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Abstract

We study Semidefinite Programming, SDP , relaxations for Sensor Network Localiza-
tion, SNL, with anchors and with noisy distance information. The main point of the
paper is to view SNL as a (nearest) Euclidean Distance Matrix, EDM , completion
problem that does not distinguish between the anchors and the sensors. We show that
there are advantages for using the well studied EDM model. In fact, the set of anchors
simply corresponds to a given fixed clique for the graph of the EDM problem.

We next propose a method of projection when large cliques or dense subgraphs are
identified. This projection reduces the size, and improves the stability, of the relaxation.
In addition, by viewing the problem as an EDM completion problem, we are able to
derive a new approximation scheme for the sensors from the SDP approximation. This
yields, on average, better low rank approximations for the low dimensional realizations.
This further emphasizes the theme that SNL is in fact just an EDM problem.

We solve the SDP relaxations using a primal-dual interior/exterior-point algorithm
based on the Gauss-Newton search direction. By not restricting iterations to the in-
terior, we usually get lower rank optimal solutions and thus, better approximations
for the SNL problem. We discuss the relative stability and strength of two formula-
tions and the corresponding algorithms that are used. In particular, we show that the
quadratic formulation arising from the SDP relaxation is better conditioned than the
linearized form that is used in the literature.

∗Research supported by Natural Sciences Engineering Research Council Canada.
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1 Introduction

We study ad hoc wireless sensor networks and the sensor network localization, SNL , prob-
lem with anchors. The anchors have fixed known locations and the sensor-sensor and sensor-
anchor distances are known (approximately) if they are within a given (radio) range. The
problem is to approximate the positions of all the sensors, given that we have only this
partial information on the distances. We use semidefinite programming, SDP , relaxations
to find approximate solutions to this problem.

In this paper we emphasize that the existence of anchors is not special. The SNL problem
with anchors can be modelled as the well studied (nearest) Euclidean Distance Matrix,
EDM , completion problem. The only property that distinguishes the anchors is that the
corresponding set of nodes yields a clique in the graph. This results in the failure of the
Slater constraint qualification for the SDP relaxation. However, we can take advantage of
this liability/instability. We can find the smallest face of the SDP cone that contains the
feasible set and project the problem onto this face to obtain a smaller/stable problem. In
addition, by viewing the problem as an EDM completion problem, we are able to derive a
new approximation scheme for the sensors from the SDP approximation. This yields, on
average, better low rank approximations for the low dimensional realizations. Moreover, by
treating the anchors this way, we show that other cliques of sensors or dense parts of the
graph can similarly result in a reduction in the size of the problem.

We solve the SDP relaxations using a primal-dual interior/exterior-point algorithm
based on the Gauss-Newton search direction, [20]. This approach takes a full step of length
one once the iterates get close enough to the optimal solution. By not restricting the itera-
tions to the interior, they usually do not converge to the analytic center of the optimal set.
This often results in lower rank optimal solutions and thus, yields better approximations
for the SNL problem. We also discuss and compare the relative robustness and stability
of two primal-dual algorithms for SNL . Our tests show that the approach based on a
quadratic formulation is better conditioned and more efficient that the approach based on
a linearization. These tests confirm the theoretical results on the conditioning of different
barriers, [15, 9].

1.1 Related Work and Applications

The geometry of EDM has been extensively studied in the literature; see e.g. [14, 10] and
more recently [2, 1] and the references therein. The latter two references studied algorithms
based on SDP formulations of the EDM completion problem. Several recent papers have
developed algorithms for the SDP relaxation designed specifically for SNL with anchors,
e.g. [6, 17, 7, 4, 25, 5, 31, 19]. Relaxations using second order cones are studied in e.g., [28, 29].

The SDP relaxations solve a closest SDP matrix problem and generally use the ℓ1

norm. The ℓ2 norm is used in [19], where the noise in the radio signal is assumed to come
from a multivariate normal distribution with mean 0 and covariance matrix σ2I, so that the
least squares estimates are the maximum likelihood estimates. We use the ℓ2 norm as well
in this paper. Our approach follows that in [2] for EDM completion without anchors.
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Various applications for SNL are discussed in the references mentioned above. These ap-
plications include e.g. natural habitat monitoring, earthquake detection, and weather/current
monitoring.

1.2 Outline

The formulation of the SNL problem as a least squares approximation problem is presented
in Section 2. This section also includes background, notation, and information on the linear
transformations and adjoints used in the model. In particular, since this paper emphasizes
using EDM , we provide details on distance geometry, and on the linear mappings between
EDM and SDP matrices.

The SDP relaxations are presented in Section 3. This section contains the details for
the four main contributions of the paper:

(i) the connection of SNL with EDM ; (ii) the projection technique for cliques
and dense sets of sensors; (iii) the improved approximation scheme for locating
the sensors from the SDP relaxation; and (iv) a derivation and discussion of the
better conditioning of the quadratic formulation of the SDP relaxation relative
to the linear formulation used in the literature.

We then continue with the numerical tests in Section 4. Section 4.1 provides the com-
parisons for two approximation schemes for locating the sensors from the SDP relaxation;
Section 4.2 provides the comparisons between the linear and quadratic SDP models. Con-
cluding remarks are given in Section 5.1

2 Background and Notation

Let the n unknown (sensor) points be p1, p2, . . . , pn ∈ R
r, r the embedding dimension, and

let the m known (anchor) points be a1, a2, . . . , am ∈ R
r. Let XT = [p1, p2, . . . , pn], and

AT = [a1, a2, . . . , am]. We identify ai with pn+i, for i = 1, . . . , m, and sometimes treat these
as unknowns; we define

P T :=
(

p1, . . . , pn, a1, . . . , am
)

=
(

p1, . . . , pn+m
)

=
(

XT AT
)

. (2.1)

Since we can always translate all the sensors and anchors, and to avoid some special trivial
cases, we assume the following.

Assumption 2.1 The embedding dimension, and the number of sensors and anchors, satisfy
n >> m > r, AT e = 0, and A is full column rank.

1A previous version of this paper includes an appendix with: notation needed for the implementation of
the algorithms; the optimality and duality theory for the SDP relaxations; and a deriviation of our primal-
dual interior/exterior-point algorithm. URL: orion.math.uwaterloo.ca/˜hwolkowi/henry/reports/oct08.pdf
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Now define (Ne,Nu,Nl) to be the index sets of specified distance values, upper bounds,
lower bounds, respectively, of the distances dij between pairs of nodes from {pi}n

1 (sensors);
let (Me,Mu,Ml), denote the same for distances between a node from {pi}n

1 (sensor) and a
node from {ak}m

1 (anchor). Define (the partial Euclidean Distance Matrix) E with elements

Eij =







d2
ij, if ij ∈ Ne ∪Me,

‖pi − pj‖2 = ‖ai−n − aj−n‖2, if i, j > n,
0, otherwise.

The underlying graph is G = (V, E) with node set V = {1, . . . , m + n} and edge set E =
Ne ∪Me ∪ {ij : i, j > n}. The subgraph induced by the anchors is complete; i.e., the set
of anchors forms a clique in the graph. Similarly, we define the matrix of (squared) distance
upper bounds U b and the matrix of (squared) distance lower bounds Lb for ij ∈ Nu∪Mu and
Nl∪Ml, respectively. Corresponding to the above, we let Wp, Wpa, Wa be weight matrices for
the sensor-sensor, sensor-anchor, anchor-anchor, distances respectively. For example, they
simply could be 0–1 matrices to indicate when a distance is unknown−known. Alternatively,
a weight could be used to verify the confidence in the value of the distance. The weights in
Wa corresponding to anchor-anchor distances can be made large, since these distances are
known.

Since there can be noise in the data, we minimize the weighted least squares error.

(SNL LS)

min f1(P ) := 1
2

∑

(i,j)∈Ne

(Wp)ij(‖pi − pj‖2 − Eij)
2

+1
2

∑

(i,k)∈Me

(Wpa)ik(‖pi − ak‖2 − Eik)
2

(

+1
2

∑

i,j>n

(Wa)ij(‖pi − pj‖2 − Eij)
2

)

subject to ‖pi − pj‖2 ≤ U b
ij ∀(i, j) ∈ Nu

(

nu = |Nu|
2

)

‖pi − ak‖2 ≤ U b
ik ∀(i, k) ∈ Mu

(

mu = |Mu|
2

)

‖pi − pj‖2 ≥ Lb
ij ∀(i, j) ∈ Nl

(

nl = |Nl|
2

)

‖pi − ak‖2 ≥ Lb
ik ∀(i, k) ∈ Ml

(

ml = |Ml|
2

)

(‖pi − pj‖2 = Eij ∀i, j > n) .

