Portfolio Selection Under Nonsmooth Convex

Transaction Costs

Marina Potaptchik

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2006

(©Marina Potaptchik 2006



I hereby declare that I am the sole author of this thesis. This is the true copy

of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11



Abstract

We consider a portfolio selection problem in the presence of transaction costs.
Transaction costs on each asset are assumed to be a convex function of the amount
sold or bought. This function can be nondifferentiable in a finite number of points.
The objective function of this problem is a sum of a convex twice differentiable
function and a separable convex nondifferentiable function. We first consider the
problem in the presence of linear constraints and later generalize the results to the

case when the constraints are given by the convex piece-wise linear functions.

Due to the special structure, this problem can be replaced by an equivalent
differentiable problem in a higher dimension. It’s main drawback is efficiency since

the higher dimensional problem is computationally expensive to solve.

We propose several alternative ways to solve this problem which do not require
introducing new variables or constraints. We derive the optimality conditions for
this problem using subdifferentials. First, we generalize an active set method to
this class of problems. We solve the problem by considering a sequence of equality
constrained subproblems, each subproblem having a twice differentiable objective
function. Information gathered at each step is used to construct the subproblem
for the next step. We also show how the nonsmoothness can be handled efficiently
by using spline approximations. The problem is then solved using a primal-dual

interior-point method.

If a higher accuracy is needed, we do a crossover to an active set method.
Our numerical tests show that we can solve large scale problems efficiently and

accurately.

111



Acknowledgements

It i1s my great pleasure to thank here my thesis advisor Professor Michael Best
for his constant encouragement and support without which this work would have
hardly been done. Mike has given me enormous freedom to pursue my own interests
while at the same time providing just the right amount of guidance when I needed
it.

I have benefited a lot from various discussions with Professor Phelim Boyle, to

whom I also extend my sincerest thanks.

I also would like to thank the Department of Combinatorics and Optimization
at the University of Waterloo for providing a stimulating and encouraging research

environment.

Special thanks to Professors Levent Tuncel and Henry Wolkowicz for many

enlightening research sessions.

I would like to thank Professors Michael Best, Katta Murty, Phelim Boyle,
Henry Wolkowicz and Levent Tuncel for serving on my examining committee. Their

comments and suggestions are appreciated.

I am grateful to the Natural Science and Engineering Research Council of
Canada, the Government of Ontario, the University of Waterloo and my super-

visor for their financial support.

My most sincere thanks to my husband Alex for his help and support.

v



Contents

Introduction

1.1 Problem Definition . . . . .. .. .. ...
1.2 Overview. . . . . . . o e e
1.3 Outline of the Thesis . . . . . .. .. ... ... ... .. ... ..

The Active Set Algorithm

2.1 Problem Formulation . . . . . ... ... .. ... ..........
2.2 Duality and Optimality . . . . . . . ... .. .
2.3 Algorithm 1 . . . . . ..o

Piece-wise Linear Inequality Constraints

3.1 Optimality Conditions . . . . . . . ... .. ... .. ...
3.2 Algorithm 2 . . . . . ..
3.3 Termination of Algorithm 2 . . . .. . ... .. ... ... .....
3.4 Modified Algorithm 2 . . . . . .. ...
3.5 Degeneracy . . . . . ...

15

16

16

17

20

35



+

3.6 Constraintson ™, 27 . . . . . ... L L

4 Interior-point Method
4.1 Smoothing via Splines . . . . . . ... oL Lo
4.2 Interior Point Method for Smooth Approximations. . . . . . .. ..
4.3 Quadratic and Cubic Splines . . . . . . . .. ... . L.
4.4  Sensitivity Analysis . . . . ..o
4.5 Smooth Formulations via Lifting . . . . . ... ... ... ... ...
4.6 Local Lifting. . . . . . . . ...

4.7 Probability Analysis for Number of Break Points. . . . . . . .. ..

5 Computational Experiments
5.1 Active Set Algorithm . . . . . .. ... L
5.2  Number of break points M; Spline Neighborhood e . . . . . . . ..
5.3 Expected Number of Breakpoints . . . . .. . ... ... ... ...
5.4 Crossover . . . . . . .o e
5.5 Linear System Solvers . . . . . . . ... ... ... L.

5.6 Experiments with Sparse Data . . . . . . .. ... . ... ... ...

6 Conclusion

A Equivalent Problems

B Optimality Conditions for the Subproblems

vi

98

101

104

107

109

110

117

127

129

136



C Linear Independence 143

Bibliography 145

Vil



List of Tables

5.1

5.2

3.3

0.4

3.5

3.6

5.7

3.8

3.9

CPU times for Algorithm 2, CPLEX and MOSEK, M=3. . . . . .. 102
CPU times for Algorithm 2 and CPLEX, warm start. . . . . .. .. 103
CPU times for Algorithm 2 and CPLEX, warm start, n=1000, m=1,

CPU time (iterations) for MATLAB IPM ; n = 1000, m = 500. . . . 105

CPU time (iterations) for MATLAB IPM ; n = 1000, m = 500, M =
101, e=0.0001. . . . . . .. 107

Number (percentage) of coordinates of the optimal solution at a

breakpoint, n=400, m=800. . . . .. .. .. ... .. ... ... .. 108

Number(percentage) of coordinates of the optimal solution at a break-

point in each subgroup, n=400, m=800, Ap=Ad. . . . . .. .. .. 108

CPU time (iterations) for Crossover and MOSEK, n=1000, m=>500,
M=101, e=0.0001, Data Type 1. . . . . . . . ... .. .. ... ... 111

CPU time (iterations) for Crossover with purifiction step and MOSEK,
n=1000, m=500, M=101, €=0.0001, Data Type 2. . . . . . ... .. 112

5.10 MATLAB CPU times for different linear system solvers; n=1000,m=500114

Viil



5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

MATLAB CPU times for different linear system solvers; n=3000. . 115

MATLAB CPU times for different linear system solvers; block-diagonal
G, blocks: 200 x 200, 10% dense; m=200; upper and lower bounds. 116

MATLAB and MOSEK CPU time (iterations) for different values of
M; n=5000, G 0.5% dense; m=300, A 1% dense. . . . . . ... ... 118

MATLAB and MOSEK CPU time (iterations) for different values of
n: G has 20 non-zeros per row; m=300, A 1% dense; M=25. . . . . 120

MATLAB and MOSEK CPU time (iterations) for different values of
n: G is 0.5% dense; m=300, A 1% dense; M=25.. . . . . .. .. .. 122

MATLAB and MOSEK CPU time (iterations) for different values of
M: block-diagonal G, 45 blocks 200 x 200, 10% dense; m=200, A

10% dense; upper and lower bounds. . . . . ... ... ... .... 123

MATLAB and MOSEK CPU time (iterations) for different number
of blocks: block-diagonal G, blocks: 200 x 200, 10% dense; m=200,
A 10% dense; upper and lower bounds, M=25. . . . . .. .. .. .. 125

MATLAB and MOSEK CPU time (iterations) for some large-scale

problems. . . . ... 125

1X



List of Figures

1.1

1.2

2.1

3.1

5.1

5.2

3.3

0.4

3.5

Transaction costs functions fi(z1) and fa(xg). . . . . . . .. . . .. 4
An example of a transaction cost function. . . . . . ... ... 6
Progress of Algorithm 1 in Solving Example 2.1. . . . . . . .. . .. 34
Progress of Modified Algorithm 2 in Solving Example 3.1.. . . . . . 69
CPU time for MATLAB IPM ; n = 1000, m = 500, cubic spline. . . 106
MATLAB and MOSEK CPU time (iterations) for different values of

M; n=5000, G 0.5% dense; m=300, A 1% dense. . . . . . ... ... 119

MATLAB and MOSEK CPU time (iterations) for different values of
n: G has 20 non-zeros per row; m=300, A 1% dense; M=25. . . .. 121

MATLAB and MOSEK CPU time (iterations) for different values of
M: block-diagonal G, 45 blocks 200 x 200, 10% dense; m=200, A

10% dense; upper and lower bounds. . . . . ... ... ... .... 124

MATLAB and MOSEK CPU time (iterations) for different values of
n: block-diagonal G, blocks: 200 x 200, 10% dense; m=200, A 10%

dense; upper and lower bounds, M=25. . . . . . .. ... ... ... 126



Chapter 1

Introduction

1.1 Problem Definition

We consider the problem of selecting a portfolio for an investor in an optimal way.

There are many ways to define optimality for this model.

One of the earliest and most popular models is the mean-variance model pro-
posed by Markowitz [41]. It is assumed that an investor wants to maximize the ex-
pected return of the portfolio while minimizing the variance. The balance between

these two conflicting goals is chosen depending on the investor’s risk tolerance.

Another, more general, approach to selecting an optimal portfolio 1s maximizing
an expected utility of portfolio return. The utility function of an investor measures
the satisfaction associated with a particular level of wealth. The investor’s aversion
to risk implies that the utility function is concave. This function is also assumed

to be twice differentiable.

The mean variance analysis is consistent with the expected utility maximization

under some assumptions.



Assume that n assets are available. We denote by = = (z,2y,...,7,)T the
vector of holdings in each asset. We denote by R = (Ry, Ry, ..., R,)T the rates of

return on these assets. Note that R is a random variable.

Under the mean-variance model, the investor acts to maximize the function

1
fz)=tu"z — §SI}TE$L‘,
where p is the vector of the expected returns of the assets, ¥ is a covariance matrix

and t is a fixed scalar parameter.

Under the expected utility model, the investor acts to maximize the expectation
of his utility function of the final wealth U(wo(1 + RTx)), where wy denotes the
initial wealth of the investor. One commonly used utility function is the power

utility function
1
Ulwo(1 + RTz)) = —=(wo(1 + RTz))",
v

where 0 < v < 1.

See [30] for more details on the expected utility approach to portfolio optimiza-

tion.

In practice, every time an investor buys or sells some of his holdings, he incurs
a certain extra cost, called the transaction cost. Two major sources of transaction

costs are brokerage fees and market impact costs.

The broker’s commission rates are often decreasing in the amount of trade, and
therefore the transaction costs resulting from these fees are modeled by concave
functions. However, this is only the case when the amounts of transactions are
not very high and should be taken into account by smaller investors. If the trade

volume is large enough, the commissions can be modeled by a linear function.



The market impact costs are the changes in the price of the assets that result
from large amounts of these assets being bought or sold: the price is going up if
someone is buying large quantities of an asset, and the price is going down if a lot
of shares of this asset are for sale. The market impact costs are normally modeled

by convex functions. The piece-wise linear function is the most common example.

So, from the point of view of a large institutional investor, the transaction costs

can be adequately modeled by a convex function.

We assume that vector & = (£, %y, ..., %) represents the current holdings of

assets. The cost associated with changing the holdings in asset : from z; to z; will

be denoted by fi(z;).

For most practical purposes, it is safe to assume that transaction costs on each
asset depend only on the amount of the holdings in this asset purchased or sold and
do not depend on the amount of transactions in other assets. Therefore, we model
the transaction costs by a separable function of the amount sold or bought, i.e. the

cost associated with changing the portfolio from 7 to z is f(z) = > 1, fi(z:).

Let us consider a simple example. Suppose only 2 assets are available (n = 2)
and suppose that at the present moment we have all the money invested in asset
number 1. Our current holdings are represented by vector # = (1,0)T. Let the

transaction costs be equal to 1% of the amount bought or sold for each asset:

0.01(z; — 4), if x; >4,

0.01(# — x;), if = <4,
for: =1,2.

Note that the functions fi(x1) and fy(z3) are nondifferentiable at #; and o,

respectively. (See Figure 1.1.)



f1(1171) f2($2)

01z, — 0.01 —0.01 01
—0.01z; + 0.01 \0-01’/00 0.01z, | 0.01lzy

0 1 z1 0 T2

Figure 1.1: Transaction costs functions fi(z;) and fi(z).

In what follows, we assume the following model for the transaction costs. The
costs are given by fif(x; —#;) if an investor is buying up to dj; units of asset 7. If the
investor needs more than d} but less than df, he pays fif(df;) in transaction costs
for the first d;'i units and f:(:z:, —T; — d;'i) for the amount that exceeds dji. If an
investor needs more than d}, units of the i-th asset, he has to pay a different rate for
the amount exceeding d;, etc. Suppose M;" is the number of intervals corresponding
to the different transaction rates for buying asset 7. On the portion of the purchase

If an

exceeding d;wjf the transaction costs are equal to flgﬁ (2 — 2 — dej)
investor sells some amount of asset ¢, transaction costs have similar structure. The
investor pays fi(d}) in transaction costs for the first d} units, f7(—z; + 2; — d})
for the amount that exceeds d} but less than d;,, etc. The number of intervals
corresponding to the different transaction rates for selling asset : is denoted by
M.

If the holding in the asset number ¢ has not changed, i.e. x; = %;, the transaction

costs associated with this asset should be equal to zero. Therefore f;(z) should

satisfy the conditions
fi(d;) =0. (1.1)

; : + _ - _q gt g _
For consistency of notation we also set dj; = d;; = 0, dl.MiJr+1 = all.M'__H = +o00.

z



More formally, the costs associated with changing the holdings in asset ¢ from z;

to z; are given by the following function

fz;(_xl —I_':;’]’ zl) + Z] lfm 1( 1]) if Ty _‘Il € [ dzl—}—l?_di_l]?
for some [ € {0,.., M},
= d—d) + L fEdE), ifai- i€ [dfz,dfm]
for some [ € {0,.., M7}

The above notation comes naturally from the statement of the problem, but we
can simplify it for the purpose of formulating the solution algorithm. Let M; =
Mf + M; 41, so that M; is the total number of end points of the intervals (“break
points”). We further denote

dil:;?;i—d,_( M —i41) [=0,..., M +1,
d,l—:x,—l—d(l M++1) l:MZ»_—I-Q,...,M,'—I-l,
and
fa(i) = fp oy (~wi+ 2 = d; )+Z fio(d), 1=10,..., M7,

. (1—M; _
falz:) = fz'J(rl—Mjf)(mi ST le—Mﬁ)) + Ed:l go(df), 1= M7 41, M;.

