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Abstract4

This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidef-5

inite programming, SDP, problems, i.e., programs for which the Slater constraint qualification,6

existence of strictly feasible points, (nearly) fails.7

Current popular algorithms for semidefinite programming rely on primal-dual interior-point,8

p-d i-p methods. These algorithms require the Slater constraint qualification for both the9

primal and dual problems. This assumption guarantees the existence of Lagrange multipliers,10

well-posedness of the problem, and stability of algorithms. However, there are many instances11

of SDPs where the Slater constraint qualification fails or nearly fails. Our backward stable12

preprocessing technique is based on applying the Borwein-Wolkowicz facial reduction process13

to find a finite number, k, of rank-revealing orthogonal rotations of the problem. After an14

appropriate truncation, this results in a smaller, well-posed, nearby problem that satisfies the15

Robinson constraint qualification, and one that can be solved by standard SDP solvers. The16

case k = 1 is of particular interest and is characterized by strict complementarity of an auxiliary17

problem.18
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1 Introduction62

The aim of this paper is to develop a backward stable preprocessing technique to handle (nearly)63

ill-posed semidefinite programming, SDP, problems, i.e., programs for which the Slater constraint64

qualification (Slater CQ, or SCQ), the existence of strictly feasible points, (nearly) fails. The65

technique is based on applying the Borwein-Wolkowicz facial reduction process [11, 12] to find66

a finite number k of rank-revealing orthogonal rotation steps. Each step is based on solving an67

auxiliary problem (AP) where it and its dual satisfy the Slater CQ. After an appropriate truncation,68

this results in a smaller, well-posed, nearby problem for which the Robinson constraint qualification69

(RCQ) [52] holds; and one that can be solved by standard SDP solvers. In addition, the case k = 170

is of particular interest and is characterized by strict complementarity of the (AP).71

In particular, we study SDPs of the following form

(P) vP := sup
y
{bT y : A∗y � C}, (1.1)

where the optimal value vP is finite, b ∈ R
m, C ∈ S

n, and A : S
n → R

m is an onto linear72

transformation from the space S
n of n × n real symmetric matrices to R

m. The adjoint of A is73

A∗y =
∑m

i=1 yiAi, where Ai ∈ S
n, i = 1, . . . ,m. The symbol � denotes the Löwner partial order74

induced by the cone Sn+ of positive semidefinite matrices, i.e., A∗y � C if and only if C−A∗y ∈ S
n
+.75

(Note that the cone optimization problem (1.1) is commonly used as the dual problem in the SDP76

literature, though it is often the primal in the Linear Matrix Inequality (LMI) literature, e.g., [13].)77

If (P) is strictly feasible, then one can use standard solution techniques; if (P) is strongly infeasible,78

then one can set vP = −∞, e.g., [38, 43, 47, 62, 66]. If neither of these two feasibility conditions79

can be verified, then we apply our preprocessing technique that finds a rotation of the problem80

that is akin to rank-revealing matrix rotations. (See e.g., [58, 59] for equivalent matrix results.)81

This rotation finds an equivalent (nearly) block diagonal problem which allows for simple strong82

dualization by solving only the most significant block of (P) for which the Slater CQ holds.83

This is equivalent to restricting the original problem to a face of Sn+, i.e., the preprocessing can84

be considered as a facial reduction of (P) . Moreover, it provides a backward stable approach for85

solving (P) when it is feasible and the SCQ fails; and it solves a nearby problem when (P) is weakly86

infeasible.87

The Lagrangian dual to (1.1) is

(D) vD := inf
X
{〈C,X〉 : A(X) = b,X � 0} , (1.2)

where 〈C,X〉 := traceCX =
∑

ij CijXij denotes the trace inner product of the symmetric matrices88

C and X; and, A(X) = (〈Ai,X〉) ∈ R
m. Weak duality vD ≥ vP follows easily. The usual constraint89
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qualification (CQ) used for (P) is SCQ, i.e., strict feasibility A∗y ≺ C (or C − A∗y ∈ S
n
++, the90

cone of positive definite matrices). If we assume the Slater CQ holds and the primal optimal91

value is finite, then strong duality holds, i.e., we have a zero duality gap and attainment of the92

dual optimal value. Strong duality results for (1.1) without any constraint qualification are given93

in [10, 11, 12, 72] and [48, 49], and more recently in [50, 65]. Related closure conditions appear in94

[44]; and, properties of problems where strong duality fails appear in [45].95

General surveys on SDP are in e.g., [4, 63, 68, 74]. Further general results on SDP appear in96

the recent survey [31].97

Many popular algorithms for (P) are based on Newton’s method and a primal-dual interior-98

point, p-d i-p, approach, e.g., the codes (latest at the URLs in the citations) CSDP, SeDuMi,99

SDPT3, SDPA [9, 60, 67, 76]; see also the100

SDP URL: www-user.tu-chemnitz.de/˜helmberg/sdp software.html.101

To find the search direction, these algorithms apply symmetrization in combination with block102

elimination to find the Newton search direction. The symmetrization and elimination steps both103

result in ill-conditioned linear systems, even for well conditioned SDP problems, e.g., [19, 73]. And,104

these methods are very susceptible to numerical difficulties and high iteration counts in the case105

when SCQ nearly fails, see e.g., [21, 22, 23, 24]. Our aim in this paper is to provide a stable106

regularization process based on orthogonal rotations for problems where strict feasibilty (nearly)107

fails. Related papers on regularization are e.g., [30, 39]; and papers on high accuracy solutions108

for algorithms SDPA-GMP,-QD,-DD are e.g., [77]. In addition, a popular approach uses a selfdual109

embedding e.g., [16, 17]. This approach results in SCQ holding by using homogenization and110

increasing the number of variables. In contrast, our approach reduces the size of the problem in a111

preprocessing step in order to guarantee SCQ.112

1.1 Outline113

We continue in Section 1.2 with preliminary notation and results for cone programming. In Section 2114

we recall the history and outline the similarities and differences of what facial reduction means first115

for linear programming (LP), and then for ordinary convex programming (CP), and finally for116

SDP, which has elements from both LP and CP. Instances and applications where the SCQ fails117

are given in Section 2.3.1. Then, Section 3 presents the theoretical background and tools needed118

for the facial reduction algorithm for SDP. This includes results on strong duality in Section 3.1;119

and, various theorems of the alternative, with cones having both nonempty and empty interior, are120

given in Section 3.2. A stable auxiliary problem (3.5) for identifying the minimal face containing the121

feasible set is presented and studied in Section 3.3; see e.g., Theorem 3.11. In particular, we relate122

the question of transforming the unstable problem of finding the minimal face to the existence of a123

primal-dual optimal pair satisfying strict complementarity and to the number of steps in the facial124

reduction. See Remark 3.10 and Section 3.5. The resulting information from the auxiliary problem125

for problems where SCQ (nearly) fails is given in Theorem 3.15 and Propositions 3.16, 3.17. This126

information can be used to construct equivalent problems. In particular, a rank-revealing rotation127

is used in Section 3.4 to yield two equivalent problems that are useful in sensitivity analysis, see128

Theorem 3.20. In particular, this shows the backwards stability with respect to perturbations in129

the parameter β in the definition of the cone Tβ for the problem. Truncating the (near) singular130

blocks to zero yields two smaller equivalent, regularized problems in Section 3.4.1.131

The facial reduction is studied in Section 4. An outline of the facial reduction using a rank-132

revealing rotation process is given in Section 4.1. Backward stability results are presented in133
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Section 4.2.134

Preliminary numerical tests, as well as a technique for generating instances with a finite duality135

gap useful for numerical tests, are given in Section 5. Concluding remarks appear in Section 6. (An136

index is included to help the reader, see page 49.)137

1.2 Preliminary definitions138

Let (V, 〈·, ·〉V) be a finite-dimensional inner product space, and K be a (closed) convex cone in V,
i.e., λK ⊆ K,∀λ ≥ 0, and K+K ⊆ K. K is pointed if K∩ (−K) = {0}; K is proper if K is pointed
and intK 6= ∅; the polar or dual cone of K is K∗ := {φ : 〈φ, k〉 ≥ 0,∀k ∈ K}. We denote by �K

the partial order with respect to K. That is, x1 �K x2 means that x2 − x1 ∈ K. We also write
x1 ≺K x2 to mean that x2 − x1 ∈ intK. In particular with V = S

n, K = S
n
+ yields the partial

order induced by the cone of positive semidefinite matrices in S
n, i.e., the so-called Löwner partial

order. We denote this simply with X � Y for Y − X ∈ S
n
+. cone (S) denotes the convex cone

generated by the set S. In particular, for any non-zero vector x, the ray generated by x is defined
by cone (x). The ray generated by s ∈ K is called an extreme ray if 0 �K u �K s implies that
u ∈ cone (s). The subset F ⊆ K is a face of the cone K, denoted F �K, if

(s ∈ F, 0 �K u �K s) =⇒ (cone (u) ⊆ F ) . (1.3)

Equivalently, F �K if F is a cone and
(

x, y ∈ K, 12(x+ y) ∈ F
)

=⇒ ({x, y} ⊆ F ). If F �K but139

is not equal to K, we write F � K. If {0} 6= F �K, then F is a proper face of K. For S ⊆ K,140

we let face(S) denote the smallest face of K that contains S. A face F �K is an exposed face if141

it is the intersection of K with a hyperplane. The cone K is facially exposed if every face F �K142

is exposed. If F �K, then the conjugate face is F c := K∗ ∩ {F}⊥. Note that the conjugate face143

F c is exposed using any s ∈ relintF (where relintS denotes the relative interior of the set S),144

i.e., F c = K∗ ∩ {s}⊥,∀s ∈ relintF . In addition, note that Sn+ is self-dual (i.e., (Sn+)
∗ = S

n
+) and is145

facially exposed.146

For the general conic programming problem, the constraint linear transformation A : V → W147

maps between two Euclidean spaces. The adjoint of A is denoted by A∗ : W → V, and the148

Moore-Penrose generalized inverse of A is denoted by A† :W → V.149

A linear conic program may take the form

(Pconic) vconicP = sup
y
{〈b, y〉 : C −A∗y �K 0}, (1.4)

with b ∈ W and C ∈ V. Its dual is given by

(Dconic) vconicD = inf
X
{〈C,X〉 : A(X) = b,X �K∗ 0}. (1.5)

Note that the Robinson constraint qualification (RCQ) is said to hold for the linear conic program150

(Pconic) if 0 ∈ int(C −A∗(Rm) − S
n
+); see [53]. As pointed out in [61], the Robinson CQ is equiv-151

alent to the Mangasarian-Fromovitz constraint qualification in the case of conventional nonlinear152

programming. Also, it is easy to see that the Slater CQ, strict feasibility, implies RCQ.153

Denote the feasible solution and slack sets of (1.4) and (1.5) by FP = Fy
P = {y : A∗y �K C},

FZ
P = {Z : Z = C−A∗y �K 0}, and FD = {X : A(X) = b, X �K∗ 0}, respectively. The minimal

face of (1.4) is the intersection of all faces of K containing the feasible slack vectors:

fP = fZ
P := face(C −A∗(FP )) = ∩{H �K : C −A∗(FP ) ⊆ H} .
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Here, A∗(FP ) is the linear image of the set FP under A∗.154

We continue with the notation specifically for V = S
n, K = S

n
+ and W = R

m. Then (1.4)155

(respectively, (1.5)) is the same as (1.1) (respectively, (1.2)). We let ei denote the i-th unit vector,156

and Eij :=
1√
2
(eie

T
j + eje

T
i ) are the unit matrices in S

n. for specific Ai ∈ S
n, i = 1, . . . ,m. We let157

‖A‖2 denote the spectral norm of A and define the Frobenius norm (Hilbert-Schmidt norm) of158

A as ‖A‖F :=
√

∑m
i=1 ‖Ai‖2F .159

Unless stated otherwise, all vector norms are assumed to be 2-norm, and all matrix norms in
this paper are Frobenius norms. Then, e.g., [32, Chapter 5], for any X ∈ S

n,

‖A(X)‖2 ≤ ‖A‖2‖X‖F ≤ ‖A‖F ‖X‖F . (1.6)

We summarize our assumptions in the following.160

Assumption 1.1. FP 6= ∅; A is onto.161

2 Framework for Regularization/Preprocessing162

The case of preprocessing for linear programming is well known. The situation for general convex163

programming is not. We now outline the preprocessing and facial reduction for the cases of:164

linear programming, (LP); ordinary convex programming, (CP); and SDP. We include details on165

motivation involving numerical stability and convergence for algorithms. In all three cases, the166

facial reduction can be regarded as a Robinson type regularization procedure.167

2.1 The case of linear programming, LP168

Preprocessing is essential for LP, in particular for the application of interior point methods. Suppose
that the constraint in (1.4) is A∗y �K c with K = R

n
+, the nonnegative orthant, i.e., it is equivalent

to the elementwise inequality AT y ≤ c, c ∈ R
n, with the (full row rank) matrix A being m × n.

Then (Pconic) and (Dconic) form the standard primal-dual LP pair. Preprocessing is an essential
step in algorithms for solving LP, e.g., [20, 27, 35]. In particular, interior-point methods require
strictly feasible points for both the primal and dual LPs. Under the assumption that FP 6= ∅, lack
of strict feasibility for the primal is equivalent to the existence of an unbounded set of dual optimal
solutions. This results in convergence problems, since current primal-dual interior point methods
follow the central path and converge to the analytic center of the optimal set. From a standard
Farkas’ Lemma argument, we know that the Slater CQ, the existence of a strictly feasible point
AT ŷ < c, holds if and only if

the system 0 6= d ≥ 0, Ad = 0, cT d = 0 is inconsistent. (2.1)

In fact, after a permutation of columns if needed, we can partition both A, c as

A =
[

A< A=
]

, with A= size m× t, c =

(

c<

c=

)

,

so that we have

A<T
ŷ < c<, A=T ŷ = c=, for some ŷ ∈ R

m, and AT y ≤ c =⇒ A=T y = c=,

6



i.e. the constraints A=T y ≤ c= are the implicit equality constraints, with indices given in

P := {1, . . . , n}, P< := {1, . . . , n− t}, P= := {n− t+ 1, . . . , n}.

Moreover, the indices for c= (and columns of A=) correspond to the indices in a maximal positive169

solution d in (2.1); and, the nonnegative linear dependence in (2.1) implies that there are redundant170

implicit equality constraints that we can discard, yielding the smaller (A=
R)

T y = c=R with A=
R full171

column rank. Therefore, an equivalent problem to (Pconic) is172

(Preg) vP := max{bT y : A<T
y ≤ c<, A=

R
T y = c=R}. (2.2)

And this LP satisfies the Robinson constraint qualification (RCQ); see Corollary 3.4, Item 2, below.173

In this case RCQ is equivalent to the Mangasarian-Fromovitz constraint qualification (MFCQ),174

i.e., there exists a feasible ŷ which satisfies the inequality constraints strictly, A<T ŷ < c<, and the175

matrix A= for the equality constraints is full row rank, see e.g., [8, 40]. The MFCQ characterizes176

stability with respect to right-hand side perturbations and is equivalent to having a compact set of177

dual optimal solutions. Thus, recognizing and changing the implicit equality constraints to equality178

constraints and removing redundant equality constraints provides a simple regularization of LP.179

Let fP denote the minimal face of the LP. Then note that we can rewrite the constraint as

AT y �fP c, with fP := {z ∈ R
n
+ : zi = 0, i ∈ P=}.

