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Abstract

In this paper we extend a recent algorithm for solving the sensor network localization problem
(SNL ) to include instances with noisy data. In particular, we continue to exploit the implicit
degeneracy in the semidefinite programming (SDP ) relaxation of SNL . An essential step
involves finding good initial estimates for a noisy Euclidean distance matrix, EDM , completion
problem. After finding the EDM completion from the noisy data, we rotate the problem using
the original positions of the anchors.

This is a preliminary working paper, and is a work in progress. Tests are currently on-going.
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1 Introduction

In this paper we derive and test an algorithm for solving large scale sensor localization problems
(SNL ) with noisy data. The SNL problem consists in locating sensors using the fact that some
of the sensors are anchors for which the locations are given, and that the distances between sensors
within a given radio range are approximately known. Our algorithm extends the results in [17],
where exact data is assumed.

We initialize the algorithm by finding rigid subgraphs (such as cliques) in the graph correspond-
ing to the SNL problem. We then localize the positions for each of the subgraphs by treating them
as an anchorless SNL problem, i.e., as a Euclidean Distance Matrix (EDM ) completion prob-
lem. This is done using a Newton type method on the corresponding unconstrained minimization
problem. Thus we find a good initial estimate for a noisy EDM .

Following the approach in [17], we then exploit the implicit degeneracy in the semidefinite
programming (SDP ) relaxation of SNL . This involves finding the subspace representation of
the faces of the semidefinite cone Sn

+ corresponding to the faces of the Euclidean distance matrix
cone En. We repeatedly find the intersection of faces by finding the intersection of the subspace
representations. We delay the completion of the original EDM till the end, i.e., after we find
the EDM completion from the noisy data, we finalize by rotating the problem using the original
positions of the anchors.

2 Background

The SNL problem has recently attracted a lot of interest; see, for example, [7, 19, 21, 22, 13]. See
also the webpage www.convexoptimization.com/dattorro/sensor network localization.html and the
recent thesis [16]. Nie [19] using sums of squares also includes an error analysis. Noisy distances
are handled in [4] using a combination of regularization and refinement.

3 Notation and Preliminary Results

We let Mm×n denote the vector space of m×n real matrices equipped with the trace inner product,
〈A,B〉 = trace AT B; let Mn := M n×n and let Sn denote the subspace of real symmetric n × n

matrices; Sn
+ and Sn

++ denote the cone of positive semidefinite and positive definite matrices,
respectively; A � B and A ≻ B denote the Löwner partial order, A − B ∈ Sn

+ and A − B ∈ Sn
++ ,

respectively; R(L) and N (L) denote the range space and null space of the linear transformation L,
respectively; we let e denote the vector of ones of appropriate dimension; and we use the Matlab

notation 1:n = {1, . . . , n}. For M ∈ Mn , we let SΣ(M) = 1
2(M + MT ) ∈ Sn denote the sum

symmetrization. Thus, SΣ : Mn → Sn represents the orthogonal projection onto Sn. The adjoint
of SΣ is given by SΣ

∗(S) = S, for all S ∈ Sn. For M ∈ Mmn, we let SΠ(M) = MMT ∈ Sn denote
the product symmetrization.

For a subset S, let cone (S) denotes the convex cone generated by the set S. A subset F ⊆ K
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is a face of the cone K, denoted F � K, if

(

x, y ∈ K,
1

2
(x + y) ∈ F

)

=⇒ (cone {x, y} ⊆ F ) .

If F �K, but is not equal to K, we write F �K. If {0} 6= F �K, then F is a proper face of K. For
S ⊆ K, we let face(S) denote the smallest face of K that contains S. A face F � K is an exposed
face if it is the intersection of K with a hyperplane. The cone K is facially exposed if every face
F � K is exposed.