Thus we can rewrite the cost functions in the following more compact way:

fio(zs), i z; <dg,
filmi) = falz), if ;€ [dy,dap], 1=1,.., M, (1.2)
fingy(z4), iz > ding,.

We assume that f;; are twice differentiable on (dj, dii1+1), fio are twice differentiable
on (—oo,d;1) and fin, are twice differentiable on (d;n,, +00) for each @ = 1,..,n,

[ =0,.., M, and in addition that (1.1) are satisfied. Figure 1.2 gives an example of

such a function.



diq dio diz=2%; d;4 Z;

Figure 1.2: An example of a transaction cost function.

The investor acts to maximize an expected utility function of his holdings in
these assets, while taking into account the transaction costs. Note that maximiz-
ing a utility function is equivalent to minimizing the negative of it. So we will
model the objective of maximizing the expected utility of the investor in presence
of transaction costs by

min  F(z)+ 320 fi(wi),
s.t.  Ax <b,

(1.3)

where F(z) is the negative utility function and Az < b is a set of linear constraints.

1.2 Overview

Robust Optimization

In this thesis we concentrate on the linear and piece-wise liner constraints. This
is not always the case in practice. Constraints like bounds on the variance of the
return, and bounds on different shortfall probabilities require a different approach,

typically these constraints are modeled by quadratic functions.



Another important generalizations of the portfolio optimization problem is ac-
counting for the uncertainty in the data. If the parameters of the problem are not
specified exactly but they are only known to belong to a given uncertainty set, such

optimization problem is called a Robust Optimization Problem.

Consider, for example, the robust counterpart of the linearly constrained mean-
variance portfolio problem

min tulx — %;r:TZ:c,

st. alz <b, i=1,...,m, (1.4)
pueM, XeS, a; € A;, be B.

where M, A, C R, B C R™ and § C R"*" define the range of uncertainty for

the estimates of the data. These sets are typically represented by box constraints,

ellipsoidal or N-ellipsoidal constraints. Under this assumption, the robust problem

(1.4) can be solved efficiently. For more details on the robust optimization and

robust portfolio problems see [3], [25], [37], [38].

In the case when problem (1.4) has a constant covariance matrix ¥ (and possibly
additional quadratic constraints), this problem can be represented by a Second-

Order Cone Programming Problem (SOCP)

min ¢y,
o (1.5)
s.t. ||A,y —I-b,” gcffy —I-é,', izl,...,M.

where || || denotes the Euclidean norm.

If covariance matrix ¥ € § is not a constant matrix, it is critical that every ele-
ment of the set § must be positive semidefinite, since they must be valid covariance

matrices. In this case problem (1.4) becomes a Semi-definite Program (SDP).

Both SDPs and SOCPs have been studied extencivelly in recent years and ef-

ficient interior-point algorithms are available for solving these problems. See [43],

7



[56], [44].
Nondifferentiable Optimization

A large number of methods are available for solving nondifferentiable optimiza-
tion problems. In this section, we give a brief overview of the most important

classes of methods. For a more detailed review see Lemaréchal [35], Bertsekas [4],

or the book by Kiwiel [32].

The subgradient method was introduced and extensively developed by Shor, see
[50], [51]. This method generates a sequence of feasible points, using a formula
similar to the one of the gradient or gradient projection method, except that a
subgradient is used in place of gradient. Unlike in the differentiable case, most
methods compute only one element of the subdifferential at the point of iteration.
For more details in the convex case, see Hiriart-Urruty and Lemaréchal [29], while
for the locally Lipschitz case a good overview is Kiwiel [32]. Burke et al. [13] provide
an interesting approach via the random sampling of gradients at nearbypoints. For
a survey on different ways of generalizing the notion of derivative to the nonsmooth

case and it’s use in optimization see Dutta [20].

The cutting plane method is due independently to Cheney and Goldstein [14]
and Kelley [31]. At each iteration of this method, the objective function of the
problem is replaced by a polyhedral approximation, constructed using the points
generated so far and their subgradients. One of the drawbacks of this method is
that it can take large steps away from the optimum even when a good initial point

1s given.

A more sophisticated versions of this method are proximal cutting plane method
or bundle method. The main idea here is to add to the polyhedral objective function

a quadratic penalty term, which makes the method more stable. For analysis of this



method see Lemaréchal [35], Lemaréchal, Strodiot, Bihain,[36] and Makela [40].

The central cutting plane method considers the same polyhedral approximation
as the cutting plane method, but instead of finding a minimum of this function, it
generates a so-called “central pair”. This method is related to the interior point
methods and benefits from advances in this area. The method was introduced by

Elzinga and Moore [21]. For a survey see Goffin and Vial [26].

All the methods mentioned above are designed to handle a wide set of nondif-
ferentiable problems. In some problems, the nondifferentiability has a structure
that makes them amenable to a differentiable method, see Lemaréchal [35] for such

examples. Our problem falls into this category.

Because of the special structure of the nondifferentiable part of the objective

function, problem (1.3) can be converted to a smooth one by introducing new

variables and constraints into the problem. For example, for each ¢« = 1,...,n,
we can introduce a new set of variables z7 where [ = 0,..., M and zj where
[=0,...,M” .Then problem (1.3) can be rewritten in the form
min  F(x)+ Y0, Sty £ () + Xiy Sy £ (23)
s.it.  Ax <b,
xi—z;\i’z $$+E;\i’; xy; =, fori=0,..,n, (1.6)
0<af < dz—'ll——l—l? fori =1,...n, [=0,.., M,

0<uz; <dy,, fori=1,...,n,1=0,.., M.
The proof of the equivalence is given in Lemma A.1.
The problem (1.6) is a linearly constrained, convex and twice differentiable
problem. Active set methods or interior point methods can be used to solve it.

This is the most straightforward and traditional approach to solving this problem.

It’s most severe drawback is that the higher dimensional problem is computationally



expensive to solve.

In some cases one can develop an algorithm which is specially tailored for solving
(1.3) and does not require introducing new variables or constraints. A dual active
set algorithm for a special case of (1.3) is proposed in [33]. The very special structure
of the constraints in this case allowed to reformulate the dual in convenient way.
In [49], a simplex-type algorithm is proposed for solving (1.3) for the case when

objective function is separable and quadratic.

A special case of (1.6), when each of the functions f;(z) may not be differentiable
at only one point #;, was considered in [6]. The authors showed that it is possible
to eliminate the newly introduced variables from the optimality conditions and

derived a solution algorithm in terms of n-dimensional quantities.
Linear Equality Constrained Optimization

Consider the equality constrained problem

min 6(x)

s.t. Ax =0b.

(1.7)

where A is a matrix of order m X n and rank m, and 6 is a continuously differentiable
function. Subproblems of this type are important component of the algorithm

proposed in this thesis.

The first order necessary optimality conditions for this problem are

V(b(z)) =0,
Az =b.

(1.8)

If the objective function is convex, these conditions are also sufficient for optimality.
If z¢ is feasible for (1.7), any feasible solution for this problem has a form zq + s,

where As = 0. We can rearrange the columns of A so that A and s can be

10



partitioned into a basic and non-basic parts as [Ap, A,] and [sp, s,,], where A4, is a
square non-singular matrix of order m. Then s, = —Ab_lAnsn and we can introduce
a matrix S
—A; A,
L
Note that the problem (1.7) is equivalent to minimizing f(s,) = 8(xo + Ss,) over
Sn € R"™™ and the methods of unconstrained minimization can be applied to it.

The feasible search direction s is called a descent direction at xq if
V(o) sn = ((VO(20))S) s, = (VO(20))s < 0.
If the steepest descent method is used, the direction
s =—8ST(V8(x))T
defines the projected gradient method.

If the function @ is twice continuously differentiable, we denote by H(#(x))
the Hessian of #(z). Then Newton’s method can be applied to the unconstrained

problem, the direction s = S's,, is found from
(ST(HO(x0))S)sn = —ST(VO(x0))".

This defines the projected Hessian method. Quasi-Newton methods can also

be developed for this problem.
Active Set Methods

The method that we are proposing for solving (1.3) is closely related to the
active set method. This is a feasible direction method for the linearly constrained

problem

min 6(x)
(1.9)
s. bt oar <



where € R" and #(z) is a real valued continuously differentiable function. If x
is feasible for (1.9), the i-th constraint is said to be active at z if it holds as an
equality, i.e. a;x = b;. Let us denote by I(z) the index set of the constraints active
at a feasible point z:

I(z)={i | a;x = b;}.
If z is optimal for (1.9) then z is also optimal for the equality constrained problem

min 6(x)
(1.10)
s.t. ajx=0b;, i€ I(x).
If we knew the active set corresponding to the optimal solution z of (1.9), we

could solve the equality constrained problem (1.10) using one of the methods for

the equality constrained optimization discussed above, and = would be among the

solutions of (1.10).

In the active set method, a guess is built up over the steps, on the likely set of
active constraint indices at the optimum. This set is known as a working active set.
The working active set in the step j 4 1 is denoted by I?. The method is started

with a feasible point zg.

Given an iterate 27, we try to find a search direction s’ such that
H(JZj + sj) < 9(1:’) and a;s’ = 0, € I, (1.11)
We have two possibilities:
(a) Vector s’ satisfying (1.11) is found. Then the next point is given by
P = g 4 i

where the step size o7 is chosen to guarantee the feasibility of z/*! and suffi-
cient decrease in the objective function. New indices might be added to the

working active set at this step.

12



(b) Vector x’ is stationary for the problem (1.10). If the first order optimality

conditions for (1.9) are also satisfied by z7, algorithm terminates with z7.

Otherwise, one of the indices is deleted from the working active set. Under
the standard nondegeneracy assumptions, the new subproblem is guaranteed

to have a solution with a strictly smaller objective function value.

For more details see [42].

In the case when the objective function is convex quadratic this algorithm ter-
minates with an optimal solution after a finite number of iterations. The algorithm

generally performs best when a good initial point is available.
Interior Point Methods

The main idea of the interior point methods is to add to the objective function
6(z) a barrier function B(z). The latter should be continuous on the interior of
the feasible set and should go to infinity if at least one of the inequality constraints

becomes active.

The method is defined by introducing a parameter sequence {u*} with
0<pft <k k=0,1,..., ¥ = 0.
At the k-th iteration
2% = argmin{f(z) — *B(z)}, k=0,1,....

It can be shown that it is sufficient to solve each subproblem approximately. This
fact makes the interior point methods much more efficient. For more details on this

approach see [24].

13



An alternative, increasingly popular approach, is to use primal-dual method,
where primal variables x dual variable u and slack variables s are treated as inde-

pendent variables. The optimality conditions for (1.3) are modified as follows

—Vl(z) = ATu, u >0,
Ar+s=10, s> 0, (1.12)
Sy = py, t=1,...,m,

and Newton’s method is applied to system (1.12). Thus, given a current iterate

(z,u,s), satisfying (u, s) > 0, the primal-dual steps (Az, Au, As) are obtained from

H(6(x)) AT 0 Az -7
A0 Au | = —r , (1.13)
0 S U As —Us + ope

where

U = diag(u1, ..., Um), S = diag(si,...,Sm).
e=(1,....,1)", o €0,1].
The above system can be rewritten in a more compact way
[G+Q+ AT(ST'UD)A|Azx = —r. + AT(ST'U)[—ry + s —ouU™'e],  (1.14)

using

Au = S_lU[AA:(; +ry— s+ O'ILLU_le]

and

As=—-U"'SAu—s+ J,uU_le.

14



1.3 OQutline of the Thesis

The main contribution of the thesis is two efficient algorithms for solving problem

(1.3).

In Chapter 2 we derive the optimality conditions for (1.3) using subdifferen-
tials. This allows us to develop a computational algorithm (Algorithm 1) which is
a generalization of the active set method. This method solves the problem by con-
sidering a sequence of differentiable equality constrained subproblems. Information

gathered at each iteration is used to construct the next one.

In Chapter 3 we generalize the results of Chapter 2 to the case when the con-
strains are given by piece-wise linear functions. We derive the optimality conditions
and the solution algorithm (Algorithm 2) for this problem. Finally, we show that
under some nondegeneracy assumptions Algorithm 2 terminates in a finite number

of steps (Theorem 3.3).

In Chapter 4 we show how spline approximation can be used to transform the
problem (1.3) into a form amenable to the interior point methods. We also establish
the continuity of the spline approximation which means that (1.3) can be solved

with any desired accuracy by selecting sufficiently accurate spline approximations.

Computational results and concluding remarks are given in Chapters 5 and 6

respectively.

15



Chapter 2

The Active Set Algorithm

2.1 Problem Formulation

We consider the problem of minimization of the function f(x) subject to linear

inequality constraints.

P) min  f(x) 2.1)
s.t.  Ax <b,

where A is an m X n-matrix and b € R™. Let us denote the rows of the matrix A

by (a*)T, k =1,...,m. The objective function f(z) is defined as follows:
flz)=F(x)+>_ fi(z:). (2.2)
i=1
We require the following assumption to be satisfied throughout the thesis.

Assumption 2.1

1. F(x) is a convex continuously differentiable function;

16



2. fi,1=1,...,n are convezx functions of the following form:

3 if Z; S dih

alz), i dy <z <dyp, 1=1,..., M, (2.3)

o(l’i)
1)

(i

3. fu are convexr continuously differentiable on (dj,dyy1) and have one-sided
derivtives at the ends of the intervls; fio are convex continuously differentiable
on (—oo,d;) and have left derivtives at d;1 ; fin, are convexr continuously
differentiable on (dia,,+00) and have right derivtives at din, for each 1 =

1,...,n,l:0,...,Mi.

Let the feasible region of the problem (2.1) be denoted by S; and, for each
x € R", let the set of active breakpoints be denoted by

E(z)={i:x;=djforsomel € {1,..,M;}}, N(z)={1,...,n}\E(z). (2.4)

2.2 Duality and Optimality

The Lagrangian dual of (P) is

maxmin L(z,u) := f(z) + u’ (Az — b).

u>0 =z

The inner-minimization is an unconstrained convex minimization problem. There-

fore, we can write down the Wolfe dual program

max L(x,u)
(D) st. 0€0,L(x,u), (2.5)
u >0,

17



where 0, L(x,u) denotes the subgradient of L, i.e.
0pL(z,u) ={peR": ¢"(y — 2) < L(y,u) — L(z,u), YyecR"}.
We can now state the well-known optimality conditions.