Therefore, rewriting the constraint using the minimal face provides a regularization for LP. This180

is followed by discarding redundant equality constraints to obtain the MFCQ. This reduces the181

number of constraints and thus the dimension of the dual variables. Finally, the dimension of182

the problem can be further reduced by eliminating the equality constraints completely using the183

nullspace representation. However, this last step can result in loss of sparsity and is usually not184

done.185

We can similarly use a theorem of the alternative to recognize failure of strict feasibility in the186

dual, i.e., the (in)consistency of the system 0 6= AT v ≥ 0, bT v = 0. This corresponds to identifying187

which variables xi are identically zero on the feasible set. The regularization then simply discards188

these variables along with the corresponding columns of A, c.189

2.2 The case of ordinary convex programming, CP190

We now move from LP to nonlinear convex programming. We consider the ordinary convex program191

(CP)192

(CP) vCP := sup{bT y : g(y) ≤ 0}, (2.3)

where g(y) = (gi(y)) ∈ R
n, and gi : R

m → R are convex functions, for all i. (Without loss of gener-
ality, we let the objective function f(y) = bT y be linear. This can always be achieved by replacing
a concave objective function with a new variable sup t, and adding a new constraint −f(y) ≤ −t.)
The quadratic programming case has been well studied, [28, 28, 42]. Some preprocessing results
for the general CP case are known, e.g., [15]. However, preprocessing for general CP is not as well
known as for LP. In fact, see [6], as for LP there is a set of implicit equality constraints for CP, i.e.
we can partition the constraint index set P = {1, . . . , n} into two sets

P= = {i ∈ P : y feasible =⇒ gi(y) = 0}, P< = P\P=. (2.4)

7



Therefore, as above for LP, we can rewrite the constraints in CP using the minimal face fP to get193

g(y) �fP 0. However, this is not a true convex program since the new equality constraints are not194

affine. However, surprisingly the corresponding feasible set for the implicit equality constraints is195

convex, e.g., [6]. We include the result and a proof for completeness.196

Lemma 2.1. Let the convex program (CP) be given, and let P= be defined as in (2.4). Then the
set F= := {y : gi(y) = 0,∀i ∈ P=} satisfies

F= = {y : gi(y) ≤ 0,∀i ∈ P=},

and thus is a convex set.197

Proof. Let g=(y) = (gi(y))i∈P= and g<(y) = (gi(y))i∈P< . By definition of P<, there exists a feasible198

ŷ ∈ F with g<(ŷ) < 0; and, suppose that there exists ȳ with g=(ȳ) ≤ 0, and gi0(ȳ) < 0, for some199

i0 ∈ P=. Then for small α > 0 the point yα := αŷ+(1−α)ȳ ∈ F and gi0(yα) < 0. This contradicts200

the definition of P=.201

This means that we can regularize CP by replacing the implicit equality constraints as follows

(CPreg) vCP := sup{bT y : g<(y) ≤ 0, y ∈ F=}. (2.5)

The generalized Slater CQ holds for the regularized convex program (CPreg). Let

φ(λ) = sup
y∈F=

bT y − λT g<(y)

denote the regularized dual functional for CP. Then strong duality holds for CP with the regularized
dual program, i.e.

vCP = vCPD := inf
λ≥0

φ(λ)

= φ(λ∗),

for some (dual optimal) λ∗ ≥ 0. The Karush-Kuhn-Tucker (KKT) optimality conditions applied
to (2.5) imply that

y∗ is optimal for CPreg

if and only if






y∗ ∈ F (primal feasibility)
b−∇g<(y∗)λ∗ ∈ (F= − y∗)∗ , for some λ∗ ≥ 0 (dual feasibility)
g<(y∗)Tλ∗ = 0 (complementary slackness)

This differs from the standard KKT conditions in that we need the polar set

(F= − y∗)∗ = cone (F= − y∗)
∗
= (D=(y∗))∗ , (2.6)

where D=(y∗) denotes the cone of directions of constancy of the implicit equality constraints P=,202

e.g., [6]. Thus we need to be able to find this cone numerically, see, [71]. A backward stable203

algorithm for the cone of directions of constancy is presented in [37].204

Note that a convex function f is faithfully convex if f is affine on a line segment only if it is205

affine on the whole line containing that segment; see [54]. Analytic convex functions are faithfully206

convex, as are strictly convex functions . For faithfully convex functions, the set F= is an affine207
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manifold, F= = {y : V y = V ŷ}, where ŷ ∈ F is feasible, and the nullspace of the matrix V gives208

the intersection of the cones of directions of constancy D=. Without loss of generality, let V be209

chosen full row rank. Then in this case we can rewrite the regularized problem as210

(CPreg) vCP := sup{bT y : g<(y) ≤ 0, V y = V ŷ}, (2.7)

which is a convex program for which the MFCQ holds. Thus by identifying the implicit equalities211

and replacing them with the linear equalities that represent the cone of directions of constancy, we212

obtain the regularized convex program. If we let gR(y) =

(

g<(y)
V y − V ŷ

)

, then writing the constraint213

g(y) ≤ 0 using gR and the minimal cone fP as gR(y) �fP 0 results in the regularized CP for which214

MFCQ holds.215

2.3 The case of semidefinite programming, SDP216

Finally, we consider our case of interest, the SDP given in (1.1). In this case, the cone for the217

constraint partial order is S
n
+, a nonpolyhedral cone. Thus we have elements of both LP and CP.218

Significant preprocessing is not done in current public domain SDP codes. Theoretical results are219

known, see e.g., [34] for results on redundant constraints using a probabilistic approach. However,220

[10], the notion of minimal face can be used to regularize SDP. Surprisingly, the above result for221

LP in (2.2) holds. A regularized problem for (P) for which strong duality holds has constraints of222

the form A∗y �fP C without the need for an extra polar set as in (2.6) that is used in the CP223

case, i.e., changing the cone for the partial order regularizes the problem. However, as in the LP224

case where we had to discard redundant implicit equality constraints, extra work has to be done225

to ensure that the RCQ holds. The details for the facial reduction now follow in Section 3. An226

equivalent regularized problem is presented in Corollary 3.22, i.e., rather than a permutation of227

columns needed in the LP case, we perform a rotation of the problem constraint matrices, and then228

we get a similar division of the constraints as in (2.2); and, setting the implicit equality constraints229

to equality results in a regularized problem for which the RCQ holds.230

2.3.1 Instances where the Slater CQ fails for SDP231

Instances where SCQ fails for CP are given in [6]. It is known that the SCQ holds generically232

for SDP, e.g., [3]. However, there are surprisingly many SDPs that arise from relaxations of hard233

combinatorial problems where SCQ fails. In addition, there are many instances where the structure234

of the problems allows for exact facial reduction. This was shown for the quadratic assignment235

problem in [80] and for the graph partitioning problem in [75]. For these two instances, the236

barycenter of the feasible set is found explicitly and then used to project the problem onto the237

minimal face; thus we simultaneously regularize and simplify the problems. In general, the affine238

hull of the feasible solutions of the SDP are found and used to find Slater points. This is formalized239

and generalized in [64, 66]. In particular, SDP relaxations that arise from problems with matrix240

variables that have 0, 1 constraints along with row and column constraints result in SDP relaxations241

where the Slater CQ fails.242

Important applications occur in the facial reduction algorithm for sensor network localization243

and molecular conformation problems given in [36]. Cliques in the graph result in corresponding244

dimension reduction of the minimal face of the problem resulting in efficient and accurate solution245

techniques. Another instance is the SDP relaxation of the side chain positioning problem studied246
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in [14]. Further Applications that exploit the failure of the Slater CQ for SDP relaxations appear247

in e.g., [1, 2, 5, 69].248

3 Theory249

We now present the theoretical tools that are needed for the facial reduction algorithm for SDP.250

This includes the well known results for strong duality, the theorems of the alternative to identify251

strict feasibility, and, in addition, a stable subproblem to apply the theorems of the alternative.252

Note that we use K to represent the cone S
n
+ to emphasize that many of the results hold for more253

general closed convex cones.254

3.1 Strong duality for cone optimization255

We first summarize some results on strong duality for the conic convex program in the form (1.4).256

Strong duality for (1.4) means that there is a zero duality gap, vconicP = vconicD , and the dual optimal257

value vD (1.5) is attained. However, it is easy to construct examples where strong duality fails, see258

e.g., [45, 49, 74] and Section 5, below.259

It is well known that for a finite dimensional LP, strong duality fails only if the primal problem260

and/or its dual are infeasible. In fact, in LP both problems are feasible and both of the optimal261

values are attained (and equal) if, and only if, the optimal value of one of the problems is finite.262

In general (conic) convex optimization, the situation is more complicated, since the underlying263

cones in the primal and dual optimization problems need not be polyhedral. Consequently, even264

if a primal problem and its dual are feasible, a nonzero duality gap and/or non-attainment of the265

optimal values may ensue unless some constraint qualification holds; see e.g., [7, 55]. More specific266

examples for our cone situations appear in e.g., [38], [51, Section 3.2], and [63, Section 4].267

Failure of strong duality is problematic, since many classes of p-d i-p algorithms require not
only that a primal-dual pair of problems possess a zero duality gap, but also that the (generalized)
Slater CQ holds for both primal and dual, i.e., that strict feasibility holds for both problems. In
[10, 11, 12], an equivalent strongly dualized primal problem corresponding to (1.4), given by

(SP) vconicSP := sup{〈b, y〉 : A∗y �fP C}, (3.1)

where fP �K is the minimal face of K containing the feasible region of (1.4), is considered. The
equivalence is in the sense that the feasible set is unchanged

A∗y �K C ⇐⇒ A∗y �fP C.

This means that for any face F we have

fP � F �K =⇒ {A∗y �K C ⇐⇒ A∗y �F C} .

The Lagrangian dual of (3.1) is given by

(DSP) vconicDSP := inf{〈C,X〉 : A(X) = b, X �f∗
P
0}. (3.2)

We note that the linearity of the constraint means that an equality set of the type in (2.6) is not268

needed.269
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Theorem 3.1 ([10]). Suppose that the optimal value vconicP in (1.4) is finite. Then strong duality270

holds for the pair (3.1) and (3.2), or equivalently, for the pair (1.4) and (3.2); i.e., vconicP = vconicSP =271

vconicDSP and the dual optimal value vconicDSP is attained.272

273

3.2 Theorems of the alternative274

In this section, we state some theorems of the alternative for the Slater CQ of the conic convex275

program (1.4), which are essential to our reduction process. We first recall the notion of recession276

direction (for the dual (1.5)) and its relationship with the minimal face of the primal feasible region.277

Definition 3.2. The convex cone of recession directions for (1.5) is

RD := {D ∈ V : A(D) = 0, 〈C,D〉 = 0, D �K∗ 0}. (3.3)

The cone RD consists of feasible directions for the homogeneous problem along which the dual278

objective function is constant.279

Lemma 3.3. Suppose that the feasible set FP 6= ∅ for (1.4), and let 0 6= D ∈ RD. Then the
minimal face of (1.4) satisfies

fP �K ∩ {D}⊥ �K.

Proof. We have
0 = 〈C,D〉 − 〈FP ,A(D)〉 = 〈C −A∗(FP ),D〉.

Hence C−A∗(FP ) ⊆ {D}⊥∩K, which is a face of K. It follows that fP ⊆ {D}⊥∩K. The required280

result now follows from the fact that fP is (by definition) a face of K, and D is nonzero.281

Lemma 3.3 indicates that if we are able to find an element D ∈ RD\{0}, then D gives us282

a smaller face of K that contains FZ
P . The following lemma shows that the existence of such a283

direction D is equivalent to the failure of the Slater CQ for a feasible program (1.4). The lemma284

specializes [12, Theorem 7.1] and forms the basis of our reduction process.285

Lemma 3.4 ([12]). Suppose that intK 6= ∅ and FP 6= ∅. Then exactly one of the following two286

systems is consistent:287

1. A(D) = 0, 〈C,D〉 = 0, and 0 6= D �K∗ 0 (RD\{0})288

2. A∗y ≺K C (Slater CQ)289

Proof. Suppose that D satisfies the system in Item 1. Then for all y ∈ FP , we have 〈C −A∗y,D〉 =290

〈C,D〉 − 〈y, (A(D))〉 = 0. Hence FZ
P ⊆ K ∩ {D}⊥. But {D}⊥ ∩ intK = ∅ as 0 6= D �K∗ 0. This291

implies that the Slater CQ (as in Item 2) fails.292

Conversely, suppose that the Slater CQ in Item 2 fails. We have intK 6= ∅ and
0 /∈ (A∗(Rm)− C) + intK.

Therefore, we can find D 6= 0 to separate the open set (A∗(Rm)−C) + intK from 0. Hence we
have

〈D,Z〉 ≥ 〈D,C −A∗y〉 ,
for all Z ∈ K and y ∈ W. This implies that D ∈ K∗ and 〈D,C〉 ≤ 〈D,A∗y〉, for all y ∈ W. This293

implies that 〈A(D), y〉 = 0 for all y ∈ W; hence A(D) = 0. To see that 〈C,D〉 = 0, fix any ŷ ∈ FP .294

Then 0 ≥ 〈D,C〉 = 〈D,C −A∗ŷ〉 ≥ 0, so 〈D,C〉 = 0.295
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We have an equivalent characterization for the generalized Slater CQ for the dual problem.296

This can be used to extend our results to (Dconic) .297

Corollary 3.5. Suppose that intK∗ 6= ∅ and FD 6= ∅. Then exactly one of the following two298

systems is consistent:299

1. 0 6= A∗v �K 0, and 〈b, v〉 = 0.300

2. A(X) = b,X ≻K∗ 0 (generalized Slater CQ).301

Proof. Let K be a one-one linear transformation with range R(K) = N (A), and let X̂ satisfy302

A(X̂) = b. Then, Item 2 is consistent if, and only if, there exists û such that X = X̂ −Kû ≻K∗ 0.303

This is equivalent toKû ≺K∗ X̂. Therefore, K, X̂ play the roles ofA∗, C, respectively, in Lemma 3.4.304

Therefore, an alternative system is K∗(Z) = 0, 0 6= Z �K 0, and 〈X̂, Z〉 = 0. Since N (K∗) = R(A∗),305

this is equivalent to 0 6= Z = A∗v �K 0, and 〈X̂, Z〉 = 0, or 0 6= A∗v �K 0, and 〈b, v〉 = 0.306

We can extend Lemma 3.4 to problems with additional equality constraints.307

Corollary 3.6. Consider the modification of the primal (1.4) obtained by adding equality con-
straints:

(PB) vPB
:= sup{〈b, y〉 : A∗y �K C,By = f}, (3.4)

where B :W →W ′ is an onto linear transformation. Assume that intK 6= ∅ and (PB) is feasible.308

Let C̄ = C −A∗B†f . Then exactly one of the following two systems is consistent:309

1. A(D) + B∗v = 0,
〈

C̄,D
〉

= 0, 0 6= D �K∗ 0.310

2. A∗y ≺K C, By = f .311

Proof. Let ȳ = B†f be the particular solution (of minimum norm) of By = f . Since B is onto,312

we conclude that By = f if, and only if, y = ȳ + C∗v, for some v, where the range of the linear313

transformation C∗ is equal to the nullspace of B. We can now substitute for y and obtain the314

equivalent constraint A∗(ȳ + C∗v) �K C; equivalently we get A∗C∗v �K C − A∗ȳ. Therefore,315

Item 2 holds at y = ŷ = ȳ + C∗v̂, for some v̂, if, and only if, A∗C∗v̂ ≺K C − A∗ȳ. The result316

now follows immediately from Lemma 3.4 by equating the linear transformation A∗C∗ with A∗
317

and the right-hand side C − A∗ȳ with C. Then the system in Item 1 in Lemma 3.4 becomes318

C(A(D)) = 0, 〈(C −A∗ȳ),D〉 = 0. The result follows since the nullspace of C is equal to the range319

of B∗.320

We can also extend Lemma 3.4 to the important case where intK = ∅. This occurs at each321

iteration of the facial reduction.322

Corollary 3.7. Suppose that intK = ∅, FP 6= ∅, and C ∈ span(K). Then the linear manifold

Sy := {y ∈ W : C −A∗y ∈ span(K)}

is a subspace. Moreover, let P be a one-one linear transformation with

R(P) = (A∗)† span(K).

