
to CRel.

Theorem 10. The valid inequality (26) for QKPyis..q, Which is derived
from a valid LCI, dominates all inequalities derived from a CI that can
be lifted to the LCI.

Proof. Consider the LCI (29) derived from a CI (27) for QKP. The
corresponding scaled cover inequalities (26) derived from the CI
and the LCI are, respectively,

> Xij < (ICl=1)x;, VieN,

jeC

and

Z +ZO[] 1]_(|C|*1)X1, VieN,
JjeC jeN\C

where «; >0, VjeN\C. Clearly, as all X are nonnegative, the second
inequality dominates the first, for all ieN. O

5.3. New valid inequalities in the lifted space

As discussed, after finding any valid inequality in the form of
(25) for QKP, we may add the constraint (26) to CRel when aim-
ing at better bounds. We observe now, that besides (26) we can
also generate other valid inequalities in the lifted space by taking
advantage of the lifting X:=xxT, and also of the fact that xis bi-
nary. In the following, we show how the idea can be applied to
cover inequalities.

Let

> x<B. (33)
jeC
where Cc N and B <|C|, be a valid inequality for KPol.

Inequality (33) can be either a cover inequality, CI, an extended
cover inequality, ECI, or a particular lifted cover inequality, LCI,
where «; €{0, 1}, Vje N\C in (29). Furthermore, given a general LCI,
where «; € Z,, for all je N\C, a valid inequality of type (33) can be
constructed by replacing each «; with min{e;, 1} in the LCL

Definition 11 (Cover inequality in the lifted space, CILS). Let CC N
and B <|C| as in inequality (33), and also consider here that § > 1.
We define

i,jeCi<j

as the CILS derived from (33).

Theorem 12. If inequality (33) is valid for QKP, then the CILS (34) is
a valid inequality for QKPigeq-

Proof. Considering (33), we conclude that at most (g) products
of variables x;x;, where i, jeC, can be equal to 1. Therefore, as
Xij :=x;x;, the result follows. O

Remark 13. When § = 1, inequality (33) is well known as a clique
cut, widely used to model decision problems, and frequently used
as a cut in branch-and-cut algorithms. In this case, using similar
idea to what was used to construct the CILS, we conclude that it
is possible to fix

Xij=0, foralli,jeCi<j.

Given a solution (%, X) of CRel, the following MIQP problem is
a separation problem, which searches for a CILS violated by X.

z 1= max, gy trace(XK) — B(B - 1), (MIQP )
s.t. wa>c+1,
B=ela—1,
K@, i) =0 i=1,...,n,
K@, j) < e, Lj=1...ni<]j
K@, j) < «aj, i,j=1,....,n, i<},
K(,j) >0, i,j=1,....n, i<],
K@, j)zai+oj—1, i,j=1,....,n,i<],

aec{0,1}", BeR, KeS"

If a*, B* K* solves MIQP;, with z*>0, the CILS given by
trace(K*X) < B*(B8* — 1) is violated by X. The binary vector a* de-
fines the CI from which the cut is derived. The CI is specifically
given by a*Tx <ela* -1 and B*(B* —1) determines the right-
hand side of the CILS. The inequality is multiplied by 2 because
we consider the variable K as a symmetric matrix, in order to sim-
plify the presentation of the model.

Theorem 14. The valid inequality CILS for QKPy;s.q, Which is derived
from a valid LCI in the form (33), dominates any CILS derived from a
(I that can be lifted to the LCIL

Proof. As X is nonnegative, it is straightforward to verify that if X
satisfies a CILS derived from a LCI, X also satisfies any CILS derived
from a CI that can be lifted to the LCI. O
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Any feasible solution of MIQP; such that trace(XK) > B(8 — 1)
generates a valid inequality for QKPjseq that is violated by X.
Therefore, we do not need to solve MIQP; to optimality to gener-
ate a cut. Moreover, to generate distinct cuts, we can solve MIQP,
several times (not necessarily to optimality), each time adding to
it, the following “no-good” cut to avoid the previously generated
cuts:

Ya@-a() =1, (35)
ieN

where & is the value of the variable « in the solution of MIQP,
when generating the previous cut.

We note that, if o*, B*, K* solves MIQP;, then *Tx < eTa* — 1
is a valid CI for QKP, however it may not be a minimal cover.
Aiming at generating stronger valid cuts, based in Theorem 14, we
might add to the objective function of MIQP;, the term —&e'a,
for some weight 6 > 0. The objective function would then favor
minimal covers, which could be lifted to a facet-defining LCI, that
would finally generate the CILS. We should also emphasize that if
the CILS derived from a CI is violated by a given X, then clearly,
the CILS derived from the LCI will also be violated by X.

