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A NONLINEAR EQUATION FOR LINEAR PROGRAMMING
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We present a characterization of the ‘normal’ optimal solution of the linear program given in
canonical form

max{c'x: Ax = b, x=0}. (P)

We show that x* is the optimal solution of (P), of minimal norm, if and only if there exists an
R >0 such that, for each r= R, we have

x*=(rc—A'A,),.
Thus, we can find x* by solving the following equation for A,
A(re—A'A,),=b.

Moreover, (1/r)A, then ‘converges’ to a solution of the dual program.
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1. Introduction

We consider the linear programming problem in canonical form
p=max{c'x: Ax=b, x =0} (P)

where ' denotes transpose and A is an m X n matrix. We assume that p is finite.
The dual program to (P) is

d =min{b'A: A'A = c}. (D)

We present a characterization of a solution, x*, of (P) in terms of a nonlinear
equation, see (1.1) below.

In Section 2 we present the characterization of the normal optimal solution, x*,
of (P) as the solution of a nonlinear equation, i.e. for r= R, for some fixed R>0,

A(rc—A'A,),.=b (1.1)
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and
x*=(rc—A'\,),, (1.2)

where the vector y, denotes the projection of y onto the nonnegative orthant, i.e.
(y+); =max(0, y;). Moreover, if (1/r)A,>A* as r->oo, then A* solves the dual
program, (D); while, if A* solves (D), then there exists a sequence A,, of solutions
of (1.2), such that (1/r)A, > A*. These results are presented in Theorem 2.1.

The characterization (1.1) follows from the characterization of (P) as a nearest
point problem given in [4]. We then apply the approach in [5] to obtain the explicit
equation for this characterization.

2. The nonlinear equation

We now present the main result, the characterization of the normal optimal
solution of (P) as the solution of a nonlinear equation.

Theorem 2.1. (i) The point x* is the optimum of (P), of minimum norm, if and only
if there exists R >0 such that, for each r = R, the system

Alrc—A'A),=b (2.1)
is solveable for A, and
x*=(rc—AA,) ;. (2.2)

(i} If the solutions of (2.1) satisfy
1
;A,—))\* asr- oo, (2.3)

then \* is optimal for (D).
(iii) For each optimal solution A* of (D), there exists a sequence of solutions, A,,
of (2.1), such that (2.3) holds.

To prove Theorem 2.1 we combine a result from [5] and one from [4], which we
now present. The result in [4] characterizes the normal solution of (P) as the solution
of a quadratic program. (Here |- || denotes Euclidean norm.)

Theorem 2.2. The point x* is the solution of (P), of minimum norm, if and only if
there exists R >0 such that, for r= R, we have x* feasible and

||re — x*|| = min{||rc — x||: Ax=>5, x =0}. (2.4)
Proof. See [4, Theorem 2.1]. O
The result in [5] characterizes the solution of the problem
min{||x|: Ax =b, x =0}, (2.5)

as the solution of (2.1) and (2.2) with ¢ =0. We now prove Theorem 2.1 by obtaining
the characterization for the problem (2.4).
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Proof of Theorem 2.1. Let R >0 be found using Theorem 2.2 and let r= R. Now
let us solve (2.4), after replacing the norm, | - ||, by its square and dividing by 2.
The Karush-Kuhn-Tucker conditions, e.g. [2], yield the system

x¥*=rc—A'A+s, s=0, sx*=0. (2.6)

If (re— A'A),; >0, then x¥>0 and s5; =0, i.e. x¥ =(rc—A'A);. If (re— A'A); <0, then
5;>0 and x¥=0. If (rc—A'A);=0, then 5;=0 and x} =0. Thus, we have shown
(2.2). Since x™ must necessarily be feasible, we see that (2.1) must hold. This proves
the characterization (2.1) and (2.2) in (i).

Now, if x* solves (2.4), the optimality conditions (2.6) yield

1 1
c‘x*—; |x*|P=b'=A =0, Ax*=b, x*=0,
r

1 1 1
c——x*—A‘(—)\)+—s=0, s=0, s'x*=0.
r r r

Letting r—>oco, (1/r)A > A*, shows that x* and A* are feasible for (P) and (D),
respectively, with the optimal values c'x* = b‘A¥, i.e. they are both optimal. This
proves (ii).

Now suppose that A* solves the dual (D) and x* is the minimum norm solution
of (P). Then the optimality conditions for (P) yield

A(rA*)—rc=rs=0, §x*=0. (2.7)
Moreover, x* solves the program

min{z'x*; Az=>b, c'z=p, z=0}
and so

x*+A'A+Bc=5s=0, s'x*=0, B=0. (2.8)
Upon adding (2.7) and (2.8) we get

x*+A(AF+A)—(r—B)e=rs+s5s=0, (r5+s)x*=0. (2.9)
This shows that A, = (r+ B8)A*+ A solves (2.6) and so also (2.1). Since (2.3) holds,

we have shown (iii). O

Remarks. The optimality conditions for (P) (e.g. (2.7) along with feasibility of x*)
yield n+m+1 equations with 2n inequalities. These characterize the optimum
solutions of (P).

The solution of only m equations

A(rc—A'A,),=b (2.1)
for A, provides the solution

x*=(rc—AA,), (2.2)
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for the linear program (P). The equation (2.1) is nonlinear and nondifferentiable
due to the plus. Also one needs to find an estimate for R in order to find r=R in
(2.1).

At the points where (2.1) is differentiable, the Jacobian is

J(A)=—AD, A",

where D, is a diagonal, zero-one matrix with diagonal elements

i

m
0 ifre; <y a;A,
ji=1

1 otherwise.

m

Note that the points of nondifferentiability occur exactly when r¢; =3,

can now try Newton type methods to solve (2.1).

Consider the abstract linear program (P) where the constraint x =0 is replaced
by x =50, the operator A: XY, X and Y are normed spaces, S is a convex
cone, and x =gy if and only if x—yec S. A duality theory for (P) is given in [1].
The characterization (2.1) of (P) can be extended to include these abstract linear
programs.

a;A;. One

The above ideas will be presented in a forthcoming study.
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