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Abstract

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relax-
ations of the quadratic assignment problem, QAP. We use a modified restricted contractive
splitting method, rPRSM, approach. Our strengthened bounds exploit new subproblems and
new dual multiplier estimates to improve on the bounds and convergence results in the literature.

Key Words: quadratic assignment problem, semidefinite relaxation, doubly nonnegative re-
laxation, facial reduction, Peaceman-Rachford splitting method.

AMS Subject Classification: 90C22, 90C25, 90C27, 90C59.

1 Introduction

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of
the quadratic assignment problem,QAP. HereDNN refers to the semidefinite programming, SDP,
relaxation with additional nonnegativity constraints on all the elements of the matrix variable Y .
We use a modified restricted contractive Peaceman-Rachford splitting method, rPRSM approach.
We obtain strengthened bounds from improved lower and upper bounding techniques, and in fact,
we solve many of these NP -hard problems to (provable) optimality, thus illustrating both the
strength of the DNN relaxation as well as our new bounding techniques. In addition, we get
improved rates of convergence from strengthened subproblems and dual multiplier estimates. Our
results significantly improve on the recent results in [30].
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We include a novel derivation of facial reduction, FR, and the gangster constraints, in order
to show the strong connections between them, and to illustrate the many redundant constraints
that are created. We then take advantage of these redundant constraints in the subproblems in our
algorithm and in deriving explicit values for some of the dual variables.

The quadratic assignment problem, QAP , is one of the fundamental combinatorial optimization
problems in the field of operations research, and includes many important applications. It is
arguably one of the hardest of the NP -hard problems with problems of size n = 30 still being
a challenge, and where proving optimality is particularly difficult; for discussions see e.g., [3, 22].
The QAPmodels real-life problems such as facility location. Suppose that we are given a set of
n facilities and a set of n locations. For each pair of locations (s, t) a distance Bst is specified,
and for each pair of facilities (i, j) a weight or flow Ai,j is specified, e.g., the amount of supplies
transported between the two facilities. In addition, there is a location (building) cost Cis for
assigning a facility i to a specific location s. The problem is to assign each facility to a distinct
location with the goal of minimizing the sum over all facility-location pairs of the distances between
locations multiplied by the corresponding flows between facilities, along with the sum of the location
costs. Other applications include: scheduling, production, computer manufacture (VLSI design),
chemistry (molecular conformation), communication, and other fields, see e.g., [16, 19, 24, 26, 35].
Moreover, many classical combinatorial optimization problems, including the travelling salesman
problem, maximum clique problem, and graph partitioning problem, can all be expressed as a
QAP. For more information see e.g., [5, 9, 11,31,32].

That the QAP (1.1) is NP -hard is given in [18]. The cardinality of the feasible set of per-
mutation matrices Π is n! and it is known that problems typically have many local minima. Up
to now, there are three main classes of methods for solving QAP. The first type is heuristic al-
gorithms, such as genetic algorithms, e.g., [13], ant systems [17] and meta-heuristic algorithms,
e.g., [4]. These methods usually have short running times and often give optimal or near-optimal
solutions. However the solutions from heuristic algorithms are not reliable and the performance
can vary depending on the type of problem. The second type is branch-and-bound algorithms. Al-
though this approach gives exact solutions, it can be very time consuming and in addition requires
strong bounding techniques. For example, obtaining an exact solution using the branch-and-bound
method for n = 30 is still considered to be computationally challenging. The third type is based
on semidefinite programming, SDP. Semidefinite programming is proven to have successful imple-
mentations and provides tight relaxations, see [2,39]. There are many well-developed SDP solvers
based on e.g., interior point methods, e.g., [1, 29, 38]. However, the running time of the interior
point methods do not scale well, and the SDP relaxations become very large for the QAP. In
addition, adding additional polyhedral constraints such as interval [0, 1] constraints, can result in
having O(2n2) constraints, a prohibitive number for interior point methods.

Recently, Oliveira at el., [30] use an alternating direction method of multipliers, ADMM , to
solve a facially reduced, FR, SDP relaxation. The FR allows for a natural splitting of variables
between the SDP cone and polyhedral constraints. The algorithm provides competitive lower and
upper bounds for QAP. In this paper, we modify and improve on this approach. (Our work also
follows and relates to that in [27] that concentrates on the min-cut problem. In addition, we
note the work in [25] that also uses FR on QAPproblems, but concentrates on exploiting group
symmetry structure.)
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1.1 Background

It is known e.g., [15], that many of the QAPmodels, such as the facility location problem, can be
formulated using the trace formulation:

p∗QAP := min
X∈Π
⟨AXB − 2C,X⟩, (1.1)

where A,B ∈ Sn are real symmetric n×n matrices, C is a real n×n matrix, ⟨·, ·⟩ denotes the trace
inner product, i.e., ⟨Y,X⟩ = tr(Y XT ), and Π denotes the set of n× n permutation matrices.

Remark 1.1. We note that the location problem is symmetric in facilities and locations, i.e., the
optimal value is independent of which of A,B is chosen for distance data and which for flow data.
However, the facility location interpretation does not make sense if there are zero distances. In
particular, the data is troublesome if both matrices A,B have zeros in off-diagonal positions, as is
the case for many of the instances in QAPLIB [8], the data source that we use.

We use the following notation from [30]. We denote the matrix lifting

Y :=

(
1
x

)
(1 xT ) ∈ Sn

2+1, x = vec(X) ∈ Rn2
, (1.2)

where vec(X) is the vectorization of the matrix X ∈ Rn×n, columnwise. Then Y ∈ Sn
2+1

+ , the
(convex) cone of real symmetric positive semidefinite matrices of order n2 + 1, and the rank,
rank(Y ) = 1. Indexing the rows and columns of Y from 0 to n2, we can express Y in (1.2) using
a block representation as follows:

Y =

[
Y00 ȳT

ȳ Y

]
, ȳ =


Y(10)
Y(20)
...

Y(n0)

 , and Y = xxT =


Y

(11)
Y

(12)
· · · Y

(1n)

Y
(21)

Y
(22)

· · · Y
(2n)

...
. . .

. . .
...

Y
(n1)

. . .
. . . Y

(nn)

 , (1.3)

where

Y
(ij)

= X:iX
T
:j ∈ Rn×n, ∀i, j = 1, . . . , n, Y(j0) ∈ Rn, ∀j = 1, . . . , n, and x ∈ Rn2

.

Let

LQ =

[
0 −(vec(C)T )

− vec(C) B ⊗A

]
,

where ⊗ denotes the Kronecker product. We further scale LQ below in (2.8) and (2.9), page 12.
With the above notation and matrix lifting, we can reformulate the QAP (1.1) equivalently as

p∗QAP = min ⟨AXB − 2C,X⟩ = ⟨LQ, Y ⟩

s.t. Y :=

(
1
x

)(
1
x

)T

∈ Sn
2+1

+

X = Mat(x) ∈ Π,

(1.4)

where Mat = vec∗, the adjoint transformation.
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In [39], Zhao et al. derive an SDP relaxation as the dual of the Lagrangian relaxation of a
quadratically constrained version of (1.4), i.e., the constraint that X ∈ Π is replaced by quadratic
constraints, e.g.,

∥Xe− e∥2 = ∥XT e− e∥2 = 0, X ◦X = X, XTX = XXT = I,

where ◦ is the Hadamard product and e is the vector of all ones. After applying the so-called facial
reduction technique to the SDP relaxation, the variable Y is expressed as Y = V̂ RV̂ T , for some full
column rank matrix V̂ ∈ R(n2+1)×((n−1)2+1) defined below in Section 2.1.2. The SDP relaxation
then takes on the smaller, greatly simplified form after many of the constraints are shown to be
redundant:

(SDP)

min
R

⟨V̂ TLQV̂ , R⟩

s.t. GJ̄(V̂ RV̂ T ) = u0

R ∈ S(n−1)2+1
+ .

(1.5)

The linear transformation GJ̄(·) is called the gangster operator as it fixes certain elements of the
matrix, and u0 is the first unit vector. The Slater constraint qualification, strict feasibility, holds
for both (1.5) and its dual, see [39, Lemma 5.1, Lemma 5.2]. We refer to [39] for details on using
the dual of the Lagrangian dual for the derivation of this facially reduced SDP .

We now provide the details for V̂ , the gangster operator GJ̄ , and the gangster index set, J̄ .

1. Let Ŷ be the barycenter of the set of feasible lifted Y (1.3) of rank one for the SDP relaxation
of (1.4). Let the matrix V̂ ∈ R(n2+1)×((n−1)2+1) have orthonormal columns that span the range

of Ŷ .1 Every feasible Y of the SDP relaxation is contained in the minimal face, F of Sn
2+1

+ :

F = V̂ S(n−1)2+1
+ V̂ T � Sn

2+1
+ ;

Y ∈ F =⇒ range(Y ) ⊆ range(V̂ ), Y ∈ relint(F) =⇒ range(Y ) = range(V̂ ).

2. The gangster operator (transformation) is the linear map GJ̄ : Sn2+1 → R|J̄ | defined by

GJ̄(Y ) = YJ̄ ∈ R|J̄ |, (1.6)

where J̄ is a subset of (upper triangular) matrix indices of Y .