Theorem 2.1 A point x € R™ minimizes f over S if and only if the following
system holds

u>0, 0€0,L(x,u) dual feasibility
Ax <b primal feasibility

ul(Az —b) =0 complementary slackness.

To further simplify the optimality conditions, we use the following property of

subgradients:

Proposition 2.1 Let § = > " 60;, where 6; : R* — R are convez functions, i =

1,...,m. Then 88(z) is equal to the Minkowski sum
zm: 98;(z).
i=1
Proof. See [4]. |
Recall that
L(z,u):= F(z)+ En: fi(z;) + ul (Az — b).
i=1

Since the first and the last terms of this sum are differentiable, the subgradient is

equal to the gradient for these functions.

18



Therefore, for the Lagrangian L(z,u)

n

OL(x,u) = VF(z)+ 0D _ filx:)) + A u.

=1

It follows from the definition of f;(x;) that

df; .
dfz(j (l’,), if z; < djy,
dj“(fl?,’), if dy <ax; < dil—l—h = 1, ...,M,',

Ofi(xi)= ¢ ™

[dg;l(;w g’;i(;z:,)] if z,=dy, 1=1,...,M;

dfint, .
(figi‘jZ (Il)v if oz > diMI-

We can think of f; as a function from R” to R, defined as fi(z) = fi(z;). Then
0fi(x) = Ofi(wi)e;and Y20, fi(wi) = 320, fi(x). By Proposition 2.1, d(3_7, fi(wi))

is equal to the Minkowski sum >~ | 0f;(z;)e;. From the definition of the Minkowski

sum, the latter sum is equal to a direct product of df;(z;). Therefore,
0€dL(x,u)

if and only if, for every 1 = 1,...,n,

This allows us to reformulate the optimality conditions for (2.1).

Corollary 2.1 Let the function f be given by (2.2). A point x € R™ minimizes f

19



over S, if and only if there exists u € R™, v € RP©) such that

Ax < b,
(VF(2))i+ &

(2;) + (ATu); = 0, for all ©+ € N(x),
with z; € (dil7dil+1>7
(VF(2))i + L=t (da) + (ATw); + v = 0, for all i € E(x),

with z; = dj, (2.6)
0 < v; < Yi(dy) — L=t (dy), for all i € E(z),

with z; = djy,
u >0,
ul(Az — b) = 0.

2.3 Algorithm 1

In this section, we formulate an algorithm for the solution of the problem (2.1). As
always, we assume that the function f(z) is given by (2.2) and Assumption 2.1 is

satisfied.

Let z be feasible for the problem (2.1). Then the function D(z) = (Dy(x1),. .., Dn(z,))
given by
Di(z;) =11if z; € [di,di-1),

will be called the interval indicator function. In other words, if we subdivide the
domain of the function f(z) into n-dimensional blocks by the hyperplanes =, = dy,
I=1,...,M;,1=1,...,n then knowing D(z) is equivalent to knowing in which of

these n-dimensional blocks z is located.

The main idea behind the algorithm comes from the optimality conditions (2.6).

Suppose z* is the optimal solution of (2.1). If we guessed the correct active set I(z*),

20



set of breakpoints F(z*) and the interval indicator function D(z*), the problem

would be reduced to an equality constrained problem.

min f(z)
s.t. afz =bF ke l(x), (2.7)
x; = dy, 1 € E(z*), with [ = D(x}),.
Similarly to the active set method, we are going to search through a sequence
of sets to identify the likely set of active constraint indices I(z*), set E(z*) and the

interval indicator function D(z*) at the optimum.

We start with a point z° which is feasible for (2.1). We then choose a subset
I° C I(2°) of constraints active at z° and a subset E° C E(z°) of coordinates
of z° that are at break points, such that the vectors {a*, k € I, ¢;, 1 € E°} are
linearly independent. We also set D° = D(2°). We will refer to I°, E°, and D° as
a working active set, a working break point set, and a working interval indicator

function respectively.

For j > 1, the initial point in iteration j is z’, the feasible point obtained at
the end of iteration j — 1. We’ll denote the working active set in the iteration j
by I’, the working set of breakpoints by E’, and the working interval indicator
vector by D?. We will show how these I/, E/ and D’ are constructed when we give
a detailed description of the algorithm. The next feasible point will be selected
within the n-dimensional block defined by D?. Note that, the following conditions

will be satisfied at each iteration

I’ C I(z?), B’ C E(27),
{a*, k€ I’,e;, i € E?} are linearly independent,
Di(27) —1 < D? < Dy(a7).

21



The objective function in iteration j is defined by
Pla) = F@)+ 3 fips(ai).
i=1

As discussed in Appendix B, the objective function of the original problem coincides

with f7(z) on the n-dimensional block, corresponding to D’.

In iteration j, we are solving the equality constrained minimization problem
min f/(z)
s.t. dfz =0 ke D, (2.8)
zi=dy, i € B, with [ = D,

Let s7 be the search direction obtained at z7, i.e. y? = 2’ + s7 is feasible for (2.8)
and f/(y?) < f’(27). Note that (2.8) is a differentiable convex linearly constrained
problem. In many cases it can be solved in a finite number of steps. In such cases

we will select y’, which is optimal for (2.8). We have two possibilities to consider:

(a) A feasible descent direction s’ # 0 is found for (2.8) using, for example,

projected gradient or projected Hessian method, see section 1.2.

(b) Vector z’ satisfies the first order optimality conditions for (2.8) and therefore

no feasible descent direction can be found for this problem.

Let us consider case (a) first. Here we can perform a line search to minimize
fi(z? + 0s?) over o > 0. Let & be the optimal step size for this problem. Ideally,
we would like to take z/t' = 27 + s/ as the next approximation. However the
point 27 4+ s’ could be infeasible for the original problem or it could be outside of
the n-dimensional block defined by D’. In this case we want to find the value of
o such that 27 + os? is feasible, stays within the block and gives the best possible

objective function value under these conditions.

22



To do this we compute

bio — (q?o\T 7 b — (aF\T o0 . .
oo = b — (a®) @’ — min{L),x c kg I and (aF)Ts? > 0}, (2.9)

(ato)Ts7 (a*)Ts7
lelf%:mm{ L ;i¢E’andsf<0,l=Df}7 (2.10)

Sil Sl

Uz:M:min{M i ¢ E? and 5] > 0, Z:Dz]'}- (2.11)

In the above, 1g, 11, 23 are the indices for which the minima occur in the calculation

of 09,01, 0,, respectively. Let

= min{og, 01,02}

Qi

If no o9, o1 or oy were calculated, we set ¢ = +00. We determine the j-th step size
by

o’ = min{z, &}.
If 07 = 400 we conclude that the the problem is unbounded from below and stop.
Otherwise we set

xj+1 = :z:j + stj.
If 07 < &, we leave the working active set I7, the working set of breakpoints E’ and

the working interval indicator vector D’ unchanged, and proceed to the next step.

Now consider the case when 07/ = &. Clearly, one of the following conditions

must hold true: ¢ = g¢, ¢ = 01, or 0 = 03.

(i) If & = ¢ then all the indices ¢ which tie in the minimum of the definition of
oo join the active set I(x’*!); we choose one of them, say i and include it in

the working active set: I’*! = IV U {io}.

23



(ii) If & = oy then all the indices ¢ which tie in the minimum of the definition
of o join the set of breakpoints E(z7*'); we choose one of them, say ¢; and
include it in the working set of breakpoints: E’*! = F7 U {i;}. Note that

J+1 _ _ nit+l _ j+1
zi" = dj1, where | = DI = D;, (z7t1).

(iii) If & = oy then all the indices ¢ which tie in the minimum of the definition
of o5 join the set of breakpoints E(z’*!); we choose one of them, say i, and
include it in the working set of breakpoints: E?*! = E7U{i,}. We also update
the corresponding indicator function ijl = Df2 +1. Note that :L’Z;H = di 141,

where [ + 1 = ijl = D, (z7+1).

Finally, if there is a tie in the minimum of the definition of o, we only perform one

of the applicable steps (i)-(iii).

Now, let us consider case (b). Recall that in this case vector z/ satisfies the
first order optimality conditions for (2.8) and therefore no feasible descent direction

can be found for this problem.

For i € I’ let uf be the Lagrange multiplier corresponding to the constraint
alz = b; of (2.8). Ifi & I’ we set uf = 0. Similarly, for ¢« € E7 let /\g be the
Lagrange multiplier corresponding to the constraint z; = dy. In order to check if
the point 27 is optimal for the original problem, we need to calculate the following

values for each i € EV.

i _ 29)); — Har 3y (AT,
v] = ~(VF(a9)); = B=(ad) - (4Tw); 21

wf = (VF(xj)), + Zf_zif»(mj') + (ATuj>l. — _)\57

2

where [ = Df Ifuf > (0 foralli € I, vg > 0 and wf > ( for all i € B’ | we conclude
that the optimality conditions given by Corollary 2.1 are also satisfied by z’. The

algorithm terminates with the optimal solution 7.

24



Otherwise we calculate

g, = min{ul},
3L

NP
vk = minv]},

wy, = min{w] }
iCEJ
and let

u = min{ug,, Vg, , Wk, }-

Naturally, v must be equal to at least one of ug,, vg,, or wg,.

(i) If u = uy, then delete ky from the working active set: I'+! = [V — {ko};

(ii) If u = vy, then delete k; from the working set of breakpoints: B! = F7 —
{k1} and change Dijl = Dijl -1

(iii) If u = wy, then delete ky; from the working set of breakpoints: E/*! =
E7 — {ky}.

Again, if there is a tie in the minimum of the definition of u, we only perform one
of the applicable steps (i)-(iii). Note that updates associated with changing the
working active set are computationally more expensive than the ones associated
with the working set of breakpoints, so we do steps (ii) or (iii) in case of a tie. This

ends the description of case (b).

Remark 2.1 As a special case of Algorithm 1, one can derive a similar algorithm

for the unconstrained minimization of (2.2).

Remark 2.2 In order to simplify the notation we set dig = —oo, diar; 41 = +00 for
all v = 1,...,n. This allows us to reduce the number of special cases that have to be

considered.

25



Let us now summarize the algorithm for solving the linearly constrained problem

(2.1).

Algorithm 1

Model Problem

min  f(z)

where f(z) is defined by (2.2) and Assumption 2.1 is satisfied.
Initialization Begin with any z° € S.

For each i = 1,...,n define the working interval indicator DY = [ if

29 € [di, dirg1).

Chose an initial working set of breakpoints E? such that E° C E(2°) and the

vectors {a*, k € I° ¢;, 1 € E°} are linearly independent.
Set j = 0.
Step 1: Computation of Search Direction

Define the objective function f7 for the j-th subproblem
Filw) = F(2) + S s (20).

Stepl.1

Consider the equality constrained minimization problem

min f/(z)

s.t. (aF)Tz=0"ke D, (2.13)

zi=dy, i € B, with [ = D,

26



If z/ is a stationary point for (2.13), for all k € I take ui to be the Lagrange
multiplier for the constraint (a*)Tz = b*, for all i € E? take /\f to be the Lagrange

multiplier for the constraint z; = d; of (2.13), and proceed to Step 3.2.

Otherwise, find y’ such that it is feasible for (2.13) and f7(y’) < f7(x?). Set
s? =y’ — 27 and go to Step 2.

Step 2: Computation of the Step Size

Compute the smallest indices 71, 75 and 73 such that

io (0T j k_ ( k\T . j , ,
o= VO i [V g ana (7 >0} @y

(a®)Ts? (a*)Ts?
diyy — 2 dy — 2’ , : 4
oy = T :min{ L i ¢ B and ] <0, zzDg}, (2.15)
Sil Si
diyiy1 — ] ) digr — ;. j j j
oy = r = min r 1 Eand s} >0, [=D] ;. (2.16)
Sig Si

If none of og, oy nor oy were calculated, set ¢ = +00, otherwise set

o = min{oy, 01, 02}.

Perform a line search to minimize fj(iL’j + O'Sj) over 0 < o < &. Let o7 be the

optimal step length for this problem.

If 07 = 400, stop, the problem is unbounded from below. Otherwise, go to Step
3.1.

Step 3: Update
Step 3.1 Set
xj+1 = :z:j + stj.

27



If 07 <&, set Pt =17, Bt = B9, DIt = D7, j = 54+ 1 and go to Step 1.

Otherwise

(i) If 0 = og set P+ = [P U {ig}, BT = B/, D' = D7, j = j+1; go to
Step 1.

(ii) f 0 = oy set T = [/, B7* = B2 U {iy}, D't = D7, j = j+1; go to
Step 1.

(iii) If & = 0y set [**' = [4, Bi*1 = B U {iy} and DI = DI + 1, DI = D}
for all ¢ # 15, = 7 + 1; go to Step 1.

Step 3.2 Set

T =
For each i € E? calculate
i_ j dfa_1, ko
vl = —(VF(a)); = == (a]) = ) afuj, (2.17)
! keli
i ; dfi, ; k
w! = (VF(27)); + %(;r;i) + > afuy, (2.18)
! keli

where [ = Df
It ui >0 for all k € I, vf > 0 and wf > 0 for all € E’ , stop with optimal
solution 7.
Otherwise, calculate
Uk, = mingeri{ul},
Vg, = min,»eEj{vf},
Wy, = minieEj{wf}.
Set

u = min{ug,, Vg, , Wk, }-

28



(i) If u = uy, set 'Y = 7 —{ko}, B = E/, D’ = D7, j = j + 1; go to Step 1.

(if) If u = vy, set [7*' = [, B9+ = B9 — {k,} and D{*' = D] — 1, D!*' = D!
for all ¢ # k1, 7 = j + 1; go to Step 1.

(ili) If u = wy, set [P = [/, B+ = B — {k,}, D'*' = D7, j = j +1; go to
Step 1.

Example 2.1 Consider (2.1) with

F(z) = 2} + 25 — 2z, — 6y,

—02zx =02, if =< =2,
—0.1z , i 2 €e[-2,0],
filz) = .
0.1z , if x€0,2],
02z —0.2, if z>2,
and
0.1z —0.2, if =< =2,
0 , if oz e[-2,0],
falz) = .
0.1z , if x€[0,2],
02z —-0.2, if z=>2.