The cone of positive semidefinite matrices Sn
+ is facially exposed. A face F � Sn

+ can be
characterized using the range or the nullspace of any matrix S in the relative interior of the face.
If S ∈ relint F , and S = UDSUT is the compact spectral decomposition of S with the diagonal
matrix of eigenvalues DS ∈ St

++, then

F = USt
+UT . (3.1)

We let SH ⊆ Sn denote the space of hollow matrices; i.e., the set of symmetric matrices with
zero diagonal. Let D ∈ SH . If there exist points p1, . . . , pn ∈ R

r such that

Dij = ‖pi − pj‖2
2, i, j = 1, . . . , n, (3.2)

then D is called a Euclidean distance matrix, denoted EDM . Note that we work with squared
distances. The smallest value of r such that (3.2) holds is called the embedding dimension of D.
The set of EDM matrices forms a closed convex cone in Sn, denoted En. If we are given a partial
EDM , Dp ∈ En, let G = (N,E, ω) be the corresponding simple graph on the nodes N = 1:n
whose edges E correspond to the known entries of Dp, with (Dp)ij = ω2

ij, for all (i, j) ∈ E.

Definition 3.1. For Y ∈ Sn and α ⊆ 1:n, we let Y [α] denote the corresponding principal submatrix
formed from the rows and columns with indices α. If, in addition, |α| = k and Ȳ ∈ Sk is given,
then we define

Sn(α, Ȳ ) :=
{

Y ∈ Sn : Y [α] = Ȳ
}

, Sn
+(α, Ȳ ) :=

{

Y ∈ Sn
+ : Y [α] = Ȳ

}

.

Definition 3.2. Given D ∈ En and α ⊆ 1:n, let B := K†(D[α]) = PαP T
α , where P is full column

rank. Then the rows of P are called a representation of the points in the subset α.

The subset of matrices in Sn with the top left k × k block fixed is

Sn(1:k, Ȳ ) =

{

Y ∈ Sn : Y =

[

Ȳ ·
· ·

]}

. (3.3)

Similarly, if the principal submatrix D̄ ∈ Ek is given, for index set α ⊆ 1:n, with |α| = k, we define

En(α, D̄) :=
{

D ∈ En : D[α] = D̄
}

. (3.4)

The subset of matrices in En with the top left k × k block fixed is

En(1:k, D̄) =

{

D ∈ En : D =

[

D̄ ·
· ·

]}

. (3.5)
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We are given a subset (including the distances between anchors) of the (squared) distances
from (3.2). This forms a partial EDM ,Dp. We intend to solve the EDM completion problem, i.e.
finding the missing entries of Dp to complete the EDM . This completion problem can be solved
by finding a set of points p1, . . . , pn ∈ R

r satisfying (3.2), where r is the embedding dimension of
the partial EDM ,Dp. Equivalently, we solve the graph realizability problem with dimension r,
i.e. we finding positions in R

r for the vertices of a graph such that the inter-distances of these
positions satisfy the given edge lengths of the graph.

Let Y ∈ Mn be an n×n real matrix and y ∈ R
n a vector. We let diag(Y ) denote the vector in

R
n formed from the diagonal of Y . Then Diag(y) = diag∗(y) denotes the diagonal matrix in Mn

with the vector y along its diagonal; Diag is the adjoint of diag. The operator offDiag can then
be defined as offDiag(Y ) := Y − Diag(diag Y ); let us2vec : Sn → R

n(n−1)/2 where us2vec(D) is
√

2
times the vector in R

n(n−1)/2 formed from the strictly upper triangular part of D taken columnwise;
the adjoint is us2Mat = us2vec∗ and us2Mat(d) ∈ SH takes 1√

2
times the vector d ∈ R

n(n−1)/2 and

forms the matrix in SH . Note that us2Mat = us2vec†, i.e. us2vec us2Mat = I; and us2Mat is an
isometry from R

n(n−1)/2 to SH .
For P T =

[

p1 p2 . . . pn

]

∈ M r×n, where pj, j = 1, . . . , n, are the points used in (3.2), let
Y := PP T , and let D be the corresponding EDM satisfying (3.2). The following linear operators
K and De provide the connection between SDP and EDM .

