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The new book by John Nazareth is a delightful novel
treatise in Optimization and Equation Solving. In
particular, this new book deals with the interior-point
revolution that has changed the way optimizers look at
optimization problems. (See e.g. [11] and the details
below.) Nazareth has written an excellent book that
includes both introductory and advanced topics. It provides
a description of many of the techniques in this area. In
addition, the book is sprinkled with beautiful analogies and
insights. These insights make this book an interesting read
and a learning experience for both the novice and the
expert. (I will outline some of these enjoyable/novel
insights below.) The book is based on Nazareth�s extensive
experience and publications in optimization and equation
solving. 

Consider the (differentiable) nonlinear programming
model, CCP; 

minimize �(x)

subject to H(x) # 0 ( 0 m )

(NLP) G(x) 0 ( 0 p )

x 0 n,

i.e. the minimization of the function � subject to m equality
constraints hi = 0, i = 1,�,m and and p inequality
constraints gj # 0, j = 1,�,p. This general model includes:
if there are no constraints, then we get the unconstrained
minimization model, UM; if there are no inequality
constraints, we get the nonlinear equality-constrained
programming model, NECP; if the equality constraints are
linear and the inequality constraints convex, we get the
convex-constrained programming model, CCP; etc...
Nazareth includes: nonlinear least-squares, NLSQ;
nonlinear equations, NEQ; linear convex-constrained,
LCCP; and the classical linear programming problem, LP.
In particular, the case NEQ is treated as a special case of
NLP with an unspecified objective function, rather than an
unconstrained minimization problem, e.g. sum of squares. 

The early years following the introduction of the Simplex
Method for LP in 1948 (e.g. [3]), i.e. the Dantzig modeling-
and-algorithmic revolution, was characterized by a
watershed between LP and NLP. The enormous prominence
of LP was due in great part to the success of the simplex
method. Whereas, the world being nonlinear, NLP provides
better models in general, [4]. However, the introduction of
primal-dual interior-point methods, for both LP and NLP,
following the Karmarkar revolution, has shown that �The
great watershed in optimization isn�t between linearity and
nonlinearity but convexity and nonconvexity�, [9]. In
addition, this revolution has brought to light the importance
and centrality of Newton�s method. 

Nazareth concentrates on UM, NEQ, one-dimensional
problems and LP and the algorithms used to solve them.
Several themes are followed throughout the book.
Comparisons are made between the model approach with
Newton�s method and the variable metric approach in the
spirit of Cauchy. Arguments are presented to illustrate the
flaws in a least squares approach in comparison to the
homotopy approach followed in the modern interior-point
methods. In addition, comparisons are made to illustrate
the difference between algorithmic versus implementable
methods. 

The popular geometric view for UM is that of a marble on
a mountain rolling downhill to some minimizing point.
However, as Nazareth points out: �this ignores a central
tenet of algorithmic optimization, namely, that the
acquisition of information at any point x incurs a
significant, nonzero cost. � Thus, a much better metaphor,
�, is that of a small boat floating on an opaque lake that
entirely covers the landscape.� Thus experiments (costly)



have to be made to estimate the depth/slope/curvature,
whereas the marble samples these continuously at no
expense. 

Algorithms for UM are based on either the Newton (model
based) or Cauchy (metric based) complementary
perspectives. At the current estimate of the minimum, xk, a
direction finding problem, DfP, is solved to find a new
improved point xk+1. For Newton�s method, one solves the
so-called trust region subproblem, TRS, or quadratic model 

minimize gk
T (x � xk) + ½ (x � xk)T Hk (x � xk)

(TRS)
subject to || (x � xk) || D+ # δk ,

where gk is the gradient, Hk is an approximation of the
Hessian (both at xk), and D+ scales the norm, i.e. the
objective function is replaced by a (local) quadratic
approximation and we restrict to the region where we trust
the model. The optimal solution (approximated) is usually
used as the new point xk + 1, or a line search is done in the
direction xk + 1 � xk. These methods have proven to be
robust and efficient and they can solve large scale
problems, e.g. [8,2]. 