Then exactly one of the following two systems is consistent:323
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1. P∗A(D) = 0, 〈C,D〉 = 0, D ∈ span(K), and 0 6= D �K∗ 0.324

2. C −A∗y ∈ relintK.325

Proof. Since C ∈ span(K) = K −K, we get that 0 ∈ Sy, i.e., Sy is a subspace.326

Let T denote an onto linear transformation acting on V such that the nullspace N (T ) =
span(K)⊥, and T ∗ is a partial isometry, i.e., T ∗ = T †. Therefore, T is one-to-one and is onto
span(K). Then

A∗y �K C ⇐⇒ A∗y �K C and A∗y ∈ span(K), since C ∈ K −K
⇐⇒ (A∗P)w �K C, y = Pw, for some w, by definition of P
⇐⇒ (T A∗P)w �T (K) T (C), y = T w, for some w, by definition of T ,

i.e., (1.1) is equivalent to

vP := sup{〈P∗b, w〉 : (T A∗P)w �T (K) T (C)}.

The corresponding dual is

vD := inf
{

〈T (C),D〉 : P∗AT ∗(D) = P∗b, D �(T (K))∗ 0
}

.

By construction, int T (K) 6= ∅, so we may apply Lemma 3.4. We conclude that exactly one of327

the following two systems is consistent:328

1. P∗AT ∗(D) = 0, 0 6= D �(T (K))∗ 0, and 〈T (C),D〉 = 0.329

2. (T A∗P)w ≺T (K) T (D) (Slater CQ).330

The required result follows, since we can now identify T ∗(D) with D ∈ span(K), and T (C) with331

C.332

Remark 3.8. Ideally, we would like to find D̂ ∈ relint
(

FZ
P

)c
= relint ((C +R(A∗)) ∩K)c, since333

then we have found the minimal face fP = {D̂}⊥ ∩K. This is difficult to do numerically. Instead,334

Lemma 3.4 compromises and finds a point in a larger set D ∈
(

N (A) ∩ {C}⊥ ∩K∗) \{0}. This335

allows for the reduction of K ← K ∩ {D}⊥. Repeating to find another D is difficult without336

the subspace reduction using P in Corollary 3.7. This emphasizes the importance of the minimal337

subspace form reduction as an aid to the minimal cone reduction, [65].338

A similar argument applies to the regularization of the dual as given in Corollary 3.5. Let339

FD = (X̂+N (A))∩K∗, where A(X̂) = b. We note that a compromise to finding Ẑ ∈ relint (Fz
P )

c =340

relint((X̂ + N (A)) ∩ K∗)c, fD = {Ẑ}⊥ ∩ K∗ is finding Z ∈ (R(A∗) ∩ {X̂}⊥ ∩ K)\{0}, where341

0 = 〈Z, X̂〉 = 〈A∗v, X̂〉 = 〈v, b〉.342

3.3 Stable auxiliary subproblem343

From this section on we restrict the application of facial reduction to the SDP in (1.1). (Note344

that the notion of auxiliary problem as well as Theorems 3.11 and 3.15, below, apply to the more345

general conic convex program (1.4).) Each iteration of the facial reduction algorithm involves two346

steps. First, we apply Lemma 3.4 and find a point D in the relative interior of the recession cone347

RD. Then, we project onto the span of the conjugate face {D}⊥ ∩ S
n
+ ⊇ fP . This yields a smaller348
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dimensional equivalent problem. The first step to find D is well-suited for interior-point algorithms349

if we can formulate a suitable conic optimization problem. We now formulate and present the350

properties of a stable auxiliary problem for finding D. The following is well-known, e.g., [41,351

Theorems 10.4.1,10.4.7].352

Theorem 3.9. If the (generalized) Slater CQ holds for both primal problem (1.1) and dual problem353

(1.2), then as the barrier parameter µ → 0+, the primal-dual central path converges to a point354

(X̂, ŷ, Ẑ), where Ẑ = C−A∗ŷ, such that X̂ is in the relative interior of the set of optimal solutions355

of (1.2) and (ŷ, Ẑ) is in the relative interior of the set of optimal solutions of (1.1).356

357

Remark 3.10. Many polynomial time algorithms for SDP assume that the Newton search direc-358

tions can be calculated accurately. However, difficulties can arise in calculating accurate search359

directions if the corresponding Jacobians become increasingly ill-conditioned. This is the case in360

most of the current implementations of interior point methods due to symmetrization and block361

elimination steps, see e.g., [19]. In addition, the ill-conditioning arises if the Jacobian of the op-362

timality conditions is not full rank at the optimal solution, as is the case if strict complementarity363

fails for the SDP. This key question is discussed further in Section 3.5, below.364

According to Theorem 3.9, if we can formulate a pair of auxiliary primal-dual cone optimization365

problems, each with generalized Slater points such that the relative interior of RD coincides with366

the relative interior of the optimal solution set of one of our auxiliary problems, then we can design367

an interior-point algorithm for the auxiliary primal-dual pair, making sure that the iterates of our368

algorithm stay close to the central path (as they approach the optimal solution set) and generate369

our desired X ∈ relintRD.370

This is precisely what we accomplish next. In the special case of K = S
n
+, this corresponds371

to finding maximum rank feasible solutions for the underlying auxiliary SDPs, since the relative372

interiors of the faces are characterized by their maximal rank elements.373

Define the linear transformation AC : Sn → R
m+1 by

AC(D) =

(

A(D)
〈C,D〉

)

,

This presents a homogenized form of the constraint of (1.1) and combines the two constraints
in Lemma 3.4, Item 1. Now consider the following conic optimization problem, which we shall
henceforth refer to as the auxiliary problem.

(AP )

valauxP := min
δ,D

δ

s.t. ‖AC(D)‖ ≤ δ
〈 1√

n
I,D〉 = 1

D � 0.

(3.5)

This auxiliary problem is related to the study of the distances to infeasibility in e.g., [46]. The374
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Lagrangian dual of (3.5) is375

sup

W�0,





β
u



�Q0

inf
δ,D

δ + γ

(

1−
〈

D,
1√
n
I

〉)

− 〈W,D〉 −
〈(

β
u

)

,

(

δ
AC(D)

)〉

= sup

W�0,





β
u



�Q0

inf
δ,D

δ(1− β)−
〈

D, A∗
Cu+ γ

1√
n
I +W

〉

+ γ, (3.6)

where Q :=

{(

β
u

)

∈ R
m+2 : ‖u‖ ≤ β

}

refers to the second order cone. Since the inner infimum

of (3.6) is unconstrained, we get the following equivalent dual.

(DAP )

valauxD := sup
γ,u,W

γ

s.t. A∗
Cu+ γ 1√

n
I +W = 0

‖u‖ ≤ 1
W � 0.

(3.7)

A strictly feasible primal-dual point for (3.5) and (3.7) is given by

D =
1√
n
I, δ >

∥

∥

∥

∥

AC

(

1√
n
I

)∥

∥

∥

∥

, and γ = −1, u = 0, W =
1√
n
I, (3.8)

showing that the generalized Slater CQ holds for the pair (3.5)–(3.7).376

Observe that the complexity of solving (3.5) is essentially that of solving the original dual (1.2).377

Recalling that if a path-following interior point method is applied to solve (3.5), one arrives at378

a point in the relative interior of the set of optimal solutions, a primal optimal solution (δ∗,D∗)379

obtained is such that D∗ is of maximum rank.380

3.3.1 Auxiliary problem information for minimal face of FZ
P381

This section outlines some useful information that the auxiliary problem provides. Theoretically, in382

the case when the Slater CQ (nearly) fails for (1.1), the auxiliary problem provides a more refined383

description of the feasible region, as Theorem 3.11 shows. Computationally, the auxiliary problem384

gives a measure of how close the feasible region of (1.1) is to being a subset of a face of the cone of385

positive semidefinite matrices, as shown by: (i) the cosine-angle upper bound (near orthogonality)386

of the feasible set with the conjugate face given in Theorem 3.15; (ii) the cosine-angle lower bound387

(closeness) of the feasible set with a proper face of Sn+ in Proposition 3.16; and (iii) the near common388

block singularity bound for all the feasible slacks obtained after an appropriate orthogonal rotation,389

in Corollary 3.17.390

We first illustrate the stability of the auxiliary problem and show how a primal-dual solution391

can be used to obtain useful information about the original pair of conic problems.392

Theorem 3.11. The primal-dual pair of problems (3.5) and (3.7) satisfy the generalized Slater CQ,393

both have optimal solutions, and their (nonnegative) optimal values are equal. Moreover, letting394

(δ∗,D∗) be an optimal solution of (3.5), the following holds under the assumption that FP 6= ∅:395
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1. If δ∗ = 0 and D∗ ≻ 0, then the Slater CQ fails for (1.1) but the generalized Slater CQ holds for
(1.2). In fact, the primal minimal face and the only primal feasible (hence optimal) solution
are

fP = {0}, y∗ = (A∗)†(C).

2. If δ∗ = 0 and D∗ 6≻ 0, then the Slater CQ fails for (1.1) and the minimal face satisfies

fP � S
n
+ ∩ {D∗}⊥ � S

n
+. (3.9)

3. If δ∗ > 0, then the Slater CQ holds for (1.1).396

Proof. A strictly feasible pair for (3.5)–(3.7) is given in (3.8). Hence by strong duality both problems397

have equal optimal values and both values are attained.398

1. Suppose that δ∗ = 0 and D∗ ≻ 0. It follows that AC(D
∗) = 0 and D∗ 6= 0. It follows from

Lemma 3.3 that
fP � S

n
+ ∩ {D∗}⊥ = {0}.

Hence all feasible points for (1.1) satisfy C −A∗y = 0. Since A is onto, we conclude that the399

unique solution of this linear system is y = (A∗)†(C).400

Since A is onto, there exists X̄ such that A(X̄) = b. Thus, for every t ≥ 0, A(X̄ + tD∗) = b,401

and for t large enough, X̄ + tD∗ ≻ 0. Therefore, the generalized Slater CQ holds for (1.2).402

2. The result follows from Lemma 3.3.403

3. If δ∗ > 0, then RD = {0}, where RD was defined in (3.3). It follows from Lemma 3.4 that404

the Slater CQ holds for (1.1).405

406

Remark 3.12. Theorem 3.11 shows that if the primal problem (1.1) is feasible, then by definition
of (AP) as in (3.5), δ∗ = 0 if, and only if, AC has a right singular vector D such that D � 0 and the
corresponding singular value is zero, i.e., we could replace (AP) with min {‖AC(D)‖ : ‖D‖ = 1,D � 0}.
Therefore, we could solve (AP) using a basis for the nullspace of AC, e.g., using an onto linear
function NAC

on S
n that satisfies R(N ∗

AC
) = N (AC), and an approach based on maximizing the

smallest eigenvalue:

δ ≈ sup
y

{

λmin(N ∗
AC

y) : trace(N ∗
AC

y) = 1, ‖y‖ ≤ 1
}

,

so, in the case when δ∗ = 0, both (AP) and (DAP) can be seen as a max-min eigenvalue problem407

(subject to a bound and a linear constraint).408

Finding 0 6= D � 0 that solves AC(D) = 0 is also equivalent to the SDP

inf
D
‖D‖

s.t. AC(D) = 0, 〈I,D〉 = √n, D � 0,
(3.10)

a program for which the Slater CQ generally fails. (See Item 2 of Theorem 3.11.) This suggests409

that the problem of finding the recession direction 0 6= D � 0 that certifies a failure for (1.1) to410

satisfy the Slater CQ may be a difficult problem.411
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One may detect whether the Slater CQ fails for the dual (1.2) using the auxiliary problem (3.5)412

and its dual (3.7).413

Proposition 3.13. Assume that (1.2) is feasible, i.e., there exists X̂ ∈ S
n
+ such that A(X̂) = b.

Then we have that X is feasible for (1.2) if and only if

X = X̂ +N ∗
Ay � 0,

where NA : Sn → R
n(n+1)/2−m is an onto linear transformation such that R(N ∗

A) = N (A). Then
the corresponding auxiliary problem

inf
δ,D

δ s.t.

∥

∥

∥

∥

∥

(

NA(D)
〈

X̂,D
〉

)∥

∥

∥

∥

∥

≤ δ, 〈I,D〉 = √n, D � 0

either certifies that (1.2) satisfies the Slater CQ, or that 0 is the only feasible slack of (1.2), or414

detects a smaller face of Sn+ containing FD.415

The results in Proposition 3.13 follows directly from the corresponding results for the primal416

problem (1.1). An alternative form of the auxiliary problem for (1.2) can be defined using the417

theorem of the alternative in Corollary 3.5.418

Proposition 3.14. Assume that (1.2) is feasible. The dual auxiliary problem

sup
v,λ

λ s.t. (A(I))T v = 1, bT v = 0, A∗v � λI (3.11)

determines if (1.2) satisfies the Slater CQ. The dual of (3.11) is given by

inf
µ,Ω

µ2 s.t. 〈I,Ω〉 = 1, A(Ω)− µ1A(I)− µ2b = 0, Ω � 0, (3.12)

and the following hold under the assumption that (1.2) is feasible:419

(1) If (3.11) is infeasible, then (1.2) must satisfy the Slater CQ.420

(2) If (3.11) is feasible, then both (3.11) and (3.12) satisfy the Slater CQ. Moreover, the Slater421

CQ holds for (1.2) if and only if the optimal value of (3.11) is negative.422

(3) If (v∗, λ∗) is an optimal solution of (3.11) with λ∗ ≥ 0, then FD ⊆ S
n
+ ∩ {A∗v∗}⊥ � S

n
+.423

Since X feasible for (1.2) implies that

〈A∗v∗,X〉 = (v∗)T (A(X)) = (v∗)T b = 0,

we conclude that FD ⊆ S
n
+ ∩ {A∗v∗}⊥ � S

n
+. Therefore, if (1.2) fails the Slater CQ, then, by424

solving (3.11), we can obtain a proper face of Sn+ that contains the feasible region FD of (1.2).425

Proof. The Lagrangian of (3.11) is given by426

L(v, λ, µ,Ω) = λ+ µ1(1− (A(I)T v)) + µ2(−bT v) + 〈Ω,A∗v − λI〉
= λ(1− 〈I,Ω〉) + vT (A(Ω)− µ1A(I)− µ2b) + µ2.
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This yields the dual program (3.12).427

If (3.11) is infeasible, then we must have b 6= 0 and A(I) = kb for some k ∈ R. If k > 0, then428

k−1I is a Slater point for (1.2). If k = 0, then A(X̂ + λI) = b and X̂ + λI ≻ 0 for any X̂ satisfying429

A(X̂) = b and sufficiently large λ > 0. If k < 0, then A(2X̂ + k−1I) = b for X̂ � 0 satisfying430

A(X̂) = b; and we have 2X̂ + k−1I ≻ 0.431

If (3.11) is feasible, i.e., if there exists v̂ such that (A(I))T v = 1 and bT v̂ = 0, then

(v̂, λ̂) =
(

v̂, λ̂ = λmin(A∗v̂)− 1
)

, (µ̂, Ω̂) =

((

1/n
0

)

,
1

n
I

)

is strictly feasible for (3.11) and (3.12) respectively.432

Let (v∗, λ∗) be an optimal solution of (3.12). If λ∗ ≤ 0, then for any v ∈ R
m with A∗y � 0 and433

bT v = 0, v cannot be feasible for (3.11) so 〈I,A∗v〉 ≤ 0. This implies that A∗v = 0. By Corollary434

3.5, the Slater CQ holds for (1.2). If λ∗ > 0, then v∗ certifies that the Slater CQ fails for (1.2),435

again by Corollary 3.5.436

The next result shows that δ∗ from (AP) is a measure of how close the Slater CQ is to failing.437

Theorem 3.15. Let (δ∗,D∗) denote an optimal solution of the auxiliary problem (3.5). Then δ∗

bounds how far the feasible primal slacks Z = C −A∗y � 0 are from orthogonality to D∗:

0 ≤ sup
0�Z=C−A∗y 6=0

〈D∗, Z〉
‖D∗‖‖Z‖ ≤ α(A, C) :=















δ∗

σmin(A)
if C ∈ R(A∗),

δ∗

σmin(AC)
if C /∈ R(A∗).