(2.2)

This is a hard problem to solve due to the nonconvex objective and constraints. We included
the anchor-anchor distances within brackets both in the objective and constraints. This is to
emphasize that we could treat them with large weights in the objective or as holding exactly
without error in the constraints.

2.1 Distance Geometry

The geometry for EDM has been studied in e.g., [23, 13, 16, 27], and more recently in
e.g., [2],[1]. Further theoretical properties can be found in e.g., [3, 12, 13, 16, 18, 21, 23, 21].
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Since we emphasize that the EDM theory can be used to solve the SNL , we now include
an overview of the tools we need for EDM . In particular, we show the relationships between
EDM and SDP .

2.1.1 Linear Transformations and Adjoints Related to EDM

We use the notation from [19]. We work in vector spaces of real matrices, Ms×t, equipped
with the trace inner-product 〈A, B〉 = trace AT B and induced Frobenius norm ‖A‖2

F =
trace AT A. We let Sn denote the vector space of real symmetric n×n matrices; Sn

+ and Sn
++

denote the cones of positive semidefinite matrices and positive definite matrices, respectively.
We identify EDM = Sn

+; and, we use the Löwner partial order notation A � 0 and A ≻ 0
for A ∈ Sn

+ and A ∈ Sn
++, respectively. For a given B ∈ Sn, the linear transformation

diag (B) ∈ R
n denotes the diagonal of B; for v ∈ R

n, the adjoint linear transformation is the
diagonal matrix diag ∗(v) = Diag (v) ∈ Sn. We now define several linear operators on Sn.

De(B) := diag (B) eT + e diag (B)T , K(B) := De(B) − 2B, (2.3)

where e is the vector of ones. The adjoint linear operators are

D∗
e(D) = 2Diag (De), K∗(D) = 2(Diag (De) − D). (2.4)

By abuse of notation, we allow De to act on R
n: De(v) = veT + evT , v ∈ R

n. The linear op-
erator K maps the cone of positive semidefinite matrices onto the cone of Euclidean distance
matrices (denoted EDM ), i.e., K(SDP ) = EDM .

Lemma 2.1 ([1]) Define the linear operator on Sn, offDiag (S) := S − Diag (diag (S)).
Then, the following holds:

• the range and nullspace satisfy N (K) = R(De);

• R(K) = SH , where the hollow subspace SH := {D ∈ Sn : diag (D) = 0};
• R(K∗) = Sc, where the centered subspace Sc := {B ∈ Sn : Be = 0};
• the Moore-Penrose generalized inverse K†(D) = −1

2
J (offDiag (D))J , where J := I − 1

n
eeT .

Proposition 2.1 ([1, 19])

1. Let SD denote the subspace of diagonal matrices in Sn. Then

Sc = N (D∗
e) = R(K∗) = R(K†) ⊥ N (K) = R(De)

SH = R(K) = N (De) ⊥ SD = N (K∗) = R(D∗
e).

2. Let
[

V 1√
n
e
]

be an n × n orthogonal matrix. Then

Y � 0 ⇐⇒ Y = V Ŷ V T + De(v) � 0, for some Ŷ ∈ Sn−1, v ∈ R
n.
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3. Suppose that 0 � B ∈ Sn. Then D = K(B) is EDM.

3 SDPRelaxations Based on EDM Model

Current SDP relaxations for the feasibility problem for SNL relax Y = XXT to

Y � XXT , or equivalently, Zs =

[

Ir XT

X Y

]

� 0. (3.5)

This is in combination with the constraints

trace

(

0
ei − ej

)(

0
ei − ej

)T

Zs = Eij, ∀ij ∈ Ne,

trace

(

−ak

ei

)(

−ak

ei

)T

Zs = Eij, ∀ij ∈ Me, i < j = n + k;

(3.6)

see [6, 4, 25, 5, 17].

We use relaxations of Ȳ := PP T =

[

XXT XAT

AXT AAT

]

. The dimensions are: X ∈ Mn,r; A ∈
Mm,r; P ∈ Mm+n,r; Ȳ ∈ Sm+n. We first reformulate SNL using matrix notation to get the
equivalent EDM problem

(SNL M)

min f2(Ȳ ) := 1
2
‖W ◦ (K(Ȳ ) − E)‖2

F

subject to gu(Ȳ ) := Hu ◦ (K(Ȳ ) − Ū b) ≤ 0
gl(Ȳ ) := Hl ◦ (K(Ȳ ) − L̄b) ≥ 0

Ȳ − PP T = 0
(

K(Ȳ )22 = K(AAT )
)

,

(3.7)

where K(Ȳ )22 denotes the 2, 2 block, and W ∈ Sn+m is the weight matrix having a positive
ij-element if (i, j) ∈ Ne ∪Me ∪ {(ij) : i, j > n}, 0 otherwise. Hu, Hl are 0–1 matrices where
the ij-th element equals 1 if an upper (resp. lower) bound exists; and it is 0 otherwise. By
abuse of notation, we consider the functions gu, gl as implicitly acting on only the nonzero
components in the upper triangular parts of the matrices that result from the Hadamard
products with Hu, Hl, respectively. We include in brackets the constraints on the clique
corresponding to the anchor-anchor distances.

Remark 3.1 The function f2(Ȳ ) = f2(PP T ), and it is clear that f2(PP T ) = f1(P ) in
(2.2). Note that the functions f2, gu, gl act only on Ȳ ; and, the locations of the anchors
and sensors are completely hidden in the hard, nonconvex quadratic constraint Ȳ = PP T =
[

XXT XAT

AXT AAT

]

. The problem SNLM is a linear least squares problem with nonlinear con-

straints. The objective function is generally underdetermined. This can result in ill-conditioning
problems, e.g., [11]. Therefore, reducing the number of variables helps with stability.
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We now relax the hard quadratic constraint in (3.7)

Ȳ =

[

Ȳ11 Ȳ T
21

Ȳ21 AAT

]

= PP T =

[

XXT XAT

AXT AAT

]

, (3.8)

with (3.5), or equivalently with Ȳ � PP T . We show that this is equivalent to the simpler
Ȳ � 0. We include details on problems and weaknesses with the relaxation. We first present
several lemmas.

Lemma 3.1 Suppose that the partitioned symmetric matrix

[

Y11 Y T
21

Y21 AAT

]

� 0. Then Y T
21 =

XAT , with X = Y T
21A(AT A)−1.

Proof. Let A = UΣrV
T be the compact singular value decomposition, SVD, 0 ≺ Σr ∈

Sr. Moreover, suppose that
[

U Ū
]

is an orthogonal matrix. Therefore, the range spaces
R(U) = R(A) and the nullspace N (AT ) = R(Ū). Consider the nonsingular congruence

0 �
[

I 0
0
[

U Ū
]

]T [
Z Y T

21

Y21 AAT

] [

I 0
0
[

U Ū
]

]

=





Z Y T
21

[

U Ū
]

[

U Ū
]T

Y21

[

Σ2
r 0

0 0

]



 .

This implies that Y T
21Ū = 0. This in turn means that N (Y T

21) ⊃ N (AT ), or equivalently,
R(A) ⊃ R(Y21). Note that the orthogonal projection onto R(A) is A(AT A)−1AT . Therefore,
Y T

21 = Y T
21A(AT A)−1AT =

(

Y T
21A(AT A)−1

)

AT , i.e., we can choose X = Y T
21A(AT A)−1.

In the recent literature, e.g., [7, 6, 17], it is common practice to relax the hard constraint
(3.8) to a tractable semidefinite constraint, Ȳ � PP T , or equivalently, Ȳ11 � XXT with
Ȳ21 = AXT . The following lemma presents several characterizations for the resulting feasible
set.