K(Y ) := De(Y ) − 2Y
:= diag(Y ) eT + e diag(Y )T − 2Y

=
(

pT
i pi + pT

j pj − 2pT
i pj

)n

i,j=1

=
(

‖pi − pj‖2
2

)n

i,j=1

= D.

(3.6)

By abuse of notation, we also allow Dv to act on a vector; that is, Dv(y) := yvT + vyT . Note that

K(Y ) = 2SΣ(diag(Y )eT ) − 2Y = 2(SΣ(·eT ) diag)(Y ) − 2Y. (3.7)

Therefore, the adjoint of K acting on D ∈ Sn is

K∗(D) = 2(SΣ(·eT ) diag)∗(D) − 2D
= 2diag∗(·eT )∗(SΣ)∗(D) − 2D
= 2Diag(·e)(D) − 2D
= 2(Diag(De) − D).

(3.8)

Moreover,
K∗K(Y ) = 2(Diag(K(Y )e) −K(Y ))

= −2(K(Y ) − Diag(v)),
(3.9)

where v = K(Y )e, i.e. we write it this way to emphasize that we simply subtract the row sums
from the diagonal of K(Y ).

The linear operator K is one-one and onto between the centered and hollow subspaces of Sn,
which are defined as

SC := {Y ∈ Sn : Y e = 0} (zero row sums),
SH := {D ∈ Sn : diag(D) = 0} = R(offDiag).

(3.10)

Let J := I − 1
neeT denote the orthogonal projection onto the subspace {e}⊥ and define the linear

operator T (D) := −1
2J offDiag(D)J . Then we have the following relationships.
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Proposition 3.3. ([1]) The linear operator T is the generalized inverse of the linear operator K;
that is, K† = T . Moreover:

R(K) = SH ; N (K) = R(De);
R(K∗) = R(T ) = SC ; N (K∗) = N (T ) = R(Diag);

(3.11)

Sn = SH ⊕R(Diag) = SC ⊕R(De). (3.12)

Theorem 3.4. ([1]) The linear operators T and K are one-to-one and onto mappings between the
cone En ⊂ SH and the face of the semidefinite cone Sn

+ ∩ SC . That is,

T (En) = Sn
+ ∩ SC and K(Sn

+ ∩ SC) = En.

Let Dp ∈ Sn be a partial EDM with embedding dimension r and let H ∈ Sn be the 0–1
matrix corresponding to the known entries of Dp. One can use the substitution D = K(Y ), where
Y ∈ Sn

+ ∩ SC , in the EDM completion problem

Find D ∈ En

s.t. H ◦ D = Dp

to obtain the SDP relaxation
Find Y ∈ Sn

+ ∩ SC

s.t. H ◦ K(Y ) = Dp
.

This relaxation does not restrict the rank of Y and may yield a solution with embedding dimension
that is too large, if rank (Y ) > r. A clique γ ⊆ 1:n in the graph G corresponds to a subset of
sensors for which the distances ωij = ‖pi − pj‖2 are known, for all i, j ∈ γ; equivalently, the
clique corresponds to the principal submatrix Dp[γ] of the partial EDM matrix Dp, where all
the elements of Dp[γ] are known. Moreover, solving SDP problems with rank restrictions is NP-
HARD. However, we work on faces of Sn

+ described by USt
+UT , with t ≤ n. In order to find the

face with the smallest dimension t, we must have the correct knowledge of the matrix U . In this
paper, we obtain information on U using the cliques in the graph of the partial EDM .

Suppose that
V T e = 0 and

[

e V
]

is nonsingular. (3.13)

We now introduce the composite operators

KV (X) := K(V XV T ), (3.14)

and
TV (D) := V †T (D)(V T )† = −1

2V †J offDiag(D)J(V T )†. (3.15)

Lemma 3.5 ([2, 1]). Suppose that V satisfies the definition in (3.13). Then

KV (Sn−1) = SH ,

TV (SH) = Sn−1,

and KV = T †
V .
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From (3.13) and (3.6) we get that

K∗
V (D) = V T K∗(D)V (3.16)

is the adjoint operator of KV . The following corollary summarizes useful relationships between
E , the cone of Euclidean distance matrices of order n, and P , the cone of positive semidefinite
matrices of order n − 1.