Now, we also note that, besides defining one cover inequality
in the lifted space considering all possible pairs of indexes in C,
we can also define a set of cover inequalities in the lifted space,
considering for each inequality, a partition of the indexes in C into
subsets of cardinality 1 or 2. In this case, the right-hand side of
the inequalities is never greater than /2. The idea is made precise
below.

Definition 15 (Set of cover inequalities in the lifted space,
SCILS). Let Cc N and B <|(| as in inequality (33). Let

1. G ={(i1, j1). ..., (ip. jp)} be a partition of C, if |C] is even.

2. G: ={(1.j1). ..., (ip. jp)} be a partition of C\{ip} for each
igeC, if |C] is odd and B is odd.

3. Gt = {(io. i0). (1. j1). ... (ip. Jp)}. where {(ir. j1)..... (ip. Jp)}
is a partition of C\{ip} foreach iy eC, if |C| is odd and B is
even.

In all cases, i, <j, forall k=1,...,p.
The inequalities in the SCILS derived from (33) are given by

Y X < m (36)

(i.j}ECg

for all partitions Cs defined as above.

Theorem 16. If inequality (33) is valid for QKP, then the inequalities
in the SCILS (36) are valid for QKPjiseq-

Proof. The proof of the validity of SCILS is based on the lifting
relation Xj; = x;x;. We note that if the binary variable x; indicates
whether or not the item i is selected in the solution, the variable
X;; indicates whether or not the pair of items i and j, are both se-
lected in the solution.

1. If |C| is even, Cs is a partition of C in exactly |C|/2 subsets
with two elements each, and therefore, if at most 8 ele-
ments of C can be selected in the solution, clearly at most

LgJ subsets of Cs can also be selected.
2. If |C|] and B are odd, Cs is a partition of C\{ip} in exactly
|C —1|/2 subsets with two elements each, where iy can be

any element of C. In this case, if at most 8 elements of C

can be selected in the solution, clearly at most @ (: {QD

subsets of Cs can also be selected.

3. If |C| is odd and B is even, Cs is the union of {(iy, i)} with
a partition of C\{ip} in exactly |C —1|/2 subsets with two
elements each, where iy can be any element of C. In this

case, if at most 8 elements of C can be selected in the so-
lution, clearly at most g(: LQD subsets of Cs; can also be

selected.
O

Given a solution (%, X) of CRel, we now present a mixed linear
integer programming (MILP) separation problem, which searches
for an inequality in SCILS that is most violated by X. Let A e

(n+1) . .

{0, 1}™ “2~ In the first n columns of A we have the n x n identity
matrix. In the remaining n(n — 1)/2 columns of the matrix, there
are exactly two elements equal to 1 in each column. All columns

are distinct. For example, for n =4,

1 0 0 01 1 1 0 0 O

A o1 0o 01 0 0 1 1 O
10 o 1 0 01 0 1 0 1
o 0 0 1. 0 01 0 1 1

The columns of A represent all the subsets of items in N with one
or two elements. Let

Z* i= MaXq y Ky trace(XK) — 2v, (MILP,)
st.wla >c+1,
K, i) = 2y(i), i=1....n
n

Sy <1,

= n(n+1)/2

Ki )= Y AGOAG OO,
b= (o 1)/2 - 05,
v<('a-1)/2,

y(t) <1-AQt) + o),

ij=1,....ni<j

07 naen
t—],...,T
a<Ay< a+ ()1 -a).

n(n+1)

ae{0,1}", ye{0,1} 7,
veZ, KeSm

If a*, v*, K*, y* solves MILP,, with z* > 0, then the particular in-
equality in SCILS given by

trace(K*X) < 2v* (37)

is violated by X. The binary vector o* defines the CI from which
the cut is derived. As the CI is given by a*x <eTa* —1, we can
conclude that the cut generated either belongs to case (1) or (3) in
Definition 15. This fact is considered in the formulation of MILP,.
The vector y* defines a partition C; as presented in case (3), if
S iL,y(@) =1, and in case (1), otherwise. We finally note that the
number 2 in the right-hand side of (37) is due to the symmetry of
the matrix K*.

We now may repeat the observations made for MIQP;.