Lemma 3.2 Let A = UΣrV
T be the compact SVD of A, and let P, Ȳ be partitioned as in

(2.1), (3.8),

P =

[

P1

P2

]

, Ȳ =

[

Ȳ11 Ȳ T
21

Ȳ21 Ȳ22

]

.

Define the semidefinite relaxation of the hard quadratic constraint (3.8) as:

G(P, Ȳ ) := PP T − Ȳ � 0, Ȳ22 = AAT , P2 = A. (3.9)

By abuse of notation, we allow G to act on spaces of different dimensions. Then we get the
following equivalent representations of the corresponding feasible set FG:

FG =
{

(P, Ȳ ) : G(P, Ȳ ) � 0, Ȳ22 = AAT , P2 = A
}

; (3.9a)
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FG =

{

(P, Ȳ ) : G(X, Y ) � 0, Ȳ11 = Y, Ȳ21 = AXT , Ȳ22 = AAT , P =

[

X
A

]}

; (3.9b)

FG =

{

(P, Ȳ ) : Z =

[

Z11 ZT
21

Z21 Z22

]

� 0, Ȳ =

[

In 0
0 A

]

Z

[

In 0
0 A

]T

,

Z22 = Ir, X = ZT
21, P =

[

X
A

]}

;

(3.9c)

FG =

{

(P, Ȳ ) : Ȳ � 0, Ȳ22 = AAT , X = Ȳ T
21A(AT A)−1, P =

[

X
A

]}

; (3.9d)

FG =

{

(P, Ȳ ) : Z =

[

Z11 ZT
21

Z21 Z22

]

� 0, Ȳ =

[

In 0
0 U

]

Z

[

In 0
0 U

]T

,

Z22 = Σ2
r , X = Ȳ T

21A(AT A)−1 = ZT
21Σ

−1
r V T , P =

[

X
A

]}

.

(3.9e)

Moreover, the function G is convex in the Löwner (semidefinite) partial order; and the
feasible set FG is a closed convex set.

Proof. Recall that the cone of positive semidefinite matrices is self-polar. Let Q � 0 and
φQ(P ) = trace QPP T . Convexity of G follows from positive semidefiniteness of the Hessian
∇2φQ(P ) = I ⊗ Q, where ⊗ denotes the Kronecker product.

In addition,

0 � G(P, Ȳ ) = PP T − Ȳ =

[

XXT − Ȳ11 XAT − Ȳ T
21

AXT − Ȳ21 0

]

holds if and only if

0 � G(X, Ȳ11) = XXT − Ȳ11, and AXT − Ȳ21 = 0.

This shows the equivalence with (3.9b). A Schur complement argument, with Ȳ11 = Y ,

shows the equivalence with

[

Y X
XT Ir

]

� 0, i.e., with the set in (3.9c). The equivalence with

(3.9d) follows from Lemma 3.1.
To show the equivalence with the final expression (3.9e), we note that Ȳ � 0, Ȳ22 = AAT ,

implies that there is no strictly feasible Ȳ ≻ 0. Therefore, we project the feasible set onto
the minimal cone or face (see [8]). This yields the minimal face that contains the feasible
set of Ȳ , i.e.,

Ȳ =

[

In 0
0 U

]

Zw

[

In 0
0 U

]T

, Zw � 0, Zw ∈ Sn+r. (3.15)

The result follows since the constraint Ȳ22 = AAT holds if and only if Zw is blocked as

Zw :=

[

Y W T

W Σ2
r

]

� 0. (More simply, one can show the equivalence of (3.9e) with (3.9c) by
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using the compact SVD of A. However, the longer proof given above emphasizes that the
reduction comes from using a projection to obtain the Slater constraint qualification.)

The above Lemma 3.2 shows that we can treat the set of anchors as a set of sensors for
which all the distances are known, i.e., the set of corresponding nodes is a clique. The fact
that we have a clique and the diagonal m×m block AAT in Ȳ is rank deficient, r < m, means
that the Slater constraint qualification, Ȳ ≻ 0, cannot hold. Therefore, we can project onto
the minimal cone containing the feasible set and thus reduce the size of the problem; see
Lemma 3.2, (3.9e), i.e., the variable Ȳ ∈ Sn+m is reduced in size to Z ∈ Sn+r. The reduction
can be done by using any point in the relative interior of the minimal cone, e.g., any feasible
point of maximum rank. The equivalent representations in (3.9c) and in (3.9e) illustrate
this.

Remark 3.2 The above reduction to Y in Lemma 3.2, (3.9b), and the application of the
Schur complement, allows us to use the smaller dimensional semidefinite constrained vari-
able

Zs =

[

Ir XT

X Y

]

� 0 ∈ Sn+m, Ȳ11 = Y, Ȳ21 = AXT . (3.16)

This appears in e.g., [6]. The SDP constraint in (3.16) is linear and is equivalent to the
quadratic constraint Y − XXT � 0.

Note that the mapping Zs = Zs(X, Y ) : Mn,r ×Sn → Sn+r is not onto. This means that
the Jacobian of the optimality conditions cannot be full rank, i.e., this formulation introduces
instability into the model. A minor modification corrects this, i.e., the Ir constraint is added
explicitly.

Z =

[

Z11 ZT
21

Z21 Z22

]

� 0, Z11 = Ir, Ȳ11 = Z22, Ȳ21 = AZT
21.

A numerical comparison of the linear and quadratic constraints is presented in Sec-
tion 4.2.

3.1 Clique Reductions using Minimal Cone Projection

The equivalent representations of the feasible set given in Lemma 3.2, in particular by (3.9e),
show that SNL is an EDM problem D = K(Ȳ ), with the additional upper and lower bound
constraints as well as the block constraint on the bottom right block of Ȳ , see e.g., (3.8).

Remark 3.3 Suppose that we can increase the size of the clique containing the anchor nodes
by adding sensor nodes where the distances are exactly known. Then these sensor nodes can
be treated as anchor nodes, though their positions are unknown.

We can now obtain a relaxation for SNL by using the EDM problem (3.7) and re-
placing the hard quadratic constraint with the simpler semidefinite constraint Ȳ � 0, and
Ȳ22 = AAT . We then observe that the Slater constraint qualification (strict feasibility)
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fails. Therefore, we can project onto the minimal cone, i.e., onto the minimal face of the
SDP cone that contains the feasible set. See [8, 2]. Let

UA =

[

In 0
0 A

]

, Us =

[

In 0
0 U

]

, where A = UΣrV
T . (3.17)

We get the following two SDP relaxations from the representations in (3.9c) and (3.9e),
respectively,

(SNL EDM A)

min f3(Z) := 1
2
‖W ◦ (K(UAZUT

A ) − E)‖2

F

subject to Hu ◦ (K(UAZUT
A ) − U b) ≤ 0

Hl ◦ (K(UAZUT
A ) − Lb) ≥ 0

Z22 = Ir

Z � 0.

(3.18)

and

(SNL EDM s)

min f3(Z) := 1
2
‖W ◦ (K(UsZUT

s ) − E)‖2

F

subject to Hu ◦ (K(UsZUT
s ) − U b) ≤ 0

Hl ◦ (K(UsZUT
s ) − Lb) ≥ 0

Z22 = Σ2
r

Z � 0.

(3.19)

Remark 3.4 Note that we do not substitute the constraint on Z22 into Z, but leave it explicit.
Though this does not change the feasible set, it does change the stability and the dual. This
can be compared to the SDP relaxation for the Max-Cut problem with constraint that the
diagonal of X is all ones, diag X = e, and X � 0. However, one does not substitute for the
diagonal and rewrite the semidefinite constraint.

Now suppose that we have another clique of p > r sensors where the exact distances
are known and are used as constraints. Then there exists a matrix Ȳ = PP T that has a
diagonal rank deficient p×p block. Since all feasible points are found from elements in the set
Ȳ + N (K), we conclude that for p large enough, the diagonal block remains rank deficient
for all feasible Ȳ , i.e., the Slater constraint qualification fails again, if the corresponding
distances are added as constraints.

We now see that we can again take advantage of the loss of the Slater constraint qualifi-
cation.