Corollary 3.6 ([2, 1]). Suppose that V is defined as in (3.13). Then:

KV (P ) = E ,

TV (E) = P .

4 Clique Reduction

We now present several techniques for reducing an EDM completion problem using cliques in the
graph. This extends the results presented in [8, 9, 17]. In particular, we modify the approach in
[17] for combining two cliques.

The following two technical lemmas are given in [17].

Lemma 4.1 ([17]). Let B ∈ Sn, Bv = 0, v 6= 0, y ∈ R
n and Ȳ := B + Dv(y). If Ȳ � 0, then

y ∈ R(B) + cone {v}.

Lemma 4.2 ([17]). Let Y ∈ Sk
+ and Ū ∈ M k×t with Ū having full column rank. If face {Ȳ } �

(resp.=) ŪSt
+ ŪT , then

faceSn
+(1:k, Ȳ ) � (resp.=)

[

Ū 0
0 In−k

]

Sn−k+t
+

[

Ū 0
0 In−k

]T

. (4.1)

Proof. The result in [17] assumes that ŪT Ū = I. The extension to Ū having full column rank follows
from taking the compact QR-factorization U = QR, where QTQ = I and R is nonsingular.

We can now find an expression for the face defined by a given clique in the graph. Without loss
of generality, we can assume that α = 1:k ⊆ 1:n, |α| = k.

Theorem 4.3 ([17]). Let D ∈ En, with embedding dimension r. Let α := 1:k, D̄ := D[α] ∈ Ek with
embedding dimension t, and B := K†(D̄) = ŪBSŪT

B , where ŪB ∈ M k×t, ŪB having full column

rank, and S ∈ St
++. Furthermore, let UB :=

[

ŪB
1√
k
e
]

∈ M k×(t+1), U :=

[

UB 0
0 In−k

]

, and let
[

V UT e
‖UT e‖

]

∈ M n−k+t+1 be orthogonal. Then

face K† (

En(1:k, D̄)
)

=
(

USn−k+t+1
+ UT

)

∩ SC = (UV )Sn−k+t
+ (UV )T . (4.2)

Proof. As in Lemma 4.2, the result in [17] assumes that ŪT Ū = I. The extension follows as in the
proof of the Lemma.
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In Theorem 4.3 we can make various choices for S and thus change the choice of ŪB . An
interesting choice for ŪB allows for a representation for the points in the clique.

Corollary 4.4. Let D, r, α, D̄, t be defined as in Theorem 4.3. Let B := K†(D̄) = PBP T
B , where

PB ∈ M k×t is full column rank. Furthermore, let Q be orthogonal, UB :=
[

PBQ 1√
k
e
]

∈

M k×(t+1), U :=

[

UB 0
0 In−k

]

, and let
[

V UT e
‖UT e‖

]

∈ M n−k+t+1 be orthogonal. Then (4.2) holds,

and the rows of PBQ provide a relative representation of the points in the clique α, i.e.

K((PBQ)(PBQ)T ) = D[α].

Proof. We just need to use S = It = QQT in the expression for B in the hypothesis of Theorem
4.3; e.g. we could use the compact spectral decomposition B = UDUT and set PB = UD1/2. Then
K((PBQ)(PBQ)T ) = K(PB(P T

B ) = K(B) = D[α].

The following result provides expressions for the face for the union of two cliques.

Theorem 4.5 ([17]). Let D ∈ En with embedding dimension r and define the sets of positive
integers

α1 := 1:(k̄1 + k̄2), α2 := (k̄1 + 1):(k̄1 + k̄2 + k̄3) ⊆ 1:n,

k1 := |α1| = k̄1 + k̄2, k2 := |α2| = k̄2 + k̄3,

k := k̄1 + k̄2 + k̄3.