We solve the problem
min{ f(z) | z1 + z2 < 3},

where f(x) = F(x) + fi(21) + falza).

29



Initialization.

Choose zo = (0,0)7 to be the starting point. Set DY =3, D9 =3, I° = ), and
E° = {1,2}.

Iteration O.
Step 1. Set f° = F(x)+ 0.1z + 0.1z,.

Step 1.1. Solve the subproblem
min{ f°(z) |z, = 0,2, = 0}.

The optimal solution of the subproblem is (0,0)%, s = (0,0).
Step 3. Set ! = 2% = (0,0)7. The corresponding value of f is f(z!) = 0.

Step 3.2. Calculate v = (2.1,6) and w = (—1.9,—5.9)T. The smallest of these
numbers is wy = —5.9. Therefore we set DY =3, Dy =3, I° =0, and E° = {1}.

Iteration 1.
Step 1. Set f! = F(x)+ 0.1z + 0.1z,.

Step 1.1. Solve the subproblem

min{ f'(z) |z; = 0}.
The optimal solution of this subproblem is (0,2.95)7, s' = (0,2.95).
Step 2. Compute & = 2/2.95. ¢ = 1. Set 01 = 6 = 2/2.95.

Step 3. Set z? = (0,0)” +2/2.95(0,2.95)" = (0,2)”. The corresponding value of f
is f(z?) = —7.8.

Step 3.1. Set DY =3, D§ =4, I° =0, and E° = {1,2}.
Iteration 2.

30



Step 1. Set f2 = F(x)+ 0.1zy + 0.2z, — 0.2.

Step 1.1. Solve the subproblem
min{ f?(z) | z; = 0, z, = 2}.
The optimal solution of this subproblem is (0,2)7, s? = (0,0).
Step 3. Set x* = 2% = (0,2)T. The corresponding value of f is f(z%) = —7.8.

Step 3.2. Calculate v = (2.1,1.9)7 and w = (—1.9, —1.8)7. The smallest of these
numbers is w; = —1.9. Therefore we set DY =3, D) =4, I° =, and E° = {2}.

Iteration 3.
Step 1. Set f*> = F(z) + 0.1z; + 0.2z — 0.2.

Step 1.1. Solve the subproblem
min{ f3(z) |0 < z; <2, z, = 2}.
The optimal solution of this subproblem is (0.95,2)7, s* = (1,0)7.

Step 2. Compute 6 = 1. ¢ = 0.95. Set 03 = ¢ = 0.95.

Step 3. Set z* = (0,2)T +0.95(1,0)T = (0.95,2)T. The corresponding value of f is
Fla') = —8.7025.

Set DY =3, DY =4, I°=0, and E° = {2}.
Iteration 4.
Step 1. Set f* = F(x)+ 0.1z + 0.2z, — 0.2.
Step 1.1. Solve the subproblem
min{ f*(z) |0 < z; <2, z, = 2}.
The optimal solution of this subproblem is (0.95,2)7, s* = (0,0).

31



Step 3. Set z° = x* = (0.95,2)T. The corresponding value of f is f(z°®) = —8.7025.

Step 3.2. Calculate v, = 0 and wy; = —1.8. The smallest of these numbers is wj.

Therefore we set D =3, D9 =4, I°= (), and E° = 0).
Iteration 5.
Step 1. Set f° = F(x)+ 0.1zy + 0.225 — 0.2.

Step 1.1. Solve the subproblem

min{ f*(z)}.
The optimal solution of this subproblem is (0.95,2.9)7, s* = (0,1)7.

Step 2. Compute ¢ = 0.9. ¢ = 0.05. Set o5 = ¢ = 0.05.

Step 3. Set 2% = (0.95,2)T 4 0.05(0.1)T = (0.95,2.05)T. The corresponding value
of fis f(2%) = —8.7900.

Set DY =3, DY =4, I°={1}, and E° = 0.
Iteration 6.
Step 1. Set f¢ = F(x)+ 0.1z + 0.225 — 0.2.

Step 1.1. Solve the subproblem
min{ f®(z) | z; + z, = 3}.

The optimal solution of this subproblem is (0.525,2.475)T, s = (—0.425,0.425)7 .
Step 2. Compute g = 6 = 1.

Step 3. Set &7 = (0.95,2.05)T + (—0.425,0.425)7 = (0.525,2.475). The
corresponding value of f is f(z7) = —9.15125.

Set DY =3, DY =4, I°={1}, and E° = 0.

32



Iteration 7.
Step 1. Set f7 = F(z)+ 0.1z; + 0.2z, — 0.2.

Stepl.1. Solve the subproblem
min{f"(z) | z; + z2 = 3}.

The optimal solution of this subproblem is (0.525,2.475)T, s7 = (0,0)”.

Step 3.2. No vs or ws need to be calculated. We have u” = 0.85 > 0 and therefore

27 is the optimal solution.

Figure 2.3 shows the feasible region of the example problem and the points,

generated by Algorithm 1 2°,..., 2",

Note that the sequence of objective function values f(2°),..., f(z7) is decreas-

ing.

33



1‘0:1‘1

Figure 2.1: Progress of Algorithm 1 in Solving Example 2.1.

34



Chapter 3

Piece-wise Linear Inequality

Constraints

3.1 Optimality Conditions

Many of the constraints that arise in practice are not linear. For example, to impose
an upper bound on the amount bought we can use one constraint g(z) < K, where
g(w) = 2=y gi(wi) and
0, if oz <z,
gz(%'z) =
x; — &y, it x; > @
In portfolio optimization this is called a turnover constraint.

In this section, we generalize results of the previous section to the problem of
minimization of (2.2) subject to piecewise linear convex inequality constraints. We
consider the problem

min  f(x)

(3.1)
st. gf(x) <hF k=1,... m,

35



where function f(z) is given by (2.2), and Assumption 2.1 is satisfied.
We further require that each g(x) is a piecewise linear convex function of the

form ¢*(z) = Yo, gf (z1),

afox,' + bfov lf ZT; S dil,
g,k(fz) = afl;z;,' + bfl? if x; € [d,’l, dil+1]7 | = 1, ceey M,', (32)

k k :

Without loss of generality we can assume that M;, + = 1,...,n and dy, + =

L,...,n, I =1,..., M, are the same as in the definition of the functions f;(z;).

Since g*(z) is a convex function, g¥(z;) is also convex. On the other hand, it

follows from Proposition B.1 that for every k=1,...,m, 1=1,...,n
ak_ dyg +05_ = abdy + bF for each 1=1,..., M;, (3.3)
and
ab_, < akforeach 1=1,..., M;. (3.4)

Lemma 3.1 Let g¥(z;) be a piecewise linear convex function defined by (3.2). Then
for any x; € R

_ k k
gi (z:) = max apr; + by,
Ve iVl

Moreover,

(i) for any l=1,...,M; and for any x; satisfying dy < x; < dj141,

g (zi) = afﬂ'i + bfj

k.

if and only of afj = ay;;

36



(it) for anyl=1,..., M,

g¥ (di) = al;dy + bf;

: ook ok ook ok
if an only if aj; = a3y or aj; = az_,.

We prove this lemma in Appendix A.

As is stated below, it is possible to reformulate problem (3.1) as a linearly
constrained problem. However this would significantly increase the number of con-

straints and variables.

Lemma 3.2 Consider the problem

min f(z)
st > yF<hE=1,....m (3.5)
y*F>akz, 405 k=1,....m, i=1,...,n, 1 =0,..., M.

Then z* € R™ is optimal for (3.1) if and only if (z*,y*) is optimal for (3.5) for

some y* € R™™,

Proof of this lemma is given in Appendix A.

The above representation can be used to obtain the optimality conditions for

(3.1).

Theorem 3.1 A vector x* € R" is optimal for (3.1) if and only if there exists

37



u* € R™ such that

g*(z*) < RF, k=1,...,m,

(VF(2*))i + L(27) + 2opL, abuy = 0, for alli € N(z*),
with zf € (di, dit41),

(VF(z*); + L= (dy) + o a_yup <0, foralli € E(x¥),

with 2} = dy, (3.6)
(VF(2*))i + L(dia) + Yoy abuz >0, for alli € E(z*),

with z = dj,
u* >0,
ul(g*(z*) — h*) = 0, E=1,...,m.

Proof. Let us denote the feasible region of the problem (3.1) by S. Suppose
that (3.6) is satisfied for some u* € R™. The Lagrangian function

L(z,u™) = f(z)+ ng(x)uk

is a convex function of x, since it is a linear combination of convex functions with
nonnegative coeflicients. The optimality conditions (3.6) imply that z* minimizes

L(z,u*) over R”. Therefore x* minimizes f(z) over S.

To prove the converse, suppose that z* is an optimal solution for (3.1). Define
y* by
(y*)F = gf(z") = max{ajja; + b, j=0,.... M}

The vector (z*,y*) is clearly feasible for (3.5). So, by Lemma 3.2, (z*, y*) is optimal
for problem (3.5).

Note that the problem (3.5) is a linearly constrained problem. Therefore by

38



Corollary 2.1, there exist vectors u and A such that the following holds true.
Ly SHE, kE=1,m,

(y)F >afa; 405 1=1,...,n, j=0,....,M;, k=1,...,m,

T

(VF(z*)i + L (a7) + Sope, SoiE ak e =0, foralli € N(z¥),
with 7 € (di, dii41),

(VF(z*); + L=t (dy) + Yo, 3000 alAl <0, foralli € E(z%),
with 2} = dj,

(VF(z*)i + La(dy) + S S ak Ak >0, foralli € E(z”), (3.7)

dx; 7=0 137"y

with l’: = d,’l,

@\ >0,
k *\k k .* kY _ _
/\ij((y )z - az]xi - bzg) - 07 t= 17 5 1y - 07 7M17

We next show how to derive (3.6) from (3.7). Consider an index ¢ € N(z*) with
x7 € (di,dji+1). By the definition of (y*)f, (y*)f = afl:z:f —I—bfl. Then, by Lemma 3.1,
the inequality

(y*)f = aa; + 055, 5 =0,..., M,
can be satisfied as equality only if afj = a¥. From the complimentary slackness, it

follows that the dual variables /\fj corresponding to the remaining values of j are

all equal to zero. Therefore for each index ¢ € N(2*) with zF € (d;;, di1+1) we have

m M m M;
;Zafj‘)\fj‘ = ;GZZAZ. (3.8)
=1 3=0 =1 7=0

Counsider any ¢ € F(z*) with 2} = d;;. Again Lemma 3.1 implies that the inequality

(y*)f > ajx; + bfj

1372

39



can be satisfied as equality only if afj = ak or afj = a*_,. From the complimentary
slackness, it follows that the dual variables /\fj corresponding to the remaining

values of j are all equal to zero.

Using the inequalities (3.4), we obtain that for every index ¢ € E(z*) with
x; = dy

m ; m  M; m M;
>l Z fgzz Ny <Y ah ) N (3.9)
=1 7=0 =1 3=0 k=1 7=0
Combining (3.8), (3.9) with the optlmahty conditions (3.7) yields
(VE(@)i + L)) + X, af 255 A% = 0, foralls € N(z"),

With LL’:‘ € (d,’[, dil+1)7
(VF(2%))i + B2 (d) + S, aby, T2 M <0, foralli € B(a®),

0 ‘g

with 7 = dj,
( di) + > 1 ay ZJ = )\f] >0, foralli € E(z*),
with l’: = d,’l.

(VE(x%)); —I—

/

Since uy = E] = )\fj for every 1 = 1,...,n, we can simplify the above conditions as
follows.
)
(VF@))+ %(e7) + Sy, b =0, foralli € N(a),

with ¥ € (di, dit41),
(VF(z*))i + L=t (dy) + Y, ab_yux <0, foralli € E(z¥),
with z7 = dj,
(VF(2*))i + L(dia) + Yoy abiie > 0, foralli € E(z*),
with 2} = dj.

(3.10)

V

Suppose that one of the piece-wise linear constraints of the problem (3.1) is
satisfied by z* as a strict inequality, i.e. g*(z*) < h* for some k. Then, by the
definition of (y*)¥,

n

> (yF < hF,

=1

40



and from the complimentary slackness u; = 0. Therefore

(g (z*) = ry =0, k=1,...,m. (3.11)

Combining (3.10) and (3.11) with the feasibility of 2* and non-negativity of u,
we obtain that the vector u* = u together with 2* satisfy (3.6). This proves the

theorem. O

3.2 Algorithm 2

In this section, we formulate a solution algorithm for (3.1). The structure of Al-
gorithm 2 is very similar to the structure of Algorithm 1. However, we have to
modify the subproblem formed in Step 1, taking into account the piece-wise lin-
ear constraints. Recall that at the j-th iteration of Algorithm 1 we are looking
for the next feasible point within the n-dimensional cube defined by D’ at this
iteration. Instead of adding to the subproblem a piece-wise linear constraint, we
add a linear constraint which coincides with this piece-wise linear constraint on the
above mentioned cube. Therefore in Step 1.1, for each k € I’ we add an equality
constraint

Z(aiDg:C,' + biD{) = h*.

i=1
In Step 3.2, the definition of the variables vf and wf is modified to reflect the piece-

wise linear nature of the constraints and optimality conditions of Theorem 3.1.

41



Algorithm 2
Model Problem

min f(z)
s.t. gf(x) <R E=1,...,m,

where f(z) is defined by (2.2) and Assumption 2.1 is satisfied, ¢¥(z) k =1,...,m
are defined by (3.2).

Initialization

Begin with any z° € §.

For each i = 1,...,n define the working interval indicator DY = [ if

29 € [di, dirg1).

Chose an initial working set of breakpoints E? such that E° C E(2°) and the
vectors {(a%,,...,a%)), k€ I° e;, 1 € E°} are linearly independent.

Set j = 0.