Remark 1.2. By abuse of notation, we also consider the gangster operator from Sn2+1 to
Sn2+1, depending on the context:

GJ̄ : Sn
2+1 → Sn

2+1, [GJ̄(Y )]ij =

{
Yij if (i, j) ∈ J̄ or (j, i) ∈ J̄ ,
0 otherwise.

(1.7)

Both formulations of GJ̄ are used for defining a constraint which “shoots holes” in the matrix
Y with entries indexed using J̄ . Although the latter formulation is more explicit, it is not
surjective and is not used in the implementations.

1There are several ways of constructing such a matrix V̂ . One way is presented in Proposition 2.6, below.
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3. The gangster index set J̄ is defined to be the union of the top left index (00) with the set of

indices J with i < j in the submatrix Y ∈ Sn2
corresponding to:

(a) the off-diagonal elements in the n diagonal blocks in Y in (1.3) ;

(b) the diagonal elements in the off-diagonal blocks in Y in (1.3) .
(1.8)

Many of the constraints that arise from the index set J are redundant. We could remove

the indices in the submatrix Y ∈ Sn2
corresponding to all the diagonal positions of the last

column of off-diagonal blocks, and the additional (n−2, n−1) block. In our implementations
we take advantage of redundant constraints when used as constraints in the subproblems and
in pre-specifying dual variables. We denote the redundant gangster constraints, JR.

4. The notation u0 in (1.5) denotes a vector in {0, 1}|J̄ | with 1 only in the first coordinate,
i.e., the 0-th unit vector. Therefore (1.5) forces all the values of V̂ RV̂ T corresponding to the
indices in J̄ to be zero. It also implies that the first entry of GJ̄(V̂ RV̂ T ) is equal to 1, which
reflects the fact that Y00 = 1 from (1.3). Using the alternative definition of GJ̄ in (1.7), the
equivalent constraint is GJ̄(Y ) = E00 where E00 ∈ Sn2+1 is the (0, 1)-matrix with 1 only in
the (00)-position. Therefore (1.5) forces all the values of V̂ RV̂ T corresponding to the indices
in J̄ to be zero, except for the 00 element of V̂ RV̂ T .

Since interior point solvers do not scale well, especially when nonnegative or interval cuts are
added to the SDP relaxation in (1.5), Oliveira et al. [30] propose using an ADMM approach.
They introduce interval cuts (constraints) and obtain a doubly nonnegative, DNN , model. The
ADMM approach is further motivated by the natural splitting of variables that arises with facial
reduction:

(DNN)

min
R,Y

⟨LQ, Y ⟩

s.t. GJ̄(Y ) = u0
Y = V̂ RV̂ T

R ≽ 0
0 ≤ Y ≤ 1.

(1.9)

The output of ADMM is used to compute lower and upper bounds to the original QAP (1.1). For
most instances in QAPLIB2, [30] obtain competitive lower and upper bounds for the QAPusing
ADMM. And in several instances, the relaxation and bounds provably find an optimal permutation
matrix.

1.1.1 Further Notation

We let Rn denote the usual Euclidean space of dimension n, and let Sn denote the space of real
symmetric matrices of order n. We use Sn+ (Sn++, resp.) to denote the cone of n-by-n positive
semidefinite (definite) matrices. We write X ≽ 0 if X ∈ Sn+, and X ≻ 0 if X ∈ Sn++. Given
X ∈ Rn×n, we use tr(X) to denote the trace of X. We use ◦ to denote the Hadamard (elementwise)
product. Given a matrix A ∈ Rm×n, we use range(A) and null(A) to denote the range of A and
the null space of A, respectively.

For n ≥ 1, en denotes the vector of all ones of dimension n; En denotes the n× n matrix of all
ones. We omit the subscripts of en and En when the dimension is clear. And, recall that u0 is the
first unit vector.

2http://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/
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1.2 Contributions and Outline

We begin in Section 2 with the modelling and theory. We first give a new joint derivation of the
so-called gangster constraints and the facial reduction procedure. Our proposed model for solving
(1.9) uses redundant constraints on the variables R, Y . We include optimality conditions and find
explicit values for some of the dual variables by exploiting the redundant constraints.

In Section 3 we derive the modified restricted contractive Peaceman-Rachford splitting method,
rPRSM for solving the strengthened model. We use redundant constraints to strengthened the
subproblems and to strengthen the lower bounds. We add a randomized perturbation approach to
improve upper bounds. The solution run times are improved by the new dual variable updates as
well as with new termination conditions.

For our numerical results in Section 4 we use data from QAPLIB [8]. We show significant
improvements over the previous results in [30]. Our concluding remarks are in Section 5.

2 The DNNRelaxation and Optimality

In this section we present details of our doubly nonnegative, DNN , relaxation of the QAP. This is
related to the SDP relaxation derived in [39] and theDNN relaxation in [30]. Our approach is novel
in that we see the gangster constraints and facial reduction arise naturally from the relaxation of
the row and column sum constraints for X ∈ Π. The discussion allows us to see the many redundant
constraints that can then be used to strengthen our subproblems within our rPRSM algorithm.

2.1 Novel Derivation of DNNRelaxation

The derivation of the SDP relaxation in [39] starts with the Lagrangian relaxation (dual) and forms
the dual of this dual. Then redundant constraints are deleted. We now look at a direct approach
for finding this SDP relaxation.

2.1.1 Gangster Constraints

Let De,Z be the matrix sets of: row and column sums equal one, and binary, respectively, i.e.,

De := {X ∈ Rn×n : Xe = e,XT e = e},
Z := {X ∈ Rn×n : Xij ∈ {0, 1}, ∀i, j ∈ {1, ...n}}.

We let D = De ∩ {X ≥ 0} denote the doubly stochastic matrices. The classical Birkhoff-von
Neumann Theorem [6, 37] states that the permutation matrices are the extreme points of D. This
leads to the well-known conclusion that the set of n-by-n permutation matrices, Π, is equal to the
intersection:

Π = De ∩ Z. (2.1)

It is of interest that the representation in (2.1) leads to both the gangster constraints and facial

reduction for the SDP relaxation on the lifted variable Y in (1.3), and in particular on Y . Not only
that, but the row-sum constraints Xe = e, along with the 0-1 constraint, expressed as X ◦X = X,

give rise to the constraint that the diagonal elements of the off-diagonal blocks of Y are all zero;
while the column-sum constraint XT e = e along with the 0-1 constraints give rise to the constraint

that the off-diagonal elements of the diagonal blocks of Y are all zero. The following well-known
Lemma 2.1 about complementary slackness (Hadamard orthogonality) is useful.
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Lemma 2.1. Let A,B ∈ Sn. If A and B have nonnegative entries, then

⟨A,B⟩ = 0 ⇐⇒ A ◦B = 0.

The following Lemma 2.2 and Corollary 2.3 together show how the representation of Π in (2.1)
gives rise to the gangster constraint on the lifted matrix Y in (1.2). We first find (Hadamard
product) exposing vectors in Lemma 2.2 for lifted zero-one vectors.

Lemma 2.2 (exposing vectors). Let X ∈ Z and let x := vec(X). Then the following hold:

1. Xen = en =⇒ [(ene
T
n ⊗ In)− In2 ] ◦ xxT = 0;

2. XT en = en =⇒ [(In ⊗ ene
T
n )− In2 ] ◦ xxT = 0.

Proof. 1. Let X ∈ Z and Xen = en. We note that X ∈ Z ⇐⇒ x ◦ x− x = 0 and

Xen = en ⇐⇒ InXen = en ⇐⇒ (eTn ⊗ In)x = en.

We begin by multiplying both sides by (eTn ⊗ In)
T = en ⊗ In:

(eTn ⊗ In)x = en
=⇒ (en ⊗ In)(e

T
n ⊗ In)x = (en ⊗ In)en = en2

=⇒ [(en ⊗ In)(e
T
n ⊗ In)− In2 ]x = en2 − x

=⇒ [(ene
T
n ⊗ In)− In2 ]xxT = en2xT − xxT

=⇒ tr
(
[(ene

T
n ⊗ In)− In2 ] xxT

)
= tr(en2xT − xxT ).

Since x ◦ x = x, we have tr(en2xT − xxT ) = 0. Therefore, it holds that

tr
(
[(ene

T
n ⊗ In)− In2 ] xxT

)
= 0.

We note that [(ene
T
n ⊗ In) − In2 ] and xxT are both symmetric and nonnegative. Hence, by

Lemma 2.1, we get
[(ene

T
n ⊗ In)− In2 ] ◦ xxT = 0.

2. The proof for Item 2 is similar.

Corollary 2.3. Let X ∈ Π, and let Y satisfy (1.2). Let GJ̄ , J̄ be defined in (1.6) and (1.8). Then
the following hold:

1. GJ̄(Y ) = u0;

2. 0 ≤ Y ≤ 1, Y ≽ 0, rank(Y ) = 1.

Proof. Note that

• the matrix (ene
T
n ⊗ In)− In2 has nonzero entries on the diagonal elements of the off-diagonal

blocks;

• the matrix (In ⊗ ene
T
n )− In2 has nonzero entries on the off-diagonal elements of the diagonal

blocks.
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Therefore, Lemma 2.2, the definition of the gangster indices J̄ in (1.8), and the structure of Y in
(1.2), jointly give GJ̄(Y ) = u0, i.e., Item 1 holds. Item 2 follows from (2.1) and the structure of Y
in (1.2).