Theorem 3.1 Suppose that the hypotheses and definitions from Lemma 3.2 hold; and sup-
pose that there exists a set of sensors, without loss of generality Tc := {pt+1, . . . , pn}, so
that the distances ‖pi − pj‖ are known for all t + 1 ≤ i, j ≤ n; i.e., the graph of the partial
EDM has two cliques, one clique corresponding to the set of known anchors, and the other
to the set of sensors Tc. Let P, Ȳ be partitioned as

P =





P1

P2

P3



 =

[

X
A

]

, Ȳ =





Ȳ11 Ȳ T
21 Ȳ T

31

Ȳ21 Ȳ22 Ȳ T
32

Ȳ31 Ȳ32 Ȳ33



 = PP T ,
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where Pi = Ai, i = 2, 3, and A3 = A corresponds to the known anchors while P2 = A2

corresponds to the clique of sensors and X =

[

P1

P2

]

corresponds to all the sensors. Let the

EDM , E = K(Ȳ ), be correspondingly blocked

E =





E1 · ·
· E2 ·
· · E3



 ,

so that E3 = K(AAT ) are the anchor-anchor squared distances, and E2 = K(P2P
T
2 ) are the

squared distances between the sensors in the set Tc. Let

B = K†(E2).

Then the following hold:

1. Be = 0 and

Ȳ22 = B + ȳ2e
T + eȳT

2 � 0, for some ȳ2 ∈ R(B) + αe, α ≥ 0, with rank (Ȳ22) ≤ r;
(3.20)

2. The feasible set FG in Lemma 3.2 can be formulated as

FG :=











(P, Ȳ ) : Z =





Z11 ZT
21 ZT

31

Z21 Z22 ZT
32

Z31 Z32 Z33



 � 0, Ȳ =





It 0 0
0 U2 0
0 0 U



Z





It 0 0
0 U2 0
0 0 U





T

,

Z33 = Σ2
r , X =

[

ZT
31

U2Z
T
32

]

Σ−1
r V T , P =

[

X
A

]}

,

(3.21)
or equivalently as

FG =











(P, Ȳ ) : Z =





Z11 ZT
21 ZT

31

Z21 Z22 ZT
32

Z31 Z32 Z33



 � 0, Ȳ =





It 0 0
0 U2 0
0 0 A



Z





It 0 0
0 U2 0
0 0 A





T

,

Z33 = Ir, X =

[

ZT
31

U2Z
T
32

]

, P =

[

X
A

]}

,

(3.22)

where B̂ := B + 2eeT =
[

U2 Ū2

]

[

D2 0
0 0

]

[

U2 Ū2

]T
is the orthogonal diagonalization

of B̂, with D2 ∈ Sr2

++, r2 ≤ r + 1.

Proof. We proceed just as we did in Lemma 3.2, i.e., we reduce the problem by projecting
onto a smaller face in order to obtain the Slater constraint qualification.

The equation for Ȳ22 for some ȳ2, given in (3.20), follows from the nullspace character-
ization in Lemma 2.1. Moreover, Ȳ22 = P2P

T
2 implies that rank (Ȳ22) ≤ r, the embedding
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dimension; and, Ȳ22 � 0, Be = 0 implies the inclusion ȳ2 ∈ R(B) + αe, α ≥ 0. We can
now shift P̄ T

2 = P T
2 − 1

n−t
(P T

2 e)eT ; then, for B = P̄2P̄
T
2 , we get Be = 0, i.e., this satisfies

B = K†(E2) and rank (B) ≤ r. Therefore, for any Y = B + yeT + eyT � 0, we must have
y = αe, α ≥ 0. This implies that B̂ has the maximum rank, at most r + 1, among all
feasible matrices of the form 0 � Y ∈ B + N (K). The matrix B̂ determines the smallest
face containing all such feasible Y .

Let L := Ȳ22 + R(De) and Fe denote the smallest face of Sn−t
+ that contains L ∩ §n−t

+ .

Since B̂ is a feasible point of maximum rank, we get

B̂ = B + De(ȳ2) ∈ (L ∩ relintFe) .

Thus, the face

Fe = {U2ZUT
2 : Z ∈ Sr2

+ } = {Y ∈ Sn−t
+ : trace Y (Ū2Ū

T
2 ) = 0}.

Now, we expand





Ȳ11 Ȳ T
21 Ȳ T

31

Ȳ21 Ȳ22 Ȳ T
32

Ȳ31 Ȳ32 Ȳ33



 =





It 0 0
0 U2 0
0 0 U









Z11 ZT
21 ZT

31

Z21 Z22 ZT
32

Z31 Z32 Σ2
r









It 0 0
0 U2 0
0 0 U





T

=





Z11 ZT
21U

T
2 ZT

31U
T

U2Z21 U2Z22U
T
2 U2Z

T
32U

T

UZ31 UZ32U
T
2 UΣ2

rU
T



 .

Therefore,

[

Y T
31

Y T
32

]

=

[

ZT
31U

T

U2Z
T
32U

T

]

, and the expressions for Z33 and X in (3.21) follow from

equation (3.9e) in Lemma 3.2. The result in (3.22) can be obtained similarly.

Remark 3.5 The above Theorem 3.1 can be extended to sets of sensors that are not cliques,
but have many known edges. The key idea is to be able to use (Wi ◦ K)†(Wi ◦ Ei) and to
characterize the nullspace of Wi ◦ K.

We can apply Theorem 3.1 to further reduce the SDP relaxation. Suppose there are a group
of sensors for which pairwise distances are all known. This should be a common occurrence,
since distances between sensors within radio range are all known. Without loss of generality,
we assume the set of sensors to be {pt+1, . . . , pn}. Let E2, B = K†(E2), and U2, be found
using Theorem 3.1 and denote

U2A :=





In 0 0
0 U2 0
0 0 A



 , U2s :=





In 0 0
0 U2 0
0 0 U



 . (3.23)
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In SNL EDM s
, we can replace Us with U2s and reach a reduced SDP formulation. Simi-

larly, for SNL EDM A
. Furthermore, we may generalize to the k clique cases for any positive

integer k. We similarly define each Ui, 2 ≤ i ≤ k, and define

UkA =















In 0 . . . 0 0
0 U2 . . . 0 0
...

. . .
...

0 0 0 Uk 0
0 0 0 0 A















, Uks =















In 0 . . . 0 0
0 U2 . . . 0 0
...

. . .
...

0 0 0 Uk 0
0 0 0 0 U















. (3.24)

Then we can formulate a reduced SDP for k cliques:

(SNL k−cliques−A)

min f4(Z) := 1
2
‖W ◦ (K(UkAZUT

kA) − E)‖2

F

subject to Hu ◦ (K(UkAZUT
kA) − U b) ≤ 0

Hl ◦ (K(UkAZUT
kA) − Lb) ≥ 0

Zkk = Ir

Z � 0,

(3.25)

where Zkk is the last r by r diagonal block of Z. Similarly, we get

(SNL k−cliques−s)

min f4(Z) := 1
2
‖W ◦ (K(UksZUT

ks) − E)‖2

F

subject to Hu ◦ (K(UksZUT
ks) − U b) ≤ 0

Hl ◦ (K(UksZUT
ks) − Lb) ≥ 0

Zkk = Σ2
r

Z � 0.

(3.26)

For a clique with re sensors, a Ui is constructed with re rows and at most r + 1 columns.
This implies the dimension of Z has been reduced by re − r − 1. So if r = 2, cliques
larger than a triangle help reduce the dimension of Z. As mentioned above, the existence of
cliques is highly likely, since edges in the graph exist when sensors are within radio range.
Moreover, the above technique extends to dense sets, rather than cliques. The key is finding
B = (W ◦ K)†(W ◦ Eii), for an appropriate submatrix Eii, as well as deriving the nullspace
of W ◦ K.

3.2 Estimating Sensor Positions

After we solve SNL EDM A
(or equivalently SNL EDM s

) to get an optimal solution Z, we
can express

Ȳ = UsZUT
s =

[

Ȳ11 Ȳ T
21

Ȳ21 Ȳ22

]

, Ȳ22 = AAT , Ȳ21 = AXT , for some X.

To complete the SNL problem, we have to find an approximation to the matrix P ∈
Mn+m,r, i.e., the matrix that has the sensor locations in the first n rows, denoted X, and
the anchor locations in the last m rows, denoted A.