Any feasible solution of MILP, such that trace(XK) > 2v gener-
ates a valid inequality for CRel, which is violated by X. Therefore,
we do not need to solve MILP, to optimality to generate a cut.
Moreover, to generate distinct cuts, we can solve MILP, several
times (not necessarily to optimality), each time adding to it, the
following suitable “no-good” cut to avoid the previously generated
cuts:

n(n+1)
2

>y -y@d) =1, (38)
i=1

where y is the value of the variable y in the solution of MILP,,
when generating the previous cut.

The CI o*Tx < eTa* — 1 may not be a minimal cover. Aiming at
generating stronger valid cuts, we might add again to the objective
function of MILP,, the term —&e’«, for some weight § > 0. The ob-
jective function would then favor minimal covers, which could be
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lifted to a facet-defining LCI. In this case, however, after computing
the LCI, we have to solve MILP, again, with « fixed at values that
represent the LCI, and v fixed so that the right-hand side of the in-
equality is equal to the right-hand side of the LCI. All components
of y that were equal to 1 in the previous solution of MILP, should
also be fixed at 1. The new solution of MILP, would indicate the
other subsets of N to be added to C;. One last detail should be
taken into account. If the cover C corresponding to the LCI, is such
that |C| is odd and the right-hand side of the LCI is also odd, then
the cut generated should belong to case (2) in Definition 15, and
MILP, should be modified accordingly. Specifically, the second and
third constraints in MILP,, should be modified respectively to

K@, i) =0,
n

>y =1.
i=1

Remark 17. Let y :=|C|. Then, the number of inequalities in the

SCILS is

_rt
25 (%)’

i=1,...,n,

if y is even, or
(y —1!
207 (171)
if y is odd.
Finally, we extend the ideas presented above to the more gen-
eral case of knapsack inequalities. We note that the following dis-

cussion applies to a general LCI, where aj € Zy,Vj € N\C.
Let

jeN
be a valid knapsack inequality for KPol, with «;,8eZ, 8 >
aj, V] e N.

Definition 18 (Set of knapsack inequalities in the lifted space,
SKILS). Let o be the coefficient of x; in (39). Let {C;, ..., Cq} be the
partition of N, such that oy = a0y, if u, v € G, for some k, and oy #
oy, otherwise. The knapsack inequality (39) can then be rewritten
as

q
Y@ x| =8 (40)
k=1 jeCy

Now, for k=1,....q, let G :={(i.jk):- - (ikpk’jkvk)}’ where
i<jforall (4, j) G,. and

. C,k is a partition of C, if |Cy| is even.
* G, is a partition of G \ {iy,}, where i € G, if || is odd.

The inequalities in the SKILS corresponding to (39) are given by

q
Z WX, iy, + 20 Z Xij | <8B. (41)
k=1 (.G,

for all partitions G, k=1,...,q, defined as above, and for all i €

Ck\Clk. (If |G| is even, G \C,k =, and the term in the variable

Xikoiko does not exist.)
Remark 19. Consider {Ci,..., Cq} as in Definition 18. For k=
1,...,q, let y,:=|C| and define

Yi!
Gy 1=
C 20 (%

if vy is even, or

(Y —1)!

NClk =V X T
20 (Xl
if v is odd.
Then, the number of inequalities in SKILS is

q
[ NG,
k=1

Remark 20. If &, is even for every k, such that y,:=|C| is odd,
then the right-hand side S of inequality (41) may be replaced with

2 x ng which will strengthen the inequality in case 8 is odd.

Note that the case where y, is even for every k, is a particular
case contemplated by this remark, where the the tightness of the
inequality can also be applied.

Corollary 21. If inequality (39) is valid for QKP, then the inequalities
(41), in the SKILS, are valid for QKPjiseq, Whether or not the modifi-
cation suggested in Remark 20 is applied.

Proof. The result is again verified, by using the same argument
used in the proof of Theorem 16, i.e., considering that X;; =1, iff
Xi = Xj =1. O

5.4. Dominance relation among the new valid inequalities

We start this subsection investigating whether SCILS dominates
CILS or vice versa.

Theorem 22. Let C be the cover in (33) and consider y :=|C| to be
evern.

1. If B =y —1, then the sum of all inequalities in SCILS is equiv-
alent to CILS. Therefore, in this case, the set of inequalities in
SCILS dominates CILS.