(3.13)

438

Proof. Since 〈 1√
n
I,D∗〉 = 1, we get

‖D∗‖ ≥

〈

1√
n
I,D∗

〉

‖ 1√
n
I‖ =

1
1√
n
‖I‖ = 1.

If C = A∗yC for some yC ∈ R
m, then for any Z = C −A∗y � 0,439

cos θD∗,Z :=
〈D∗, C −A∗y〉
‖D∗‖‖C −A∗y‖ ≤ 〈A(D∗), yC − y〉

‖A∗(yC − y)‖

≤ ‖A(D∗)‖ ‖yC − y‖
σmin(A∗) ‖yC − y‖

≤ δ∗

σmin(A)
.

If C /∈ R(A∗), then by Assumption 1.1, AC is onto so 〈D∗, C −A∗y〉 =
〈

AC(D
∗),

(

−y
1

)〉

implies

that 0 � C − A∗y 6= 0,∀y ∈ FP . Therefore the cosine of the angle θD∗,Z between D∗ and

18



Z = C −A∗y � 0 is bounded by

cos θD∗,Z =
〈D∗, C −A∗y〉
‖D∗‖‖C −A∗y‖ ≤

〈

AC(D
∗),

(

−y
1

)〉

∥

∥

∥

∥

A∗
C

(

−y
1

)∥

∥

∥

∥

≤
‖AC(D

∗)‖
∥

∥

∥

∥

(

−y
1

)∥

∥

∥

∥

σmin(AC)

∥

∥

∥

∥

(

−y
1

)∥

∥

∥

∥

=
δ∗

σmin(AC)
.

440

Theorem 3.15 provides a lower bound for the angle and distance between feasible slack vectors441

and the vector D∗ on the boundary of Sn+. For our purposes, the theorem is only useful when442

α(A, C) is small. Given that δ∗ = ‖AC(D
∗)‖, we see that the lower bound is independent of simple443

scaling of AC , though not necessarily independent of the conditioning of AC . Thus, δ∗ provides444

qualitative information about both the conditioning of AC and the distance to infeasibility.445

We now strengthen the result in Theorem 3.15 by using more information from D∗. In appli-446

cations we expect to choose the partitions of U and D∗ to satisfy λmin(D+) >> λmax(Dǫ).447

0

D∗

{Z = C −A∗y : y ∈ FP , Z � 0}

[face(D∗)]c = (D∗)⊥ ∩ S
n
+

Figure 1: Minimal Face; 0 < δ∗ ≪ 1

Proposition 3.16. Let (δ∗,D∗) denote an optimal solution of the auxiliary problem (3.5), and let

D∗ =
[

P Q
]

[

D+ 0
0 Dǫ

]

[

P Q
]T

, (3.14)

with U =
[

P Q
]

orthogonal, and D+ ≻ 0.448

Let 0 6= Z := C−A∗y � 0 and ZQ := QQTZQQT . Then ZQ is the closest point in R(Q·QT )∩Sn+
to Z; and, the cosine of the angle θZ,ZQ

between Z and the face R(Q ·QT ) ∩ S
n
+ satisfies

cos θZ,ZQ
:=
〈Z,ZQ〉
‖Z‖‖ZQ‖

=
‖QTZQ‖
‖Z‖ ≥ 1− α(A, C)

‖D∗‖
λmin(D+)

, (3.15)
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where α(A, C) is defined in (3.13). Thus the angle between any feasible slack and the face R(Q ·
QT ) ∩ S

n
+ cannot be too large in the sense that

inf
06=Z=C−A∗y�0

cos θZ,ZQ
≥ 1− α(A, C)

‖D∗‖
λmin(D+)

.

Moreover, the normalized distance to the face is bounded as in

‖Z − ZQ‖2 ≤ 2‖Z‖2
[

α(A, C)
‖D∗‖

λmin(D+)

]

. (3.16)

Proof. Since Z � 0, we have QTZQ ∈ argminW�0 ‖Z − QWQT‖. This shows that ZQ :=
QQTZQQT is the closest point in R(Q · QT ) ∩ S

n
+ to Z. The expression for the angle in (3.15)

follows using
〈Z,ZQ〉
‖Z‖‖ZQ‖

=
‖QTZQ‖2
‖Z‖‖QTZQ‖ =

‖QTZQ‖
‖Z‖ . (3.17)

From Theorem 3.15, we see that 0 6= Z = C −A∗y � 0 implies that
〈

1
‖Z‖Z,D

∗
〉

≤ α(A, C)‖D∗‖.
Therefore, the optimal value of the following optimization problem provides a lower bound on the
quantity in (3.17).

γ0 := min
Z

‖QTZQ‖
s.t. 〈Z,D∗〉 ≤ α(A, C)‖D∗‖

‖Z‖2 = 1, Z � 0.

(3.18)

Since 〈Z,D∗〉 =
〈

P TZP,D+

〉

+
〈

QTZQ,Dǫ

〉

≥
〈

P TZP,D+

〉

whenever Z � 0, we have

γ0 ≥ γ := min
Z

‖QTZQ‖
s.t.

〈

P TZP,D+

〉

≤ α(A, C)‖D∗‖
‖Z‖2 = 1, Z � 0.

(3.19)

It is possible to find the optimal value γ of (3.19). After the orthogonal rotation

Z =
[

P Q
]

[

S V
V T W

]

[

P Q
]T

= PSP T + PV QT +QV TP T +QWQT ,

where S ∈ S
n−n̄
+ , W ∈ S

n̄
+ and V ∈ R

(n−n̄)×n̄, (3.19) can be rewritten as

γ = min
S,V,W

‖W‖
s.t. 〈S,D+〉 ≤ α(A, C)‖D∗‖

‖S‖2 + 2‖V ‖2 + ‖W‖2 = 1
[

S V
V T W

]

∈ S
n
+.

(3.20)

Since
‖V ‖2 ≤ ‖S‖‖W‖ (3.21)
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holds whenever

[

S V
V T W

]

� 0, we have that (‖S‖ + ‖W‖)2 ≥ ‖S‖2 + 2‖V ‖2 + ‖W‖2. This yields

γ ≥ γ̄ := minS,V,W ‖W‖ γ̄ ≥ min
S

1− ‖S‖
s.t. 〈S,D+〉 ≤ α(A, C)‖D∗‖ s.t. 〈S,D+〉 ≤ α(A, C)‖D∗‖

‖S‖+ ‖W‖ ≥ 1 S � 0
S � 0, W � 0.

(3.22)

Since λmin(D+)‖S‖ ≤ 〈S,D+〉 ≤ α(A, C)‖D∗‖, we see that the objective value of the last optimiza-449

tion problem in (3.22) is bounded below by 1−α(A, C)‖D∗‖/λmin(D+). Now let u be a normalized450

eigenvector of D+ corresponding to its smallest eigenvalue λmin(D+). Then S∗ = α(A,C)‖D∗‖
λmin(D+) uuT451

solves the last optimization problem in (3.22), with corresponding optimal value 1− α(A,C)‖D∗‖
λmin(D+) .452

Let β := min
{

α(A,C)‖D∗‖
λmin(D+) , 1

}

. Then γ ≥ 1− β. Also,

[

S V
V T W

]

:=

( √
βu√

1− βe1

)( √
βu√

1− βe1

)T

=

[

βuuT
√

β(1− β)ueT1
√

β(1− β)e1u
T (1− β) e1e

T
1

]

∈ S
n
+.

Therefore (S, V,W ) is feasible for (3.20), and attains an objective value 1 − β. This shows that453

γ = 1− β and proves (3.15).454

The last claim (3.16) follows immediately from455

‖Z − ZQ‖2 = ‖Z‖2
(

1− ‖Q
TZQ‖2
‖Z‖2

)

≤ ‖Z‖2
[

1−
(

1− α(A, C)
‖D∗‖

λmin(D+)

)2
]

≤ 2‖Z‖2α(A, C)
‖D∗‖

λmin(D+)
.

456

These results are related to the extreme angles between vectors in a cone studied in [29, 33].457

Moreover, it is related to the distances to infeasibility in e.g., [46], in which the distance to infea-458

sibility is shown to provide backward and forward error bounds.459

We now see that we can use the rotation U =
[

P Q
]

obtained from the diagonalization of460

the optimal D∗ in the auxiliary problem (3.5) to reveal nearness to infeasibility, as discussed in461

e.g., [46]. Or, in our approach, this reveals nearness to a facial decomposition. We use the following462

results to bound the size of certain blocks of a feasible slack Z.463

Corollary 3.17. Let (δ∗,D∗) denote an optimal solution of the auxiliary problem (3.5), as in
Theorem 3.15; and let

D∗ =
[

P Q
]

[

D+ 0
0 Dǫ

]

[

P Q
]T

, (3.23)

with U =
[

P Q
]

orthogonal, and D+ ≻ 0. Then for any feasible slack 0 6= Z = C −A∗y � 0, we
have

traceP TZP ≤ α(A, C)
‖D∗‖

λmin(D+)
‖Z‖, (3.24)

where α(A, C) is defined in (3.13).464
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Proof. Since

〈D∗, Z〉 =

〈[

D+ 0
0 Dǫ

]

,

[

P TZP P TZQ
QTZP QTZQ

]〉

=
〈

D+ , P TZP
〉

+
〈

Dǫ , Q
TZQ

〉

≥
〈

D+ , P TZP
〉

≥ λmin(D+) traceP
TZP,

(3.25)

the claim follows from Theorem 3.15.465

Remark 3.18. We now summarize the information available from a solution of the auxiliary466

problem, with optima δ∗ ≥ 0,D∗ 6≻ 0. We let 0 6= Z = C − A∗y � 0 denote a feasible slack. In467

particular, we emphasize the information obtained from the rotation UTZU using the orthogonal U468

that block diagonalizes D∗ and from the closest point ZQ = QQTZQQT . We note that replacing all469

feasible Z with the projected ZQ provides a nearby problem for the backwards stability argument.470

Alternatively, we can view the nearby problem by projecting the data Ai ← QQTAiQQT ,∀i, C ←471

QQTCQQT .472

1. From (3.13) in Theorem 3.15, we get a lower bound on the angle (upper bound on the cosine
of the angle)

cos θD∗,Z =
〈D∗, Z〉
‖D∗‖‖Z‖ ≤ α(A, C).

2. In Proposition 3.16 with orthogonal U =
[

P Q
]

, we get upper bounds on the angle between
a feasible slack and the face defined using Q ·QT and on the normalized distance to the face.

cos θZ,ZQ
:=
〈Z,ZQ〉
‖Z‖‖ZQ‖

=
‖QTZQ‖
‖Z‖ ≥ 1− α(A, C)

‖D∗‖
λmin(D+)

.

‖Z − ZQ‖2 ≤ 2‖Z‖2
[

α(A, C)
‖D∗‖

λmin(D+)

]

.

3. After the rotation using the orthogonal U , the (1, 1) principal block is bounded as

traceP TZP ≤ α(A, C)
‖D∗‖

λmin(D+)
‖Z‖.

3.4 Rank-revealing rotation and equivalent problems473

We may use the results from Theorem 3.15 and Corollary 3.17 to get two rotated optimization474

problems equivalent to (1.1). The equivalent problems indicate that, in the case when δ∗ is suffi-475

ciently small, it is possible to reduce the dimension of the problem and get a nearby problem that476

helps in the facial reduction. The two equivalent formulations can be used to illustrate backwards477

stability with respect to a perturbation of the cone S
n
+.478

First we need to find a suitable shift of C to allow a proper facial projection. This is used in479

Theorem 3.20, below.480

Lemma 3.19. Let δ∗,D∗, U =
[

P Q
]

,D+,Dǫ be defined as in the hypothesis of Corollary 3.17.
Let (yQ,WQ) ∈ R

m × S
n̄ be the best least squares solution to the equation QWQT +A∗y = C, that

is, (yQ,WQ) is the optimal solution of minimum norm to the linear least squares problem

min
y,W

1

2
‖C − (QWQT +A∗y)‖2. (3.26)
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Let CQ := QWQQ
T and Cres := C − (CQ +A∗yQ). Then

QTCresQ = 0, and A (Cres) = 0. (3.27)

Moreover, if δ∗ = 0, then for any feasible solution y of (1.1), we get

C −A∗y ∈ R(Q ·QT ), (3.28)

and further (y,QT (C −A∗y)Q) is an optimal solution of (3.26), whose optimal value is zero.481

Proof. Let Ω(y,W ) := 1
2‖C − (QWQT +A∗y)‖2. Since

Ω(y,W ) =
1

2
‖C‖2 + 1

2
‖A∗y‖2 + 1

2
‖W‖2 +

〈

QWQT ,A∗y
〉

−
〈

QTC Q,W
〉

− 〈A(C), y〉 ,

we have (yQ,WQ) solves (3.26) if, and only if,482

∇yΩ = A
(

QWQT − (C −A∗y)
)

= 0, (3.29)

and ∇wΩ = W −
[

QT (C −A∗y)Q
]

= 0. (3.30)

Then (3.27) follows immediately by substitution.483

If δ∗ = 0, then 〈D∗, Ai〉 = 0 for i = 1, . . . ,m and 〈D∗, C〉 = 0. Hence, for any y ∈ R
m,

〈D+ , P T (C −A∗y)P 〉+ 〈Dǫ , Q
T (C −A∗y)Q〉 = 〈D∗, C −A∗y〉 = 0.

If C −A∗y � 0, then we must have P T (C −A∗y)P = 0 (as D+ ≻ 0), and so P T (C −A∗y)Q = 0.
Hence

C −A∗y = UUT (C −A∗y)UUT

= U
[

P Q
]T

(C −A∗y)
[

P Q
]

UT

= QQT (C −A∗y)QQT

,

i.e., we conclude (3.28) holds.484

The last statement now follows from substituting W = QT (C −A∗y)Q in (3.26).485

We can now use the rotation from Corollary 3.17 with a shift of C (to Cres +CQ = C −A∗yQ)486

to get two equivalent problems to (P). This emphasizes that when δ∗ is small, then the auxiliary487

problem reveals a block structure with one principal block and three small/negligible blocks. If δ is488

small, then β in the following Theorem 3.20 is small. Then fixing β = 0 results in a nearby problem489

to (P) that illustrates backward stability of the facial reduction.490

Theorem 3.20. Let δ∗,D∗, U =
[

P Q
]

,D+,Dǫ be defined as in the hypothesis of Corollary 3.17,
and let yQ,WQ, CQ, Cres be defined as in Lemma 3.19. Define the scalar

β := α(A, C)
‖D∗‖

λmin(D+)
, (3.31)

and the convex cone Tβ ⊆ S
n
+ partitioned appropriately as in (3.23),

Tβ :=

{

Z =

[

A B
BT C

]

∈ S
n
+ : traceA ≤ β traceZ

}

. (3.32)

Then we get the following two equivalent programs to (P) in (1.1):491
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1. using the rotation U and the cone Tβ,492

vP = supy

{

bT y :

[

P TZP P TZQ
QTZP QTZQ

]

�Tβ
0, Z = C −A∗y

}

; (3.33)

2. using (yQ,WQ),493

vP = bT yQ + supy

{

bT y :

[

P TZP P TZQ
QTZP QTZQ

]

�Tβ
0, Z = Cres + CQ −A∗y

}

. (3.34)

Proof. From Corollary 3.17,

FP =

{

y :

[

P TZP P TZQ
QTZP QTZQ

]

�Tβ
0, Z = C −A∗y

}

. (3.35)

hence the equivalence of (1.1) with (3.33) follows.494

For (3.34), first note that for any y ∈ R
m,

Z := Cres + CQ −A∗y = C −A∗(y + yQ),

so Z � 0 if and only if y + yQ ∈ FP , if and only if Z ∈ Tβ. Hence

FP = yQ +

{

y :

[

P TZP P TZQ
QTZP QTZQ

]

�Tβ
0, Z = Cres +QWQQ

T −A∗y

}

, (3.36)

and (3.34) follows.495

Remark 3.21. As mentioned above, Theorem 3.20 illustrates the backwards stability of the facial496

reduction. It is difficult to state this precisely due to the shifts done and the changes to the con-497

straints in the algorithm. For simplicity, we just discuss one iteration. The original problem (P) is498

equivalent to the problem in (3.33). Therefore, a facial reduction step can be applied to the original499

problem or equivalently to (3.33). We then perturb this problem in (3.33) by setting β = 0. The500

algorithm applied to this nearby problem with exact arithmetic will result in the same step.501

3.4.1 Reduction to two smaller problems502

Following the results from Theorems 3.11 and 3.20, we focus on the case where δ∗ = 0 and RD ∩503

S
n
++ = ∅. In this case we get a proper face QS

n̄
+Q

T � S
n
+. We obtain two different equivalent504

formulations of the problem by restricting to this smaller face. In the first case, we stay in the505

same dimension for the domain variable y but decrease the constraint space and include equality506

constraints. In the second case, we eliminate the equality constraints and move to a smaller507

dimensional space for y. We first see that when we have found the minimal face, then we obtain508

an equivalent regularized problem as was done for LP in Section 2.1.509

Corollary 3.22. Suppose that the minimal face fP of (P) is found using the orthogonal U =510
[

Pfin Qfin

]

, so that fP = QfinS
r
+Q

T
fin, 0 < r < n. Then an equivalent problem to (P) is511

(PPQ,reg)
vP = sup bT y

s.t. QT
fin(A∗y)Qfin � QT

finCQfin

A∗
finy = A∗

finyQfin
,

(3.37)
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where (yQfin
,WQfin

) solves the least squares problem miny,W ‖C − (A∗y + QfinWQT
fin)‖, and A∗

fin :
R
m → R

t is a full rank (onto) representation of the linear transformation

y 7→
[

P T
fin(A∗y)Pfin

QT
fin(A∗y)Pfin

]

.