The following Proposition 2.4 shows that the current gangster index set is the largest possible,
in the sense that adding an index implies that at least one element of X is determined.

Proposition 2.4. Suppose that for all X ∈ Π, and Y formed from (1.2), If there exists an index
(s, t) such that Yst = Yts = 0, but {(s, t) ∪ (t, s)} /∈ J̄ , i.e., (s, t) is added to the gangster set. Then
at least one element of X can be determined. Therefore, the gangster set cannot be increased.

Proof. 1. Suppose that s = (ij) = t, i, j ≥ 1, and so we have Y(ij)(ij) = 0. But Y = xxT , by
(1.2), implies that Xij = 0; and this does not hold for all X ∈ Π, a contradiction, i.e., we
cannot add a diagonal element of Y to the gangster set.

2. If s ̸= t, we have Yst = 0. Since X ∈ Π, we infer that Yss or Ytt must be zero. Note that the
condition s ̸= t and {(s, t) ∪ (t, s)} /∈ J̄ imply that there are two elements in X, which are
not in the same row and column, and the product of them is zero. This clearly does not hold
for all X ∈ Π, a contradiction, i.e., as above we cannot add this element of Y to the gangster
set.

2.1.2 Facially Reduced DNNRelaxations

We have shown that the representation Π = De ∩ Z gives rise to the gangster constraint and
the polyhedral constraint on the variable Y given in (1.9). As for the derivation of the gangster
constraint, we now see that the facial reduction constraint Y = V̂ RV̂ T in (1.9), arises from
consideration of an exposing vector. We define

H :=

[
eTn ⊗ In
In ⊗ eTn

]
∈ R2n×n2

, (2.2)

and

K :=

[
−eTn2

HT

] [
−en2 H

]
=

[
n2 −2eTn2

−2en2 HTH

]
∈ Sn

2+1. (2.3)

We note that H arises from the linear equality constraints Xe = e,XT e = e. The matrix H in
(2.2) is the well-known matrix in the linear assignment problem with rank(H) = 2n − 1 and the
rows sum up to 2eTn2 . Then rank(K) = 2n− 1 as well. Moreover, the following Lemma 2.5 is clear.

Lemma 2.5. Let H be given in (2.2); and let

X ∈ Rn×n, x = vec(X), Yx =

(
1
x

)(
1
x

)T

.

Then
Xe = e,XT e = e ⇐⇒ Hx = e

⇐⇒
(
1
x

)T (
−eT
HT

)
= 0

=⇒
(
1
x

)(
1
x

)T (
−eT
HT

)(
−eT
HT

)T

= 0

⇐⇒ YxK = 0.
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From Lemma 2.5, K is an exposing vector for all feasible Yx, see e.g., [14]. Then we can choose
a full column rank V̂ with the range equal to the nullspace of K and obtain facial reduction, i.e., all
feasible Y for the SDP relaxation satisfy

Y ∈ V̂ S(n−1)2+1
+ V̂ T � Sn

2+1
+ .

There are clearly many choices for V̂ . We present one in Proposition 2.6 from [39]. But in our
implementations we follow [30] and use one with orthonormal columns.

Proposition 2.6 ([39]). Let

V̂ =

[
1 0

1
nen2 Ve ⊗ Ve

]
∈ R(n2+1)×((n−1)2+1), Ve =

[
In−1

−eTn−1

]
∈ Rn×(n−1),

and let K be given as in (2.3). Then we have range(V̂ ) = range(K).

Our DNN relaxation has the lifted Y from (1.2) and (1.4) and the FR variable R from (1.5).
The relation between R, Y provides the natural splitting :

p∗DNN = min ⟨LQ, Y ⟩
s.t. GJ̄(Y ) = u0

Y = V̂ RV̂ T

R ≽ 0
0 ≤ Y ≤ 1.

(2.4)

A strictly feasible R̂ ≻ 0 for the facially reduced SDP relaxation is given in [39], based on the
barycenter Ŷ of the lifted matrices Y in (1.2). Therefore, 0 < ŶJ̄c < 1 and this pair (R̂, Ŷ ) is
strictly feasible in (2.4).

2.1.3 Redundant Constraints

We continue in this section with some redundant constraints for the model (2.4) that are useful
in the subproblems and in pre-specifying values of some dual variables. Although the constraints
are redundant for model (2.4), they are not redundant when the subproblems of rPRSM are
considered as independent optimization problems. To derive those constraints, we first recall three
linear transformations defined in [39].

Definition 2.7 ([39, Page 80]). Let Y ∈ Sn2+1 be blocked as in (1.3). We define the linear
transformation b0diag (Y ) : Sn2+1→ Sn by the sum of the n-by-n diagonal blocks of Y , i.e.,

b0diag (Y ) :=
n∑

k=1

Y(k k) ∈ Sn.

We define the linear transformation o0diag (Y ) : Sn2+1→ Sn by the trace of the block Y
(ij)

, i.e.,

o0diag (Y ) :=
(
tr
(
Y

(ij)

))
ij
∈ Sn.

We define the linear transformation arrow (Y ) : Sn2+1→ Rn2+1 by the difference of the first column
and diagonal of Y .

arrow (Y ) :=
(
Y(:1) − diag(Y )

)
∈ Rn2+1.
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With Definition 2.7, the following lemma can be derived from [39, Lemma 3.1]. Lemma 2.8
indeed shows three redundant constraints of (2.4).

Lemma 2.8 ([39, Lemma 3.1]). Let V be any full column rank matrix such that range(V ) =
range(V̂ ), where V̂ is given in Proposition 2.6. Suppose Y = V RV T and GJ̄(Y ) = u0 hold. Then
the following hold:

1. arrow (Y ) = 0.

2. b0diag (Y ) = In and o0diag (Y ) = In.

The following Proposition 2.9 shows that the constraint tr(R) = n + 1 is also redundant for
model (2.4).

Proposition 2.9. With orthonormal V̂ whose range is equal to range(K), the constraints Y =
V̂ RV̂ T , R ≽ 0 and Y ∈ Y yield that tr(R) = n+ 1.

Proof. By Lemma 2.8, b0diag (Y ) = In hold. Then with Y00 = 1, we see that tr(Y ) = n + 1. By
cyclicity of the trace operator and V̂ T V̂ = I, we see that

tr(R) = tr(RV̂ T V̂ ) = tr
(
V̂ RV̂ T

)
= tr(Y ) = n+ 1.

Remark 2.10. We take advantage of this in the corresponding R-subproblem and the computa-
tion of the lower bound of QAP. Note that we could add more redundant constraints to (DNN).
For example, we could strengthen the relaxation by restricting each row/column (ignoring the first
row/column) to be a multiple of a vectorized doubly stochastic matrix.

2.2 Main Model and Optimality Conditions

We now derive the main splitting model. We define the cone and polyhedral constraints, respec-
tively, as

R :=
{
R ∈ S(n−1)2+1 : R ≽ 0, tr(R) = n+ 1

}
, (2.5)

and

Y := {Y ∈ Sn
2+1 : GJ̄(Y ) = u0, 0 ≤ Y ≤ 1,b0diag (Y ) = I, o0diag (Y ) = I, arrow (Y ) = 0}. (2.6)

Replacing the constraints in (2.4) with (2.5) and (2.6), we obtain the following DNN relaxation
that we solve using rPRSM:

(DNN )

p∗DNN := min
R,Y

⟨LQ, Y ⟩

s.t. Y = V̂ RV̂ T

R ∈ R
Y ∈ Y.

(2.7)

The following property of feasible points Y ∈ Y in Proposition 2.11 is used in the computation
of the Y -subproblem of our algorithm.

11



Proposition 2.11. For any Y ∈ Y, let X̄ = Mat(diag(Y )) ∈ Rn×n be the matrix formed from the

diagonal of Y after ignoring the 00 element. Then X̄ ∈ D. Moreover, this holds for the first row
(and column) of Y .

Proof. From the Y constraints b0diag (Y ) = I, o0diag (Y ) = I, respectively, we get
∑n

k=1 diag(Y(kk)) =
e and tr(Y(kk)) = 1, ∀i ∈ {1, . . . , k}, respectively. Then by the definition of X̄, we immediately

have X̄e = e and X̄T e = e. Note that the nonnegativity constraint in Y implies X̄ ≥ 0. Therefore
X̄ ∈ D.

The equivalent result for the first row and column follow from the arrow constraint.

Remark 2.12 ((doubly) stochastic optimal Y ). Proposition 2.11 shows that for any feasible Y ∈ Y,
when ignoring the (00) element, then the diagonal, the first row, and the first column of Y , can all
be reshaped into doubly stochastic matrices. In fact, in addition to this, if Y ∈ Y, v ∈ Rn2+1 is a
nonnegative random vector, and we set w = Y v with w ← w/w1, then X = Matw satisfies the row
and column sum constraints. Therefore, for an optimal Y and choosing v ≥ 0, this X is doubly
stochastic, and if v is a unit vector then we see that every column of Y is doubly stochastic.

Define the orthogonal projection PV = V̂ V̂ T ; and let α, δ > 0 be the shift and scale parameters.
Note that Y = V̂ RV̂ T implies

δ⟨LQ, Y ⟩ = δ⟨LQ + αI, Y ⟩ − (n+ 1)δα
= δ⟨LQ + αI, PV Y PV ⟩ − (n+ 1)δα
= ⟨δ(PV LQPV + αI), Y ⟩ − (n+ 1)δα

. (2.8)

Therefore, the original objective value is

⟨LQ, Y ⟩ =
1

δ
⟨δ(PV LQPV + αI), Y ⟩ − (n+ 1)α.