2. If B <y —1, there is no dominance relation between SCILS
and CILS.

Proof. Let sum(SCILS) denote the inequality obtained by adding
all inequalities in SCILS, and let rhs(sum(SCILS )) denote its right-
hand side (rhs). We have that rhs(sum(SCILS)) is equal to the
number of inequalities in SCILS multiplied by the rhs of each in-
equality, i.e.:

rhsum(sciLs)) = — V-« | B
—20)(x) 2 [
2
The coefficient of each variable X in sum(SCILS) (coef;) is given
by the number of inequalities in the set SCILS in which Xj; appears,
ie.
(y -2)!

coefi—— L )"
fi 2(@)(()’;2) )

Dividing rhs(sum(SCILS )) by coef;;, we obtain

rhs(sum(SCILS ))/coefij = (y — 1) x \"gJ (42)
On the other side, the rhs of CILS is:
rhs(CILS ) = (g) = @ (43)

1. Replacing 8 with y — 1, and ng with ’32;1 (since B is odd),
we obtain the result.
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2. Consider, for example, C ={1,2,3,4,5,6} and =3 (8 <
y — 1 and odd). In this case, the CILS becomes:
X2+ Xi3 + X14 + Xi5 + Xi6 + X3 + X4
+ Xo5 + Xo6 + X34 + X35 + X36 + X454+ X4 + Xs6 < 3.
And a particular inequality in SCILS is
Xi2 + X34 + X6 < 1. (44)

The solution X;; =1, for j=2,..., 6, and all other variables
equal to zero, satisfies all inequalities in SCILS, because only
one of the positive variables appears in each inequality in
the set. However, the solution does not satisfy CILS. On the
other side, the solution X;, = X34 = X5 = 1, and all other
variables equal to zero, satisfies CILS, but does not satisfy
(44).

Now, consider C ={1,2,3,4,5,6} and 8 =4 (8 <y — 1 and
even). In this case, the CILS becomes:

X2+ X13 + X14 + Xi5 + Xi6 + X23 + X4
+ Xo5 + Xog + X34 + X35 + X36 + X45 + X456 + X56 < 6.
And a particular inequality in SCILS is

X2 + X34 + X5 < 2. (45)
The solution X;;=1, for j=2,....6, Xp;=1, for j=
3,...,6, and all other variables equal to zero, satisfies all

inequalities in SCILS, because at most two of the positive
variables appear in each inequality in the set. However, the
solution does not satisfy CILS. On the other side, the so-
lution X;; = X34 = Xs6 = 1, and all other variables equal to
zero, satisfies CILS, but does not satisfy (45).

O

Theorem 23. Let C be the cover in (33) and consider y :=|C| to be
odd. Then there is no dominance relation between SCILS and CILS.

Proof. Consider, for example, C = {1,2,3,4,5} and 8 =3 (8 odd).
In this case, the CILS becomes:

X2 + X13 + X14 + Xi5 + Xo3 + Xog + Xo5 + X34 + X35 + X45 < 3.
And a particular inequality in SCILS is
X3 +X45 < 1. (46)

The solution X;; =1, for j=1,...,5, and all other variables equal
to zero, satisfies all inequalities in SCILS, because only one of the
positive variables appears in each inequality in the set. However,
the solution does not satisfy CILS. On the other side, the solution
X53 =X45 =1, and all other variables equal to zero, satisfies CILS,
but does not satisfy (46).

Now, consider C = {1,2,3,4,5} and 8 = 4 (B even). In this case,
the CILS becomes:

Xi2 + X13 + X1a + Xi5 + Xo3 + Xo4 + Xo5 + X34 + X35 + Xy5 < 6.
And a particular inequality in SCILS is
X1+ Xo3 + Xg5 < 2. (47)

The solution X;; =1, for j=1,...,5, X;; =1, for j=2,...,5, and
all other variables equal to zero, satisfies all inequalities in SCILS,
because at most two of the positive variables appear in each in-
equality in the set. However, the solution does not satisfy CILS. On
the other side, the solution Xi; = X535 = X45 = 1, and all other vari-
ables equal to zero, satisfies CILS, but does not satisfy (47). O

Now, we investigate if SCILS is just a particular case of SKILS,
when o; {0, 1}, for all jeN in (39).

Theorem 24. In case the modification suggested in Remark 20 is ap-
plied, then if |C| is even in (33), SCILS becomes just a particular case

of SKILS. In case |C| is odd, however, the inequalities in SCILS are
stronger.