Step 1: Computation of Search Direction

Define the objective function f7, gradients of the equality constraints ozi,

E=1,...,m and vector 3’ for the j-th subproblem
(ai)i:afm, foreachk=1,...,m,1=1,...,n

(B =h* =0, biD{’ foreach k=1,....m
fj(l') Flz)+ >0, fi,D{(l'i)-

Y Y

3

Step 1.1
Consider the equality constrained minimization problem
min f/(z)
s. t. (ai)Tz: = 5117 kel (3.12)

zi=dy, i € B, with [ = D,

42



If z/ is a stationary point for (3.12), for all k € I take ui to be the Lagrange
multiplier for the constraint (ai)T:z: = bk, for all 1 € E7 take /\f to be the Lagrange
multiplier for the constraint z; = dy of (3.12), and proceed to Step 3.2.

Otherwise, find y’ such that it is feasible for (3.12) and f7(y’) < f7(x?). Set
s? =y’ — 27 and go to Step 2.

Step 2: Computation of the Step Size

Compute the smallest indices 79, 77 and 75 such that

I _ (VT i I _ ()T i , o
oo = % - min{% k¢ I and (af)"s? > 0} , (3.13)
a; )'st ay )t s?
diy — 2 dy — 2’ , : :
Sil Si

T9 =

) J J
diyiy1 — T3, ) {du+1 — T

J
Si,

: i¢ F’ and s >0, l:Df}. (3.15)

J
5

If none of og, oy nor oy were calculated, set ¢ = +00, otherwise set

o = min{oy, 01, 02}.

Perform a line search to minimize fj(;r:j + O'Sj) over 0 < o < &. Let o7 be the

optimal step length for this problem.

If 07 = 400, stop, the problem is unbounded from below. Otherwise, go to

Step 3.1.
Step 3: Update
Step 3.1 Set
xj+1 = :z:j + stj.

43



If 07 <&, set Pt =17, Bt = B9, DIt = D7, j = 54+ 1 and go to Step 1.
Otherwise
(i) f 6 = og set 'Y = [PU {ip}, B = B/, D't = D7 j = 5+ 1; go to Step 1.

(ii) If 6 = oy set ' = 7, B/ = E1 U {iy}, D' = D7, j = j+1; go to
Step 1.

(ili) If & = 0y set "+ = [4, B3+ = B U {i,} and DI = DI + 1, DI*' = D}
for all © # 15, = 7 + 1; go to Step 1.

Step 3.2 Set

2/t = 7,
For each i € E? calculate

4 , Ay ,

ol = (V) = T al) = 3 310
! keli

, 4 dfy ,

wl = (VP + Dhad) 3 abud, (3.17)
¢ kel

where [ = Df
It ui >0 for all k € I, vf > 0 and wf > 0 for all € B’ , stop with optimal

solution z”.

Otherwise, calculate
— £
uk, = mingeri{uz},
— [
vk, = minepi{vy },
— o]
Wy, = minegi{w; }.
Set

u = min{ug,, Vg, , Wk, }-

44



(i) If & = ug, set IH' = [ — {ko}, B+ = B, D*' = D7 j = j+1; go to
Step 1.

(i) If u = vy, set ¥' = [/, B+ = B9 — {k,} and D{' = D] — 1, D!*' = D!
for all v # k1, 7 = j + 1; go to Step 1.

(i) If u = wy, set [P+ = [, B+l = BI — {k,}, D" = D7, j = j+1; go to
Step 1.

3.3 Termination of Algorithm 2

In this section, we prove that Algorithm 2 indeed gives an optimal solution of the
problem (3.1) or determines that this problem is unbounded. We use the notation

introduced in the previous section.

Lemma 3.3 Let 27 be the j-th iterate of Algorithm 2. Then

a) B C E(2?), foralli=1,...,n = di1, dijyq| where D! = [, furthermore if
2 + k2
i € E7 then xf =d;.
(b) x’ is feasible for (3.1) and I’ C I(x?).
(e) (&) < f(ai).
ozl, € I, e;, i € B’} is a linearly independent set.
d kel E [ ly ind d

Proof. The above is true for z° by construction. Suppose (a)-(d) are also satisfied

for z7. Let us show that (a)-(d) are satisfied for 2911, There are two cases to be

considered.

45



Case 1. Iterate 271! was obtained in Step 3.1. In this case
:(;j'H = :L’j + stj.
(a) Chose any i and let [ = d’.
If i € E’, then sf = 0 by construction. Therefore
T = dy. (3.18)
It follows form (3.18) that E’/ C E(x/*1).

Assume now that i ¢ E7. If s/ < 0 then using (3.14) and the fact that o7 < oy,
we obtain that

dijp1 > rf > 2 4 stf > 2l 4+ 0'15? = d;. (3.19)
Similarly, if sf > 0 then using (3.15) and the fact that o7 < oy, we obtain that
dy < a:f <z’ + Ufsg <zl + 025‘3 = dijg1- (3.20)

Combining (3.18), (3.19) and (3.20), we obtain that for every ¢, xf+1 € [da, diy1]-
Thus (a) is true if Ei*' = E7 and D’t' = D7 and it remains to consider the case
when E/+! £ E7 or D't £ D7,

If 07 = oy, then E/*! = E7 U {i;}. From the definition of oy, it follows that

wfl = d;,1, and therefore the index #; also belongs to E(z/*!).

If 07 = 09, then E7*' = F7U{i,} and Df-:'l = Di +1. Again, from the definition
of oy, it follows that ;r:f; = d;,1+1. It remains to note that [ +1 = ijl. Hence the
index i, belongs to E(z’*!), moreover xfjl = d;,; where [ = ijl = Df2 + 1. This

completes the prof of (a) for Case 1.

(b) If k € I, then by construction aisj = 0. Therefore
aix”l = ai;t:j + ajaisj = 511 (3.21)

46



Assume now that k ¢ I7. If (a)”s? < 0 then
ozi;z:j"'l = oz‘,i.rj + U’disj < ozi;z:j < 611 (3.22)
If (ai)TSj > 0, then combining (3.13) with the fact that o/ < o we obtain
oz‘,ia;”l = aixj + Ujoz‘,isj < oz‘,i.rj + anisj = ﬁ,ﬁ (3.23)
From (3.21), (3.22), and (3.23) it follows that
et < Bl k=1,...,m. (3.24)

Combining (a), (3.24), and Lemma 3.1, we conclude that z/*! is feasible for (3.1).
From (3.21), we obtain that

ot =8l kel (3.25)

Again, combining (a), (3.25), and Lemma 3.1, we conclude that [? C I(z/*1).

It remains to consider the case when I7 # [’*!, This can only happen if 07 = oy
and I’*1 = [7U {ip}. Tt follows from the definition of oy, that the inequality (3.23)
holds as equality in this case, and therefore the index 7y belongs to I(z7*!). Thus
[+ C I($j+1).

(c) Since s? was obtained by minimizing f?(z? 4+ os?) over 0 < o < &7, we have
fj(xj _|_US]') < fj(:z;j _|_OSJ') — fj(;vj).

By Lemma B.1 (Appendix B), f(z) coincides with f/(x) for any z, such that
a:f € [di, dji41], where | = Df Both 27 and /%! satisfy this conditions, implying
that

F@h) < f(a?).

47



(d) By construction, (d) holds true for the first iteration. Suppose that the

vectors
{ol, ke I e, i € E’} (3.26)

are linearly independent.

If Step 3.1. (i) was performed, then the index iy was added to the set I’ to form
I’*t1. Assume that the set obtained by adding afo to the vectors (3.26) is linearly
dependent. Then we can find numbers (3, k € I’,n;, 1 € E’, such that

aj = Z (ra® + Z 7;€;.
kels i€l
Taking the inner product of both sides of this equation with s/ and using the fact
that (« ) 87 =0 for each k € I? and (e;)Ts? = s = 0 we obtain

= Y el 4 Yt =0
kEIJ lEE']
This is impossible in view of (2.9).
If Step 3.1 (ii) was performed, then the index i; was added to the set E7 to form

E7*' Again, assume that the set obtained by adding afo to the vectors (3.26) is

linearly dependent. Then there exist (s, k € I, n;, ¢ € E?, such that
€ = Z Ckak + Z ;€5
kel i€EI
Taking the inner product of both sides of this equation with s/ and using the fact
that (« ) 57 =0 for each k € I’ and (e;)Ts? = s = 0 we obtain

(i) 5-2@ 3—|—Zn,3—0

kEIJ zEEJ

Therefore (e;,)7s? = sgl = 0 which contradicts (2.10).

48



Similarly, if Step 3.1 (iii) was performed, we conclude that adding e;, to the

vectors (3.26) produces a linearly independent set.

Thus the vectors {ai, k€ 'tY ¢, i € E’t'} are linearly independent. Note
that if Step 3.1(iii) was performed, then afz +* afjl. Since iy € E7t! it follows
from Lemma C.1 (Appendix C) that the vectors {ai“, ke 't e, 1 € Bt} are

linearly independent as well.

Case 2: Iterate z/*! was obtained in Step 3.2 and z/t! = z7. The feasibility

and the fact that f(z7*') = f(2’) are obvious in this case.

By the assumption, E? C E(2?) = E(2T"), I? C I(2?) = I(2’*'). Since at Step
3.2 we can only drop indices from the sets E7 and I’, we also have E7+! C F(z/*!)
and I’*1 C I(27*!). Thus in order to establish (a), (b), and (c) we only need to
consider the case when D’*! # DJ. This can only happen if & = v, and B! =
E7 —{i;}. Then Dijl = Dil —1 and wgl = dg,1+1 where [ = Dijl = Di; — 1. So,
k, no longer belongs to the working set of break points E’*!, and :L’EH € [di,1, diy 1]

as required.

(d) Since one of the vectors in (3.26) is dropped the new vectors are still linearly

independent. a

Let 27 be a stationary point for the j-th subproblem of Algorithm 2. Recall
that the subproblem (3.12) is

min f/(z)
s. t. ail’ = 6117 ke,

zi=dy, i € B, with [ = D,

49



The optimality conditions for (3.12) are

(VF@))+ E2ad) + Yy abu =0, foralli ¢ B,
where [ = DZ,

(VF(J}j))i + df‘l( ) + Zkeﬂ lluk + X =0, foralli € E7,
where [ = DZ -

(3.27)

We can define ui = 0 for all k such that k& ¢ I’. Note that this implies complimen-

tary slackness.

The above optimality conditions for (3.12) can be written as

(VF(29)i + L(ad) + i, abux =0, foralli ¢ E7,
where [ = D!,

(VF(29)i + 4(al) + Y, abue + X =0, foralli € EY,
where [ = D]. |

(3.28)

Note that for each i € E(2?) — E? with ;r;f = d; the conditions (3.28) imply that

(VE)i+ P20y 13 s = 0, (3.29)
: k=1

where L € {{ —1,1}.

Recall that by (3.4), a%_, < a* for any fixed k and i, k = 1,...,m

Since u > 0, we have



Thus #7 satisfies
(VF(29)); + 42(ad) + Y, abug = 0, for all i € N(a7),
with a:f € (da,diy1),
(VF(27)); + L=t (dg) + Yopn, ab_yu, <0, foralli € E(a?) — BV,
with :z:f = dy,
(VF(29); + L(dy) + S abuf, >0, foralli € E(a?) — BV,
with :z:f =d;.

(3.30)

7

Suppose now that Algorithm 2 terminates with 27. This means that 27 is optimal

for the equality constrained problem (3.12) and in addition, ui > 0 for all k € I,

v! >0 and w! > 0 for all i € E7.

Using the definition of vj and wf we obtain

(VF(27)); + L=t (ad) + 0 aly_yu <0, foralli € B,

with T; = d,’l,

(VF(J}j))i + Zf;l( ) + > ey lluk >0, forall: € E7,

with T; = d,’l. )

(3.31)

Conditions (3.30) and (3.31) together with the feasibility of 27 and complimentary
slackness, imply that
g*(x?) < h*, E=1,2,...,m,
(VF(27)); + df“( 7 4 Yoy abul =0, for alli € N(z7),
with ;L’f € (di,diy1),
(VF(27)); + L=t (dy) + g, ab_yul, <0, foralli € E(ad),

with ;L’f = dj, (3.32)
(VF(29)); + 4 (diy) + ope, aluf, > 0, for alli € E(a),

with J:f = dy,
w >0,
uj(gk(a:j)—hk)—(), E=1,...,m.

ol



If the above conditions are satisfied, then 7 is optimal for (3.1) by Theorem 3.1.

Suppose now that at the j-th iteration 0/ = +oc. This can only happen if
6 = o = +oo. Then for any o > 0, 27 + s’ is feasible and for very i, (;L’f + Jsf) €
[dit, dij+1], where [ = Df for i = 1,...,n. Therefore f(2’ + 0s?) = f(2? + 0s’) on
this halfline. In addition, f? is unbounded from below on this halfline.

So, the objective function f(z) is unbounded from below on a subset of the

feasible set of (3.1) and therefore problem (3.1) is unbounded.

We summarize this in the following lemma.

Lemma 3.4
(i) Suppose that Algorithm 2 terminates with x’. Then 7 is optimal for (3.1).

(it) Suppose that Algorithm 2 determines that the problem is unbounded. Then
(8.1) is indeed unbounded.

Suppose Z1,...,T;,T41,... are the points generated by Algorithm 2. We es-
tablished that
f(2?th) < f(2?), for every j = 0,1,....

An important fact about an active set method is that under the non-degeneracy
assumption the method can guarantee a strict decrease of the objective function
from one iteration to the next at certain iterations. We next show how this can be
generalized to our method. We start by recalling some results from differentiable

optimization, and then show how these results apply in our case.

Consider the problem

min{ f(z) | (a;)"z <biyi=1,...,m —1,(am) 2 = bn}, (3.33)

52



where f(z) is a twice differentiable convex function, a4, ..., a, are n-vectors, and
bi,..., by, are scalars. Suppose z* is an optimal solution for (3.33). Let uy,..., uy

be the corresponding dual multipliers.

Without the loss of generality we can assume that the first & — 1 inequality

constraints are active at z*. Let

R={z|(a)'z2=0;i=1,....,k =1, (a;)7x <bi=k,...,m}. (3.34)

A point € R" is called non-degenerate for the problem (3.33) if the gradients

of the constraints of this problem active at = are linearly independent.