By abuse of notation, we use
LQ ← δ(PV LQPV + αI). (2.9)

We use these values for our lower and upper bounds, since the data is integer valued, and we can
improve the bounds by rounding.

The Lagrangian function of model (2.7) is:

L(R, Y, Z) = ⟨LQ, Y ⟩+ ⟨Z, Y − V̂ RV̂ T ⟩. (2.10)

Since a strictly feasible R̂, with Ŷ = V̂ R̂V̂ , exists, we conclude that the following first order
optimality conditions for the model (2.7) hold:

0 ∈ −V̂ TZV̂ +NR(R), (dual R feasibility) (2.11a)

0 ∈ LQ + Z +NY(Y ), (dual Y feasibility) (2.11b)

Y = V̂ RV̂ T , R ∈ R, Y ∈ Y, (primal feasibility) (2.11c)

where the set NR(R) (resp. NY(Y )) is the normal cone to the set R (resp. Y) at R (resp. Y ).
By the definition of the normal cone, we can easily obtain the following Proposition 2.13.
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Proposition 2.13 (characterization of optimality for (2.7)). The primal-dual R, Y, Z are optimal
for (2.7) if, and only if, (2.11) holds if, and only if,

R = PR(R+ V̂ TZV̂ ) (2.12a)

Y = PY(Y − LQ − Z) (2.12b)

Y = V̂ RV̂ T . (2.12c)

We use (2.12) as one of the stopping criteria of the rPRSM in our numerical experiments.

2.2.1 Dual Multiplier

As in all constrained optimization, the Lagrange (dual) multiplier, here denoted Z, is essential in
finding an optimal solution, and critical in obtaining strong lower bounds. Moreover, a compact
set of dual multipliers is an indication of stability for the primal problem. If the optimal Z would
be completely known for the Lagrangian function in (2.10), then the primal feasibility equation
Y = V̂ RV̂ T can be ignored in the optimality conditions in (2.11). We now present properties on
Z that are exploited in our algorithm in Section 3. Theorem 2.14 shows that there exists a dual
multiplier Z ∈ Sn2+1 of the model (2.7) that, except for the (0, 0)-th entry, has a known diagonal,
first column and first row, and known elements in the redundant gangster positions. This allows
for faster convergence for our algorithm of Section 3.

Theorem 2.14. Let EA =

[
1 0

0 En2 − In2 − IJR

]
, where IJR is the zero matrix except for 1 in the

positions of the redundant gangster elements JR, Item 3 page 6. Let

YA :=
{
Y ∈ Sn

2+1 : GJ\JR(Y ) = E00, 0 ≤ EA ◦ Y ≤ 1, arrow (Y ) = 0
}
,

and let

ZA :=
{
Z ∈ Sn

2+1 : (Z + LQ)ij = 0, ∀i, j in arrow positions, and ∀ij ∈ JR

}
.

Consider the following problem:

min
R,Y
{⟨LQ, Y ⟩ : Y = V̂ RV̂ T , R ∈ R, Y ∈ YA}. (2.13)

Then the following holds:

1. The feasible sets of (2.7) and (2.13) are the same.

2. Let (R∗, Y ∗, Z∗) be an optimal primal-dual solution for (2.13). Then Z∗ ∈ ZA.

3. Let (R∗, Y ∗) be an optimal pair for (2.7). Then there exists Z∗ ∈ ZA such that (R∗, Y ∗, Z∗)
solves (2.11), i.e., they are an optimal primal-dual solution for (2.7).

Proof. Note that Y ⊂ YA, where we remove the b0diag , o0diag and the polyhedral constraints on
the diagonal, the first row and column, the redundant gangster constraints, but leave the arrow
constraint. Clearly, every feasible solution of (2.7) is feasible for (2.13) since Y ⊂ YA. Consider
a feasible pair (R, Y ) to (2.13). By Item 2 of Lemma 2.8 and the positive semidefiniteness of

13



Y = V̂ RV̂ T , we have that b0diag (Y ) = In and the elements of the diagonal of Y are in the interval
[0, 1]. In addition, since arrow (Y ) = 0, the elements of the first row and column of Y are also in
the interval [0, 1]. Thus we conclude that Y ∈ Y and (2.7) and (2.13) have equal feasible sets and
so are equivalent problems. Thus, the first assertion is proved.

Let (R∗, Y ∗, Z∗) be an optimal primal-dual solution for (2.13). Then according to the first
order optimality condition we have

0 ∈ −V̂ TZ∗V̂ +NR(R
∗), (2.14a)

0 ∈ LQ + Z∗ +NYA
(Y ∗), (2.14b)

Y ∗ = V̂ R∗V̂ T , R∗ ∈ R, Y ∗ ∈ YA. (2.14c)

By the definition of the normal cone, we have

0 ∈ LQ + Z∗ +NYA
(Y ∗) ⇐⇒ ⟨Y − Y ∗, LQ + Z∗⟩ ≥ 0, ∀Y ∈ YA.

Since the diagonal and the first column and row of Y ∈ YA except for the first element are
unconstrained, as are all the redundant gangster positions, we see that

(En2+1 − EA) ◦ (Z∗ + LQ) = 0.

This implies that Z∗ ∈ ZA and proves Item 2.
In order to prove Item 3, it suffices to show that the triple (R∗, Y ∗, Z∗) also solves (2.11). We

note that (2.14a) and (2.14c) imply that (2.11a) and (2.11c) hold with (R∗, Y ∗, Z∗) in the place
of (R, Y, Z). In addition, since Y ∗ ∈ Y ⊆ YA, we see that NYA

(Y ∗) ⊆ NY(Y
∗). This together with

(2.14b) shows that (2.11b) holds with (Y ∗, Z∗) in the place of (Y, Z). Thus, we have shown that
(R∗, Y ∗, Z∗) also solves (2.11).

Remark 2.15. Dual variables are sensitivity coefficients for the optimal value with respect to
perturbations in the constraints. Before scaling, L has zeros in the positions identified in ZA, as it
is formed from the Kronecker product of adjacency matrices.

3 The rPRSMAlgorithm

We now present the details of a modification of the so-called restricted contractive Peaceman-
Rachford splitting method, PRSM, or symmetric ADMM, e.g., [23,28]. Our modification involves
redundant constraints on subproblems as well as on the update of dual variables.

3.1 Outline and Convergence for rPRSM

The augmented Lagrangian function for (2.7) with Lagrange multiplier Z is:

LA(R, Y, Z) = ⟨LQ, Y ⟩+ ⟨Z, Y − V̂ RV̂ T ⟩+ β

2

∥∥∥Y − V̂ RV̂ T
∥∥∥2
F
, (3.1)

where β is a positive penalty parameter.
Define Z0 := {Z ∈ Sn2+1 : Zi,i = 0, Z0,i = Zi,0 = 0, i = 1, . . . , n2} and let PZ0 be the projection

onto the set Z0. Our proposed algorithm reads as follows:

14



Algorithm 3.1 rPRSM for DNN in (2.7)

Initialize: LA augmented Lagrangian in (3.1); γ ∈ (0, 1), under-relaxation parameter ; β ∈
(0,∞), penalty parameter ; R,Y subproblem sets from (2.5); Y 0; and Z0 ∈ ZA;
while tolerances not met do

Rk+1 = argminR∈R LA(R, Y k, Zk)

Zk+ 1
2 = Zk + γβ · PZ0

(
Y k − V̂ Rk+1V̂ T

)
Y k+1 = argminY ∈Y LA(Rk+1, Y, Zk+ 1

2 )

Zk+1 = Zk+ 1
2 + γβ · PZ0

(
Y k+1 − V̂ Rk+1V̂ T

)
end while

Remark 3.1. Algorithm 3.1 can be summarized as follows: alternate minimization of variables R
and Y interlaced by the dual variable Z update. Before discussing the convergence of Algorithm 3.1,
we point out the following. The R-update and the Y -update in Algorithm 3.1 are well-defined,
i.e., the subproblems involved have unique solutions. This follows from the strict convexity of LA
with respect to R, Y and the convexity and compactness of the sets R and Y. We note that many
of the constraints are redundant in the SDP part of the problem, e.g., the trace on R, and the
b0diag , o0diag , arrow on Y . However, these constraints are not redundant within the subproblems
themselves and are inexpensive to include. They improve the rate of convergence and the quality of
the Y when stopping the rPRSM algorithm early.

We also note that, in Algorithm 3.1, we update the dual variable Z both after the R-update and
the Y -update. This pattern of update in our Algorithm 3.1 is closely related to the strictly contractive
Peaceman-Rachford splitting method, PRSM; see e.g., [23, 28]. Indeed, we show in Theorem 3.2
below, that our algorithm can be viewed as a version of semi-proximal strictly contractive PRSM,
see e.g., [21, 28], applied to (3.2). Hence, the convergence of our algorithm can be deduced from
the general convergence theory of semi-proximal strictly contractive PRSM.