13



Since Ȳ ∈ Sn+m
+ , there exists P̂ =

[

P̂11 P̂21

P̂12 P̂22

]

∈ Mn+m such that P̂ P̂ T = Ȳ . By

Assumption 2.1, the anchors are centered, i.e., AT e = 0. We can translate the locations in
P̂ , so that the last m locations are centered, i.e., without loss of generality we have

[

P̂12 P̂22

]T
e = 0, P̂ P̂ T = Ȳ . (3.27)

Also,

{

P̄ ∈ Mn+m : Ȳ = P̄ P̄ T
}

=
{

P̄ ∈ Mn+m : P̄ = P̂Q, for some orthogonal Q ∈ Mn+m
}

.

In other words, from the optimal Ȳ , all the possible locations can be obtained by a rota-
tion/reflection of P̂ . However, these locations in the rows of P̂ are in R

n+m, rather than in
the desired embedding space R

r, where the anchors lie.

Remark 3.6 Since SNL is underdetermined, in general, the optimum Ȳ is not unique.
Therefore, finding a lower rank optimum Ȳ should result in better approximations for the
sensor locations.

Following are two methods and comparisons for finding an estimate to the sensor loca-
tions, X. First, Method 3.1 is the one currently used in the literature. Second, Method 3.2
is a strengthened new method based on the EDM interpretation.

Method 3.1 Estimate the location of the sensors using X in the optimal Zs or, equivalently,
solve for X using the equation AXT = Ȳ21, where Ȳ21 is from the optimal Ȳ .

In the recent papers on SNL, e.g., [7, 6, 17], X is taken directly from the optimal

Zs =

[

Ir XT

X Y

]

, see e.g., (3.16). Equivalently, since A is full column rank r,

and AXT = Ȳ21 is consistent, we can solve for X uniquely from the equation
AXT = Ȳ21. To provide a comparison with the second Method 3.2, we now
describe the underlying geometry of using this X.

Recall that A = UΣrV
T and

[

P̂12 P̂22

] [

P̂12 P̂22

]T
= AAT =

[

A 0
] [

A 0
]T

.
Therefore, these three matrices all have the same spectral decomposition and all
can be diagonalized using U . This implies that the three matrices

[

P̂12 P̂22

]

, A,
[

A 0
]

can all use the same set of left singular vectors in a compact SVD. Therefore,
[

P̂12 P̂22

]

Q =
[

A 0
]

, for some orthogonal Q, which implies that

∃Q̂, Q̂T Q̂ = I, with P̄ = P̂ Q̂ =

[

P̄11 P̄12

A 0

]

. (3.28)

This yields

P̄ =

[

P̄11 P̄12

A 0

]

, Ȳ = P̄ P̄ T =

[

Ȳ11 P̄11A
T

AP̄ T
11 AAT

]

. (3.29)
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Since AP̄ T
11 = Ȳ21 = AXT , we get P̄11 = X. Thus, after the rotation/reflection

with Q̂ to make the bottom m rows equal to A, we see that the first n rows of P̄
project exactly onto the rows of X. If we denote the orthogonal projection onto
the first r coordinates by Pr, then the resulting operation on the locations in the
rows of P̂ can be summarized by

PrP̄
T =

(

PrQ̂
T
)

P̂ T ∈ R
r ⊗ {0}n+m−r, Ȳ ≈ Ȳp := P̄PrP̄

T .

We get two sources of error in the approximation for X. First, the product PrQ̂
T

is not necessarily idempotent or symmetric, i.e., not necessarily a projection.
Second, the term that is deleted, P̄12, can be arbitrary large, while the rank of Ȳ
can be as small as r + 1. However, we can expect a larger error when the rank
of Ȳ is larger, since the deleted term P̄12 can have more nonzero columns. The

relaxation from Ȳ11 = XXT to Ȳ11 =
[

P̄11 P̄12

] [

P̄11 P̄12

]T
= P̄11P̄

T
11 + P̄12P̄

T
12 �

XXT , shows that using X = P̄11 has an error of the order of ‖Ȳ11 − XXT‖2 =
‖P̄12‖2.

Method 3.2 Suppose that P̂r = UrΣ
1/2
r , as found in (3.30) with P̂r =

[

P̂1

P̂2

]

. We find Q̂ as

a minimum for minQT Q=I ‖P̂2Q − A‖2
F . The solution is given analytically by Q̂ = VQUT

Q ,

where UQΣQVQ = AT P̂2 is the SVD for AT P̂2. Then the rows of P̂1Q̂ are used to estimate
the locations of the sensors.

In Method 1, the matrix P̄PrP̄
T provides a rank r approximation to Ȳ . However,

if ‖P̄12‖ in (3.29) is large, then it appears that we have lost information. It is
desirable to keep as much of the information from the high dimensional locations
in P̂ as we can, i.e., the information that is contained in Ȳ11. If we do not
consider the anchors distinct from the sensors, then we would like to rotate and
then project all the rows of P̂ onto a subspace of dimension r, i.e., we consider
the problem to be an EDM completion problem and would like to extract a
good approximation of the positions of all the nodes. Since the last m rows
corresponding to the anchors originated from a clique, the corresponding graph
is rigid and the corresponding projected points will be close to the original anchor
positions. We realize this using the spectral decomposition. (See e.g., [2], where
error estimates are included.) Let

Ȳ =
[

Ur Ūr

]

[

Σr 0
0 Σn+m−r

]

[

Ur Ūr

]T
.

Then, considering the problem as an EDM completion problem, we first find a
best rank r approximation to Ȳ , denoted Ȳr := UrΣrU

T
r . Only then do we find a

particular full rank factorization

P̂r ∈ Mn+m,r with Ȳr = P̂rP̂
T
r , (3.30)
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i.e., P̂r = UrΣ
1/2
r . It remains to find an orthogonal Q in order to find P = P̂rQ.

Fortunately, we can use the information from the anchors to find the orthogonal
Q.

Numerical tests for the two methods are given in Section 4.1. Method 3.2 proved to
be, almost always, more accurate. However, Method 3.1 locates all sets of sensors that are
uniquely localizable in Rr, see [25].

Remark 3.7 As above, suppose that Ȳ is an optimum for the SDP relaxation. The problem
of finding a best P to estimate the sensor locations is equivalent to finding

P ∗ ∈ argmin P

{

‖W ◦ (K(PP T − Ȳ ))‖F : P =

[

X
A

]}

.

Equivalently, we want to find

Y ∗ ∈ Sn+m
+ , rank (Y ∗) = r, Y ∗

22 = AAT , Y ∗ = Ȳ + N (W ◦ K).

However, finding such a Y ∗ is equivalent to finding the minimal rank matrix in the inter-
section of the semidefinite cone and an affine space. This is still an open/hard problem.
Recently, [24, 22] proposed randomization methods for SDP rank reduction. These methods
can generate a low rank positive semidefinite matrix in an approximate affine space.

4 Numerical Tests

We now discuss results on randomly generated, small SNL problems, with connected un-
derlying graphs. The tests were done using MATLAB 7.4. The method for generating the
tests problems follows the approach used in [17, 19].

A typical example is presented in Figure 4.1. The first plot is the original graph. The
starred positions correspond to the anchors. Then, we get the solution labelled Linear SDP ,
which corresponds to solving the SDP relaxation using the ℓ1 norm. The visible straight
lines joining two points correspond to significant errors in the sensor positions found using
the relaxation. Next, we added lower bounds to the SDP relaxation and used the ℓ2 norm
and a second order cone model. This yields the improved picture labelled SOC SDP . The
solver in this case was SeDuMi (URL: sedumi.mcmaster.ca). We still see several straight
lines indicating a significant difference between the positions of the sensors found and the
original sensor positions. The final picture labelled GN was found using our own code with
a Gauss-Newton direction and a crossover technique. The obvious improvement was a result
of the lower rank in the optimal solution of the SDP relaxation. This lower rank is a result
of our crossover technique, i.e., by not following the central path once we get close enough
to the optimal solution, we do not converge to the analytic center of the optimal set of
semidefinite matrices.
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Figure 4.1: Better Solutions from Lower Rank

4.1 Two Methods for Estimating Sensor Locations

Two methods for estimating the sensor locations from a given optimum of the SDP relaxation
were presented in Section 3.2. Method 3.1 used X directly from the optimal Z obtained from
the SDP relaxation. This is the method currently employed in the literature. Method 3.2
treated the SNL problem as an EDM and found a best rank-r approximation. Then the
problem was rotated to get the anchors back into their original positions. See Tables 4.1–4.4
for results of 100 random tests, with noise factor nf , for the three solvers labelled above:
i.e., Linear SDP ; SOC SDP ; GN, respectively.