Lemma 3.5 Let R be defined by (5.34), x* be a non-degenerate optimal solution
for (3.83), u, be a multiplier for constraint m, u,, < 0 and (a;)Tz* = b; for
1 =1,...,k—1. Then there exist a feasible descent direction s and a scalar ¢ > 0

such that for any o < o, *+ os € R and
flz™+os) < f(z").

See [6] for the proof.
We now show how Lemma 3.5 can be applied in the nondifferentiable case.
We start by generalizing the definition of a non-degenerate point.

Let 27 be an iterate of Algorithm 2 applied to problem (3.1). Assume that z’
is a stationary point for the subproblem from which it was obtained. Let ai and

611 be defined by the j-th step of Algorithm 2. In order to apply the Lemma 3.5,

we have to assume that the vectors
{ol, ke I(2?), ¢, i € E(z)} (3.35)
are linearly independent.

33



This motivates us to give the following definition.

A point # € R" is called non-degenerate for the problem (3.1) if the vectors
(3.35) are linearly independent.

This assumption seems very strong comparing to the standard non-degeneracy
assumptions. This formulation is convenient to use in the proof, but it depends
on the choice of a subproblem. In Appendix C we reformulate this assumption.
We show that in fact it does not depend on the choice of the subproblem, roughly
speaking, it is similar to the non-degeneracy of a corresponding point of the lifted

problem.

Theorem 3.2 Suppose that Algorithm 2 is applied to the problem (3.1). Let z7
be the j-th iterate of Algorithm 2. Assume that x7 is a non-degenerate point for the
problem (8.1) and assume further that 17 is a stationary point for the subproblem
number j. Suppose at least one of the parameters ui, vf or wf defined by Step 3.2
of Algorithm 2 is negative. Then the iterate of Algorithm 2 %% can be chosen, so
that

F(a?t?) < f(a).

Proof. Let 7 be a stationary point of the j-th subproblem (3.12) of Algorithm 2.
In the context of Algorithm 2, our next step would be to find the dual variables
ui corresponding to the constraints ai = bi and calculate the parameters vf and
wf, defined at 7 by (3.16), (3.17). Suppose that at least one of these numbers
is negative. The algorithm proceeds by constructing the next subproblem in the

following way:

Case 1. The dual variable uio corresponding to the equality constraint aio x = bio
is the smallest of the above numbers. Then the next subproblem is obtained from

the j-th subproblem by dropping the constraint aiox = bio. DZ = DZ-H for all

o4



=1
We can apply the result of Lemma 3.5 to the function f/*!(z) and
e alt'e =0t ke l(xd), k# ko,
_ 1 +1
R = afj < bg ,

x; = dy, i € E(z7), with [ = DI
Case 2.

) d 3 ) m
vl = —(VF(a)) — TRty S 0k <0

dr
k1 k=1

]w]

1s the smallest of the numbers ui, v, wy.

There is a small technical difficulty in this case, since f/*!(z) # f7(z).

,...,n. Therefore the objective function of the subproblem does not change.

(3.36)

(3.37)

We obtain the j + 1-st subproblem from the j-th subproblem in two steps:

(1) Let Dil = [. Then we set Dijl = [ — 1. This means that in the objective

function we substitute the term fr,; by fr;i—1 and in each of the equality

. . k k k k
constraints we substitute the term ag 1 Tr, + bkll by agg_ 1Tk + bkll—l'

Since

:z:il = dg,1, the above terms of the objective function and of the constraints

coincide on z’ respectively. Therefore 27 is feasible for this intermediate

problem. Moreover, combining all the equalities of (3.28), except for the

equality number &y, with the expression for vil we obtain

(VF(29)); + 42 (al) + Y0, abus =0, foralli g E7,

with z; € [di, dji41]
(VF(2?)i + 4 (al) + L, abue + A =0, foralli € B/, i # K

with z; = dy,
(VF(27))i + %=t (ad) + S5, ab_yui+ v, =0, where i =k

with 2z, = dj.

39




This system implies that 27 is a stationary point for the intermediate subprob-

lem, vil < 0 is a dual multiplier corresponding to the constraint zx, = di,;.

(ii) We drop the constraint xg, = dg,; from the intermediate subproblem.

We can now apply Lemma 3.5 to the function f/*!(z) and

T ai:‘}‘l — bi:‘}‘l’ k E I(;L‘J)7
R= z; = di, i€ B(x7), i #ky, with=DT", 3.  (3.38)
v, < diy with / = Dj*!
Case 3
wl, ==\, = (VF(2""), + szz ) Z ag,uk < 0 (3.39)

is the smallest of the numbers ui, UZ, wf We could say that wi2 is a dual variable
corresponding to the equality constraint —xy, = —dg,;. Then the next subproblem
is obtained from the j-th subproblem by dropping the constraint —zp, = —d,;.

We can apply the result of Lemma 3.5 to the function f/*!(z) and

e alt'e=b"" ke I(ad),
R= v = da, i € B(x9), i # ky, with 1= DIT1, +.  (3.40)
Tk, > diyi with I = D

By Step 3.2, z7t! = 27. In each of the three cases, choosing the search direction
59! at z7*1as described in Lemma 3.5 and small enough step size o/*! generates

pIt? = gitl 4 Gitlgitl satisfying

Fa7*2) < f(a).

96



Note that the subproblems of Algorithm 2 are convex linearly constrained min-
imization problems. In many cases such a subproblem can be solved in one step, or
in a finite number of steps. In this case we can solve each subproblem of Algorithm 2

exactly.

Theorem 3.3 Let Algorithm 2 be applied to the problem (3.1). Let z° € S be an

2

initial point and let x', 2%, ..., 27, 271 ... be the points obtained by the algorithm.

Assume that

(1) each subproblem of Algorithm 2 is solved in a finite number of steps;

(ii) if @’ is stationary for the subproblem from which it was obtained, then 7 is

non-degenerate for the problem (3.1).

Then the optimal solution of the problem (3.1) will be determined in a finite number

of steps or it will be concluded that the problem is unbounded from below.

Proof: Suppose we solve each subproblem exactly, and y’ is a solution. There

are three cases to be considered:

(a) ¥/ = y’, and thus 2’ is a stationary point. In this case the update was
performed by Step 3.2. If Algorithm 2 does not terminate at this point, by
Theorem 3.2, we have f(z7*2) < f(z7).

(b) 27 # y? and 07 < &. This can only happen if 0/ = 1. Thus 27! = 2745/ = y/.
In this case, subproblem j + 1 coincides with subproblem j, therefore 2/t is

a stationary point for the subproblem j + 1.

(c) 27 # y/ and 0/ = 5. In this case, Step 3.1 applies and subproblem j + 1 has

one more constraint.

57



Note that after case (a) occurred, j-th subproblem will not be revisited. Case (b)

subproblem is always followed by case (a) subproblem.

On the other hand, each time case (c¢) occurs, a constraint is added to the
subproblem. Therefore case (a) or (b) should happen after at most n case (c)

subproblems.

There are only finitely many subproblems that can be formed for this problem.
Therefore Algorithm 2 will terminate in a finite number of steps. By Lemma 3.4,
it either terminates with the optimal solution, or concludes that the problem is

unbounded from below. O

3.4 Modified Algorithm 2

Note that we require that in Step 3.2 of Algorithm 2, the index corresponding to
the smallest negative multiplier is removed form the corresponding working set,
by analogy to the active set method. However this rule is not mandatory. It is

sufficient to chose an index corresponding to any negative multiplier.

This suggests that we could formulate the last step of this algorithm in a slightly
different way. Instead of choosing the minimum over all the indices, we can choose
the minimum over a particular subset of indices. If every index in this subset
is nonnegative, than we choose the minimum over the remaining indices. This

technique, called partial pricing, is sometimes used in linear optimization [55].

We choose this subset in such a way, that the non-negativity of all the corre-
sponding multipliers guarantees that the objective function is minimized by the

current iterate 27 over some subset of the feasible region of the form

38



*(z) < hF, E=1,...,m,
B ={ g di < z; < dgyr, 1 ¢ E’, where = Df, (3.41)
x; = dy, i € F7, where | = Df
After the algorithm minimizes the objective function over this region, next subset
of the feasible region is chosen. The iterations at which the new region is chosen
have a special status for this algorithm. We introduce index .J to enumerate such

iterations. We will denote the indices of these iterations by jo, j1,..., 77

Let us show exactly how we are modifying Algorithm 2.

In the Initialization step let J =0, j;, =0, 7 = 0.
Reformulate Step 3.2 as follows:
Step 3.2
At the iteration number j + 1, such that j; < j+1,
for each ¢ € B’ calculate vf and wf as before ((3.16), (3.17)).
Form index sets L and U in the following way:
Start with L =0, U = 0.
For each i € B/ — 7,

if 2] = d; ;); then L = LU {i},

else U = U U {i}.

Calculate

Uk, = minkelj{ui}v
vk, = miniep{v!},

Wk, = minieL{wf}.

39



Set
t = min{ug, , Vg, , Wk, }-
If & <0, set u=u. Go to Step 3.3.
Otherwise, if & > 0, calculate
Uk = minieLquJ{vf},
Wy = minieUuEiJ{wZ}-
Set

u = min{vg, , w, }
If u > 0, stop with optimal solution 7.
Otherwise, set J =J 4+ 1, 57 = 5. Go to Step 3.3.
Step 3.3
(i) If u = ug, set 'Y = [7 — {ko}, B’ = E7, D’*' = D7 j = j+1; go to
Step 1.
(if) If u = vy, set [7*! = [4, B9+ = B9 — {k,} and D{' = D] — 1, D!*' = D!
for all v # k1, 7 = j + 1; go to Step 1.
(iii) If u = wy, set 'Y = [J, p7*Y = B7 — {ky}, D’ = D’ j = j+1; go to
Step 1.
This ends the description of the modified Step 3.2.

Note that for each iteration j, j7 < j < jjy1, none of the equality constraints

constraints corresponding to ¢ € E’/ can be dropped and Df = D‘Z".

If an equality constraint is added by Step 3.1 (ii), index ¢; joins the set L. This
constraint could only be dropped by Step 3.2 (iii) later on, but equality D{l = DflJ
would still hold.

60



If an equality constraint is added by Step 3.1 (iii), index i3 joins the set U and
Df2 +1= Df; This constraint could only be dropped by Step 3.2.(ii), so that the

interval indicator would be changed back to sz = DZ‘].

Therefore,

D! = D¥ for each i ¢ U, (3.42)

Df = Df“l + 1 for each 7 € U. (3.43)

We now show how this modification allows us to simplify the formulation of

Algorithm 2.

Lemma 3.6 Let Step 3.2 of Algorithm 2 be modified as above. Let the modified
algorithm be applied to the problem (3.1). Let j = jji1 for some J > 0. Then the
iterate of the modified algorithm x7 minimizes the objective function of the problem

(3.1) over a subset of the feasible region

gk(:p)ghk, k=1,...,m,
B'= ¢ z|dy < <dapr, i¢ B, where | = DY, (3.44)
x; = dy, 1 € EjJ, where [ = DfJ.

Proof. By construction z’ is a stationary point for the j-th subproblem of the
modified Algorithm 2. From the optimality conditions (3.30)

(VF(29)); + 42(al) + Y, abug = 0, foralli € N(z7),
with :z:f € (da,diy1),
(VF(27)); + L=t (da) + Yie, abi_yul, <0, foralli € E(a?) — E7,
with a:f = dy,
(VF(z%)); + ‘;f—;i(d”) + > ey aflui >0, foralli € E(x’) — E7,

with a:f =d;.

(3.45)

61



From the modified Step 3.2, vf > 0 and wf > 0 for every i € B9 — E%. By

definition of v and w]

(VF(27))i + L=t (ad) + Y al_yux <0, foralli €T,
| with z; = dj, (3.46)
(VF(:Z}j)),' + ‘;f—;f(:z;f) + Z;nzl afluk >0, forall: € L,
with z; = d;;.

Formulas (3.45) and (3.46) together with the feasibility of z7 and complimentary

slackness, imply

g (27) < hF, k=1,...,m,
(VF(29)); + 4 (ad) + Y, abug = 0, for alli € N(z7),
with 7 € (di, diy1),
(VF(27)); + L=t (da) + Yope, ab_yul, <0, foralli € E(a?) — %,
with 2/ = dy, [ = D¥” +1 3(3.47)
(VF(29)); + L (dy) + Y5, aluf >0, foralli € E(27) — E¥,
with 2/ = dy, [ = D¥

ul >0,
ui(gk(l’j)_hk) =0, E=1,...,m. )
By Lemma B.3 (Appendix B), 27 minimizes f(z) over the set B”. O

The modified Algorithm 2 solves the problem (3.1) by minimizing f(z) over a

sequence of subsets of the feasible region.

At the J-th iteration we find the solution of the .J-th subproblem. If the sub-
problem is unbounded from below, the original problem is also unbounded from
below. Otherwise we denote this solution by z7/*'. We check if 27*! is optimal for

(3.1). If not, we describe a procedure for constructing the next subproblem.

62



The big advantage of the modified algorithm is the possibility of easy imple-
mentation. If one has a software package available for solving the differentiable
linearly constrained problems, one can fully benefit from the speed of this pack-
age. Note that consecutive subproblems differ by one constraint only, so one can
use the optimal solution of the previous problem as a starting point for the next

subproblem.

We give the detailed formulation of the algorithm below.

Modified Algorithm 2

Model Problem

min  f(z)
s.t. gf(x) <hFE=1,...,m,

where f(z) is defined by (2.2) and Assumption 2.1 is satisfied, ¢*(z) k = 1,...
are defined by (3.2).

Initialization
Begin with any z° € S.
Define the working interval indicator DY = 1 if 20 € [di, dit41).

Define the initial working set of breakpoints E? such that E° C E(z°) and the

vectors {a;, i € I(z°),€;, i € E°} are linearly independent.
Set j = 0.
Step 1: Solution of Subproblem Define the objective function f’, gradients of

63



the equality constraints ozi, E=1,...,m and vector ¥ for the jth subproblem

ol); = a* i, foreachk=1,....m, 1=1,...,n,
k i,D?
(B7)x :h’“—zz;lbjm, for each k =1,...,m,

Fi(@) = F(a) + Sy i (w0).
Define the feasible set of the jth subproblem
aix gﬁ,ﬁ, kE=1,...,m,

z|dy < x; <djyr, foralli @ E?, where [ = Df,
z; =dy, foralli € E7, wherel = Df

B

Solve the subproblem
min{ f(z) | z € B’}. (3.48)

If the subproblem is unbounded from below, stop, the problem is unbounded.
Otherwise denote the solution of this subproblem by 27*!, denote the dual
variables corresponding to the constraint aix < ﬁz by u‘;ﬂ. Denote by E/+! all
the indices from E(z’%!) that belong to the last working active set of this
subproblem. Set DZ—H = DZ for each 1 = 1,...,n. Go to Step 2.