Moreover, (PPQ,reg) is regularized i.e., the RCQ holds.512

Proof. The result follows immediately from Theorem 3.20, since the definition of the minimal face513

implies that there exists a feasible ŷ which satisfies the constraints in (3.37). The new equality514

constraint is constructed to be full rank and not change the feasible set.515

Alternatively, we now reduce (1.1) to an equivalent problem over a spectrahedron in a lower516

dimension using the spectral decomposition of D∗.517

Proposition 3.23. Let the notation and hypotheses in Theorem 3.20 hold with δ∗ = 0 and D∗ =
[

P Q
]

[

D+ 0
0 0

] [

P T

QT

]

, where
[

P Q
]

is orthogonal, Q ∈ R
n×n̄ and D+ ≻ 0. Then

vP = sup
{

bT y : QT (C −A∗y)Q � 0,
P T (A∗y)P = P T (A∗yQ)P,
QT (A∗y)P = QT (A∗yQ)P } .

(3.38)

Moreover:518

1. If R(Q ·QT ) ∩R(A∗) = {0}, then for any y1, y2 ∈ FP , b
T y1 = bT y2 = vP .519

2. If R(Q · QT ) ∩ R(A∗) 6= {0}, and if, for some m̄ > 0, P : Rm̄ → R
m is an injective linear

map such that R(A∗P) = R(A∗) ∩R(Q ·QT ), then we have

vP = bT yQ + sup
v

{

(P∗b)T v : WQ −QT (A∗Pv)Q � 0
}

. (3.39)

And, if v∗ is an optimal solution of (3.39), then y∗ = yQ+Pv∗ is an optimal solution of (1.1).520

Proof. Since δ∗ = 0, from Lemma 3.19 we have that C = CQ + A∗yQ, CQ = QWQQ
T , for some

yQ ∈ R
m and WQ ∈ S

n̄. Hence by (3.35),

FP =
{

y ∈ R
m : QT (C −A∗y)Q � 0, P T (C −A∗y)P = 0, QT (C −A∗y)P = 0

}

=
{

y ∈ R
m : QT (C −A∗y)Q � 0, P T (A∗(y − yQ))P = 0, QT (A∗(y − yQ))P = 0

}

,
(3.40)

and (3.38) follows.521

1. Since C − A∗y ∈ R(Q · QT ),∀y ∈ FP , we get A∗(y2 − y1) = (C −A∗y1) − (C −A∗y2) ∈
R(Q ·QT ) ∩R(A∗) = {0}. Given that A is onto, we get b = A(X̂), for some X̂ ∈ S

n, and

bT (y2 − y1) =
〈

X̂,A∗(y2 − y1)
〉

= 0.
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2. From (3.40),

FP = yQ +
{

y : WQ −QT (A∗y)Q � 0, P T (A∗y)P = 0, QT (A∗y)P = 0
}

= yQ +
{

y : WQ −QT (A∗y)Q � 0,A∗y ∈ R(Q ·QT )
}

= yQ +
{

Pv : WQ −QT (A∗Pv)Q � 0
}

,

the last equality follows from the choice of P. Therefore, (3.39) follows, and if v∗ is an optimal522

solution of (3.39), then yQ + Pv∗ is an optimal solution of (1.1).523

524

Next we establish the existence of the operator P mentioned in Proposition 3.23.525

Proposition 3.24. For any n×n orthogonal matrix U =
[

P Q
]

and any surjective linear operator526

A : Sn → R
m with m̄ := dim(R(A∗)∩R(Q ·QT )) > 0, there exists a one-one linear transformation527

P : Rm̄ → R
m that satisfies528

R(A∗P) = R(Q ·QT ) ∩R(A∗), (3.41)

R(P) = N
(

P T (A∗·)P
)

∩N
(

P T (A∗·)Q
)

. (3.42)

Moreover, Ā : Sn̄ → Rm̄ is defined by

Ā∗(·) := QT
(

A∗P(·)
)

Q

is onto.529

Proof. Recall that for any matrix X ∈ S
n,

X = UUTXUUT = PP TXPP T + PP TXQQT +QQTXPP T +QQTXQQT .

Moreover, P TQ = 0. Therefore, X ∈ R(Q ·QT ) implies P TXP = 0 and P TXQ = 0. Conversely,530

P TXP = 0 and P TXQ = 0 implies X = QQTXQQT . Therefore X ∈ R(Q · QT ) if, and only if,531

P TXP = 0 and P TXQ = 0.532

For any y ∈ R
m, A∗y ∈ R(Q ·QT ) if, and only if,

m
∑

i=1

(P TAiP )yi = 0 and

m
∑

i=1

(P TAiQ)yi = 0,

which holds if, and only if, y ∈ span{β}, where β := {y1, . . . , ym̄} is a basis of the linear subspace
{

y :

m
∑

i=1

(P TAiP )yi = 0

}

∩
{

y :

m
∑

i=1

(P TAiQ)yi = 0

}

= N
(

P T (A∗·)P
)

∩ N
(

P T (A∗·)Q
)

.

Now define P : Rm̄ → R
m by

Pv =

m̄
∑

i=1

viyi for λ ∈ R
m̄.

Then, by definition of P, we have

R(A∗P) = R(Q ·QT ) ∩R(A∗) and R(P) = N
(

P T (A∗·)P
)

∩ N
(

P T (A∗·)Q
)

.

The onto property of Ā follows from (3.41) and the fact that both P,A∗ are one-one. Note that533

if Ā∗v = 0, noting that A∗Pv = QWQT for some W ∈ S
n̄ by (3.41), we have that w = 0 so534

A∗Pv = 0. Since both A∗ and P injective, we have that v = 0.535
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3.5 LP, SDP and the role of strict complementarity536

The (near) loss of the Slater CQ results in both theoretical and numerical difficulties, e.g., [46]. In537

addition, both theoretical and numerical difficulties arise from the loss of strict complementarity,538

[70]. The connection between strong duality, the Slater CQ, and strict complementarity is seen539

through the notion of complementarity partitions, [65]. We now see that this plays a key role in540

the stability and in determining the number of steps k for the facial reduction. In particular, we541

see that k = 1 is characterized by strict complementary slackness and therefore results in a stable542

formulation.543

Definition 3.25. The pair of faces F1�K,F2 �K∗ form a complementarity partition of K,K∗ if544

F1 ⊆ (F2)
c. (Equivalently, F2 ⊆ (F1)

c.) The partition is proper if both F1 and F2 are proper faces.545

The partition is strict if (F1)
c = F2 or (F2)

c = F1.546

We now see the importance of this notion for the facial reduction.547

Theorem 3.26. Let δ∗ = 0,D∗ � 0 be the optimum of (AP) with dual optimum (γ∗, u∗,W ∗). Then548

the following are equivalent:549

1. If D∗ =
[

P Q
]

[

D+ 0
0 0

] [

P T

QT

]

is a maximal rank element of RD, where
[

P Q
]

is orthogo-550

nal, Q ∈ R
n×n̄ and D+ ≻ 0, then the reduced problem in (3.39) using D∗ satisfies the Slater551

CQ; only one step of facial reduction is needed.552

2. Strict complementarity holds for (AP); that is, the primal-dual optimal solution pair (0,D∗), (0, u∗,W ∗)553

for (3.5) and (3.7) satisfy rank(D∗) + rank(W ∗) = n.554

3. The faces of Sn+ defined by555

f0
aux,P := face ({D ∈ S

n : A(D) = 0, 〈C,D〉 = 0, D � 0})
f0
aux,D := face

({

W ∈ S
n : W = A∗

Cz � 0, for some z ∈ R
m̄+1

})

form a strict complementarity partition of Sn+.556

Proof. (1)⇐⇒ (2): If (3.39) satisfies the Slater CQ, then there exists ṽ ∈ R
m̄ such thatWQ−Ā∗ṽ ≻

0. This implies that Z̃ := Q(WQ − Ā∗ṽ)QT is of rank n̄. Moreover,

0 � Z̃ = QWQQ−A∗P ṽ = C −A∗(yQ + P ṽ) = A∗
C

(

−(yQ + P ṽ)
1

)

.

Hence, letting

ũ =

(

yQ + P ṽ
−1

)

∥

∥

∥

∥

(

yQ + P ṽ
−1

)∥

∥

∥

∥

and W̃ =
1

∥

∥

∥

∥

(

yQ + P ṽ
−1

)∥

∥

∥

∥

Z̃,

we have that (0, ũ, W̃ ) is an optimal solution of (3.7). Since rank(D∗)+rank(W̃ ) = (n− n̄)+ n̄ = n,557

we get that strict complementarity holds.558

Conversely, suppose that strict complementarity holds for (AP), and let D∗ be a maximum rank
optimal solution as described in the hypothesis of Item 1. Then there exists an optimal solution
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(0, u∗,W ∗) for (3.7) such that rank(W ∗) = n̄. By complementary slackness, 0 = 〈D∗,W ∗〉 =
〈

D+, P
TW ∗P

〉

, so W ∗ ∈ R(Q ·QT ) and QTW ∗Q ≻ 0. Let u∗ =

(

ỹ
−α̃

)

, so

W ∗ = α̃C −A∗ỹ = α̃CQ −A∗(ỹ − α̃yQ).

Since W ∗, CQ ∈ R(Q ·QT ) implies that A∗(ỹ − α̃yQ) = A∗P ṽ for some ṽ ∈ R
m̄, we get

0 ≺ QTW ∗Q = α̃C̄ − Ā∗ṽ.

Without loss of generality, we may assume that α̃ = ±1 or 0. If α̃ = 1, then C̄ − Ā∗ṽ ≻ 0 is a559

Slater point for (3.39). Consider the remaining two cases. Since (1.1) is assumed to be feasible, the560

equivalent program (3.39) is also feasible so there exists v̂ such that C̄ − Ā∗v̂ � 0. If α̃ = 0, then561

C̄ − Ā∗(v̂ + ṽ) ≻ 0. If α̃ = −1, then C̄ − Ā∗(2v̂ + ṽ) ≻ 0. Hence (3.39) satisfies the Slater CQ.562

(2)⇐⇒ (3): Notice that f0
aux,P and f0

aux,D are the minimal faces of Sn+ containing the optimal563

slacks of (3.5) and (3.7) respectively, and that f0
aux,P , f

0
aux,D form a complementarity partition of564

S
n
+ = (Sn+)

∗. The complementarity partition is strict if and only if there exist primal-dual optimal565

slacks D∗ and W ∗ such that rank(D∗) + rank(W ∗) = n. Hence (2) and (3) are equivalent.566

In the special case where the Slater CQ fails and (1.1) is a linear program (and, more generally,567

the special case of optimizing over an arbitrary polyhedral cone, see e.g., [57, 56, 79, 78]), we see568

that one single iteration of facial reduction yields a reduced problem that satisfies the Slater CQ.569

Corollary 3.27. Assume that the optimal value of (AP) equals zero, with D∗ being a maximum rank570

optimal solution of (AP). If Ai = Diag(ai) for some ai ∈ R
n, for i = 1, . . . ,m, and C = Diag(c),571

for some c ∈ R
n, then the reduced problem (3.39) satisfies the Slater CQ.572

Proof. In this diagonal case, the SDP is equivalent to an LP. The Goldman-Tucker Theorem [25]573

implies that there exists a required optimal primal-dual pair for (3.5) and (3.7) that satisfies strict574

complementarity, so Item 2 in Theorem 3.26 holds. By Theorem 3.26, the reduced problem (3.39)575

satisfies the Slater CQ.576

4 Facial Reduction577

We now study facial reduction for (P) and its sensitivity analysis.578

4.1 Two Types579

We first outline two algorithms for facial reduction that find the minimal face fP of (P) . Both are580

based on solving the auxiliary problem and applying Lemma 3.4. The first algorithm repeatedly581

finds a face F containing the minimal face and then projects the problem into F −F , thus reducing582

both the size of the constraints as well as the dimension of the variables till finally obtaining the583

Slater CQ. The second algorithm also repeatedly finds F ; but then it identifies the implicit equality584

constraints till eventually obtaining MFCQ.585
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4.1.1 Dimension reduction and regularization for the Slater CQ586

Suppose that Slater’s CQ fails for our given input A : Sn → R
m, C ∈ S

n, i.e., the minimal face587

fP � F := S
n
+. Our procedure consists of a finite number of repetitions of the following two steps588

that begin with k = n.589

1. We first identify 0 6= D ∈ (fP )
c using the auxiliary problem (3.5). This means that fP �F ←590

(

S
k
+ ∩ {D}⊥

)

and the interior of this new face F is empty.591

2. We then project the problem (P) into span(F ). Thus we reduce the dimension of the variables592

and size of the constraints of our problem; the new cone satisfies intF 6= ∅. We set k ←593

dim(F ).1594

Therefore, in the case that intF = ∅, we need to to obtain an equivalent problem to (P) in the595

subspace span(F ) = F −F . One essential step is finding a subspace intersection. We can apply the596

algorithm in e.g., [26, Thm 12.4.2]. In particular, by abuse of notation, let H1,H2 be matrices with597

orthonormal columns representing the orthonormal bases of the subspaces H1,H2, respectively.598

Then we need only find a singular value decomposition HT
1 H2 = UΣV T and find which singular599

vectors correspond to singular values Σii, i = 1, . . . , r, (close to) 1. Then both H1U(:, 1 : r) and600

H2V (:, 1 : r) provide matrices whose ranges yield the intersection. The cone S
n
+ possesses a “self-601

replicating” structure. Therefore we choose an isometry I so that I(Sn+ ∩ (F − F )) is a smaller602

dimensional PSD cone S
r
+.603

Algorithm 4.1 outlines one iteration of facial reduction. The output returns an equivalent604

problem (Ā, b̄, C̄) on a smaller face of S
n
+ that contains the set of feasible slacks FZ

P ; and, we605

also obtain the linear transformation P and point yQ, which are needed for recovering an optimal606

solution of the original problem (P) . (See Proposition 3.23.)607

Two numerical aspects arising in Algorithm 4.1 need to be considered. The first issue concerns
the determination of rank(D∗). In practice, the spectral decomposition of D∗ would be of the form

D∗ =
[

P Q
]

[

D+ 0
0 Dǫ

] [

P T

QT

]

with Dǫ ≈ 0, instead of D∗ =
[

P Q
]

[

D+ 0
0 0

] [

P T

QT

]

.