The results in Tables 4.1 and 4.2 are for noise factors nf = 0 and nf = 0.05, respec-
tively. The tables used the true objective function f1 in (2.2) as a measure. The three rows
correspond to: the percentage of times that Method 3.2 performed better (reduced objective
function f1) over Method 3.1; the average relative reduction of Method 3.2 over Method 3.1;
the minimum (and maximum) relative reduction of Method 3.2 over Method 3.1.

Tables 4.3 and 4.4 show the results of comparing the rank of the optimal Y returned
by GN over the rank of the optimal Y returned by Linear SDP or SOC SDP . In our
numerical experiments, we found that the rank of the optimal solution returned by GN was
always less or equal to the rank of the optimal solutions returned by Linear SDP or SOC
SDP . The first row gives a percentage of the random instances for which the optimal
solution returned by GN had a strictly smaller rank than the optimal solution returned by
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Method 3.2 over Method 3.1 Linear SDP SOC SDP GN

% successful reduction 75% 82% 99%

average % reduction
13.5% / 19.5% 16.8% / 21.3% 24.0% / 24.3%

(in total / in successful)

min/max % reduction -25.7% / 58.9% -17.9% / 61.4% -1.3% / 62.5%

Table 4.1: % reduction of Method 3.2 over Method 3.1 for true objective function f1 in (2.2)
(100 problems, n = 15, m = 5, densityL = .1, densityW = .6, noise nf = 0)

Method 3.2 over Method 3.1 Linear SDP SOC SDP GN

% successful reduction 86% 92% 95%

average % reduction
9.5% / 11.7% 11.4% / 12.8% 16.6% / 18.2%

(in total / in successful)

min/max % reduction -13.7% / 38.0% -13.6% / 38.3% -33.2% / 48.4%

Table 4.2: true objective function, f1 in (2.2), % reduction of Method 3.2 over Method 3.1
(100 problems, n = 15, m = 5, densityL = .1, densityW = .6, noise nf = 0.05)

Linear SDP or SOC SDP . The second row gives the average percentage reduction in
the rank over those instances for which GN returned an optimal solution of strictly smaller
rank. The third and fourth rows show the average percentage reduction in the true objective
function f1 in (2.2) over those instances for which GN returned an optimal solution of strictly
smaller rank. The third and fourth rows differ in the method used for extracting the sensor
positions from the optimal solution. Table 4.3 considers random instances with a zero noise
factor; Table 4.4 considers random instances with a 5% noise factor.

GN over (Linear SDP / SOC SDP ) Linear SDP SOC SDP

% strictly smaller rank 53% 54%

average % rank reduction 44.6% 44.2%

average % obj. reduction (Method 3.1) 89.9% 90.0%

average % obj. reduction (Method 3.2) 90.4% 90.1%

Table 4.3: % reduction of rank and true objective function, f1 in (2.2), of GN over Linear
SDP and SOC SDP (100 problems, n = 15, m = 5, densityL = .1, densityW = .6, noise
nf = 0)

4.2 Two Methods for Solving SNL

In Figures 4.2 and 4.3, we present results for using the quadratic constraint Y − XXT � 0

compared to the linearized version

[

I XT

X Y

]

� 0. We solved many randomly generated

problems with various values for the parameters. We present typical results in the figures.
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GN over (Linear SDP / SOC SDP ) Linear SDP SOC SDP

% strictly smaller rank 99% 96%

average % rank reduction 40.5% 37.7%

average % obj. reduction (Method 3.1) 26.4% 21.9%

average % obj. reduction (Method 3.2) 31.8% 24.5%

Table 4.4: % reduction of rank and true objective function, f1 in (2.2), of GN over Linear
SDP and SOC SDP (100 problems, n = 15, m = 5, densityL = .1, densityW = .6, noise
nf = 0.05)

Figure 4.2 shows the (−log) of the optimal value at each iteration. Figure 4.3 shows the
(−log) of the relative gap. Both figures illustrate the surprising result that the quadratic
formulation is more efficient, i.e., it obtains higher accuracy with fewer iterations. This is
surprising, since we are using a Newton based method that should be faster on functions
that are less nonlinear. Therefore, from a numerical analysis viewpoint, since the constraint
is not onto, it appears that the linear version is more ill-conditioned; see Remark 3.2. In
addition, the figures show the high accuracy that can be obtained using the Gauss-Newton
direction with a crossover technique, even though these problems are highly ill-conditioned.

These tests provide empirical evidence for the theoretical comparison results on different
barriers given in [15, 9]. The results in these references show that the central path is distorted
due to the I in the linear formulation constraint. Moreover, the distortion increases with
increasing dimension of the I. This agrees with our interpretation that the linear constraint
is not onto, and the Jacobian is singular.

5 Concluding Remarks

In this paper, we have analyzed the well known SNL problem from a new perspective. By
considering the set of anchors as a clique in the underlying graph, the SNL problem can
be studied using traditional EDM theory. Our contributions follow mainly due to this
EDM approach:

1. The Slater constraint qualification can fail for cliques and/or dense subgraphs in
the underlying graph. If this happens, then we can project the feasible set of the
SDP relaxation onto the minimal cone. This projection improves the stability and
can also significantly reduce the size of the SDP . (Algorithms for finding dense
subgraphs exist in the literature, e.g., [30, 32, 26].)

2. We provided a geometric interpretation for the current approach of directly using the
X from the optimal Z of the SDP relaxation, when estimating the sensor positions.
We then proposed another method of estimating the sensor positions based on viewing
the problem as an EDM . This uses a principal component analysis. Our numerical
tests showed that the new method, almost always, gave more accurate solutions. This
further emphasizes that the SNL is best viewed as an EDM .
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Figure 4.2: Number of iterations vs optimal value; a comparison between two barriers

3. We used the ℓ2 norm formulation instead of the ℓ1 norm. This is a better fit for the
data that we used. However, the quadratic objective makes the problem more difficult
to solve.

4. We solved the ℓ2 norm formulation of the SDP relaxation with a Gauss-Newton
primal-dual interior-exterior path following method. This was a robust approach com-
pared with the traditional symmetrization and a Newton method. We compared using
the quadratic constraint with the linearized version used in the literature. The nu-
merical results showed that the quadratic constraint is more stable. This agrees with
theoretical results in the literature on the deformation of the central path based on the
size of the I in the linearized version.

5. The Gauss-Newton approach with a crossover technique consistently converged to an
optimal solution of lower rank which resulted in a better SDP approximation for the
underlying SNL . The results in Tables 4.3 and 4.4 demonstrate how converging to
optimal solutions of lower rank allow us to compute approximate solutions whose true
objective function is smaller. Although the problems we solved were of a small scale,
the significance of these numerical results warrants the application of our approach to
large scale problems.

Future work involves making the algorithm more efficient. In particular, this requires
finding appropriate preconditioners.
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Figure 4.3: Number of iterations vs duality gap; a comparison between two barriers

A Vector Notation for Computations

We let w = vec (W ) ∈ R
mn denote the vector formed from the columns of the m× n matrix

W ∈ Mm,n. For S ∈ Sn, we let s = svec (S) ∈ R
t(n) denote the vector formed (columnwise)

from the upper triangular part of S, with the strict upper triangular coefficients multiplied by
1/
√

2. (Here the triangular number t(n) = n(n + 1)/2.) We define the linear transformation
sblk i(S) = Si ∈ St, on S ∈ Sn, that pulls out the i-th diagonal block of the matrix S
of dimension t. (The values of t and n can change and will be clear from the context.)
The adjoint sblk ∗

i (T ) = sBlk i(T ), where T ∈ St, constructs a symmetric matrix of suitable
dimensions with all elements zero expect for the i-th diagonal block given by T . Similarly,
we define the linear transformation sblk ij(G) = Gij , on G ∈ Sn, that pulls out the ij block
of the matrix G of dimension k × l and multiplies it by

√
2. (The values of k, l, and n

can change and will be clear from the context.) The adjoint sblk ∗
ij(J) = sBlk ij(J), where