Step 2: Optimality Test
Form index sets L and U in the following way:
Start with L =0, U = 0.
For each i € E/*! — EJ
if 2] = d; ;); then L = LU {i},
else U = U U {i}, DI = DI 4+ 1.

64



For each : € L U E’, calculate

v/t = —(VF(2t)); — Lt (2% — S ah_ult (3.49)
where | = DZH-
For each 7 € U U E?, calculate
with = (VF(a7); + 422 + i abul™, (3.50)

41
where [ = Df» +

Compute
- ‘ -
v, = min {o/"'},
! i€ LUFEi
- ) -
wi' = min {w!T'}.
2 i€UUFEI

It vijl, wijl > 0, or if no vs or ws are calculated, stop with optimal solution 27+,
Otherwise go to Step 3.
Step 3: Constraint Modification
Case 1. If vijl < wijl,

set B/t = it k), =541,

- -

Dy =Dy -1

Case 2. If vijl > wijl,

set B/t = it (k) 5 =541,

A similar algorithm was first proposed in [6] for the case when the transaction
costs and constraints are linear. Their method was based on deriving the optimality
conditions for the higher dimensional problem (1.6). We extended this algorithm

to the case when the transaction costs are piece-wise linear and convex in [10] using

65



the optimality conditions (2.6). It was later shown in [7] that this algorithm can

be also derived from the optimality conditions for the higher dimensional problem

(1.6).

Example 3.1 Consider (3.1) with

F(z) =2} + 23 — 2z, — 6x,,

—0.2¢ —0.2, 1if
—0.1z , if
fi(z) =
0.1z , if
0.2x —0.2, if
and
—0.1x —0.2, 1if
0 , if
falz) = .
0.1z , if
0.2x —0.2, if
Suppose we add a constraint
This constraint can be rewritten as
g(r) <1,

where g(z) = ¢g1(x1) + g2(x2) and

66

r < =2,

x € [-2,0],
z € [0,2],
x> 2

< —=2
z € [—2,0],
z € [0,2],
x> 2.



—tif <0,
gi1(t) = g(t) =
t if +>0.

To be consistent with our notation, we rewrite the definition of g;(z;) as
¢ if t< -2,

—t if te[-2,0],
t if te]o0,2],

toif t>2,
We solve the problem

min{f(z) [ g(z) < 1}.

Let 2° = (—0.5,—0.5)T be a starting point.
Initialization.

DY =2 D§=2 E°=0.

Iteration 1.

Step 1.
fO=F(z)—0.1z,.

Solve the subproblem
min{ f’(z) | -2 <2, <0, —2< 2, <0, —7; —xy < 1}

The optimal solution of the subproblem is #' = (0,0)”, with f(z') = 0. Let
E'={1,2}. D! =2, D} = 2.

Step 2.

67



L=0,U={1,2}, D! =3, D! =3. Calculate w® = (-1.9, -5.9)T. w) is the

smallest of these numbers. ky = 2.
Step 3. Set E' = {1}.

Iteration 2.

f''=F(z)+0.1z; + 0.1z,.
Step 1. Solve the subproblem
min{ f(z)' |21 =0, 0 < 2, <2, z; + 2, < 1}
The optimal solution of this subproblem is z? = (0,1)7, with f(z?) = —4.9. Let
E*={1}. D=3, D2 =3
Step 2. L=0,U = 0.

Calculate v{ = 5.8 > 0, w; = 2 > 0. Therefore z? is the optimal solution.

Note that the sequence of objective function values f(z°), f(z'), f(2?) is decreasing.

Figure 3.4 shows the feasible region of the example problem, subsets B° and B!

defined by the algorithm, and the points, generated by the algorithm 2°, z!, 22,

3.5 Degeneracy

Let us first consider one natural example of a degenerate problem. Suppose the
portfolio is rebalanced on a regular basis to meet the changes in the market data.
In most cases the changes would not be very significant from one time period to

the next one. Therefore we could expect that the change in the optimal portfolio

68



X

By

Z1

X2

z @
0

Bg

Figure 3.1: Progress of Modified Algorithm 2 in Solving Example 3.1.

69



is relatively small. It is natural to assume that the target portfolio , which was
optimal for the previous time period is a good initial point for our optimization

algorithm.

On the other hand, because of the structure of the transaction costs, at least n
constraints (bounds) are active at . If at least one more constraint is active at the

target portfolio, this point is degenerate.

In this section we suggest a way to resolve degeneracy issue in the Algorithm 2.

Let 27 be the j-th iterate of the Algorithm 2. Suppose that z’ is degenerate.

In order to find a descent direction, we suggest solving an auxiliary piece-wise

linear optimization problem, which approximates the original problem around z’.

min  VF(o)): + YL, Bl
s. t. EiEN(xj)(aiDi(zj)Zi + b5)+ Y ienei (9i(z) < Wk =1,....m,
dy <z <djy1, 1€ .7\/'(¢’1/’j)7 = D,’(l’j),

di—1 < z; < djp1, 1€ E(2?), 1 = D,(a%).

This problem could be converted into a linear optimization problem by intro-

ducing at most 2n new variables 2% and 2z~ as described in the Appendix A.

It seems very likely that most of the standard techniques to deal with degeneracy,
applied to the lifted 2n dimensional problem (1.6) can be modified to efliciently deal

with degeneracy in our Algorithm.

70



3.6 Constraints on z1, 2~

Let us recall the portfolio optimization problem with nondifferentiable convex trans-

action costs reformulated as a differentiable problem in a higher dimension (1.6).

. n M n M7 o, _
min  F(z)+ 3700, 30 fi () + 200, 2500 fa (@)
s.t. Axr <b,
n MF n M- _ n .
T — > S Y STy =4y, fori=1,...n,
0<af <df, fori=1,...,n1=1,.., M,

0<z2; <dy, fori=1,...,n, 1 =1,..., M.

One of the advantages of this reformulation is that one can impose linear constraints

of the type

Gzt 27 < h.

For example, we could add a turnover constraint as
n M;
g g :L’f+ < K.
=1 I=1

This constraint imposes an upper bound on the total amount bought.

Note that Algorithm 2 allows us to handle such constraints. But we make an
assumption that the constraints should be convex. It appears at first sight that
adding a constraint of type (3.51) to the problem (1.6) will allow us to handle

nonconvex constraints. However, this is not the case.

First we note that one should be careful with adding such constraints. Let us
recall how (1.6) was shown to be equivalent to the original problem (2.1). We
argued that it is always best to set z!T to the upper bound before taking 3t > 0,

and set ;1 to the upper bound before taking z;t > 0 etc. If we add constraints

71



on 1 and z~, this argument might not be valid any more. However, this is not

the case.

For example, addition of the constraint

2-|—:0

could result in a solution with z]* > 0, 27t = 0 and 2?* > 0, which is meaningless

for for our model. Another type of problem is that we could get a solution which

forces us to buy and sell the same asset at the same time. This could occur if we
+ —

have a lower bound on one of the z™ or z]

We would like to find a condition on the coefficients of the constraints, which
would guarantee that the problem (1.6) with the additional constraints on =+ and

x~ 1s equivalent to the original problem.
Let us form a vector (z, 2™, 2P) form z in the following way":

for each index ¢ such that z; > z; and z; — z; € [al;»';;7 d;’l;:+1]

xim =0, for 1=1,..,M,

J;ip = d}, for I=1,.,L—1,
7P =2 — & — dfy,

xﬁp:07 for I=L+1,.., M,

and for each index ¢ such that z; < Z; and &; — z; € [d;;, di_L-I—l]

zlm =0, for I=L+1,..,M;
{L’l»Lm = {i’, — Ty — dz_L7
i = d7 for I=1,..,L—1

2P = for 1=1,..,M".

'We wrote (z,2™, 2P) instead of righting (27, (z™)7, (2?)T)T. In what follows we will often

interchange the row and column notation. The type of vector we are dealing with should be clear

from the context.

72



We'll say that the vector (z, 2™, 2P) is formed from z in a natural way.

Let us consider a feasible region of (1.6) with an additional linear inequality

constraint on zt and z7:

Az < b,
+ -
Ly — E?:l Z;\izl wz-ll— + Z?:l Z;\iil xz_l = ‘%iv fors = 17 SRR
0<af <di, fori=1,..,n,1=1,.., M", (3.51)

0<z2,; <d,;, fore=1,...n,1=1,.... M

Mt M- _ _
2?21 21:11 gjlrl':; + E?:l 21:11 gazy < h

Assumption 3.1 Suppose that for any feasible vector (z,x~,27) , vector (z, 2™, xP)

formed from x in a natural way is also feasible.

Under this assumption problem (1.6) is equivalent to the original portfolio prob-
lem. This condition would be difficult to check in general. Below we formulate a

different condition, which is sufficient for the Assumption 3.1 to hold.

Lemma 3.7 Let region S be defined by (3.51) and let

Then for any vector (z,x~,x%) that is feasible for (3.51), the corresponding vector
(z, 2™, xP) is also feasible for (3.51).

Proof Case 1. Suppose 2} < d;;_H and :1:;'; > 0 for some k < j. Then we can

shift € = min{d} ., — =}, ;L';;} from z}, to :L';; and the resulting vector will remain

73



feasible. Since g} < g{;,

n M

no M7
SN G Y gnea+gh(sh e+ gh(eh - o =

i=1 1=1,l#jk i=1 I=1
no MF n M7

SN giei 40 gnag + ghak + gl + elgh — o) <

i=1 I1=1,l#5k i=1 1=1
n M n M7

N> ghat >0 gpeg <h

=1 I=1 =1 l=1
After a finite number of such steps Case 1 will no longer occur.

Case 2. zy < dy,, and z;; > 0 for some k& < j. Then we can shift € =
min{d;_, — @, 2.} from 2 to z;; and the resulting vector will remain feasible.

Since —g;; < —g;. or g < i,

n M n M7

SN g Y] Y gnen+galen o) +glan —e) =

=1 I=1 =1 I=1,1#73k
n Mz+ n Mi_

S atei+> 0 Y grag + gnra + g5 + g — g5) <

i=1 I=1 i=1 I1=1,l#5k
n MF n M7

> ghai >0 girg <h

=1 I=1 =1 I=1
After a finite number of such steps Case 2 will no longer occur.

Case 3. z} > 0 and z;; > 0 for some k and j. Then we can deduct € =

min{z}, z;;} from both z} and z;; and the resulting vector will remain feasible.

74



Since —g;; < gk,

n

M n M
> Z e+ Y gaag gk — o) +gn(an — o) =
=1 =1,1

=1 1=1,1#75

n

M n M
Z Z il—l_z Z JaTa + 9 + 95y — €l + 955) <

=1 =1 I1=1,1#7

n M{I' n M
> ghat >0 gpag <

=1 I=1 i=1 I=1

After a finite number of such steps Case 3 will no longer occur.

If none of the above 3 cases apply, the resulting vector is the one obtained from

x in a natural way and it is feasible.

O

75



Chapter 4

Interior-point Method

4.1 Smoothing via Splines

We would like to see if an interior point method (IPM ) can be applied to solve
problem (2.1) efficiently. Throughout this chapter we will assume that

F(z) = %xTG:r: +clz (4.1)

is a strictly convex quadratic function on R”, G is symmetric positive semidefinite,

and f;(x;) is a piecewise linear function on R, with break-points at d;i, i.e.

fio == piozi + hio, itz <dp,
filzs) = S fu = pax; + ha, if dy <z <dyyr, 1 =1,..., M, (4.2)

fin == pivs i + hingy, i 2 > dig;.

Applying the IPM directly to the nondifferentiable problem would force us to follow

a nondifferentiable “central path”.

A point * € R” is a point on the “central path”, if and only if, for y > 0,

76



Ar+s=b, >0

(VF(z))+ ‘;’;f(:c,) + (ATu); = 0, for all 7 € N(x),
with z; € (d,’l, dil+1),

(VE(2)); + L2=1(dy) + (ATu); + v; = 0, for all i € E(z),

da;
with z; = d;, (4.3)
0 <v; < Yit(dy) — L=t (dy), for all i € E(z),
with z; = dy,
u >0,
uisi =p, t=1,...,m,

or

Ar+s=10b, s >0

(Gz)i 4 ¢i + pa + (ATu); = 0, for all i € N(z),
with z; € (di, dii41),

(Gz); + ¢ + pa_1 + (ATu); +v; =0, foralli € E(x),

with z; = dy, (4.4)
0 <wv; < pir — pa-1, for all s € E(z),

with x; = d;,
u >0,
uisi =p, t=1,...,m.

7

Approximating the nondifferentiable functions f;(x;) by smooth functions allows
us to fully use the theory of differentiable optimization, and in particular, interior

point methods.

There are two approaches that could be taken here. In many cases the nondif-

ferentiable function f;(z;) is just an approximation of some smooth function based

77



on a given data set. Then taking a convex cubic spline on this data set would give a
better approximation of the original function and the objective of the optimization
problem (2.1) would become smooth. For more details on this approach, see for

example [47], and for a general reference on splines see [11].

However, in real life, the original data set is often not available and it is best
to find a solution to the given data. Transaction cost functions, for example, are
always non-smooth. Therefore, we focus on the second approach. We use smooth
convex splines that approximate the given piecewise linear convex functions f;(z;)

that represent the transaction costs.

4.2 Interior Point Method for Smooth Approxi-

mations

Suppose the functions f;(z;) are approximated by smooth functions fi(x;). We
denote the first and second derivatives by f/(z;) and f/(x;), respectively.