We need to decide which of the eigenvalues of D∗ are small enough so that they can be safely
rounded down to zero. This is important for the determination of Q, which gives the smaller face
R(Q · QT ) ∩ S

n
+ containing the feasible region FZ

P . The partitioning of D∗ can be done by using
similar techniques as in the determination of numerical rank. Assuming that λ1(D

∗) ≥ λ2(D
∗) ≥

· · · ≥ λn(D
∗) ≥ 0, the numerical rank rank(D∗, ε) of D∗ with respect to a zero tolerance ε > 0 is

defined via
λrank(D∗,ε)(D

∗) > ε ≥ λrank(D∗,ε)+1(D
∗).

In implementing Algorithm 4.1, to determine the partitioning of D∗, we use the numerical rank

with respect to ε‖D∗‖√
n

where ε ∈ (0, 1) is fixed: take r = rank
(

D∗, ε‖D
∗‖√
n

)

,

D+ = Diag (λ1(D
∗), . . . , λr(D

∗)) , Dǫ = Diag (λr+1(D
∗), . . . , λn(D

∗)) ,

1Note that for numerical stability and well-posedness, it is essential that there exists Lagrange multipliers and
that intF 6= ∅. Regularization involves both finding a minimal face as well as a minimal subspace, see [65].
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Algorithm 4.1: One iteration of facial reduction

1 Input( A : Sn → R
m, b ∈ R

m, C ∈ S
n);

2 Obtain an optimal solution (δ∗,D∗) of (AP)
3 if δ∗ > 0, then
4 STOP; Slater CQ holds for (A, b, C).
5 else
6 if D∗ ≻ 0, then
7 STOP; generalized Slater CQ holds for (A, b, C) (see Theorem 3.11);
8 else

9 Obtain eigenvalue decomposition D∗ =
[

P Q
]

[

D+ 0
0 0

] [

P T

QT

]

as described in

Proposition 3.23, with Q ∈ R
n×n̄;

10 if R(Q ·QT ) ∩R(A∗) = {0}, then
11 STOP; all feasible solutions of supy{bT y : C −A∗y � 0} are optimal.

12 else
13 find m̄, P : Rm̄ → R

m satisfying the conditions in Proposition 3.23;
14 solve (3.26) for (yQ,WQ);
15 C̄ ←WQ ;
16 b̄← P∗b;
17 Ā∗ ← QT (A∗P(·))Q;
18 Output( Ā : Sn̄ → R

m̄, b̄ ∈ R
m̄, C̄ ∈ S

n̄; yQ ∈ R
m, P : Rm̄ → R

m);

19 end if

20 end if

21 end if

and partition
[

P Q
]

accordingly. Then

λmin(D+) >
ε‖D∗‖√

n
≥ λmax(Dǫ) =⇒ ‖Dǫ‖ ≤ ε‖D∗‖.

Also,
‖Dǫ‖2
‖D+‖2

=
‖Dǫ‖2

‖D∗‖2 − ‖Dǫ‖2
≤ ε2‖D∗‖2

(1− ε2)‖D∗‖2 =
1

ε−2 − 1
(4.1)

that is, Dǫ is negligible comparing with D+.608

The second issue is the computation of intersection of subspaces, R(Q · QT ) ∩ R(A∗) (and in609

particular, finding one-one map P such that R(A∗P) = R(Q · QT ) ∩ R(A∗)). This can be done610

using the following result on subspace intersection.611

Theorem 4.1 ([26], Section 12.4.3). Given Q ∈ R
n×n̄ of full rank and onto linear map A : Sn →

R
m, there exist U sp

1 , . . . , U sp
min{m,n̄2}, V

sp
1 , . . . , V sp

min{m,n̄2} ∈ S
n such that

σsp
1 := 〈U sp

1 , V sp
1 〉 = max

{

〈U, V 〉 : ‖U‖ = 1 = ‖V ‖, U ∈ R(Q ·QT ), V ∈ R(A∗)
}

,
σsp
k :=

〈

U sp
k , V sp

k

〉

= max
{

〈U, V 〉 : ‖U‖ = 1 = ‖V ‖, U ∈ R(Q ·QT ), V ∈ R(A∗),
〈U,U sp

i 〉 = 0 = 〈V, V sp
i 〉 , ∀ i = 1, . . . , k − 1

}

,
(4.2)
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for k = 2, . . . ,min
{

m, n̄2
}

, and 1 ≥ σsp
1 ≥ σsp

2 ≥ · · · ≥ σsp
min{m,n̄2} ≥ 0. Suppose that

σsp
1 = · · · = σsp

m̄ = 1 > σsp
m̄+1 ≥ · · · ≥ σsp

min{n̄,m}, (4.3)

then
R(Q ·QT ) ∩R(A∗) = span (U sp

1 , . . . , U sp
m̄ ) = span (V sp

1 , . . . , V sp
m̄ ) , (4.4)

and P : Rm̄ → R
m defined by Pv =

∑m̄
i=1 viy

sp
i for v ∈ R

m̄, where A∗yspi = V sp
i for i = 1, . . . , m̄, is612

one-one linear and satisfies R(A∗P) = R(Q ·QT ) ∩R(A∗).613

In practice, we do not get σsp
i = 1 (for i = 1, . . . , m̄) exactly. For a fixed tolerance εsp ≥ 0,

suppose that
1 ≥ σsp

1 ≥ · · · ≥ σsp
m̄ ≥ 1− εsp > σsp

m̄+1 ≥ · · · ≥ σsp
min{n̄,m} ≥ 0. (4.5)

Then we would take the approximation

R(Q ·QT ) ∩R(A∗) ≈ span (U sp
1 , . . . , U sp

m̄ ) ≈ span (V sp
1 , . . . , V sp

m̄ ) . (4.6)

Observe that with the chosen tolerance εsp, we have that the cosines of the principal angles between614

R(Q ·QT ) and span (V sp
1 , . . . , V sp

m̄ ) is no less than 1− εsp; in particular, ‖U sp
k − V sp

k ‖2 ≤ 2εsp and615

‖QTV sp
k Q‖ ≥ σsp

k ≥ 1− εsp for k = 1, . . . , m̄.616

Remark 4.2. Using V sp
1 , . . . , V sp

min{m,n̄2} from Theorem 4.1, we may replace A1, . . . , Am by V sp
1 , . . . , V sp

m617

(which may require extending V sp
1 , . . . , V sp

min{m,n̄2} to a basis of R(A∗), if m > n̄2).618

If the subspace intersection is exact (as in (4.3) and (4.4) in Theorem 4.1), then R(Q · QT ) ∩
R(A∗) = span(A1, . . . , Am̄) would hold. If the intersection is inexact (as in (4.5) and (4.6)), then
we may replace A by Ă : Sn → R

m, defined by

Ăi =

{

U sp
i if i = 1, . . . , m̄,

V sp
i if i = m̄+ 1, . . . ,m,

which is a perturbation of A with ‖A∗ − Ă∗‖F =
√

∑m̄
i=1 ‖U

sp
i − V sp

i ‖2 ≤
√
2m̄εsp. Then R(Q ·619

QT ) ∩R(Ă∗) = span(Ă1, . . . , Ăm̄) because Ăi ∈ R(Q ·QT ) ∩R(Ă∗) for i = 1, . . . , m̄ and620

max
U,V

{

〈U, V 〉 : U ∈ R(Q ·QT ), ‖U‖ = 1, V ∈ R(Ă∗), ‖V ‖ = 1,

〈

U,U sp
j

〉

= 0 =
〈

V,U sp
j

〉

∀ j = 1, . . . , m̄,
}

≤ max
U,y

{〈

U,

m̄
∑

i=1

yjU
sp
j +

m
∑

i=m̄+1

yjV
sp
j

〉

: U ∈ R(Q ·QT ), ‖U‖ = 1, ‖y‖ = 1,

〈

U,U sp
j

〉

= 0 ∀ j = 1, . . . , m̄,
}

= max
U,y

{〈

U,

m
∑

i=m̄+1

yjV
sp
j

〉

: U ∈ R(Q ·QT ), ‖U‖ = 1, ‖y‖ = 1,
〈

U,U sp
j

〉

= 0 ∀ j = 1, . . . , m̄,

}

= σsp
m̄+1 < 1− εsp < 1.

To increase the robustness of the computation of R(Q ·QT )∩R(A∗) in deciding whether σsp
i is621

1 or not, we may follow similar treatment in [18] where one decides which singular values are zero622

by checking the ratios between successive small singular values.623
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4.1.2 Implicit equality constraints and regularization for MFCQ624

The second algorithm for facial reduction involves repeated use of two steps again.625

1. We repeat step 1 in Section 4.1.1 and use (AP) to find the face F .626

2. We then find the implicit equality constraints and ensure that they are linearly independent,627

see Corollary 3.22 and Proposition 3.23.628

4.1.3 Preprocessing for the auxiliary problem629

We can take advantage of the fact that eigenvalue-eigenvector calculations are efficient and accurate
to obtain a more accurate optimal solution (δ∗,D∗) of (AP), i.e., to decide whether the linear system

〈Ai,D〉 = 0 ∀ i = 1, . . . ,m+ 1 (where Am+1 := C), 0 6= D � 0 (4.7)

has a solution, we can use Algorithm 4.2 as a preprocessor for Algorithm 4.1. More precisely,

Algorithm 4.2: Preprocessing for (AP)

1 Input( A1, . . . , Am, Am+1 := C ∈ S
n);

2 Output( δ∗, P ∈ R
n×(n−n̄), D+ ∈ S

n−n̄ satisfying D+ ≻ 0; (so D∗ = PD+P
T ));

3 if one of the Ai (i ∈ {1, . . . ,m+ 1}) is definite then
4 STOP; (4.7) does not have a solution.
5 else

6 if some of the A =
[

U Ũ
]

[

D̂ 0
0 0

] [

UT

ŨT

]

∈ {Ai : i = 1, . . . ,m+1} satisfies D̂ ≻ 0, then

7 reduce the size using Ai ← ŨTAiŨ ,∀i;
8 else
9 if ∃ 0 6= V ∈ R

n×r such that AiV = 0 for all i = 1, . . . ,m+ 1, then
10 % We get 〈Ai, V V T 〉 = 0 ∀ i = 1, . . . ,m+ 1 ;
11 STOP; we get δ∗ = 0,D∗ = V V T solves (AP);

12 else
13 U
14 end if
15 se an SDP solver to solve (AP).

16 end if

17 end if

630

Algorithm 4.2 tries to find a solution D∗ satisfying (4.7) without using an SDP solver. It attempts to631

find a vector v in the nullspace of all the Ai, and then sets D∗ = vvT . In addition, any semidefinite632

Ai allows a reduction to a smaller dimensional space.633

4.2 Backward stability of one iteration of facial reduction634

We now provide the details for one iteration of the main algorithm, see Theorem 4.9. Algorithm 4.1635

involves many nontrivial subroutines, each of which would introduce some numerical errors. First636

we need to obtain an optimal solution (δ∗,D∗) of (AP); in practice we can only get an approximate637
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optimal solution, as δ∗ is never exactly zero, and we decide whether the true value of δ∗ is zero when638

the computed value is only close to zero. Second we need to obtain the eigenvalue decomposition639

of D∗. There comes the issue of determining which of the nearly zero eigenvalues are indeed zero.640

(Since (AP) is not solved exactly, the approximate solution D∗ would have eigenvalues that are641

positive but close to zero.) Finally, the subspace intersection R(Q ·QT )∩R(A∗) (for finding m̄ and642

P) can only be computed approximately via a singular value decomposition, because in practice643

we would take singular vectors corresponding to singular values that are approximately (but not644

exactly) 1.645

It is important that Algorithm 4.1 is robust against such numerical issues arising from the646

subroutines. We show that Algorithm 4.1 is backward stable (with respect to these three cate-647

gories of numerical errors), i.e., for any given input (A, b, c), there exists (Ã, b̃, C̃) ≈ (A, b, C) such648

that the computed result of Algorithm 4.1 applied on (A, b, C) is equal to the exact result of the649

same algorithm applied on (Ã, b̃, C̃) (when (AP) is solved exactly and the subspace intersection is650

determined exactly).651

We first show that ‖Cres‖ is relatively small, given a small α(A, C).652

Lemma 4.3. Let yQ, CQ, Cres be defined as in Lemma 3.19. Then the norm of Cres is small in the
sense that

‖Cres‖ ≤
√
2

[ ‖D∗‖
λmin(D+)

α(A, C)

]1/2(

min
Z=C−A∗y�0

‖Z‖
)

. (4.8)

Proof. By optimality, for any y ∈ Fp,

‖Cres‖ ≤ min
W
‖C −A∗y −QWQT‖ = ‖Z −QQTZQQT‖,

where Z := C −A∗y. Therefore (4.8) follows from Proposition 3.16.653

The following technical results shows the relationship between the quantity min‖y‖=1 ‖A∗y‖2 −654

‖QT (A∗y)Q‖2 and the cosine of the smallest principal angle between R(A∗) and R(Q ·QT ), defined655

in (4.2).656

Lemma 4.4. Let Q ∈ R
n×n̄ satisfy QTQ = In̄. Then

τ := min
‖y‖=1

{

‖A∗y‖2 − ‖QT (A∗y)Q‖2
}

≥
(

1− (σsp
1 )2

)

σmin(A∗)2 ≥ 0, (4.9)

where σsp
1 is defined in (4.2). Moreover,

τ = 0 ⇐⇒ σsp
1 = 1 ⇐⇒ R(Q ·QT ) ∩R(A∗) 6= {0} . (4.10)

Proof. By definition of σsp
1 ,657

max
V

{

max
‖U‖=1,U∈R(Q·QT )

〈U, V 〉 : ‖V ‖ = 1, V ∈ R(A∗)

}

≥ max
‖U‖=1,U∈R(Q·QT )

〈U, V sp
1 〉 ≥ 〈U sp

1 , V sp
1 〉 = σsp

1

≥ max
V

{

max
‖U‖=1,U∈R(Q·QT )

〈U, V 〉 : ‖V ‖ = 1, V ∈ R(A∗)

}

,
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so equality holds througout, implying that658

σsp
1 = max

V

{

max
‖U‖=1,U∈R(Q·QT )

〈U, V 〉 : ‖V ‖ = 1, V ∈ R(A∗)

}

= max
y

{

max
‖W‖=1

〈

QWQT ,A∗y
〉

: ‖A∗y‖ = 1

}

= max
y

{

‖QT (A∗y)Q‖ : ‖A∗y‖ = 1
}

.

Obviously, ‖A∗y‖ = 1 implies that the orthogonal projection QQT (A∗y)QQT onto R(Q ·QT ) is of
norm no larger than one:

‖QT (A∗y)Q‖ = ‖QQT (A∗y)QQT ‖ ≤ ‖A∗y‖ = 1. (4.11)

Hence σsp
1 ∈ [0, 1]. In addition, equality holds in (4.11) if and only if A∗y ∈ R(Q ·QT ), hence

σsp
1 = 1 ⇐⇒ R(A∗) ∩R(Q ·QT ) 6= {0} . (4.12)

Whenever ‖y‖ = 1, ‖A∗y‖ ≥ σmin(A∗). Hence659

τ = min
y

{

‖A∗y‖2 − ‖QT (A∗y)Q‖2 : ‖y‖ = 1
}

= σmin(A∗)2 min
y

{

‖A∗y‖2 − ‖QT (A∗y)Q‖2 : ‖y‖ = 1

σmin(A∗)

}

≥ σmin(A∗)2 min
y

{

‖A∗y‖2 − ‖QT (A∗y)Q‖2 : ‖A∗y‖ ≥ 1
}

= σmin(A∗)2 min
y

{

‖A∗y‖2 − ‖QT (A∗y)Q‖2 : ‖A∗y‖ = 1
}

= σmin(A∗)2
(

1−max
y

{

‖QT (A∗y)Q‖2 : ‖A∗y‖ = 1
}

)

= σmin(A∗)2
(

1− (σsp
1 )

2
)

.