(4.3)

For i = 1, 2, let D̄i := D[αi] ∈ Eki with embedding dimension ti, and Bi := K†(D̄i) = ŪiSiŪ
T
i ,

where Ūi ∈ M ki×ti , ŪT
i Ūi = Iti, Si ∈ Sti

++, and Ui :=
[

Ūi
1√
ki

e
]

∈ M ki×(ti+1). Let t and

Ū ∈ M k×(t+1) satisfy

R(Ū) = R
([

U1 0
0 Ik̄3

])

∩R
([

Ik̄1
0

0 U2

])

, with ŪT Ū = It+1. (4.4)

Let U :=

[

Ū 0
0 In−k

]

∈ M n×(n−k+t+1) and
[

V UT e
‖UT e‖

]

∈ M n−k+t+1 be orthogonal. Then

2
⋂

i=1

face K† (

En(αi, D̄i)
)

=
(

USn−k+t+1
+ UT

)

∩ SC = (UV )Sn−k+t
+ (UV )T . (4.5)

4.1 Nonsingular Reduction with Intersection Embedding Dimension r

We need the following technical result on the intersection of two structured subspaces.

Lemma 4.6 ([17]). Let

U1 :=

[

U ′
1

U ′′
1

]

, U2 :=

[

U ′′
2

U ′
2

]

, Û1 :=





U ′
1 0

U ′′
1 0
0 I



 , Û2 :=





I 0
0 U ′′

2

0 U ′
2
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be appropriately blocked with U ′′
1 , U ′′

2 ∈ M k×l full column rank and R(U ′′
1 ) = R(U ′′

2 ). Furthermore,
let

Ū1 :=





U ′
1

U ′′
1

U ′
2(U

′′
2 )†U ′′

1



 , Ū2 :=





U ′
1(U

′′
1 )†U ′′

2

U ′′
2

U ′
2



 . (4.6)

Then Ū1 and Ū2 are full column rank and satisfy

R(Û1) ∩R(Û2) = R
(

Ū1

)

= R
(

Ū2

)

.

Moreover, if el ∈ R
l is the lth standard unit vector, and Uiel = αie, for some αi 6= 0, for i = 1, 2,

then Ūiel = αie, for i = 1, 2.

The following key result shows that we can complete the distances in the union of two cliques
provided that their intersection has embedding dimension equal to r.

Theorem 4.7 ([17]). Let the hypotheses of Theorem 4.5 hold. Let

β ⊆ α1 ∩ α2, D̄ := D[β], B := K†(D̄), Ūβ := Ū [β, :],

where Ū ∈ M k×(t+1) satisfies equation (4.4). Let
[

V̄ ŪT e
‖ŪT e‖

]

∈ M t+1 be orthogonal. Let

Z := (JŪβ V̄ )†B((JŪβ V̄ )†)T . (4.7)

If the embedding dimension for D̄ is r, then t = r, Z ∈ Sr
++ is the unique solution of the equation

(JŪβ V̄ )Z(JŪβ V̄ )T = B, (4.8)

and
D[α1 ∪ α2] = K

(

(Ū V̄ )Z(Ū V̄ )T
)

. (4.9)

The following result shows that if we know the minimal face of Sn
+ containing K†(D), and we

know a small submatrix of D, then we can compute a set of points in R
r that generate D by solving

a small equation.

Corollary 4.8 ([17]). Let D ∈ En with embedding dimension r, and let β ⊆ 1:n. Let U ∈ M n×(r+1)

satisfy
face K† (D) =

(

USr+1
+ UT

)

∩ SC ,

let Uβ := U [β, :], and let
[

V UT e
‖UT e‖

]

∈ M r+1 be orthogonal. If D[β] has embedding dimension r,

then
(JUβV )Z(JUβV )T = K†(D[β])

has a unique solution Z ∈ Sr
++, and D = K(PP T ), where P := UV Z1/2 ∈ R

n×r.