Proof. If |C| is even, the result is easily verified. If |C| is odd, the
inequalities in SCILS become

2 ) Xj<B-1,
(i.j)eCs
if B is odd, and

iy +2 ) Xy < B,
(i.j)eC
if B is even, and the inequalities in SKILS become

Xigip +2 Z Xij < B,
(i.7)eCs
for all B. In all cases, Cs is a partition of C\{ip}, where igeC.
Either with B even or odd, it becomes clear that SCILS is
stronger than SKILS. O

6. Lower bounds from solutions of the relaxations for QKPj;feq

In order to evaluate the quality of the upper bounds obtained
with CRel, we compare them with lower bounds for QKP, given
by feasible solutions constructed by a heuristic. We assume in this
section that all variables in CRel are constrained to the interval
[0,1].

Let (%,X) be a solution of CRel. We initially apply principal
component analysis (PCA) (Jolliffe, 2010) to construct an approx-
imation to the solution of QKP and then apply a special round-
ing procedure to obtain a feasible solution from it. PCA selects the
largest eigenvalue and the corresponding eigenvector of X, denoted
by A and 7, respectively. Then AD¥T is a rank-one approximation of
X. We set X = A27 to be an approximation of the solution x of QKP.
We note that A > 0 because X; > 0 for at least one index i in the
optimal solutions of the relaxations, and therefore, X is not nega-
tive semidefinite. Finally, we round x to a binary solution that sat-
isfies the knapsack capacity constraint, using the simple approach
described in Algorithm 3.

Algorithm 3 A heuristic for the QKP.

Input: the solution X from CRel, the weight vector w, the
capacity c.

Let A and v be, respectively, the largest eigenvalue and the
corresponding eigenvector of X.

Set X = A7 7.

Round X to X € {0, 1}".

While wI% > ¢

Set i = argmincy{x;|X; > 0}.
Set )2,‘ = 0, }?,‘ =0.

End
Output: a feasible solution X of QKP.

7. Numerical experiments

We summarize our algorithmic framework in Algorithm 4,
where at each iteration we update the perturbation Q, of the para-
metric relaxation and, at every m iterations, we add to the relax-
ation, the valid inequalities considered in this paper, namely, SCI,
defined in (32), CILS, defined in (34), and SCILS, defined in (36).

The numerical experiments performed had the following main
purposes,
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verify the impact of the valid inequalities, SCI, CILS, and SCILS,
when iteratively added to cut the current solution of a relax-
ation of QKP,

verify the effectiveness of the IPM described in Section 3 in de-
creasing the upper bound while optimizing the perturbation Qp,
compute the upper and lower bounds obtained with the pro-
posed algorithmic approach described in Algorithm 4, and com-
pare them, with the optimal solutions of the instances.

We coded Algorithm 4 in MATLAB, version R2016b, and ran the
code on a notebook with an Intel Core i5-4200U CPU 2.30 giga-
hertz, 6 gigabytes RAM, running under Windows 10. We used the
primal-dual IPM implemented in Mosek, version 8, to solve the re-
laxation CQPy,. and, to solve the separation problems MIQP; and
MILP,, we use Gurobi, version 8.

The input data used in the first iteration of the IPM described
in Algorithm 1 (k = 0) are: By = I, u® = 1. We start with a matrix
Qp. such that Q — Q) is negative definite. By solving CQPg,, with
Qp :=Qp. we obtain x(Q)). X(QP). as its optimal solution, and
set Vpgop(Q)) :=X(QP) —x(Q))x(Q))". Finally, the positive defi-
niteness of Z° and A° are assured by setting: Z° := Q) — Q and
A0 = Vp?:QP(Qg) + (2|kmin(vp2QP(Qg)| + 0~1)1-

Our randomly generated test instances were also used by
Cunha, Simonetti, and Lucena (2016), who provided us with the
instances data and with their optimal solutions. Each weight w;,
for je N, was randomly selected in the interval [1, 50], and the ca-
pacity c, of the knapsack, was randomly selected in [50, Z]'L] w;l.
The procedure used by Cunha to generate the instances was based
on previous works (Billionnet & Calmels, 1996; Caprara et al., 1999;
Chaillou et al., 1989; Gallo et al., 1980; Michelon & Veillieux, 1996).

The following labels identify the results presented in Tables 3,
5 and 6.

e OptGap (%):= ((upper bound — opt)/opt) x 100, where opt is
the optimal solution value (the relative optimality gap),

o Time (seconds) (the computational time to compute the
bound),

e DuGap (%) := (upper bound — lower bound)/(lower bound)
x 100, where the lower bound is computed as described in
Section 6 (the relative duality gap),

o Iter (the number of iterations),

e Cuts (the number of cuts added to the relaxation),

o Timeyp (seconds) (the computational time to obtain cuts CILS
and SCILS).