This together with σsp
1 ∈ [0, 1] proves (4.9). If τ = 0, then σsp

1 = 1 since σmin(A∗) > 0. Then (4.12)
implies that R(A∗) ∩R(Q ·QT ) 6= {0}. Conversely, if R(A∗) ∩R(Q ·QT ) 6= {0}, then there exists
ŷ such that ‖ŷ‖ = 1 and A∗ŷ ∈ R(Q ·QT ). This implies that

0 ≤ τ ≤ ‖A∗ŷ‖2 − ‖QT (A∗ŷ)Q‖2 = 0,

so τ = 0. This together with (4.12) proves the second claim (4.10).660

Next we prove that two classes of matrices are positive semidefinite and show their eigenvalue661

bounds, which will be useful in the backward stability result.662

Lemma 4.5. Suppose A1, . . . , Am,D∗ ∈ S
n. Then the matrix M̂ ∈ S

m defined by

M̂ij = 〈Ai,D
∗〉 〈Aj ,D

∗〉 (i, j = 1, . . . ,m)

is positive semidefinite. Moreover, the largest eigenvalue λmax(M̂) ≤∑m
i=1 〈Ai,D

∗〉2.663
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Proof. For any y ∈ R
m,664

yT M̂y =
m
∑

i,j=1

〈Ai,D
∗〉 〈Aj ,D

∗〉 yiyj =
(

m
∑

i=1

〈Ai,D
∗〉 yi

)2

.

Hence M̂ is positive semidefinite. Moreover, by the Cauchy Schwarz inequality we have665

yTM̂y =

(

m
∑

i=1

〈Ai,D
∗〉 yi

)2

≤
(

m
∑

i=1

〈Ai,D
∗〉2
)

‖y‖22.

Hence λmax(M̂) ≤∑m
i=1 〈Ai,D

∗〉2.666

Lemma 4.6. Suppose A1, . . . , Am ∈ S
n and Q ∈ R

n×n̄ has orthonomral columns. Then the matrix
M ∈ S

m defined by

Mij = 〈Ai, Aj〉 −
〈

QTAiQ,QTAjQ
〉

, i, j = 1, . . . ,m,

is positive semidefinite, with the smallest eigenvalue λmin(M) ≥ τ , where τ is defined in (4.9).667

Proof. For any y ∈ R
m, we have

yTMy =
m
∑

i,j=1

〈yiAi, yjAj〉 −
〈

yiQ
TAiQ, yjQ

TAjQ
〉

= ‖A∗y‖2 −
∥

∥QT (A∗y)Q
∥

∥

2 ≥ τ‖y‖2.

Hence M ∈ S
m
+ and λmin(M) ≥ τ .668

The following lemma shows that when nonnegative δ∗ is approximately zero andD∗ = PD+P
T+

QDǫQ
T ≈ PD+P

T with D+ ≻ 0, under a mild assumption (4.15) it is possible to find a linear
operator Â “near” A such that we can take the following approximation:

δ∗ ← 0, D∗ ← PD+P
T , A∗ ← Â∗,

and we maintain that Â(PD+P
T ) = 0 and R(Q ·QT ) ∩R(A∗) = R(Q ·QT ) ∩R(Â∗).669

Lemma 4.7. Let A : Sn → R
m : X 7→ (〈Ai,X〉) be onto. Let D∗ =

[

P Q
]

[

D+ 0
0 Dǫ

] [

P T

QT

]

∈ S
n
+,

where
[

P Q
]

∈ R
n×n is an orthogonal matrix, D+ ≻ 0 and Dǫ � 0. Suppose that

R(Q ·QT ) ∩R(A∗) = span(A1, . . . , Am̄), (4.13)

for some m̄ ∈ {1, . . . ,m}. Then

min
‖y‖=1, y∈Rm−m̄







∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2






> 0. (4.14)

Assume that

min
‖y‖=1, y∈Rm−m̄







∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2






>
2

‖D+‖2

(

‖A(D∗)‖2 + ‖Dǫ‖2
m
∑

i=m̄+1

‖Ai‖2
)

.

(4.15)
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Define Ãi to be the projection of Ai on
{

PD+P
T
}⊥

:

Ãi := Ai −
〈

Ai, PD+P
T
〉

〈D+,D+〉
PD+P

T , ∀ i = 1, . . . ,m. (4.16)

Then
R(Q ·QT ) ∩R(Ã∗) = R(Q ·QT ) ∩R(A∗). (4.17)

Proof. We first prove the strict inequality (4.14). First observe that since

∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

m−m̄
∑

i=1

yi(Am̄+i −QQTAm̄+iQQT )

∥

∥

∥

∥

∥

2

≥ 0,

the optimal value is always nonnegative. Let ȳ solve the minimization problem in (4.14). If
∥

∥

∑m−m̄
i=1 ȳiAm̄+i

∥

∥

2 −
∥

∥

∑m−m̄
i=1 ȳiQ

TAm̄+iQ
∥

∥

2
= 0, then

0 6=
m−m̄
∑

i=1

ȳiAm̄+i ∈ R(Q ·QT ) ∩R(A∗) = span(A1, . . . , Am̄),

which is absurd since A1, . . . , Am are linearly independent.670

Now we prove (4.17). Observe that for j = 1, . . . , m̄, Aj ∈ R(Q · QT ) so
〈

Aj , PD+P
T
〉

= 0,

which implies that Ãj = Aj. Moreover,

span(A1, . . . , Am̄) ⊆ R(Q ·QT ) ∩R(Ã∗).

Conversely, suppose that B := Ã∗y ∈ R(Q ·QT ). Since Ãj = Aj ∈ R(Q ·QT ) for j = 1, . . . , m̄,

B = QQTBQQT =⇒
m
∑

j=m̄+1

yj(Ãj −QQT ÃjQQT ) = 0

We show that ym̄+1 = · · · = ym = 0. In fact, since QT (PD+P
T )Q = 0,

∑m
j=m̄+1 yj(Ãj −

QQT ÃjQQT ) = 0 implies

m
∑

j=m̄+1

yjQQTAjQQT =

m
∑

j=m̄+1

yjAj −





m
∑

j=m̄+1

〈

Aj, PD+P
T
〉

〈D+,D+〉
yj



PD+P
T .

For i = m̄+ 1, . . . ,m, taking inner product on both sides with Ai ,

m
∑

j=m̄+1

〈

QTAiQ,QTAjQ
〉

yj =

m
∑

j=m̄+1

〈Ai, Aj〉 yj −
m
∑

j=m̄+1

〈

Ai, PD+P
T
〉 〈

Aj, PD+P
T
〉

〈D+,D+〉
yj,

which holds if, and only if,

(M − M̃)







ym̄+1
...
ym






= 0, (4.18)
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where M,M̃ ∈ S
m−m̄ are defined by671

M(i−m̄),(j−m̄) = 〈Ai, Aj〉 −
〈

QTAiQ,QTAjQ
〉

,

M̃(i−m̄),(j−m̄) =

〈

Ai, PD+P
T
〉 〈

Aj , PD+P
T
〉

〈D+,D+〉
,∀ i, j = m̄+ 1, . . . ,m.

We show that (4.18) implies that ym̄+1 = · · · = ym = 0 by proving that M − M̃ is indeed positive672

definite. By Lemmas 4.5 and 4.6,673

λmin(M − M̃) ≥ λmin(M)− λmax(M̃)

≥ min
‖y‖=1







∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2






−
∑m

i=m̄+1

〈

Ai, PD+P
T
〉2

〈D+,D+〉
.

To see that λmin(M − M̃) > 0, note that since D∗ = PD+P
T +QDǫQ

T , for all i,674

∣

∣

〈

Ai, PD+P
T
〉∣

∣ ≤
∣

∣〈Ai,D
∗〉 |+ |

〈

Ai, QDǫQ
T
〉∣

∣

≤ |〈Ai,D
∗〉|+ ‖Ai‖‖QDǫQ

T ‖
= |〈Ai,D

∗〉|+ ‖Ai‖‖Dǫ‖

≤
√
2
(

|〈Ai,D
∗〉|2 + ‖Ai‖2‖Dǫ‖2

)1/2
.

Hence
m
∑

i=m̄+1

∣

∣

〈

Ai, PD+P
T
〉∣

∣

2 ≤ 2

m
∑

i=m̄+1

(

|〈Ai,D
∗〉|2 + ‖Ai‖2‖Dǫ‖2

)

≤ 2‖A(D∗)‖2 + 2‖Dǫ‖2
m
∑

i=m̄+1

‖Ai‖2,

and that λmin(M − M̃) > 0 follows from the assumption (4.15). This implies that ym̄+1 = · · · =
ym = 0. Therefore B =

∑m̄
i=1 yiÃi, and by (4.13)

R(Q ·QT ) ∩R(Ã∗) = span(A1, . . . , Am̄) = R(Q ·QT ) ∩R(A∗).

675

Remark 4.8. We make a remark about the assumption (4.15) in Lemma 4.7. We argue that the
right hand side expression

2

‖D+‖2

(

‖A(D∗)‖2 + ‖Dǫ‖2
m
∑

i=m̄+1

‖Ai‖2
)

is close to zero (when δ∗ ≈ 0 and when Dǫ is chosen appropriately). Assume that the spectral
decomposition of D∗ is partitioned as described in Section 4.1.1. Then (since ‖Dǫ‖ ≤ ε‖D∗‖)

2

‖D+‖2
‖A(D∗)‖2 ≤ 2(δ∗)2

‖D∗‖2 − ‖Dǫ‖2
≤ 2(δ∗)2

‖D∗‖2 − ε2‖D∗‖2 ≤
2n(δ∗)2

1− ε2

and
2‖Dǫ‖2
‖D+‖2

m
∑

i=m̄+1

‖Ai‖2 ≤
2ε2

1− ε2

m
∑

i=m̄+1

‖Ai‖2.

Therefore as long as ε and δ∗ are small enough (taking into account n and
∑m

i=m̄+1 ‖Ai‖2), then676

the right hand side of (4.15) would be close to zero.677
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Here we provide the backward stability result for one step of the facial reduction algorithm.678

That is, we show that the smaller problem obtained from one step of facial reduction with δ∗ ≥ 0679

is equivalent to applying facial reduction exactly to an SDP instance “nearby” to the original SDP680

instance.681

Theorem 4.9. Suppose A : S
n → R

m, b ∈ R
m and C ∈ S

n are given so that (1.1) is fea-
sible and Algorithm 4.1 returns (δ∗,D∗), with 0 ≤ δ∗ ≈ 0 and spectral decomposition D∗ =
[

P Q
]

[

D+ 0
0 Dǫ

] [

P T

QT

]

, and (Ā, b̄, C̄, yQ,P). In addition, assume that

P : Rm̄ → R
m : v 7→

(

v
0

)

, so R(A∗P) = span(A1, . . . , Am̄).

Assume also that (4.15) holds. For i = 1, . . . ,m, define Ãi ∈ S
n as in (4.16), and Ã∗y :=

∑m
i=1 yiÃi.682

Let C̃ = Ã∗yQ + QC̄QT . Then (Ā, b̄, C̄) is the exact output of Algorithm 4.1 applied on (Ã, b, C̃),683

that is, the following hold:684

(1) ÃC̃(PD+P
T ) =

(

Ã(PD+P
T )

〈

C̃, PD+P
T
〉

)

= 0,685

(2) (yQ, C̄) solves

min
y,Q

1

2

∥

∥

∥
Ã∗y +QWQT − C̃

∥

∥

∥

2
. (4.19)

(3) R(Ã∗P) = R(Q ·QT ) ∩R(Ã∗).686

Moreover, (Ã, b, C̃) is close to (A, b, C) in the sense that687

m
∑

i=1

‖Ai − Ãi‖2 ≤ 2

‖D+‖2

(

(δ∗)2 + ‖Dǫ‖2
m
∑

i=1

‖Ai‖2
)

, (4.20)

‖C − C̃‖ ≤
√
2

‖D+‖

(

(δ∗)2 + ‖Dǫ‖2
m
∑

i=1

‖Ai‖2
)1/2

‖yQ‖

+
√
2

[ ‖D∗‖
λmin(D+)

α(A, C)

]1/2(

min
Z=C−A∗y�0

‖Z‖
)

, (4.21)

where α(A, c) is defined in (3.13).688

Proof. First we show that (Ā, b̄, C̄) is the exact output of Algorithm 4.1 applied on (Ã, b, C̃):689

(1) For i = 1, . . . ,m, by definition of Ãi in (4.16), we have
〈

Ãi, PD+P
T
〉

= 0. Hence Ã(PD+P
T ) =690

0. Also,
〈

C̃, PD+P
T
〉

= yTQ(Ã(PD+P
T )) +

〈

C̄,QT (PD+P
T )Q

〉

= 0.691

(2) By definition, C̃ − Ã∗yQ −QC̄QT = 0, so (yQ, C̄) solves the least squares problem (4.19).692

(3) Given (4.15), we have that

R(Q ·QT ) ∩R(Ã∗) = R(Q ·QT ) ∩R(A∗) = R(A1, . . . , Am̄) = R(Ã1, . . . , Ãm̄) = R(Ã∗P).
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The results (4.20) and (4.21) follow easily:693

m
∑

i=1

‖Ai − Ãi‖2 =
m
∑

i=1

∣

∣

〈

Ai, PD+P
T
〉∣

∣

2

‖D+‖2
≤

m
∑

i=1

2 |〈Ai,D
∗〉|2 + 2‖Ai‖2‖Dǫ‖2
‖D+‖2

≤ 2

‖D+‖2

(

(δ∗)2 + ‖Dǫ‖2
m
∑

i=1

‖Ai‖2
)

,

and694

‖C − C̃‖ ≤ ‖A∗yQ − Ã∗yQ‖+ ‖Cres‖

≤
m
∑

i=1

|(yQ)i|‖Ai − Ãi‖+ ‖Cres‖

≤ ‖yQ‖
(

m
∑

i=1

‖Ai − Ãi‖2
)1/2

+ ‖Cres‖

≤
√
2

‖D+‖

(

(δ∗)2 + ‖Dǫ‖2
m
∑

i=1

‖Ai‖2
)1/2

‖yQ‖

+
√
2

[ ‖D∗‖
λmin(D+)

α(A, C)

]1/2(

min
Z=C−A∗y�0

‖Z‖
)

,

from (4.20) and (4.8).695

5 Test Problem Descriptions696

5.1 Worst case instance697

From Tunçel [66], we consider the following worst case problem instance in the sense that for n ≥ 3,
the facial reduction process in Algorithm 4.1 requires n − 1 steps to obtain the minimal face. Let
b = e2 ∈ R

n, C = 0, and A : Sn+ → R
n be defined by

A1 = e1e
T
1 , A2 = e1e

T
2 + e2e

T
1 , Ai = ei−1e

T
i−1 + e1e

T
i + eie

T
1 for i = 3, . . . , n.