A simple algorithm for UM is: Cauchy�s steepest descent
method which uses the negative gradient as a search
direction to find a new point xk + 1. Variable metric methods
change the geometry by changing the metric/norm under
consideration using information based on curvature
considerations. This leads to the classical quasi-Newton
methods, e.g. BFGS and DFP methods or updates. In these
methods, first order (gradient) information is used to build
up second order curvature information. 

There is an ongoing debate on whether these methods are
still needed following the introduction of automatic
differentiation, see e.g. [1] and ADIFOR with URL:
www.cs.rice.edu/~ adifor/. 

Nazareth includes details on which choices of trust regions
and Newton-Cauchy methods to chose in different settings. 

The interior-point revolution has emphasized the
importance of using Newton�s method and solving a system
of nonlinear equations based on the optimality conditions
of an optimization problem. Nazareth presents two
opposing views for solving NEQ, e.g. H(x) = 0, H :n → n.
Applying Newton�s method directly is equivalent to
applying the Gauss-Newton method, i.e. minimize the sum
of squares min || H (x) ||2 using a truncated quadratic model.
However, this can lead to local minima which are not roots
of H(x). Nazareth calls this approach inherently flawed.
Another approach uses homotopy or path-following to
solve a parameterized problem that converges to a root as
the parameter is varied. (This approach is the basis behind

the successful modern primal-dual interior-point methods.) 

Solving the one-dimensional root problem h(x) = 0 can be
transformed using a potential function, i.e. we can integrate
and find a function whose minimum coincides with h(x) =
0. However, this is not true for higher dimensions, since the
Jacobian of h will not be symmetric. Thus, Nazareth makes
the case that one-dimensional root finding is not the correct
paradigm to lead to higher dimensional root finding. Rather
a nonlinear least squares approach should be used. This
leads to conjugate gradient methods for minimization.
Included are discussions on the simplex and Nelder-Mead
methods for nondifferentiable minimization. 

As it was for the first revolution (led by Dantzig), the
recent interior-point revolution (started by Karmarkar)
originally focused on LP. Karmarkar�s basic idea was to
start at a central interior point of the feasible set and
construct an ellipse around it within the feasible set.
Optimizing the linear function over this ellipse is easy, thus
yielding an improved point. Repeating this process can
result in getting stuck near the boundary, as the new ellipse
will have to be small. Therefore, the problem is rescaled so
that the point is central again before constructing the
ellipse. A potential function is used to ensure polynomial
time convergence. 

However, there have not been any practical numerical
implementations of Karmarkar�s original approach.
(Connections between Karmarkar�s approach and an
implementable version called the affine scaling method have
been made, see [5,6]). A breakthrough came when an
equivalence was made with the classical log-barrier interior-
point methods, [7] for a special choice of barrier parameters.
This led to the introduction of the elegant primal-dual
interior-point methods. These methods can be derived using
the primal or dual log-barrier problem. They consist in
applying Newton�s method to the optimality conditions
consisting of: (i) dual feasibility; (ii) primal feasibility; (iii)
complementary slackness. Nazareth�s preference for these
methods is to focus on potential reduction and affine scaling.
He includes a careful description of the path-following
approach with the Mehrotra predictor-corrector
modification. This builds on his previous work in the book
on path-following. He also includes a chapter introducing
the connection of log-barrier methods. 

There are many excellent papers and books written
describing the current interior-point revolution. Three
recent books are [10,12,13]. 

The area of Optimization has reached a certain maturity.
Problems of complexity/size undreamed of fifteen years
ago are now solved as a matter of course. As stated by
many numerical analysts: �I would rather be using today�s
theory and yesterday�s computer than the reverse�.



Nazareth has written a book that is both readable and
covers many of the important new developments in
Optimization. 
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