To get some insight into the effectiveness of the cuts proposed,
we initially applied them to 10 small instances with n = 10. In
Table 3 we present average results for this preliminary experiment,
where we iteratively add the cuts to the following linear relaxation

max trace(QX)
n

s.t. ijxj <c,

(LPR) j=1 (48)
O§ij§1, Vl,]EN
0<x <1, VieN
X e S

In the first row of Table 3, the results correspond to the solution
of the linear relaxation LPR with no cuts. In SCI;, we add only the
most violated cut from the n cuts in SCI to LPR at each iteration,
and in the SCI we add all n cuts. In CILS and SCILS, we solve MIQP
and MILP problems to find the most violated cut of each type. The
last row of the table (All) corresponds to results obtained when we
add all n cuts in SCI, and one cut of each type, CILS and SCILS. In
these initial tests, we run up to 50 iterations, and in most cases,
stop the algorithm when no more cuts are found to be added to
the relaxation.

Algorithm 4 A cutting plane algorithm for the QKP.
Input: Q € S", max.neys.
k:=0,By:=1 ud:=1.
Let 1;(Q),v; be the ith largest eigenvalue of Q and corre-
sponding eigenvector.
Qui= Y21 (=4[] (or Q1 =31, (min{A;, —10-5})
vv!), Q) :=Q — Qu.
Solve CQP o, with Qp := QP, and obtain x(Q9), X(Q)).
VDegp(Q9) := X(Q) —x(Q)x Q.
70 .= Qg -Q.
A0 = vpéQp(Qg) + (2|)Lmin(vpéQp(Qg)| + 0~1)I-
While (stopping criterium is violated)

Run Algorithm 1, where QS“ is obtained and re-
laxation CQPq,, with Qp:=Qft! is solved. Let
(x(QF*1). X(QF*)) be its optimal solution.
upper.bound*+1 := pEQP(Q’;+1 ).

Run Algorithm 3, where X is obtained.

lower.boundk+! := £TQR.

If k mod m ==

Solve problem (31) and obtain cuts SCI in (32).
Add the max{n, max.nqes} cuts SCI with the
largest violations at (x(Qk*1).X(Qf1)), to
cQP,,.
Neyes := 0.
While (neyes < max.neqes & MIQP ¢ feasible)
Solve MIQP; and add the CI and CILS ob-
tained to CQPq,.
Add the “no-good” cut (35) to MIQP ;.
Neuts = Neues + 1.
End
Neyes := 0.
While (neys < max.neys & MILP  feasible)
Solve MILP, and add the CI and SCILS ob-
tained to CQPq,.
Add the “no-good” cut (38) to MILP .
Neyts 2= Neyes + 1.

End
End
k:=k+1.
End
Output: Upper bound upper.bound®, lower bound

lower.bound¥, and feasible solution £ to QKP.

Fig. 1 depicts the optimality gaps from Table 3. There is a trade-
off between the quality of the cuts and the computational time
needed to find them. Considering a unique cut of each type, we
note that SCILS is the strongest cut (OptGap = 9.121%), but the
computational time to obtain it, if compared to CILS and SCI, is
bigger. Nevertheless, a decrease in the times could be achieved
with a heuristic solution for the separation problems, and also by
the application of better stopping criteria for the cutting plane al-
gorithm. We point out that using all cuts together we find a bet-
ter upper bound than using each type of cut separately (OptGap
= 3.315%).

We now analyze the effectiveness of our IPM in decreasing the
upper bound while optimizing the perturbation Q. To improve
the bounds obtained, besides the constraints in (48), we also con-
sider in the initial relaxation, the valid equations X;; = x;, the Mc-

Cormick inequalities Xj; <X;;, and the valid inequalities obtained by
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Fig. 1. Average optimality gaps from Table 3.
Table 3
Impact of the cuts added to LPR on 10 small instances (n = 10).
Method OptGap Time Iter Cuts Timeyp
(%) (seconds) (seconds)
LPR 38.082 0.35 1.0
Ne# 36.703 32.38 1.1 28.4
SCI 10.036 39.98 3.0 364.1
CILS 19.719 9.00 2.7 82.2 6.91
SCILS 9.121 266.81 50.0 794.3 198.12
ALL 3.315 315.82 28.3 646.6 264.91

multiplying the capacity constraint by each nonnegative variable x;,
and also by (1 —x;), and then replacing each bilinear term x;x; by
Xjj. We then start the algorithm solving the following relaxation.