Theorem 3.2. Let {Rk}, {Y k}, {Zk} be the sequences generated by Algorithm 3.1. Then the se-
quence {(Rk, Y k)} converges to a primal optimal pair (R∗, Y ∗) of (2.7), and {Zk} converges to an
optimal dual solution Z∗ ∈ ZA.

Proof. The proof is divided into two steps. In the first step, we consider the convergence of the
semi-proximal restricted contractive PRSM in [21, 28] applied to the following problem (3.2),
where PZc

0
is the projection onto the orthogonal complement of Z0, i.e., PZc

0
= I −PZ0 :

min
R,Y

⟨LQ,PZ0(Y ) + PZc
0
(V RV T )⟩

s.t. PZ0(Y ) = PZ0(V̂ RV̂ T )
R ∈ R
Y ∈ Y.

(3.2)

We show that the sequence generated by the semi-proximal restricted contractive PRSM in [21,28]
converges to a Karush-Kuhn-Tucker, KKT point of (2.7). In the second step, we show that the
sequence generated by Algorithm 3.1 is identical with the sequence generated by the semi-proximal
restricted contractive PRSM applied to (3.2).
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Step 1: We apply the semi-proximal strictly contractive PRSM given in [21, 28] to (3.2). Let

(R̃0, Ỹ 0, Z̃0) := (R0, Y 0, Z0), where R0 and Y 0 are chosen to satisfy (2.7) and Z0 ∈ ZA. Consider
the following update:

R̃k+1 = argmin
R∈R

⟨LQ,PZc
0
(V̂ RV̂ T )⟩−⟨Z̃k,PZ0(V̂ RV̂ T )⟩+ β

2

∥∥∥PZ0(Ỹ
k − V̂ RV̂ T)

∥∥∥2
F
+β

2

∥∥∥PZc
0
(V̂ RV̂ T−V̂ R̃kV̂ T )

∥∥∥2
F
,

Z̃k+ 1
2 = Z̃k + γβPZ0(Ỹ

k − V̂ R̃k+1V̂ T ),

Ỹ k+1 ∈ argmin
Y ∈Y

⟨LQ,PZ0(Y )⟩+ ⟨Z̃k+ 1
2 ,PZ0(Y )⟩+ β

2

∥∥∥PZ0(Y − V̂ R̃k+1V̂ T )
∥∥∥2
F
,

Z̃k+1 = Z̃k+ 1
2 + γβPZ0(Ỹ

k+1 − V̂ R̃k+1V̂ T ),
(3.3)

where γ ∈ (0, 1) is an under-relaxation parameter. Note that the R-update in (3.3) is well-defined
because the subproblem involved is a strongly convex problem. By completing the square in the
Y -subproblem, we have that

Ỹ k+1 ∈ argmin
Y ∈Y

∥∥∥∥PZ0(Y )−
(
PZ0(V̂ R̃k+1V̂ T )− 1

β
(LQ + Z̃k+ 1

2 )

)∥∥∥∥2
F

.

We note that PZ0(Ỹ
k+1) is uniquely determined with

PZ0(Ỹ
k+1) = PZ0(V̂ R̃k+1V̂ T )− 1

β
(LQ + Z̃k+ 1

2 ),

while PZc
0
(Ỹ k+1) can be chosen to be

PZc
0
(Ỹ k+1) = PZc

0
(V̂ R̃k+1V̂ T ) , ∀ k ≥ 0. (3.4)

Finally, one can also deduce by induction that Z̃k ∈ ZA, for all k, since Z
0 ∈ ZA. From the general

convergence theory of semi-proximal strictly contractive PRSM given in [21,28], we have(
R̃k, Ỹ k, Z̃k

)
→

(
R∗, Y ∗, Z∗

)
∈ R× Y × ZA,

where the convergence of {R̃k} follows from the injectivity of the map R 7→ V̂ RV̂ T . Thus, the
triple (R∗, Y ∗, Z∗) solves the optimality condition for (3.2), i.e.,

0 ∈ V̂ TPZc
0
(LQ)V̂ − V̂ TPZ0(Z

∗)V̂ +NR(R
∗) (3.5a)

0 ∈ PZ0(LQ) + PZ0(Z
∗) +NY(Y

∗) (3.5b)

PZ0(Y
∗) = PZ0(V̂ R∗V̂ T ). (3.5c)

Since we update PZc
0
(Ỹ k) by (3.4), we also have that

PZc
0
(Y ∗) = PZc

0
(V̂ R∗V̂ T ). (3.6)

Next we show that the triple (R∗, Y ∗, Z∗) is also a KKTpoint of model (2.7). Firstly, It follows
from (3.5c) and (3.6) that

Y ∗ = V̂ R∗V̂ T .

Secondly, we can deduce from (3.5a), (3.5b) and Z∗ ∈ ZA that

0 ∈ −V̂ TZ∗V̂ +NR(R
∗) and 0 ∈ LQ + Z∗ +NY(Y

∗).

Hence, we have shown that the sequence generated by by (3.3) and (3.4), converges to aKKTpoint
of the model (2.7).
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Step 2: We now claim that the sequence {(R̃k, Z̃k− 1
2 , Ỹ k, Z̃k)} generated by (3.3) and (3.4),

starting from (R̃0, Ỹ 0, Z̃0) := (R0, Y 0, Z0), is identical to the sequence {(Rk, Zk− 1
2 , Y k, Zk)} given

by Algorithm 3.1. We prove by induction. First, we clearly have (R̃0, Ỹ 0, Z̃0) = (R0, Y 0, Z0) by

the definition. Suppose that (R̃k, Ỹ k, Z̃k) = (Rk, Y k, Zk) for some k ≥ 0. Since Z̃k ∈ ZA and (3.4)
holds, we can rewrite the R-subproblem in (3.3) as follows:

argmin
R∈R

⟨LQ,PZc
0
(V̂ RV̂ T )⟩ − ⟨Z̃k,PZ0(V̂ RV̂ T)⟩+ β

2

∥∥∥PZ0(Ỹ
k−V̂ RV̂ T)

∥∥∥2
F
+ β

2

∥∥∥PZc
0
(V̂ R̃kV̂ T−V̂ RV̂ T )

∥∥∥2
F

= argmin
R∈R

⟨PZc
0
(LQ)− PZ0(Z̃

k), V̂ RV̂ T ⟩+ β
2

∥∥∥PZ0(Ỹ
k−V̂ RV̂ T)

∥∥∥2
F
+ β

2

∥∥∥PZc
0
(V̂ R̃kV̂ T−V̂ RV̂ T )

∥∥∥2
F

= argmin
R∈R

⟨−PZc
0
(Z̃k)−PZ0(Z̃

k), V̂ RV̂ T ⟩+ β
2

∥∥∥Ỹ k − V̂ RV̂ T
∥∥∥2
F

= argmin
R∈R

−⟨Z̃k, V̂ RV̂ T ⟩+ β
2

∥∥∥Ỹ k − V̂ RV̂ T
∥∥∥2
F
,

where the second “=” is due to Z̃k ∈ ZA and (3.4). The above is equivalent to the R-subproblem

in Algorithm 3.1, since Z̃k = Zk and Ỹ k = Y k by the induction hypothesis. This shows that

R̃k+1 = Rk+1 and it follows that Z̃k+ 1
2 = Zk+ 1

2 . Since Zk+ 1
2 ∈ ZA, we can rewrite the Y -

subproblem in Algorithm 3.1 as

argmin
Y ∈Y

⟨LQ + Zk+ 1
2 , Y ⟩+ β

2 ∥Y − V̂ Rk+1V̂ T ∥2F
= argmin

Y ∈Y
⟨PZ0(LQ + Zk+ 1

2 ), Y ⟩+ β
2 ∥PZ0(Y − V̂ Rk+1V̂ T )∥2F + β

2 ∥PZc
0
(Y − V̂ Rk+1V̂ T )∥2F

= argmin
Y ∈Y

⟨LQ,PZ0(Y )⟩+ ⟨Zk+ 1
2 ,PZ0(Y )⟩+ β

2

∥∥∥PZ0(Y − V̂ Rk+1V̂ T )
∥∥∥2
F
+ β

2 ∥PZc
0
(Y − V̂ Rk+1V̂ T )∥2F ,

where the first “=” is due to Zk+ 1
2 ∈ ZA. Hence, with R̃k+1 = Rk+1 and Z̃k+ 1

2 = Zk+ 1
2 , we have

that the above subproblem generates Ỹ k+1 defined in (3.3) and (3.4). Thus we have Ỹ k+1 =
Y k+1 and it follows that Z̃k+1 = Zk+1 holds. This completes the proof for {(Rk, Y k, Zk)}k∈N ≡
{(R̃k, Ỹ k, Z̃k)}k∈N, and the alleged convergence behavior of {(Rk, Y k, Zk)} follows from that of
{(R̃k, Ỹ k, Z̃k)}.

3.2 Implementation details

Note that the explicit Z-updates in Algorithm 3.1 is simple and easy. We now show that we have
explicit expressions for R-updates and Y -updates as well.

3.2.1 R-subproblem

In this section we present the formula for solving the R-subproblem in Algorithm 3.1. We define

PR(W ) to be the projection ofW onto the compact setR, whereR :=
{
R ∈ S(n−1)2+1

+ : tr(R) = n+ 1
}
.