We now show that we can combine two cliques using the relative point representations of each.
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Theorem 4.9. Let the hypotheses of Theorem 4.5 hold, and following Corollary 4.4, for i = 1, 2,
let Bi = PiP

T
i be full column rank factorizations, so that the rows of Pi provide relative positions

for the points in the cliques αi; and partition

P1 :=

[

P ′
1

P ′′
1

]

, P2 :=

[

P ′′
2

P ′
2

]

, P̂1 :=





P ′
1 0

P ′′
1 0
0 I



 , P̂2 :=





I 0
0 P ′′

2

0 P ′
2



 .

Furthermore, let

P̄1 :=





P ′
1

P ′′
1

P ′
2(P

′′
2 )†P ′′

1



 , P̄2 :=





P ′
1(P

′′
1 )†P ′′

2

P ′′
2

P ′
2



 . (4.10)

If the embedding dimension of D̄ is r, then: t = r; Q1 := (P ′′
1 )†P ′′

2 and Q2 := (P ′′
2 )†P ′′

1 are both
orthogonal; P̄1 and P̄2 are full column rank and their rows provide relative representations for the
points in the union of the cliques αi, i = 1, 2, i.e.

D[α1 ∪ α2] = K(P̄iP̄
T
i ), i = 1, 2. (4.11)

Proof. From Lemma 4.6, we have that R(P̄1) = R(P̄2). Therefore, R(P ′′
1 ) = R(P ′′

2 ). This means
that we can apply the projections on these ranges and get that

P ′′
2 (P ′′

2 )†P ′′
1 = P ′′

1 ; P ′′
1 (P ′′

1 )†P ′′
2 = P ′′

2 .

Therefore, P̄1 is obtained using Q1 = (P ′′
1 )†P ′′

2 and the multiplication P1Q1. Similarly, P̄2 is
obtained using Q2 = (P ′′

2 )†P ′′
1 and the multiplication P2Q2.

Since
Pie = 0, D̄ = K(P ′′

i (P ′′
i )T ), i = 1, 2,

We get that both Qi, i = 1, 2 are orthogonal.

Remark 4.10. Note that there can be many ways to find the full column rank factorizations Bi =
PiP

T
i in Theorem 4.9, e.g.: the compact spectral decomposition; the partial Cholesky factorization;

or the compact QR factorization.

5 Nearest EDM

Suppose that we have a clique α corresponding to the EDM D̄. Then we can find the smallest
face containing En(α, D̄) using B = K†(D̄); see [17]. We now consider the case when we are given
a possibly noisy EDM and we would like to find a best approximation, or the nearest EDM , i.e.
we want to find a best approximation of B = K†(D̄) with the correct rank r. For this purpose, we
let D ∈ En with embedding dimension r, and suppose that Dǫ = D + Nǫ ∈ SH ∩ N , where the
off diagonal elements of the rows of the error matrix Nǫ ∈ SH are independently and identically
distributed with zero mean and the same variance. We now look for the best approximation to
the given noisy distance matrix Dǫ(= D̄). For example, we could do this in two steps: we first
find the least squares solution Bǫ = K†(Dǫ), which may not be positive semidefinite and may have
the wrong rank; we then use the truncated spectral decomposition Bǫ = K†(Dǫ) ≈ UǫΣǫU

T
ǫ , where

UT
ǫ Uǫ = Ir, Σǫ ∈ Sr

++ . We could then use the approximation K(UǫΣǫU
T
ǫ ) ≈ Dǫ, i.e.

Dǫ ≈ K(UǫΣǫU
T
ǫ ), where Bǫ = K†(Dǫ) ≈ UǫΣǫU

T
ǫ , UT

ǫ Uǫ = Ir, and Σǫ ∈ Sr
++ . (5.1)
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Alternatively, we could solve the SDP

min ‖K(X) − Dǫ‖
s.t. rank (X) = r

Xe = 0
X � 0.

We could introduce V as in Corollary 3.6, eliminate the constraints. We get the following.