max  x"(Q — QP)x + trace(Q)X)

s.t. ijxj <c,
=1

n
> wiXyj < X, VieN
=
PR n ) 4
(@R > owiXj; - X)) <c(1-Xy), VieN (49)
=
Xii = Xii, VieN
Xij < X, Vi,jeN
0=Xj=1, Vi,jeN
0<x <1, VieN
X e st

In order to evaluate the influence of the initial decomposition
of Q on the behavior of the IPM, we considered two initial decom-
positions. In both cases, we compute the eigendecomposition of Q,
getting Q = Y14 Al

« For the first decomposition, we set Q, := "I (—|A;] — 1)1/,-1/{,
and Qp := Q — Qn/2. We refer to this initial matrix QJ as Qj.

e For the second, we set Q,:=Y [ ;(min{A; —~10-¢})vv!, and
Q) :=Q — Qn/2. We refer to this initial matrix QJ as Qg.

In Table 4, we compare the bounds obtained by our IPM after
20 iterations (boundIPM,g), with the bounds given from the linear
SDP relaxation obtained by taking Qg =Q in (49), and adding to it
the semidefinite constraint X — xx” > 0 (boundSDP). As mentioned
in Section 4, these are the best possible bounds that can be ob-
tained by the IPM algorithm. We also show in Table 4 how close
to boundSDP, the bound computed with the initial decomposition

Table 4
SDP bound vs IPM bound at iterations 1 and 20, for two initial matrices Qg.
Q) Inst n gap1(%) gapao(%)
Q; 11 50 0.30 0.01
12 50 0.73 0.03
13 50 0.14 0.00
14 50 1.02 0.21
15 50 0.59 0.09
11 100 1.47 0.14
12 100 0.59 0.04
13 100 0.51 0.05
14 100 1.38 0.26
15 100 0.73 0.06
Ql‘; 5 50 0.01 0.00
12 50 0.30 0.09
13 50 0.08 0.03
14 50 0.10 0.02
5 50 0.03 0.03
I8 100 0.04 0.00
12 100 0.02 0.01
13 100 0.03 0.01
14 100 0.12 0.04
15 100 0.02 0.01
Table 5
Results for Algorithm 4 (n = 50).
Inst OptGap Time DuGap Iter Timeyp
(%) (seconds) (%) (seconds)
1 0.23 1013.50 0.27 100 641.98
12 0.00 632.50 0.00 64 411.67
13 0.00 392.55 0.00 44 205.70
14 0.00 289.97 0.00 31 160.37
15 0.21 1093.60 0.37 10 698.04
Table 6
Results for Algorithm 4 (n = 100).
Inst OptGap Time DuGap Iter Timeyp
(%) (seconds) (%) (seconds)
1 0.00 2035.30 0.00 20 737.86
12 0.25 2177.30 0.65 20 919.41
3 0.00 2007.10 0.00 20 773.00
14 0.12 1885.90 0.84 20 828.98
15 0.04 2309.50 0.20 20 970.49

Qg (boundIPM;) in relaxation (49) is. The values presented in the
table are

gap, (%) = (boundIPMy — boundSDP) /boundSDP » 100
gapyo (%) = (boundIPM5q — boundSDP) /boundSDP x 100

For the experiment reported in Table 4, we consider 10
instances with n=50 and 100. We see from the results in
Table 4 that in 20 iterations, the IPM closed the gap to the SDP
bounds for all instances. When starting from Qj., we end up with
an average bound less than 0.1% of the SDP bound, while when
starting from Qg, this percentage decreases to only 0.03%. We also

start from better bounds when considering QD, and therefore, we
use this matrix as the initial decomposition for the IPM in the next
experiments. The results in Table 4 show that the IPM developed
in this paper is effective to solve the parametric problem (6), con-
verging to bounds very close to the solution of the SDP relaxation,
which are their minimum possible values.

We finally present results obtained from the application of
Algorithm 4, considering the parametric quadratic relaxation, the
IPM, and the cuts. In Tables 5 and 6 we show the results for the
same instances with n =50 and n = 100 considered in the previ-
ous experiment. The cuts are added at every m iterations of the
IPM and the numbers of cuts added at each iteration are n SCI,
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5 CILS and 5 SCILS. Note that when solving each MIQP or MILP
problem, besides the cut CILS or SCILS, we also obtain a cover in-
equality CI. We check if this CI was already added to the relax-
ation, and if not, we add it as well. We stop Algorithm 4 when a
maximum number of iterations is reached or when DuGap is suf-
ficiently small.