By completing the square at the current iterates Y k, Zk, the R-subproblem can be explicitly solved
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by the projection operator PR as follows:

Rk+1 = argmin
R∈R

−⟨Zk, V̂ RV̂ T ⟩+ β
2

∥∥∥Y k − V̂ RV̂ T
∥∥∥2
F

= argmin
R∈R

β
2

∥∥∥Y k − V̂ RV̂ T + 1
βZ

k
∥∥∥2
F

= argmin
R∈R

β
2

∥∥∥R− V̂ T (Y k + 1
βZ

k)V̂
∥∥∥2
F

= PR(V̂ T (Y k + 1
βZ

k)V̂ ),

where the third equality follows from the assumption V̂ T V̂ = I.
For a given symmetric matrix W ∈ S(n−1)2+1, we now show how to perform the projection

PR(W ). Using the eigenvalue decomposition W = UΛUT , we have

PR(W ) = U Diag(P∆(diag(Λ)))UT ,

where P∆(diag(Λ)) denotes the projection of diag(Λ) onto the simplex

∆ =
{
λ ∈ R(n−1)2+1

+ : λT e = n+ 1
}
.

Projections onto simplices can be performed efficiently via some standard root-finding strategies;
see, for example [10, 36]. Therefore the R-updates reduce to the projection of the vector of the

positive eigenvalues of V̂ T
(
Y k + 1

βZ
k
)
V̂ onto the simplex ∆.

3.2.2 Y -subproblem

In this section we present the formula for solving the Y -subproblem in Algorithm 3.1. By completing
the square at the current iterates Rk+1, Zk+ 1

2 , we get

Y k+1 = argmin
Y ∈Y

⟨LQ, Y ⟩+ ⟨Zk+ 1
2 , Y − V̂ Rk+1V̂ T ⟩+ β

2

∥∥∥Y − V̂ Rk+1V̂ T
∥∥∥2
F

= argmin
Y ∈Y

β
2

∥∥∥Y − (
V̂ Rk+1V̂ T − 1

β (LQ + Zk+ 1
2 )
)∥∥∥2

F
.

Recall that the Y -subproblem involves the projection onto the polyhedral set in (2.6):

Y := {Y ∈ Sn
2+1 : GJ̄(Y ) = u0, 0 ≤ Y ≤ 1, b0diag (Y ) = I, o0diag (Y ) = I, arrow (Y ) = 0}.

Set T :=
(
V̂ Rk+1V̂ T − 1

β (LQ + Zk+ 1
2 )
)
. Then we update Y k+1 as follows:

(Y k+1)ij =


1 if i = j = 0,
sij if i = j > 0 or (ij = 0 and i+ j > 0) ,
0 if ij or ji ∈ J̄/(00),
min {1,max{Tij , 0}} otherwise,

(3.7)

where s ∈ Rn2
is determined as in (3.8), below.
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Remark 3.3 (calculating s in (3.7)). Given any column vector t ∈ Rn2
, we let tci denote the i-th

column of Mat t, i = 1, . . . , n. We denote the i-th subvector in the diagonal (except for the 00
element), first column and first row of T by the column vectors tdi , t

c
i and tri , respectively. Then

s = argmins
(
∥s− td∥2 + ∥s− tc∥2 + ∥s− tr∥2

)
s.t. Mat(s) ∈ D. (3.8)

By completing the squares in the objective of (3.8) and removing the redundant s ≤ 1, we transform
(3.8) into the following equivalent optimization problem,

min
s
∥s− 1

3(t
d + tc + tr)∥2

s.t. Mat(s) ∈ D.
(3.9)

We reshape 1
3(t

d+ tc+ tr) into an n-by-n matrix T̃a column by column. Then we can rewrite (3.9)
equivalently as

min
S∈Rn×n

∥S − T̃a∥2

s.t. S ∈ D.
(3.10)

Denote the optimal solution of (3.10) by S∗, then s = vec(S∗). This relates with Proposition 2.11,
in each iteration, we project the arrow positions of Y to the set of doubly stochastic matrices.

3.3 Bounding from Approximate Solutions

Primal and dual solutions from our algorithm are approximate. We would like to obtain useful
lower and upper bounds for the optimal value p∗QAP. This can often help in stopping the algorithm
early and also prove optimality for our current permutation X for the original QAP. This follows
on the approach in [27].

3.3.1 Lower Bound from Relaxation

Exact solutions of the relaxation (2.7) provide lower bounds to the original QAP (1.1). However,
the size of problem (2.7) can be extremely large, and it could be very expensive to obtain solutions
of high accuracy. In this section we present an inexpensive way to obtain a valid lower bound using
the output with moderate accuracy from our algorithm.

Our approach is based on the following functional

g(Z) := min
Y ∈Y
⟨LQ + Z, Y ⟩ − (n+ 1)λmax(V̂

TZV̂ ), (3.11)

where λmax(V̂
TZV̂ ) denotes the largest eigenvalue of V̂ TZV̂ . In Theorem 3.4 below, we show that

max
Z

g(Z) is indeed the Lagrange dual problem of our main DNN relaxation (2.7).

Theorem 3.4. Let g be the functional defined in (3.11). Then the problem

d∗Z := max
Z

g(Z) (3.12)

is a concave maximization problem. Furthermore, strong duality holds for the primal (2.7) with
dual (3.12), i.e.,

p∗DNN = d∗Z , and d∗Z is attained.
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Proof. Note that the function V̂ TZV̂ is linear in Z. Therefore the largest eigenvalue function
λmax(V̂

TZV̂ ) is a convex function of Z. Thus the argument of the minimum in (3.12)

⟨LQ + Z, Y ⟩ − (n+ 1)λmax(V̂
TZV̂ )

is concave in Z. The concavity of g is now clear.
We derive (3.12) via the Lagrange dual problem of (2.7):

p∗DNN = min
R∈R,Y ∈Y

max
Z

{
⟨LQ, Y ⟩+ ⟨Z, Y − V̂ RV̂ T ⟩

}
= max

Z
min

R∈R,Y ∈Y

{
⟨LQ, Y ⟩+ ⟨Z, Y − V̂ RV̂ T ⟩

}
(3.13a)

= max
Z

{
min
Y ∈Y
{⟨LQ, Y ⟩+ ⟨Z, Y ⟩}+ min

R∈R
⟨Z,−V̂ RV̂ T ⟩

}
= max

Z

{
min
Y ∈Y
{⟨LQ, Y ⟩+ ⟨Z, Y ⟩}+ min

R∈R
⟨V̂ TZV̂ ,−R⟩

}
= max

Z

{
min
Y ∈Y
⟨LQ + Z, Y ⟩ − (n+ 1)λmax(V̂

TZV̂ )

}
(3.13b)

= d∗Z ,

where:

1. (3.13a) follows from [34, Corollary 28.2.2, Theorem 28.4] and the fact that (2.7) has gener-
alized Slater points, see [39];3

2. (3.13b) follows from the definition of R and the Rayleigh Principle.

We see from [34, Corollary 28.2.2, Corollary 28.4.1] that the dual optimal value d∗Z is attained.

Remark 3.5. Since the Lagrange dual problem in Theorem 3.4 is an unconstrained maximization
problem, evaluating g defined in (3.11) at the k-th iterate Zk yields a valid lower bound for p∗DNN,
i.e., g(Zk) ≤ p∗DNN ≤ p∗QAP. The functional g also strengthens the bound given in [30, Lemma 3.2].
We also see in (3.13b) that Z ≺ 0 provides a positive contribution to the eigenvalue part of the
lower bound. Moreover, Theorem 2.14 implies that the contribution from JR position,the diagonal,
first row and column of LQ + Z (except for the (0, 0)-th element) is zero. This motivates scaling

LQ to be positive definite. Let PV := V̂ V̂ T . Then for any r, s ∈ R, the objective in (2.7) can be
replaced by

⟨r(PV LQPV + sI), Y ⟩. (3.14)

We obtain the same solution pair (R∗, Y ∗) of (2.7). Another advantage is that it potentially forces
the dual multiplier Z∗ to be negative definite, and thus the lower bound is larger. Additional strate-
gies can be used to strengthen the lower bound g(Zk). Suppose that the given data matrices A,B are
symmetric and integral, then from (1.1), we know that p∗QAP is an even integer. Therefore applying

the ceiling operator to g(Zk) still gives a valid lower bound to p∗QAP. According to this prior infor-

mation, we can strengthen the lower bound with the even number in the pair {
⌈
g(Zk)

⌉
,
⌈
g(Zk)

⌉
+1}.

3Note that the Lagrangian is linear in R, Y and linear in Z. Moreover, both constraint sets R,Y are convex and
compact. Therefore, the result also follows from the classical Von Neumann-Fan minmax theorem.
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3.3.2 Upper Bound from Nearest Permutation Matrix

In [30], the authors present two methods for obtaining upper bounds using a nearest permutation
matrix. In this section we present a new strategy using a nearest permutation matrix.

