
Mathematical  Programming 34 (1986) 235-238 
North-Holland 

A N O N L I N E A R  E Q U A T I O N  F O R  L I N E A R  P R O G R A M M I N G  

P.W. SMITH 
Department of Mathematical Sciences, Old Dominion University, Norfolk, VA, USA* 

H. WOLKOWICZ** 
Department of  Mctthematics and Computer Science, Emory University, Atlanta, GA 30322, USA 

Received 8 April 1985 
Revised manuscript  received 19 July 1985 

We present  a characterization of the 'normal '  optimal solution of the linear program given in 
canonical form 

max{ctx: Ax = b, x >1 0}. (P) 

We show that x* is the optimal solution of  (P), of  minimal norm, if and only if there exists an 
R > 0 such that, for each r/> R, we have 

x* = (rc -AtAr)+. 

Thus,  we can find x* by solving the following equation for h r 

A(rc -AtAr)+ = b. 

Moreover, (1/r)Ar then 'converges'  to a solution of the dual program. 
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1. Introduction 

We consider the linear programming problem in canonical form 

p = max{ctx: A x  = b, x >t 0} (P) 

where .t denotes transpose and A is an m × n matrix. We assume that p is finite. 
The dual program to (P) is 

d = min{btA : AtA I> c}. (D) 

We present a characterization of  a solution, x*, o f  (P) in terms of  a nonlinear 
equation, see (1.1) below. 

In Section 2 we present the characterization of  the normal optimal solution, x*, 
o f  (P) as the solution o f  a nonlinear equation, i.e. for r/> R, for some fixed R > 0, 

A ( r c  - AtA,)+ = b (1.1) 
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and 

x* = (rc - AtAr)+, (1.2) 

where the vector y÷ denotes the projection of y onto the nonnegative orthant, i.e. 
(y÷)i=max(0, yi). Moreover, if (1/r)A, oA*,  as r-->o% then A* solves the dual 
program, (D); while, if A* solves (D), then there exists a sequence Ar, of solutions 
of (1.2), such that (1/r)A,--> A*. These results are presented in Theorem 2.1. 

The characterization (1.1) follows from the characterization of (P) as a nearest 
point problem given in [4]. We then apply the approach in [5] to obtain the explicit 
equation for this characterization. 

2. The nonlinear equation 

We now present the main result, the characterization of the normal optimal 
solution of (P) as the solution of a nonlinear equation. 

Theorem 2.1. (i) The point x* is the optimum of  (P), o f  min imum norm, i f  and only 

i f  there exists R > 0 such that, for  each r >i R, the system 

A(rc  - AtAr)+  = b (2.1) 

is solveable for  Ar and 

x* = (rc - AtA,)+. (2.2) 

(ii) I f  the solutions o f  (2.1) satisfy 

1 
- A,-~ A* asr->oo, (2.3) 
r 

then A* is optimal for  (D). 
(iii) For each optimal solution A* of  (D), there exists a sequence o f  solutions, At, 

o f  (2.1), such that (2.3) holds. 

To prove Theorem 2.1 we combine a result from [5] and one from [4], which we 
now present. The result in [4] characterizes the normal solution of (P) as the solution 
of a quadratic program. (Here 1[. II denotes Euclidean norm.) 

Theorem 2.2. The point x* is the solution o f  (P), o f  min imum norm, i f  and only i f  
there exists R > 0 such that, for  r >i R, we have x* feasible and 

[I rc - x* II = min{ [1 rc - x II: A x  = b, x >10}. (2.4) 

Proof. See [4, Theorem 2.1]. [] 

The result in [5] characterizes the solution of the problem 

min{ Ilxll: A x  = b, x~>0}, (2.5) 

as the solution of (2.1) and (2.2) with c = 0. We now prove Theorem 2.1 by obtaining 
the characterization for the problem (2.4). 



P. W. Smith, H. Wolkowicz / A nonlinear equation for linear programming 237 

Proof of Theorem 2.1. Let R > 0 be found using Theorem 2.2 and let r/> R. Now 
let us solve (2.4), after replacing the norm, I1" II, by its square and dividing by 2. 
The Karush-Kuhn-Tucker conditions, e.g. [2], yield the system 

x * = r c - A t A + s ,  s>10, stx * = 0 .  (2.6) 

If  (rc - AtA ) i > 0, then x* > 0 and si = 0, i.e. x* = (rc - At)t )i. If (rc - At,h, )i < 0, then 
s~>0 and x*=0 .  If ( r c - A t A ) ~ = O ,  then s~=0 and x*=0 .  Thus, we have shown 
(2.2). Since x* must necessarily be feasible, we see that (2.1) must hold. This proves 
the characterization (2.1) and (2.2) in (i). 

Now, if x* solves (2.4), the optimality conditions (2.6) yield 

1 
c t x * - - l l x * H 2 - b t l A - - - O ,  a x * = b ,  x*>~O, 

r r 

c - - x * - A  t A + s = O ,  s ~ O ,  s tx  * = 0 .  
r 

Letting r-->~, (1/r)A-->A*, shows that x* and A* are feasible for (P) and (D), 
respectively, with the optimal values ctx *= btA *, i.e. they are both optimal. This 
proves (ii). 

Now suppose that A* solves the dual (D) and x* is the minimum norm solution 
of (P). Then the optimality conditions for (P) yield 

At(rA * ) -  rc = rg>>-O, gtx*=0. (2.7) 

Moreover, x* solves the program 

min{ztx*: A z  = b, ctT. ~ p, 2 ~ 0 }  

and so 

x* + At)t +/3c = s >~ 0, stx* = 0, /3 ~ 0. (2.8) 

Upon adding (2.7) and (2.8) we get 

x * + A t ( r A * + A ) - ( r - / 3 ) c = r g + s ~ O ,  ( r g + s ) t x * = O .  (2.9) 

This shows that )tr = (r+/3)A*+A solves (2.6) and so also (2.1). Since (2.3) holds, 
we have shown (iii). [] 

Remarks. The optimality conditions for (P) (e.g. (2.7) along with feasibility of x*) 
yield n+  m + 1 equations with 2n inequalities. These characterize the optimum 
solutions of (P). 

The solution of only m equations 

A(rc  - AtAr)+ = b (2.1) 

for Ar provides the solution 

X* = (rc -- AtAr)+ (2.2) 
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for the l inear p rogram (P). The equat ion (2.1) is nonl inear  and nondifferentiable 

due to the plus. Also one needs to find an estimate for R in order  to find r i> R in 

(2.1). 
At the points where (2.1) is differentiable, the Jacobian is 

J (A)  = - A D ~ A  t, 

where Dx is a diagonal,  ze ro -one  matrix with diagonal  elements 

dii = j = 1 

otherwise. 

m 

Note  that the points o f  nondifferentiabili ty occur  exactly when rci = ~j=l  ajiA). One 

can now try Newton  type methods to solve (2.1). 
Consider  the abstract linear program (P) where the constraint  x/> 0 is replaced 

by X>~sO, the opera tor  A : X o  Y, X and Y are normed  spaces, S is a convex 

cone, and x >~sY if and only if x - y ~  S. A duality theory for (P) is given in [1]. 

The characterizat ion (2.1) of  (P) can be extended to include these abstract linear 

programs. 

The above ideas will be presented in a for thcoming study. 
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