For the results presented in Table 5 (n = 50), we set the max-
imum number of iterations of the IPM equal to 100, and m = 10.
The execution of each separation problem was limited to 3 sec-
onds, and the best solutions obtained in this time limit was used
to generate the cuts.

For the results presented in Table 6 (n = 100), we set the max-
imum number of iterations of the IPM equal to 20, and m =4. In
this case, the execution of each separation problem was limited to
10 seconds.

We note from the results in Tables 5 and 6, that the alterna-
tion between the iterations of the IPM to improve the perturba-
tion Qp of the relaxation and the addition of cuts to the relaxation,
changing the search direction of the IPM, is an effective approach
to compute bounds for QKP. Considering the stopping criterion im-
posed to Algorithm 4, it was able to converge to the optimum so-
lution of three out of five instances with n =50 and of two out
of five instances with n = 100. The average optimality gap for all
ten instances is less than 0.1%. The heuristic applied also computed
good solutions for the problem. The average duality gap for the 10
instances is less than 0.25%.

We note that our algorithm spends a high percentage of its run-
ning time solving the separation problems, and also solving the
linear systems to define the direction of improvement in the IPM
algorithm. The running time of both procedures can be improved
by a more judicious implementation. There are two parameters in
Algorithm 4 that can also be better analyzed and tuned to improve
the results, namely, m and the time limit for the execution of the
separation problems. As mentioned before, these problems could
still be solved by heuristics. Finally, we note that the alternation
between the IPM iterations and addition of cuts to the relaxation
could be combined with a branch-and-bound algorithm in an at-
tempt to converge faster to the optimal solution. In this case, the
cuts added to the relaxations would include the cuts that define
the branching and the update on Q, would depend on the branch
of the enumeration tree. These are directions for the continuity of
the research on this work.

8. Conclusion

In this paper we present a cutting plane algorithm (CPA) to iter-
atively improve the upper bound for the quadratic knapsack prob-
lem (QKP). The initial relaxation for the problem is given by a para-
metric convex quadratic problem, where the Hessian Q of the ob-
jective function of the QKP is perturbed by a matrix parameter Qp,
such that Q — Qp < 0. Seeking for the best possible bound, the con-
cave term x! (Q — Qp)x, is then kept in the objective function of
the relaxation and the remaining part, given by x’Qpx is linearized
through the standard approach that lifts the problem to space of
symmetric matrices defined by X:=xx".

We present a primal-dual interior point method (IPM), which
update the perturbation Q, at each iteration of the CPA aiming at
reducing the upper bound given by the relaxation. We also present
new classes of cuts that are added during the execution of the CPA,
which are defined on the lifted variable X, and derived from cover
inequalities and the binary constraints.

We show that both the IPM and the cuts generated are effec-
tive in improving the upper bound for the QKP and note that these
procedures could be applied to more general binary indefinite
quadratic problems as well. The separation problems described to

generate the cuts could also be solved heuristically, in order to ac-
celerate the process.

We note that the search for the best perturbation Qp, by our
IPM, is updated with the inclusion of cuts to the relaxation. In
the set of cuts added, we could also consider cuts defined by
the branching procedure in a branch-and-bound algorithm. In this
case, we could have the perturbation Q, optimized during all the
descend on the branch-and-bound tree, considering the cuts the
have been added to the relaxations.

Finally, we show that if the positive semidefinite constraint
X —xxT = 0 was introduced in the relaxation of the QKP, or any
other indefinite quadratic problem (maximizing the objective func-
tion), then the decomposition of objective function, that leads to a
convex quadratic SDP relaxation, where a perturbed concave part
of the objective is kept, and the remaining part is linearized, is not
effective. In this case the best bound is always attained when the
whole objective function is linearized, i.e., when the perturbation
Qp is equal to Q. This observation also relates to the well known DC
(difference of convex) decomposition of indefinite quadratics that
have been used in the literature to generate bounds for indefinite
quadratic problems. Once more, in case the positive semidefinite
constraint is added to the relaxation, the DC decomposition is not
effective anymore, and the alternative linear SDP relaxation leads
to the best possible bound. As corollary from this result, we see
that the bound given by the convex quadratic relaxation cannot be
better than the bound given by the corresponding linear SDP re-
laxation. This last result was already proved in the literature, as
mentioned in Section 4.
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