Given X̄ ∈ Rn×n, the nearest permutation matrix X∗ from X̄ is found by solving

X∗ = argmin
X∈Π

1

2
∥X − X̄∥2F = argmin

X∈Π
−⟨X̄,X⟩. (3.15)

Any solution to the problem (3.15) yields a feasible solution to the original QAP, which gives a
valid upper bound tr(AX∗B(X∗)T ). As discussed above, the permutation matrices are the extreme
points of the set of doubly stochastic matrices D. Hence we reformulate the problem (3.15) as the
linear program

max
x∈Rn2

{
⟨vec(X̄), x⟩ : (In ⊗ eT )x = e, (eT ⊗ In)x = e, x ≥ 0

}
, (3.16)

and we solve (3.16) using a simplex method type algorithm.
For an approximate optimum Y out, The first approach in [30] sets vec(X̄) to be the first column

of Y out ignoring the first element; and then solves (3.16). Now let Y out =
∑r

i=1 λiviv
T
i be the

spectral decomposition, with λ1 ≥ λ2 ≥ · · · ≥ λr > 0. And by abuse of notation we set vi to be
the vectors in Rn2

formed by removing the first element from vi. The second approach presented
in [30] is to use vec(X̄) = λ1v1 in solving (3.16), where (λ1, v1) is the most dominant eigenpair of
Y out.

Inspired by the approximation algorithm in [20], now let ξ be a random vector in Rr with
elements in (0, 1), and in decreasing order. We use ξ to perturb the eigenvalues λ1, . . . , λr and form
X̄ for the upper bound problem (3.16) so that:

vec(X̄) =
r∑

i=1

ξiλivi.

We repeat this 3⌈log(n)⌉ and choose the best (smallest) as the upper bound.

4 Numerical Experiments with rPRSM

We now present numerical results for Algorithm 3.1, rPRSM, with the bounding strategies dis-
cussed in Section 3.3. The parameter settings and stopping criteria are in Section 4.1, below.
We use symmetric4 data from QAPLIP5. In Section 4.2 we examine the comparative performance
between rPRSM and [30, ADMM ]. We aim to show that our proposed rPRSM shows improve-
ments on convergence rates and relative gaps. In Section 4.3 we compare rPRSMwith the two
recently proposed relaxation methods [7, C-SDP] and [12, F2-RLT2-DA].

4We exclude instances that have asymmetric data matrices.
5http://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/
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4.1 Parameter Settings and Stopping Criteria

1. We scale the data LQ from (3.14) as follows:

L1 ← PV LQPV ,
L2 ← L1 + σLI, where σL := max{0,−⌊λmin(LQ)⌋}+ 10n,

L3 ← n2

α L2, where α := ⌈∥L2∥F ⌉ .

We set the penalty parameter β = n
3 and the under-relaxation parameter γ = 0.9 for the dual

variable update. We choose the initial iterates6

Y 0 =
1

n!

∑
X∈Π

(1; vec(X))(1; vec(X))T and Z0 = PZA
(0).

We compute the lower and upper bounds every 100 iterations. The tolerance for the projection
onto the set of doubly stochastic matrices in Remark 3.3 is set to be 10−4.

2. We terminate rPRSMwhen one of the following conditions is satisfied.

(a) The maximum number of iterations, maxiter = 40000, is reached.

(b) For given tolerance ϵ, the following bound on the primal and dual residuals holds for mt

sequential times:

max

{
∥Y k − V̂ RkV̂ T ∥F

∥Y k∥F
, β∥Y k − Y k−1∥F

}
< ϵ.

We set ϵ = 10−4 and mt = 100.

(c) Let {l1, . . . , lk} and {u1, . . . , uk} be sequences of lower and upper bounds from Sec-
tion 3.3.1 and Section 3.3.2, respectively. The lower (resp. upper) bounds do not change
for ml (resp. mu) sequential times. We set ml = mu = 100.

(d) The KKT conditions given in (2.12) are satisfied to a certain precision. More specifi-
cally, for a predefined tolerance δ > 0, it holds that

max
{
∥Rk − PR(Rk + V̂ TZkV̂ )∥F , ∥Y k− PY(Y k− LQ − Zk)∥F , ∥Y k− V̂ RkV̂ T ∥F

}
< δ.

We use this stopping criterion for instances with n larger than 20 and we set the tolerance
δ = 10−5 when it is used.

4.2 Empirical Results

We now compare results from rPRSM and [30, ADMM ] on instances from QAPLIB. We divide
the instances into three groups based on sizes:

n ∈ {10, . . . , 20}, {21, . . . , 40}, {41, . . . , 64}.

For ADMMwe use the parameters from [30], i.e., β = n/3, γ = 1.618; and we adopt the same
stopping criteria for both ADMM and rPRSM. All instances in Tables 4.1 to 4.3 use MATLAB
version 2020a on with two Intel Xeon Gold 6244 8-core 3.6 GHz (Cascade Lake) and 192 Gigabyte
memory.

The following provides extra details for the headers in the various tables.
6The formula for Y 0 is introduced in [39, Theorem 3.1].
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1. opt: global optimal value; marked with ∗ when unknown.

2. lbd: lower bound from rPRSM;

3. ubd: upper bound from rPRSM;

4. rel.gap: relative gap from rPRSM:

relative gap := 2
best feasible upper bound− best lower bound

best feasible upper bound + best lower bound + 1
; (4.1)

5. rel-opt-gap: relative optimality gap from rPRSM using the known true optimal value and
the lower bound;

6. rel.gapA: relative gap from [30, ADMM ] with tolerance ϵ = 10−5;

7. iter: number of iterations by rPRSMwith tolerance ϵ = 10−5;

8. iterA: number of iterations from [30, ADMM ] with tolerance ϵ = 10−5;

9. time (sec): solver rPRSM time.

4.2.1 Small Size

Comparing columns iter and iterA in Table 4.1, we see that 37 instances were treated with fewer
iterations using rPRSM, i.e., rPRSM converges faster in general than ADMM for the small-size
QAPLIB instances. In particular, 45 out of 46 instances are solved with relative gaps just as good
as the ones obtained by ADMM and these instances are marked with boldface in Table 4.1. We
have found provably optimal solutions for instances

chr12b chr12c chr15a chr15b chr15c chr18a chr20a chr20b esc16e esc16f esc16j
had12 had14 had16 had18 had20 rou12 scr12 scr15 tai10a tai12a.

We also observe from columns iter and iterA in Table 4.1 that rPRSM gives reduction in num-
ber of iterations in many instances; 37 out of 46 instances use fewer number of iterations using
rPRSM compared to ADMM. For rPRSM alone we observe that most of the instances show
good bounds with reasonable amount of time. Most of the instances are solved within two minutes
using the machine described above.

4.2.2 Medium Size

Table 4.2 contains results on 29 QAPLIB instances with sizes n ∈ {22, . . . , 40}. Columns rel.gap
and rel.gapA in Table 4.2 show that rPRSM produces competitive relative gaps compared to
ADMM. In particular, all the instances are solved with relative gaps just as good as the ones
obtained by ADMM and these instances are marked with boldface in Table 4.2. We have found
provably optimal solutions for instances chr22a and chr25a. For rPRSM alone we observe that
most of the instances show good bounds with reasonable amount of time.

4.2.3 Large Size

Table 4.3 contains results on 9 QAPLIB instances with sizes n ∈ {41, . . . , 64}. We observe that
rPRSM outputs better relative gaps than ADMM on 8 instances and this is due to the random
perturbation approach presented in Section 3.3.2. We also obtain reduction on the number of
iterations. It indicates that our strategies taken on R and Z updates in rPRSMhelp the iterates
converges faster than ADMM.
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Table 4.1: QAPLIB Instances of Small Size
Problem Data Numerical Results Timing

# name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time(sec)
1 chr12a 9552 9548 9552 0.04 0 0.02 11500 24800 130.04
2 chr12b 9742 9742 9742 0 0 0.08 10300 26700 113.96
3 chr12c 11156 11156 11156 0 0 0 1600 19400 17.41
4 chr15a 9896 9896 9896 0 0 0.28 6700 30900 126.20
5 chr15b 7990 7990 7990 0 0 0.03 3500 20300 70.67
6 chr15c 9504 9504 9504 0 0 0.08 1800 20000 28.53
7 chr18a 11098 11098 11098 0 0 0 2000 20600 61.64
8 chr18b 1534 1534 1794 15.62 15.62 75.22 5558 12600 172.94
9 chr20a 2192 2192 2192 0 0 0.18 3700 33700 156.45
10 chr20b 2298 2298 2298 0 0 0 1200 26200 58.09
11 chr20c 14142 14136 14142 0.04 0 0.15 30900 33700 1325.01
12 els19 17212548 17208748 17212548 0.02 0 0.35 30800 40000 1106.23
13 esc16a 68 64 74 14.39 8.39 41.72 399 597 10.22
14 esc16b 292 290 292 0.69 0 6.01 302 386 6.89
15 esc16c 160 154 166 7.48 3.67 34.32 399 896 8.58
16 esc16d 16 14 16 12.90 0 118.18 299 659 4.96
17 esc16e 28 28 28 0 0 69.05 100 556 3.03
18 esc16f 0 0 0 0 0 0 1 1 0.02
19 esc16g 26 26 28 7.27 7.27 69.23 300 695 6.88
20 esc16h 996 978 1100 11.74 9.92 31.90 1362 609 28.75
21 esc16i 14 12 14 14.81 0 101.96 1016 2044 25.15
22 esc16j 8 8 8 0 0 82.76 100 799 2.11
23 had12 1652 1652 1652 0 0 0 300 11600 3.92
24 had14 2724 2724 2724 0 0 0 400 20300 5.52
25 had16 3720 3720 3720 0 0 0 600 18100 12.28
26 had18 5358 5358 5358 0 0 0.02 1300 34700 40.66
27 had20 6922 6922 6922 0 0 0.13 2300 40000 106.96
28 nug12 578 568 728 24.67 22.95 27.86 1416 2884 15.70
29 nug14 1014 1012 1022 0.98 0.79 1.08 2832 19600 44.65
30 nug15 1150 1142 1280 11.39 10.70 16.33 2161 5812 40.45
31 nug16a 1610 1600 1610 0.62 0 0.62 6217 19300 138.71
32 nug16b 1240 1220 1258 3.07 1.44 25.41 3454 2347 80.00
33 nug17 1732 1708 1756 2.77 1.38 2.77 6194 6401 159.42
34 nug18 1930 1894 2022 6.54 4.65 12.84 9555 3988 285.40
35 nug20 2570 2508 2702 7.45 5.01 18.43 7065 2386 266.59
36 rou12 235528 235528 235528 0 0 0 3700 34200 35.98
37 rou15 354210 350216 360702 2.95 1.82 4.89 2531 3946 39.94
38 rou20 725522 695180 781532 11.70 7.43 14.93 7099 1538 281.71
39 scr12 31410 31410 31410 0 0 19.38 400 4268 3.93
40 scr15 51140 51140 51140 0 0 21.96 700 5489 12.48
41 scr20 110030 106804 132826 21.72 18.77 43.71 11599 9705 425.22
42 tai10a 135028 135028 135028 0 0 0.01 1200 21400 5.95
43 tai12a 224416 224416 224416 0 0 0 300 4300 2.68
44 tai15a 388214 377100 403890 6.86 3.96 9.03 2644 2245 39.96
45 tai17a 491812 476526 534328 11.44 8.29 16.25 2940 1399 64.67
46 tai20a 703482 671676 762166 12.62 8.01 19.03 3733 999 136.38