Problem 5.0.1. The unconstrained nearest EDM problem with embedding dimension r is

U∗
r ∈ argmin 1

2

∥

∥KV (UUT ) − Dǫ

∥

∥

2

F
s.t. U ∈ M (n−1)r.

(5.2)

The nearest EDM is D∗ = KV (U∗
r (U∗

r )T ).

5.1 Noise model

Let D ∈ En with embedding dimension r and suppose that Dǫ = D + Nǫ. We assume that there is
a multiplicative error on the measured distances,

d̂ij = ‖pi − pj‖2(1 + σǫij),

where σ ∈ [0, 1] is the noise factor, and ǫij are independently and identically distributed random
variables coming from the normal distribution with mean zero and variance one. Then

Dǫ =
(

d̂2
ij

)

=
(

‖pi − pj‖2
2(1 + σǫij)

2
)

,

and D =
(

‖pi − pj‖2
2

)

, so that

Nǫ = Dǫ − D =
(

‖pi − pj‖2
2(2σǫij + σ2ǫ2

ij)
)

.

We used the multiplicative noise model noise model for our tests on noisy problems:

dij = ‖pi − pj‖(1 + σεij), for all ij ∈ E,

where σ ≥ 0 represents the noise factor and, for all ij ∈ E, the random variable εij is normally
distributed with zero mean and standard deviation one. That is, {εij}ij∈E are uncorrelated, have
zero mean and the same variance. Here we are modelling the situation that the amount of additive
noise corrupting a distance measurement between two sensors is directly proportional to the distance
between the sensors.

This multiplicative noise model is the one most commonly considered in sensor network local-
ization; see, for example, [6],[5],[23],[24],[20],[14, 15]. For large values of σ, it is possible that 1+σε

is negative. Therefore, the alternate multiplicative noise model

dij = ‖pi − pj‖|1 + σεij |, for all ij ∈ E,

is sometimes used. Note, however, that in both multiplicative noise models, we have

d2
ij = ‖pi − pj‖2(1 + σεij)

2, for all ij ∈ E. (5.3)
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The associated least squares problem for determining the maximum likelihood positions for
p1, . . . , pn ∈ R

r is

minimize
∑

ij∈E

v2
ij

subject to ‖pi − pj‖2(1 + vij)
2 = d2

ij, for all ij ∈ E
∑n

i=1 pi = 0
p1, . . . , pn ∈ R

r.

Let H be the 0–1 adjacency matrix associated with the n-by-n partial Euclidean distance matrix
D := (d2

ij). Letting V := (vij) ∈ R
n×n and VH := H ◦ V , we can rewrite this problem as

minimize ‖VH‖2
F

subject to K(PP T ) ◦ (H + 2VH + VH ◦ VH) = H ◦ D

P T e = 0
P ∈ R

n×r.

Removing the rank constraint, we obtain the (nonlinear) semidefinite relaxation

minimize ‖VH‖2
F

subject to K(Y ) ◦ (H + 2VH + VH ◦ VH) = H ◦ D

Y ∈ Sn
+ ∩ SC .

(5.4)

We compare the following two approaches. Let D be an n-by-n Euclidean distance matrix
corrupted by noise (hence D may not even be a true Euclidean distance matrix since K†(D) may
have negative eigenvalues).

1. We compute the eigenvalue decomposition K†(D) = UΛUT , and let P := UrΛ
1/2
r ∈ R

n×r.
This matrix P minimizes

∥

∥PP T −K†(D)
∥

∥

F
over all P ∈ R

n×r, and satisfies

∥

∥

∥
PP T −K†(D)

∥

∥

∥

F
=

√

√

√

√

n
∑

i=r+1

λ2
i (K†(D)).

Since we assume that diag(D) = 0, we have that KK†(D) = D. Therefore,

∥

∥K(PP T ) − D
∥

∥

F
=

∥

∥

∥
K(PP T −K†(D))

∥

∥

∥

F

≤ ‖K‖F ·
∥

∥

∥
PP T −K†(D)

∥

∥

∥

F

= 2
√

n

√

√

√

√

n
∑

i=r+1

λ2
i (K†(D)).