J ∈ Mk×l ∼= R
kl, constructs a symmetric matrix that has all elements zero expect for the

block ij that is given by J multiplied by 1√
2
, and for the block ji that is given by JT multiplied

by 1√
2
. The multiplication by

√
2 (or 1√

2
) guarantees that the mapping is an isometry. We

consider J ∈ Mk×l to be a k × l matrix and equivalently J ∈ R
kl is a vector of length kl

with the positions known.
Further notation that connect vectors and matrices follow:

x := vec

(

sblk 21

[

0 XT

X 0

])

=
√

2vec (X), y := svec (Y ),
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where we add
√

2 to the definition of x since X appears together with XT in Zs and implicitly
in Ȳ , with Y21 = AXT . We define the following matrices and linear transformations:

Zx
s (x) := sBlk 21(Mat (x)), Zy

s (y) := sBlk 2(sMat (y)),
Zs(x, y) := Zx

s (x) + Zy
s (y), Zs := sBlk 1(I) + Zs(x, y),

Yx(x) := sBlk 21(AMat (x)T ), Yy(y) := sBlk 1(sMat (y))
Y(x, y) := Yx(x) + Yy(y), Ȳ := sBlk 2(AAT ) + Y(x, y).

Ē := W ◦
[

E −K(sBlk 2(AAT ))
]

,

Ū b := Hu ◦
[

K(sBlk 2(AAT )) − U b
]

,

L̄b := Hl ◦
[

Lb −K(sBlk 2(AAT ))
]

.

By abuse of notation, we let the functions Zx
s , . . . ,Y act directly on the matrices X, Y . The

meaning will be clear from the context.
The unknown matrix Ȳ in (3.7) is equal to Y(x, y) with the additional constant in the

2, 2 block, i.e., our unknowns are the vectors x, y which are used to build Ȳ and Zs. Using
this notation we can introduce the following vector form of the relaxation of (3.7).

(SNLMV )

min f3(x, y) := 1
2
‖W ◦ (K(Y(x, y))) − Ē‖2

F

subject to gu(x, y) := Hu ◦ K(Y(x, y)) − Ū b ≤ 0
gl(x, y) := L̄b − Hl ◦ K(Y(x, y)) ≤ 0

sBlk 1(I) + Zs(x, y) � 0.

(A.31)

As above, we consider the functions gu, gl as implicitly acting only on the nonzero parts
of the upper triangular part of the matrix that results from the Hadamard products with
Hu, Hl, respectively.

B Duality for SNLwith Quadratic Constraint

Instead of using the standard linearized relaxation as SNLMV in (A.31) and in [19], we now
study the new relaxation without linearizing the quadratic constraint XXT − Y � 0. This
avoids ill-conditioning caused by this linearization, see Remark 3.2. Our numerical results
indicate that the new quadratic approach is more stable than the linear approach, see more
in Section 4. A discussion on the strengths of the corresponding barriers is given in [15, 9].

Recall that x =
√

2vec (X), y := svec (Y ). We begin with the reduced problem

(SNLMN )

min f3(x, y) := 1
2
‖W ◦ (K(Y(x, y))) − Ē‖2

F

subject to gu(x, y) := Hu ◦ K(Y(x, y)) − Ū ≤ 0
gl(x, y) := L̄ − Hl ◦ K(Y(x, y)) ≤ 0

1
2
Mat (x)Mat (x)T − sMat (y) � 0.

(B.32)

Then the Lagrangian is

L(x, y, Λu, Λl, Λ) = 1
2
‖W ◦ K(Y(x, y)) − Ē‖2

F +
〈

Λu, Hu ◦ K(Y(x, y)) − Ū
〉

+
〈

Λl, L̄ − Hl ◦ K(Y(x, y))
〉

+
〈

Λ, 1
2
Mat (x)Mat (x)T − sMat (y)

〉

,

(B.33)

22



where 0 ≤ Λu, 0 ≤ Λl ∈ Sm+n, and 0 � Λ ∈ Sn. In addition, we denote

λu := svec (Λu), λl := svec (Λl),
hu := svec (Hu), hl := svec (Hl), λ := svec (Λ).

Moreover, for numerical implementation, we define the linear transformations

hnz
u = svec u(Hu) ∈ R

nzu, hnz
l = svec l(Hl) ∈ R

nzl, (B.34)

where hnz
u is obtained from hu by removing the zeros; thus, nzu is the number of nonzeros

in the upper-triangular part of Hu. Thus the indices are fixed from the given matrix Hu.
Similarly, for hnz

l with indices fixed from Hl. We then get the vectors

λnz
u = svec u(Λu) ∈ R

nzu, λnz
l = svec l(Λl) ∈ R

nzl.

The adjoints are sMat u, sMat l; and, for any matrix M we get

Hu ◦ M = sMat usvec u(Hu ◦ M).

This holds similarly for Hl ◦ M . Therefore, we could rewrite the Lagrangian as

L(x, y, Λu, Λl, Λ) = L(x, y, λnz
u , λnz

l , Λ)

= 1
2
‖W ◦ K(Y(x, y)) − Ē‖2

F +
〈

svec u(Λu), svec u

(

Hu ◦ K(Y(x, y)) − Ū
)〉

+
〈

svec l(Λl), svec l

(

L̄ − Hl ◦ K(Y(x, y))
)〉

+
〈

Λ, 1
2
Mat (x)Mat (x)T − sMat (y)

〉

.

(B.35)

To simplify the dual of SNLMN , i.e., the max-min of the Lagrangian, we now find the
stationarity conditions of the inner minimization problem, i.e., we take the derivatives of L
with respect to x and y. We get

0 = ∇xL(x, y, Λu, Λl, Λ)
= [W ◦ (KYx)]∗

(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYx)]∗ (Λu)
− [Hl ◦ (KYx)]∗ (Λl) + vec (ΛMat (x)).

(B.36)

Note that
T (x) =

〈

Λ, 1
2
Mat (x)Mat (x)T

〉

= 1
2
〈x, vec (ΛMat (x))〉 .

(B.37)

Therefore, dT (x)
dx

= vec (ΛMat (x)), since 〈x, vec (ΛMat (x))〉 is a quadratic form in x. Simi-
larly,

0 = ∇yL(x, y, Λu, Λl, Λ)
= [W ◦ (KYy)]∗

(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYy)]∗ (Λu)
− [Hl ◦ (KYy)]∗ (Λl) − svec (Λ),

(B.38)
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since 〈Λ, sMat (y)〉 is linear in y. We can solve for Λ and then use this to eliminate Λ in the
other optimality conditions, i.e., we eliminate t(n) variables and equations using

svec (Λ) = [W ◦ (KYy)]∗
(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYy)]∗ (Λu)
− [Hl ◦ (KYy)]∗ (Λl).

(B.39)

We now substitute for Λ in the first stationarity condition (B.36), i.e.,

0 = [W ◦ (KYx)]∗
(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYx)]∗ (Λu) − [Hl ◦ (KYx)]∗ (Λl)
+vec

(

sMat
{

[W ◦ (KYy)]∗
(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYy)]∗ (Λu) − [Hl ◦ (KYy)]∗ (Λl)}Mat (x)) .
(B.40)

The Wolfe dual is obtained from applying the stationarity conditions to the inner mini-
mization of the Lagrangian dual (max-min of the Lagrangian), i.e., we get the (dual SNLMN )
problem

(SNLMV − D )

max L(x, y, λu, λl, λ)
subject to (B.36), (B.38)

sMat (λu) ≥ 0, sMat (λl) ≥ 0
sMat (λ) � 0.

(B.41)

We denote the slack variables

Su := Ū − Hu ◦ (K (Y(x, y))) , su = svec Su

Sl := Hl ◦ (K (Y(x, y))) − L̄, sl = svec Sl

Z := Y − XXT � 0.
(B.42)

We can now present the primal-dual characterization of optimality.