It is easy to see that

FZ
P =

{

C −A∗y ∈ S
n
+ : y ∈ R

n
}

=
{

µe1e
T
1 : µ ≥ 0

}

,

(so FZ
P has empty interior) and

sup{bT y : C −A∗y � 0} = sup{y2 : −A∗y = µe1e
T
1 , µ ≥ 0} = 0,

which is attained by any feasible solution.698

Now consider the auxiliary problem

min ‖AC(D)‖ =
[

D2
11 + 4D2

12 +
n
∑

i=3

(Di−1,i−1 + 2D1i)

]1/2

s.t. 〈D, I〉 = √n, D � 0.
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An optimal solution is D∗ =
√
nene

T
n , which attains objective value zero. It is easy to see this is699

the only solution. More precisely, any solution D attaining objective value 0 must satisfy D11 = 0,700

and by the positive semidefiniteness constraint D1,i = 0 for i = 2, . . . , n and so Dii = 0 for701

i = 2, . . . , n − 1. So Dnn is the only nonzero entry and must equal
√
n by the linear constraint702

〈D, I〉 = √n. Therefore, Q from Proposition 3.16 must have n − 1 columns, implying that the703

reduced problem is in S
n−1. Theoretically, each facial reduction step via the auxiliary problem can704

only reduce the dimension by one. Moreover, after each reduction step, we get the same SDP with705

n reduced by one. Hence it would take n− 1 facial reduction steps before a reduced problem with706

strictly feasible solutions is found. This realizes the result in [12] on the upper bound of the number707

of facial reduction steps needed.708

5.2 Generating instances with finite nonzero duality gaps709

In this section we give a procedure for generating SDP instances with finite nonzero duality gaps.710

The algorithm is due to the results in [65, 70].711

Algorithm 5.1: Generating SDP instance that has a finite nonzero duality gap

1 Input(problem dimensions m, n; desired duality gap g);
2 Output(linear map A : Sn → R

m, b ∈ R
m, C ∈ S

n such that the corresponding primal dual
pair (1.1)-(1.2) has a finite nonzero duality gap);

1. Pick any positive integer r1,r3 that satisfy r1 + r3 + 1 = n,
and any positive integer p ≤ r3.

2. Choose Ai � 0 for i = 1, . . . , p so that dim(face({Ai : i = 1, . . . , p})) = r3.
Specifically, choose A1, . . . , Ap so that

face({Ai : 1, . . . , p}) =





0 0 0
0 0 0
0 0 S

r3
+



 . (5.1)

3. Choose Ap+1, . . . , Am of the form

Ai =





0 0 (Ai)13
0 (Ai)22 ∗

(Ai)
T
13 ∗ ∗



 ,

where an asterisk denotes a block having arbitrary elements, such that (Ap+1)13, . . . , (Am)13
are linearly independent, and (Ai)22 ≻ 0 for some i ∈ {p+ 1, . . . ,m}.

4. Pick

X̄ =





0 0 0
0
√
g 0

0 0 0



 . (5.2)

5. Take b = A(X̄), C = X̄ .
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Finite nonzero duality gaps and strict complementarity are closely tied together for cone op-712

timization problems; using the concept of a complementarity partition, we can generate instances713

that fail to have strict complementarity; these in turn can be used to generate instances with finite714

nonzero duality gaps. See [65, 70].715

Theorem 5.1. Given any positive integers n, m ≤ n(n+1)/2 and any g > 0 as input for Algorithm716

5.1, the following statements hold for the primal-dual pair (1.1)-(1.2) corresponding to the output717

data from Algorithm 5.1:718

1. Both (1.1) and (1.2) are feasible.719

2. All primal feasible points are optimal and vP = 0.720

3. All dual feasible point are optimal and vD = g > 0.721

It follows that (1.1) and (1.2) possess a finite positive duality gap.722

Proof. Consider the primal problem (1.1). (1.1) is feasible because C := X̄ given in (5.2) is positive
semidefinite. Note that by definition of A in Algorithm 5.1, for any y ∈ R

m,

C −
p
∑

i=1

yiAi =





0 0 0
0
√
g 0

0 0 ∗



 and −
m
∑

i=p+1

yiAi =





0 0 ∗
0 ∗ ∗
∗ ∗ ∗



 ,

so if y ∈ R
m satisfies Z := C − A∗y � 0, then

∑m
i=p+1 yiAi = 0 must hold. This implies

∑m
i=p+1 yi(Ai)13 = 0. Since (Ap+1)13, . . . , (Am)13 are linearly independent, we must have yp+1 =

· · · = ym = 0. Consequently, if y is feasible for (1.1), then

A∗y =





0 0 0
0 0 0
0 0 −Z33





for some Z33 � 0. The corresponding objective value in (1.1) is given by

bT y =
〈

X̄,A∗y
〉

= 0.

This shows that the objective value of (1.1) is constant over the feasible region. Hence vP = 0, and723

all primal feasible solutions are optimal.724

Consider the dual problem (1.2). By the choice of b, X̄ � 0 is a feasible solution, so (1.2) is
feasible too. From (5.1), we have that b1 = · · · = bp = 0. Let X � 0 be feasible for (1.1). Then
〈Ai,X〉 = bi = 0 for i = 1, . . . , p, implying that the (3,3) block of X must be zero by (5.1), so

X =





∗ ∗ 0
∗ ∗ 0
0 0 0



 .

Since α = (Aj)22 > 0 for some j ∈ {p+ 1, . . . ,m}, we have that

αX22 = 〈Aj ,X〉 =
〈

Aj , X̄
〉

= α
√
g,

so X22 =
√
g and 〈C,X〉 = g. Therefore the objective value of (1.2) is constant and equals g > 0725

over the feasible region, and all feasible solutions are optimal.726
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5.3 Numerical results727

Table 1 shows a comparison of solving SDP instances with versus without facial reduction. Examples728

1 through 9 are specially generated problems available online at the URL for this paper given in729

the footnote on page 1. In particular: Example 3 has a positive duality gap, vP = 0 < vD = 1;730

for Example 4, the dual is infeasible; in Example 5, the Slater CQ holds; Examples 9a,9b are731

instances of the worst case problems presented in Section 5.1. The remaining instances RandGen1-732

RandGen11 are generated randomly with most of them having a finite positive duality gap, as733

described in Section 5.2. These instances generically require only one iteration of facial reduction.734

The software package SeDuMi is used to solve the SDPs that arise.735

Name n m True primal True dual Primal optimal value Primal optimal value

optimal value optimal value with facial reduction without facial reduction

Example 1 3 2 0 0 0 -6.30238e-016

Example 2 3 2 0 1 0 +0.570395

Example 3 3 4 0 0 0 +6.91452e-005

Example 4 3 3 0 Infeas. 0 +Inf

Example 5 10 5 * * +5.02950e+02 +5.02950e+02

Example 6 6 8 1 1 +1 +1

Example 7 5 3 0 0 0 -2.76307e-012

Example 9a 20 20 0 Infeas. 0 Inf

Example 9b 100 100 0 Infeas. 0 Inf

RandGen1 10 5 0 1.4509 +1.5914e-015 +1.16729e-012

RandGen2 100 67 0 5.5288e+003 +1.1056e-010 NaN

RandGen4 200 140 0 2.6168e+004 +1.02803e-009 NaN

RandGen5 120 45 0 0.0381 -5.47393e-015 -1.63758e-015

RandGen6 320 140 0 2.5869e+005 +5.9077e-025 NaN

RandGen7 40 27 0 168.5226 -5.2203e-029 +5.64118e-011

RandGen8 60 40 0 4.1908 -2.03227e-029 NaN

RandGen9 60 40 0 61.0780 +5.61602e-015 -3.52291e-012

RandGen10 180 100 0 5.1461e+004 +2.47204e-010 NaN

RandGen11 255 150 0 4.6639e+004 +7.71685e-010 NaN

Table 1: Comparisons with/without facial reduction

One general observation is that, if the instance has primal-dual optimal solutions and has zero736

duality gap, SeDuMi is able to find the optimal solutions. However, if the instance has finite nonzero737

duality gaps, and if the instance is not too small, SeDuMi is unable to compute any solution, and738

returns NaN.739

SeDuMi, based on self-dual embedding, embeds the input primal-dual pair into a larger SDP740

that satisfies the Slater CQ [16]. Theoretically, the lack of the Slater CQ in a given primal-dual741

pair is not an issue for SeDuMi. It is not known what exactly causes problem on SeDuMi when742

handling instances where a nonzero duality gap is present.743
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6 Conclusions and future work744

In this paper we have presented a preprocessing technique for SDP problems where the Slater CQ745

(nearly) fails. This is based on solving a stable auxiliary problem that approximately identifies the746

minimal face for (P) . We have included a backward error analysis and some preliminary tests that747

successfully solve problems where the CQ fails and also problems that have a duality gap. The748

optimal value of our (AP) has significance as a measure of nearness to infeasibility.749

Though our stable (AP) satisfied both the primal and dual generalized Slater CQ, high accuracy
solutions were difficult to obtain for unstructured general problems. (AP) is equivalent to the
underdetermined linear least squares problem

min ‖AC(D)‖22 s.t. 〈I,D〉 = √n, D � 0, (6.1)

which is known to be difficult to solve. High accuracy solutions are essential in performing a proper750

facial reduction.751

Extensions of some of our results can be made to general conic convex programming, in which752

case the partial orderings in (1.1) and (1.2) are induced by a proper closed convex cone K and the753

dual cone K∗, respectively.754
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[78] Constantin Zălinescu. On zero duality gap and the Farkas lemma for conic programming.934

Math. Oper. Res., 33(4):991–1001, 2008. 28935

[79] Constantin Zălinescu. On duality gap in linear conic problems. Technical report, University936

of Al. I. Cusa, Iasi, Romania, 2010. 28937

[80] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations938

for the quadratic assignment problem. J. Comb. Optim., 2(1):71–109, 1998. Semidefinite939

programming and interior-point approaches for combinatorial optimization problems (Fields940

Institute, Toronto, ON, 1996). 9941

48



Index

CQ := QWQQ
T , 23942

Eij , unit matrices, 6943

K∗, polar (dual) cone, 5944

WQ, 22945

A†, Moore-Penrose generalized inverse, 5946

AC , homogenized constraint, 14947

F=, 8948

Q, second order cone, 15949

RD, cone of recession directions, 11950

α(A, C), distance from orthogonality, 18951

cone (S), convex cone generated by S, 5952

Cres = C − CQ −A∗yq, 23953

face(S), 5954

λmax(M̂), largest eigenvalue, 34955

λmin(M), smallest eigenvalue, 35956

〈C,X〉 :=∑CijXij , trace inner product, 3957

σi(A), singular values of A, 6958

ei, unit vector, 6959

fP , minimal face of (1.1), 5960

vD, dual optimal value, 3961

vP , (finite) primal optimal value, 3962

yQ, 22963

(AP), auxiliary problem (3.5), 14964

(DAP), dual of auxiliary problem (3.7), 15965

auxiliary problem, (AP) (3.5), 14966

complementarity partition, 27967

complementarity partition, proper, 27968
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cone partial order, 5971

cones of directions of constancy, 8, 9972

conjugate face, 5973
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dual SDP, 3981
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facial reduction, 3985
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A Replies from authors to referee report21027

The replies from the authors follow below within the text/report provided by the referee. The1028

replies are prefixed by REPLY:, and indented. These replies follow the questions/concerns raised1029

in the file report2.pdf.1030

Most of the changes are limited to Section 4.1031

A.1 Circular: Theorem 4.4 and Proposition 4.71032

As I indicated in the initial referee report, this manuscript contains interesting and original work
but there were some weaknesses in the material concerning stability. Although the authors have
revised the paper, it is disappointing to see no responses to several of the concerns clearly spelled
out in the previous referee report. The authors have ignored the concerns about Theorem 4.4
and Proposition 4.7 previously raised. As I stated before, these results are circular and weak. In
particular, the bound (4.5) in Theorem 4.4 can be rephrased as follows: there exists y feasible for
the original problem such that

‖y − Pv‖ ≤ Cres

Cres + λmin(Ẑ)
‖ŷ − Pv‖

where ŷ is feasible for the original problem and Ẑ = C −A∗ŷ . This effectively bounds ‖y − Pv‖1033

in terms of another quantity of the same kind. This type of tautology is obviously universally true1034

and does not require any proof. I must be missing something and hence urge the authors to add1035

some kind of discussion on the merit of Theorem 4.4. Perhaps there is something special about ŷ1036

and Ẑ? The same can be said about Proposition 4.7.1037

REPLY: We have removed the section on sensitivity analysis. Therefore, these “circu-1038

lar” arguments are not a concern. Note that ŷ was fixed and so the error bounds made1039

sense for large v, i.e., ‖y − Pv‖ ≤ O(‖v‖) when ‖v‖ is large.1040

A.2 Four additional ignored concerns1041

• First line in the proof of Lemma 4.2: since y is already fixed, I believe the inequality should
read

“‖Cres‖ = min
W
‖C −A∗y −QWQT‖ = ‖Z −QQTZQQT ‖′′

REPLY: The variable under the min has been changed. Please note that we have1042

removed the old section 4.2 on sensitivity analysis, but have kept this Lemma. It is1043

now Lemma 4.3. Also note that the first equality has been changed to an inequality1044

since the y is arbitrary and not necessarily optimal.1045

• The matrix CQ in Corollary 4.3 is not defined.1046

REPLY: First, note that we no longer have this Corollary as it was part of the1047

old Section 4.2. But, CQ = QWQQ
T first appears in a comment following Lemma1048

3.19. We have added an appropriate definition in Lemma 3.19 and an index entry.1049

We have changed the appearance throughout the paper.1050
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• Last step in the proof of Theorem 4.4: I could not see why the inequality holds.1051

REPLY: This Theorem was part of the old Section 4.2 and has been removed.1052

• The quantity κ in Corollary 4.5 is not defined.1053

REPLY: This Corollary was part of the old Section 4.2 and has been removed.1054

A.3 New added subsection on backward stability1055

The authors have added a new subsection with a formal statement on backward stability (Theorem1056

4.9).1057

REPLY: We would like to emphasize again that we included a modified backward1058

stability statement in Section 3.4, i.e., backwards stability with respect to a perturbation1059

in the cone.1060

This certainly addresses some of the main weaknesses mentioned above. However, I was unable to1061

get the punch line in the last statement of the proof of Lemma 4.10: First, I do not see why it1062

follows that ym̄+1 = · · · = ym = 0.1063

REPLY: Since we removed the section on sensitivity, Lemma 4.10 is now Lemma 4.71064

in this new revision. We have added extra details to explain the conclusions of the1065

Lemma, e.g., ym̄+1 = · · · = ym = 0 is due to λmin(M − M̃ ) > 0 and equation (4.18).1066

Second, I do not see why this shows the desired inclusion.1067

REPLY: This inclusion is now in Lemma 4.7, and the proof is on page 36.1068

We started out with an arbitrary B ∈ R(Q · QT ) ∩ R(Ã∗), i.e., B =
∑m

j=1 yjÃj ∈1069

R(Q ·QT ) for some y.1070

ym̄+1 = · · · = ym = 0 together with Ãj = Aj for j = 1, . . . , m̄ (from the second
paragraph of the proof) implies that

B =

m
∑

j=1

yjÃj =

m̄
∑

j=1

yjÃj =

m̄
∑

j=1

yjAj ∈ span{A1, . . . , Am̄},

i.e., B ∈ R(Q ·QT )∩span{A1, . . . , Am̄} = R(Q ·QT )∩R(A∗), where the equality follows1071

from the assumption (4.13).1072

In addition, Theorem 4.12 would be far stronger if the authors could argue that (4.15) typically1073

holds. Does it?1074

REPLY: We justify the assumption (4.15) in Remark 4.8.1075
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A.4 Errors in cross references in the manuscript1076

• Proposition 4.6: “Corollary 3.20” does not exist. Should it be “Theorem 3.20”?1077

REPLY: This cross reference was in the section that was removed.1078

In addition, Z is not defined. Is it Z := Cres +CQ −A∗y?1079

REPLY: This cross reference was in the section that was removed.1080

• Remark 4.11: ”Lemma 4.11” does not exist. Should it be ”Lemma 4.9” or ”Lemma 4.10”?1081

REPLY: The cross reference was fixed using the latex label command.1082

• We found some additional errors, e.g. the word Proposition was missing in the reference to1083

Prop 3.13 near the top of page 17.1084
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