2. We can compute better Euclidean distance matrix approximations of D by increasing the rank

of the approximation PP T of K†(D). That is, we let P := UkΛ
1/2
k ∈ R

n×k, for some k > r;
see, for example, [2, Lemma 2]. Our facial reduction technique lends well to this approach.
There is no problem for us to compute the intersection of different faces that occupy different
dimensions.
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6 Clique Reductions Algorithm

In [17], we presented an algorithm for exact SNL given exact data. We now outline this algorithm
and extend to include new cases. The algorithm in [17] considered/handled four different cases:

1. Rigid clique intersection:

2. Non-rigid clique intersection:

3. Rigid node absorption:

4. Non-rigid node absorption:

Each of these cases made use of the essential fact that we knew the embedding dimension is r and
that the operation resulted in a unique face of dimension r from the intersection of two faces. This
resulted in a very successful algorithm. However, the algorithm could fail when the graph is very
sparse. This is due to the fact that the intersection process did not result in a unique face of proper
dimension.

In the case that we end up with more than one clique after applying the above four techniques,
we now extend it to allow the intersection of faces to have dimension > r. For example, the
singular intersections with the application of lower bounds may not yield a unique solution, so we
let the solution be in a higher dimension. This still reduces the dimension of the current face of
the problem.

7 Generating/Testing Instances

The SNL is closely related to the molecular distance geometry problem; see, for example, [12, 11,
10, 3]. In particular, the Extended Geometric Build-up Algorithm, (EGBA) is presented in [12].
This algorithm, for r = 3 starts with a clique made up of 4 atoms, and then builds up the size
of the clique by adding one atom at a time. They include a discussion on how to avoid the build
up of round-off error. See [18] for information on generating instances for the molecular distance
geometry problem.
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Sn(1:k, Ȳ ), principal submatrix top-left block, 3
Sn(1:k, Ȳ ), top-left block fixed, 3
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T = K†, 4
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n × n matrices, Mn , 4
EDM completion problem, 4
EDM linear operator, K, 4

clique, 5, 12
cone generated by C, cone (C), 2
cone of EDM , Ek, 3
cone of positive definite matrices, Sk

++ , 2
cone of positive semidefinite matrices, Sk

+ , 2

diagonal matrix from a vector, Diag v, 4
diagonal of a matrix, diag M , 4

embedding dimension, 3
embedding dimension (fixed), r, 4
Euclidean distance matrix, EDM , 3
exposed face, 3
Extended Geometric Build-up Algorithm, EGBA,
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face, F � K, 3
facially exposed cone, 3

graph of the EDM , G = (N,E, ω), 3
graph realizability, 4

hollow space, SH , 3

Löwner partial order, A � B, 2

matrix of points in space, P , 4
maximum log-likelihood, 11

nearest EDM , 9
noise factor, 10
noise model

multiplicative, 10
nonsingular reduction, 7
null space of L, N (L), 2

offDiag operator of a matrix, offDiag M , 4

principal submatrix of EDM , En(α, D̄), 3
principal submatrix positive semidefinite set, Sn

+(α, Ȳ ),
3

principal submatrix set, Sn(α, Ȳ ), 3
principal submatrix top-left block, En(1:k, D̄), 3
principal submatrix top-left block, Sn(1:k, Ȳ ), 3
principal submatrix, Y [α], 3
product symmetrization of M , SΠ(M), 2
proper face, 3

range space of L, R(L), 2
relative interior, relint ·, 3
representation of a clique, 3

sum symmetrization of M , SΣ(M), 2
symmetric k × k matrices, Sk , 2

top-left block fixed, En(1:k, D̄), 3
top-left block fixed, Sn(1:k, Ȳ ), 3
trace inner product, 〈A,B〉 = trace AT B, 2

vector linear operator, Dv, 4
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