Theorem B.1 The primal-dual variables x, y, Λ, λu, λl are optimal for SNLMN if and only
if:

1. Primal Feasibility:
su ≥ 0, sl ≥ 0, in (B.42),

1

2
Mat (x)Mat (x)T − sMat (y) � 0. (B.43)

2. Dual Feasibility: Stationarity equations (B.36),(B.38) hold and

Λ = sMat (λ) � 0; λu ≥ 0; λl ≥ 0. (B.44)

3. Complementary Slackness:
λu ◦ su = 0
λl ◦ sl = 0

ΛZ = 0.
(B.45)
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We can use the structure of the optimality conditions to eliminate some of the linear dual
equations and obtain a characterization of optimality based mainly on a bilinear equation
and nonnegativity/semidefiniteness.

Corollary B.1 The dual linear equality constraints (B.38) in Theorem B.1 can be eliminated
after using it to substitute for λ in (B.36), i.e., we get equation (B.40). The complemen-
tarity conditions in (B.45) now yield a bilinear system of equations F (x, y, λu, λl) = 0, with
nonnegativity and semidefinite conditions that characterize optimality of SNLMN .

C Linearization for a Gauss-Newton Primal-Dual Interior-

Point Method

We now present a primal-dual interior-point method for SNLMN , see in [19] for the lin-
earized case, SNLMV . First, we define the equation (B.40) to be:

Ls(x, y, Λu, Λl) = 0.

Then, to solve SNLMN we use the Gauss-Newton method on the perturbed complementary
slackness conditions (written with the block vector notation):

Fµ(x, y, λu, λl) :=









λu ◦ su − µue
λl ◦ sl − µle
ΛZ − µcI

Ls









= 0, (C.46)

where su = su(x, y), sl = sl(x, y), Λ = Λ(x, y, λu, λl), Z = Z(x, y) and Ls = Ls(x, y, Λu, Λl).
This is an overdetermined system with

(mu + nu) + (ml + nl) + n2 + nr equations; nr + t(n) + (mu + nu) + (ml + nl) variables.

We denote the Gauss-Newton search direction for (C.46) by

∆s :=









∆x
∆y
∆λu

∆λl









.

The linearized system for the search direction ∆s is:

F ′
µ(∆s) ∼= F ′

µ(x, y, λu, λl)(∆s) = −Fµ(x, y, λu, λl).
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To further simplify notation, we use the following composition of linear transformations.
Let H be symmetric. Then

Kx
H(x) := H ◦ (K(Yx(x))),

Ky
H(y) := H ◦ (K(Yy(y))),

KH(x, y) := H ◦ (K(Y(x, y))).

Therefore, we have the following:

Λ(x, y, λu, λl) = sMat [(Ky
W )∗(KW (x, y) − Ē) + (Ky

Hu
)∗(sMat (λu)) − (Ky

Hl
)∗(sMat (λl))],

Ls(x, y, Λu, Λl) = (Kx
W )∗(KW (x, y) − Ē) + (Kx

Hu
)∗(sMat (λu)) − (Kx

Hl
)∗(sMat (λl))

+vec (ΛMat (x)).

Define the linearization of above functions as:

∆Λ(∆x, ∆y, ∆λu, ∆λl) = sMat [(Ky
W )∗(KW (∆x, ∆y)) + (Ky

Hu
)∗(sMat (∆λu))

−(Ky
Hl

)∗(sMat (∆λl))],
∆Ls(∆x, ∆y, ∆Λu, ∆Λl) = (Kx

W )∗(KW (∆x, ∆y)) + (Kx
Hu

)∗(sMat (∆λu)) − (Kx
Hl

)∗(sMat (∆λl))
+vec (∆ΛMat (x)) + vec (ΛMat (∆x)).

The linearization of the complementary slackness conditions results in four blocks of equa-
tions

1.
−λu ◦ svecKHu

(∆x, ∆y) + su ◦ ∆λu = µue − λu ◦ su

2.
λl ◦ svecKHl

(∆x, ∆y) + sl ◦ ∆λl = µle − λl ◦ sl

3.

Λ(sMat (∆y) − 1

2
Mat (x)Mat (∆x)T − 1

2
Mat (∆x)Mat (x)T )

+∆Λ(∆s)(sMat (y) − 1

2
Mat (x)Mat (x)T )

= µcI − ΛZ

4.
∆Ls(∆s) = −Ls(x, y, Λu, Λl)

and hence

F ′
µ(∆s) =









−λu ◦ svecKHu
(∆x, ∆y) + su ◦ ∆λu

λl ◦ svecKHl
(∆x, ∆y) + sl ◦ ∆λl

Λ(sMat (∆y) − 1
2
Mat (x)Mat (∆x)T − 1

2
Mat (∆x)Mat (x)T ) + ∆Λ(∆s)Z

∆Ls(∆s),
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where F ′
µ : Mn×r × R

t(n) × R
t(m+n) × R

t(m+n) → R
t(m+n) × R

t(m+n) ×Mn×n × R
nr, i.e., the

linear system is overdetermined.
We need to calculate the adjoint (F ′

µ)
∗. We first find (Kx

H)∗, (Ky
H)∗, and (KH)∗. By the

expression of Y(∆x, ∆y), we get

Y∗(S) =

[

(Yx)∗(S)
(Yy)∗(S)

]

=

[

Mat ∗(sblk 21(S)T A)
sMat ∗(sblk 1(S))

]

=

[

vec (sblk 21(S)T A)
svec (sblk 1(S))

]

. (C.47)

By the expression of KH(∆x, ∆y), we get

K∗
H(S) =

[

(Kx
H)∗(S)

(Ky
H)∗(S)

]

=

[

(Yx)∗(K∗(H ◦ S))
(Yy)∗(K∗(H ◦ S))

]

. (C.48)

Moreover,

〈ΛsMat (∆y), W3〉 = trace
(

W T
3 Λ
)

sMat (∆y)

=

〈

1

2
svec (ΛW3 + W T

3 Λ), ∆y

〉

.

Similarly

〈

1

2
ΛMat (x)Mat (∆x)T , W3

〉

= trace
1

2
W T

3 ΛMat (x)Mat (∆x)T

=

〈

1

2
vec (W T

3 ΛMat (x)), ∆x

〉

and
〈

1

2
ΛMat (∆x)Mat (x)T , W3

〉

= trace
1

2
W T

3 ΛMat (∆x)Mat (x)T

=

〈

1

2
vec (ΛW3Mat (x)), ∆x

〉

.

In addition, using the expression for KH(∆x, ∆y), with S ∈ Sn, we get

(∆Λ)∗(S) =









(Kx
W )∗(Ky

W (svec (S)))
(Ky

W )∗(Ky
W (svec (S)))

svec [(Ky
Hu

)(svec (S))]
−svec [(Ky

Hl
)(svec (S))]









=









∆x
∆y
∆λu

∆λl









. (C.49)

Now we find (∆Ls)
∗(w4), which consists of three columns of blocks with four rows per column.
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We list this with columns labelled C1, C2, C3:

C1 =









(Kx
W )∗(Kx

W (w4))
(Ky

W )∗(Kx
W (w4))

svec [(Kx
Hu

)(w4)]
−svec [(Kx

Hl
)(w4)]









C2 =









vec (ΛMat (w4))
0
0
0









C3 = (∆Λ)∗(1
2
[Mat (w4)X

T + XMat (w4)
T ]).

Thus, the desired adjoint is given by (∆Ls)
∗ = C1 + C2 + C3.

Now we evaluate (F ′
µ)∗(w1, w2, W3, w4), where w1 ∈ R

t(m+n), w2 ∈ R
t(m+n), W3 ∈ Mn×n,

and w4 ∈ R
nr. This consists of four columns of blocks with four rows per column. We list

this with columns labelled K1, K2, K3, K4:

K1 =









−(Kx
Hu

)∗ (sMat (λu ◦ w1))
−(Ky

Hu
)∗ (sMat (λu ◦ w1))

w1 ◦ su

0









K2 =









(Kx
Hl

)∗ (sMat (λl ◦ w2))
(Ky

Hl
)∗ (sMat (λl ◦ w2))

0
w2 ◦ sl









K3 = K31 + K32

K4 = (∆Ls)
∗(w4).

where

K31 =









−1
2
vec

(

W T
3 ΛMat (x) + ΛW3Mat (x)

)

1
2
svec (ΛW3 + W T

3 Λ)
0
0









K32 = (∆Λ)∗(
1

2
[W3Z + ZW T

3 ]).

Thus the desired adjoint is given by (F ′
µ)∗ = K1 + K2 + K3 + K4.
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