4.3 Comparisons to Other Methods

In this section we compare our results with two recent papers on relaxations for QAP.7

Comparison to C-SDP([7]) Here we compare our numerical result with the results presented
by Ferreira et al. [7]. Briefly, Ferreira et al. [7] propose a semidefinite relaxation based algorithm
C-SDP. The algorithm applies to relatively sparse data and hence their results are presented for chr

7 For more comparisons, see e.g., [30, Table 4.1, Table 4.2] to view a complete list of lower bounds using bundle
method presented in [33].
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Table 4.2: QAPLIB Instances of Medium Size
Problem Data Numerical Results Timing

# name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time(sec)
47 chr22a 6156 6156 6156 0 0 0.02 11500 40000 613.03
48 chr22b 6194 6190 6194 0.06 0 0.11 13500 39300 673.22
49 chr25a 3796 3796 3796 0 0 0 6200 35600 450.22
50 esc32a 130 104 168 46.89 25.42 106.90 15100 12400 2553.03
51 esc32b 168 132 220 49.86 26.74 92.49 1000 4144 167.59
52 esc32c 642 616 642 4.13 0 23.23 2500 2052 418.83
53 esc32d 200 192 220 13.56 9.50 41.08 670 1430 117.00
54 esc32e 2 2 18 152.38 152.38 152.38 700 3086 112.26
55 esc32g 6 6 12 63.16 63.16 121.21 500 999 81.81
56 esc32h 438 426 452 5.92 3.14 30.14 6500 17600 1097.87
57 kra30a 88900 86838 96430 10.47 8.13 15.91 9898 3799 1319.97
58 kra30b 91420 87858 101640 14.55 10.59 28.84 5480 5017 750.38
59 kra32 88700 85776 93050 8.14 4.79 30.03 4959 4173 870.14
60 nug21 2438 2382 2644 10.42 8.11 12.36 6439 5729 274.09
61 nug22 3596 3530 3678 4.11 2.25 12.76 7279 7573 359.10
62 nug24 3488 3402 3770 10.26 7.77 16.25 4543 4447 294.82
63 nug25 3744 3626 3966 8.96 5.76 15.37 11687 7799 864.25
64 nug27 5234 5130 5496 6.89 4.88 17.08 10039 8609 1010.56
65 nug28 5166 5026 5676 12.15 9.41 18.55 8387 7533 943.84
66 nug30 6124 5950 6610 10.51 7.63 20.21 11321 9036 1581.33
67 ste36a 9526 9260 9980 7.48 4.65 42.28 19500 27300 5262.87
68 ste36b 15852 15668 15932 1.67 0.50 82.03 29000 40000 7889.04
69 ste36c 8239110 8134808 8394142 3.14 1.86 36.15 36499 40000 9819.15
70 tai25a 1167256 1096656 1264590 14.22 8.00 20.55 2264 999 164.11
71 tai30a 1818146 1706872 1984536 15.04 8.75 15.21 4550 1599 623.39
72 tai35a 2422002 2216646 2625284 16.88 8.06 22.34 3161 1599 777.17
73 tai40a 3139370 2843310 3455540 19.44 9.59 23.43 5577 2299 5546.57
74 tho30 149936 143576 166336 14.69 10.37 24.33 8321 7729 1122.28
75 tho40 240516 226522 257642 12.86 6.88 25.19 15535 12460 17832.61

Table 4.3: QAPLIB Instances of Large Size
Problem Data Numerical Results Timing

# name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time(sec)
76 esc64a 116 98 260 90.25 76.39 80.97 400 1200 1085.52
77 sko42∗ 15812 15336 16244 5.75 2.70 17.24 5511 10700 6245.96
78 sko49∗ 23386 22654 24406 7.45 4.27 16.87 9484 16900 12213.03
79 sko56∗ 34458 33390 36468 8.81 5.67 15.92 5792 15100 11669.07
80 sko64∗ 48498 47022 50762 7.65 4.56 16.15 10021 21100 23033.17
81 tai50a∗ 4938796 4390980 5517228 22.73 11.06 25.79 2331 3300 1238.71
82 tai60a∗ 7205962 6326344 7895180 22.06 9.13 26.03 3799 5100 4939.96
83 tai64c 1855928 1811354 1887500 4.12 1.69 38.79 800 2400 1461.00
84 wil50∗ 48816 48126 50834 5.47 4.05 9.37 5384 11000 2971.40

and esc families in QAPLIB. Figure 1 below illustrates the relative gaps arising from rPRSM and
C-SDP. The numerics used in Figure 1 can be found in [7, Table 3-4]. The horizontal axis indicates
the instance name on QAPLIB whereas the vertical axis indicates the relative gap8. Figure 1
illustrates that rPRSM yields much stronger relative gaps than C-SDP.

8We selected the best result given in [7, Table3, Table 4] for different parameters. We point out that [7] used a
different formula for the gap computation. In this paper, we recomputed the relative gaps using (4.1) for a proper
comparison. [7] used similar approach for upper bounds as in our paper, that is, the projection onto permutation
matrices using [6, 37].
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Figure 1: Relative Gap for rPRSM and C-SDP

Comparison to F2-RLT2-DA([12]) Date and Nagi [12] propose F2-RLT2-DA, a lineariza-
tion technique-based parallel algorithm (GPU-based) for obtaining lower bounds via Lagrangian
relaxation. Figure 2(a) illustrates the comparisons on lower bound gap 9 using rPRSM and F2-
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Figure 2: Numerical Comparison for rPRSM and F2-RLT2-DA

RLT2-DA. It shows that both rPRSM and F2-RLT2-DA output competitive lower bounds to the
best known feasible values for QAP. Figure 2(b) illustrates the comparisons on the running time 10

in seconds using rPRSM and F2-RLT2-DA. We observe that the running time of F2-RLT2-DA
is much longer than the running time of rPRSM; F2-RLT2-DA requires at least 10 times longer
than rPRSM. Furthermore, from Figure 2 we observe that even though the two methods give
similar lower bounds to QAP, rPRSM is less time-consuming even considering the differences in
the hardware11.

5 Conclusion

In this paper we introduce a strengthened splitting method for solving the facially reduced DNN
relaxation for the QAP. That is, given constraints that are difficult to engage simultaneously, we

9We compute the lower bound gap by 100 ∗ (p∗ − l)/p∗%, where p∗ is the best known feasible value to QAP and
l is the lower bound.

10The running time for F2-RLT2-DA is obtained by using the average time per iteration presented in [12] multiplied
by 2000 as F2-RLT2-DA runs the algorithm for 2000 iterations. The running time for rPRSM is drawn from
Tables 4.1 to 4.3.

11F2-RLT2-DA was coded in C++ and CUDA C programming languages and deployed on the Blue Waters Super-
computing facility at the University of Illinois at Urbana-Champaign. Each processing element consists of an AMD
Interlagos model 6276 CPU with eight cores, 2.3 GHz clock speed, and 32 GB memory connected to an NVIDIA
GK110 “Kepler” K20X GPU with 2,688 processor cores and 6 GB memory.
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distribute the constraints into two simpler subproblems to solve them efficiently. In addition, we
provide a straightforward derivation of facial reduction and the gangster constraints via a direct
lifting. In our strengthened model and algorithm, we also incorporate redundant constraints to the
model that are not redundant in the subproblems arising from the splitting; more specifically, the
trace constraint in the R-subproblem and the projection onto the set of doubly stochastic matrices
in the Y -subproblem. We also exploit the set of dual optimal multipliers and provide customized
dual updates in the algorithm, which leads a new strategy for strengthening the lower bounds.
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