Let (z,u,s) be a current iterate, with (u,s) > 0. The following system of

perturbed optimality conditions will be considered at each iteration of the IPM

3

Ar+s=b, s> 0
(Gz)i + ¢i + fl(zi) + (ATu); =0, foralli=1,...,n,

(4.5)
u > 0,
uisi =p, t=1,...,m, )
Newton’s method is applied to this system.
Define the barrier parameter y = %, the vector of first derivatives ¢ =

(fi(x1),..., f(2,))T, and the diagonal matrices
U = Diag(u, ... ,un), S =Diag(si,...,sm), H = Diag(f/'(z1),..., " (zn)).

78



Then the search direction for (4.5) is found from the linearized system (Newton’s

equation)
G+H AT 0 Az —r,
A 0 I Au | = —T ; (4.6)
0 S U As —Us 4 ope

where the residuals
rc:G:L’—I—c—I—g—I—ATu, ry = Ax + s — b,

e is the vector of ones, and o € [0,1] is the centering parameter.

We can use block eliminations to simplify the linearized system. We first solve
As=—-U"'SAu—s+ O'ILLU_le.

Then we can eliminate As and rewrite (4.6) as the symmetric, indefinite, linear

system (n + m sized, augmented or quasidefinite system)

G+H AT Az —Te
A —U-'s Au —ry+s—opulUte

Further, since
Au=ST'U[AAz + 1y — s + opU el = —u + STHU(AAz + 1) + opel,
we can eliminate Au and obtain the (n sized, normal equation system)

G+ H+ AT(S_lU)A]Al’ = —r.+ AT(S_IU)[—TI, + s —oulU~"e]
= —r.+ AT[u — S Ury + ope)] (4.8)
= —(Gr+c+g)— ATSHUry + opel.

We can add upper and lower bounds b, < z < b, to the problem. Let 0 <

(2, u, ur, Uy, S, Si, Sy) be a current iterate of the IPM , where u;, u, and s, s, are the

79



dual variables and slack variables corresponding to the upper and lower bounds,

ul s—i—ulT K] +uz Sy

m+2xn ? and

respectively. In addition, we redefine the barrier parameter y =

define the diagonal matrices

U, = Diag(w;), U, = Diag(u,), S; = Diag(s;), S. = Diag(s,).

Then the search direction is now found from the Newton equation

[ G+H AT I 1 | [ Ax _ —re _
A —U-ts 0 Au —ry+s—oulU e
I 0  —U'S, 0 A, i+ 50— ouUsle |
i -1 0 0 —UI_ISI | Ay | 7w + s; — J,uUl_le

(4.9)
with residuals ro = Gx +c+ g+ ATu, ry = Az + 5 —b, 1y = . — by, 1y = —x + by,

We can repeat the block eliminations and find

As = —U'SAu—s+oulU e,
As, = —U'S,Auy — s, +opuU e,
As; = —UT'SiAu— ;4 oulUi e,
Auy, = S;'UJAT 4 1oy — 80 + oulUte] = —uy + STHUL(Az + 1) + opie],
Awp = S7'U Az +ry — sp+ oplU el = —wp + S Ul(— Az + ry) + ope],
Au = ST'WU[AAz + 1, —s+opulUrel = —u+ STHU(AAZ + 1rp) + ope].

The linearized systems become:

G+H+U'S, +U7's AT
A -U-'s

Az To
7

—rp+ 8 — O'ILLU_le
(4.10)

where
— S Uurvu + ope] + g — S; {Uire + opeel,

o = —T¢ + Uy

80



and

G+ H+U'S, +U7'S + AT(ST')AJAz = —rg + AT(STIU)[—rp + 5 — O'ILLU_leg

4.11)
= —rg+ AT[u — S YUry + ope)).

4.3 Quadratic and Cubic Splines

Recall that f;(x;) is a piecewise linear convex function. We can approximate it by

a spline f;(z;, €) in the following way. Let

filzis€) = filxi) + si(zis €). (4.12)

Let us denote Ap; = pa — pa—1.

For the quadratic spline

4e

BPit (g — dy + €)%, if 2; € [di — €,dy + €] for some | € {1,..., Mi}(ﬁl 13)

si(xi,€) = ‘
0 otherwise,

the first partial derivative of s;(x;, €) with respect to z; is

Osi(xi e) %(1’@' —dy+e€), if z; €[dy—e€,dy+ €| for somel e {l,..., M,}(

= 4.14

otherwise,

and the second partial derivative of s;(x;, €) with respect to z; is

3%s;(x;, €) _ Azpe“, if x; € [dy —e,dy + €] for some [ € {1,..., M}, (4.15)

otherwise,

O0x? N 0

81



For the cubic spline

AGZZ (zi — di + €)°, if x; € [dy — €,dy] for some I € {1,..., M;},
S,(:l?,) = —%(CL‘, —dy — 6)3 + (Ap,'l)l‘,', if z; € [d,’l, dy + 6] for some [ € {1, Ceey Ml}(416)
0 otherwise,

the first partial derivative of s;(x;, €) with respect to z; is

Azfz“ (; — dig + €)?, if x; € [dy — €,dy] for some 1 € {1,..., M;},
GEHE .
% = —Azfz” (x; — dig — €)* + Apy, if x; € [dig,dy + €] for some [ € {1,..., M;}(4.17)

0 otherwise,

and the second partial derivative of s;(x;, €) with respect to z; is

Ag;” (x; —diu+e€), if z; €[dy— e, dy] for somel € {1,..., M},
6282'(11'76) Ap: .
— 3 = — 5 (x;—dy—e€), if x; € [dy,di + €] for some [ € {1,..., M;}(4.18)

2 2
ox; €

0 otherwise,

It is trivial to check that the functions f;(x;,¢) defined above are continuously

differentiable. In case of the cubic spline, they are twice continuously differentiable.

Note that the largest value of € that we want to use should satisfy
I .
€< 5 mlln(d,l — dil—l)-

Let us define
€= — min(dil — dil—l)- (419)

4.4  Sensitivity Analysis

Let us recall some basic sensitivity results, see [23].

82



Definition 4.1 Let T be a point-to-set mapping from T C R™ to subsets of R™ and
let t,, € T be such that t,, — to. Then T is closed at to € T if x, € ['(¢,,) for each n

and x, — xo together imply that xo € T'(to).

Theorem 4.1 (2.2.2 from [23]) If f is a continuous real-valued function defined on
the space R™ x T and R is a continuous mapping of T into R™ such that R(e) # ()
for each € € T, then the (real-valued) function f* defined by

F(e) = inf{f(z,€) | = € Re)} (4.20)
18 continuous on T'.

If ¢ is an affine function from R"™ to R™, i.e., if g(z) = Az 4 b, where A is an

m X n constant matrix and b € R™ is a constant vector, and if

Ru(g) ={z € M | g(z) > 0},

where M C R", the function g is said to be non-degenerate with respect to the set
M if Rp(g) has a non-empty interior and no component of g is identically zero on

M. The continuity of the map defined by

Su(g) = {x € Rulg) | f(2) = nt{f(z) | = € Ru(g)}} (4.21)

is given by the following theorem. This result has been proven in [18].

Theorem 4.2 (2.2.4 from [25]) If f is continuous, g is affine, and M is closed

and convez, then Sy is closed at every non-degenerate g.

We next apply these sensitivity results to our problem. Let us introduce a

function f;(z;,€) defined on R X [0, €| for every i = 1,...,n as follows

i(zi,e) 1if e >0,
filzi€) = i@ ) ‘ g (4.22)
fi(z) if e=0,

83



where the functions f;(z;, €) are defined by (4.12) and the functions s;(z) are defined
by (4.13) or (4.16).

Finally, let
i=1
Consider the problem

min f(x),
s.t. Az <b.

(4.24)

Proposition 4.1 Let f(x,¢€) be a function defined on R™ x [0, €] by (4.23) and let
€ > 0 be given by (4.19). Then the optimal value function f*(e) defined by

F(e) = min{f(z, ) | Az < b} (.25
is continuous on [0, €]. Furthermore, the mapping S, defined by
S(e) = {r | Az <b, f(.e) = F(e)} (4.26)

is a closed mapping of [0, €] into R™.

Proof. We first show that f;(x;,¢€) is continuous on R x [0, €] for every i = 1,...,n.

This is true for € # 0 because f;(x;,¢€) is a continuous function.

Let us show the continuity of f;(z;,€) at e = 0. Consider a sequence (z*, €*) —
(z,0). Suppose, first that z; # d; for any [ = 1,..., M;. Then, for a sufficiently
small value of *, 2% ¢ [dy — er,dy + €] for any | = 1,..., M;. By definition
of fi(zi,e€), fi(zk, ) = fi(2¥) and fi(z;) = fi(7;,0). Since f;(z;) is continuous,
fi(z¥) = fi(z;). Combining these, we obtain that fi(z¥,e*) = fi(z¥) — fi(zi) =
fi(;,0), or fi(zF ) — fi(z:,0).

84



Suppose, next that z; = d; for some I = 1,..., M;. Then, for a sufficiently
small value of €*, 2% € (dy_1 + €*, dys1 — €F). We now subdivide (z*, €*) into two
subsequences. If 2% & [dy — €*, dy + €¥], then fi(aF, &) = fi(2¥) — fi(z:) = fi(2:,0)

since f;(x;) is continuous. If 2% € [dy — €*, dyy + €¥], then, in the case of a quadratic

spline,
si(wf) = 4fkl(wf —dy +€)’ < fk’(2e’“)2 — 0, (4.27)
when ¢* — 0. In the case of a cubic spline,
Ale Ap,'l
k 3 kN3
si(e;) G(Gk)z(z:l di + €)* < 6(ek)2(26 )? — 0, (4.28)

when €* — 0. Therefore, f;(z¥, ¥) = fi(2¥) + s:(z¥) — fi(z:) = fi(7:,0).

This completes the proof of the fact that f;(x;,€) is continuous for every 1 =

1,...,n. Hence f;(z,€) is continuous as a sum of continuous functions.
Applying Theorem 4.1, we obtain (4.25).

We next reformulate the problem
min{ f(z,€) | Az < b}

as

min{ f(z, zn41) | Az < b, xpp1 = €}

This allows us to apply Theorem 4.2, and proves (4.26). [ |

By Proposition 4.1, approximating the piecewise linear functions f;(x;) by smooth
splines in the e-neighborhood of the break-points for small values of € implies small

changes in the optimal solution and the optimal value of the problem.

85



Suppose (%, s*, u*, v*) satisfy optimality conditions (2.6), i.e. z* € §*(0). From
the optimality conditions (2.6),

(VE(z*); + pa + (ATu*); = 0, for all 1 € N(z*),
with zF € (di, diy1),

(VF ()i + pi—1 + (ATu*),' + v =0, forallie E(z"),
with = = dy,

Az 4+ s*=b, s >0 (4.29)

0 <v’<pi—pi-1, for all i € E(z*),

with *l’,' = d,’l,

7

Suppose next that (z* + Az, s* + As,u* + Au) are optimal for the problem (4.24)
for a given € > 0, i.e. z* € S*(¢). Let us denote f.(z) = f(z,¢). The optimality

conditions for this problem imply

Vf(z* + Az) + AT(u* + Au) =0,
Alz* + Az) + (s*+ As) = b, s* 4+ As > 0,

(4.30)
(v + Au) >0,
(uf + Au)(sF+As;)=0, 1 =1,...,m. )
Approximating the gradient of f.(x) by it’s Taylor series, we obtain
Vi(z*)+ fo(a:*)A;L’ + AT(u* + Au) =0,
A(z* + Az) + (s*+ As) = b, s* 4+ As > 0,
(4.31)

(uf + Aw,) (s + As;) =0, i =1,...,m,

86



or

(VE@"))i + pir + (Vse(@™)i + (VE (@) Az); + (Vsi(2*)Az)it

(AT (u* 4 Au)); = 0,

(VE(2")i + pa-1 + (VF*(2")Az); + (AT (v* + Au)); = 0,

Alz* + Az)+ (s*+ As) = b, s*+ As > 0,

(u*+ Au) > 0,

(uf + Aw;)(sf+As;) =0, e =1,...,m.
Subtracting system (4.29) from (4.32) we get

(Vse(z*)); + (VF*(2*)Az); + (Vs2(z*)Az); — vi+

(AT (Au)); =0,

(VF*(z)Az); + (AT (Au)); = 0,

AAz + As =0,
ul * Asi 4 sFx Au; + As;x Au; =0, 1 =1,...,m.

for all i € E(z*),
with zF = dy,

for all i € N(z*),
with =} € [di_1,da), (

Y 32)

for all i € E(z*),
with =z = d;,

for all i € N(z*),
with z} € [di_1, di],

(4.33)

/

If we disregard the last term of the last equation As;*Au;, we can obtain (Az, As, Au)

by solving a linear system

VF*z*)+ H AT 0 Azx
A 0 I Au
0 S U As

where

.

and H is a diagonal matrix

|

H;;
0,

87

otherwise

VS?({I}*), if .’L’f:d,’l,

v, — VSE(.TL‘*),' if :l?;k = d,’l,

=|o|, (4.34)
0

(4.35)

(4.36)

otherwise.



This proves the following:

Theorem 4.3 Let € > 0 and z(e) be an optimal solution for problem(4.24) and let
s(€) and u(e) be the slack variables and dual variables associated with this optimal
solution. Then there exists an optimal solution x* for problem(2.1) such that the

first-order approzimation (x(€), s(€),u(€)) in a neighborhood of € = 0 is given by
(z(€),s(e),ule)) = (z", s, u”) + (Ax, As, Au) + o(e),

where s* and u* are the slack variables and dual variables associated with x*, and

(Az, As, Au) can be found from (4.34).

Note that the LHS of the system (4.34) is similar to (4.6).

If we assume strict complementarity at z*, the last line of (4.34) implies that
the active set will not change for small values of e. Let us denote by A the matrix

of the constraints active at z*. Then the system (4.34) can be rewritten as follows.

VF(z*\+ H AT Az r
( 7) = , (4.37)
A 0 Au 0

We further note that the norm of H is equal to a constant multiple of max;; %
for both quadratic and cubic splines. For small values of € it can be used as an
estimate of the norm of the LHS matrix of (4.37). Also, 0 < r; < max; Apy.
Hence, we expect that the norm of Az will be order e. This is consistent with our

computational experiments.

88



4.5 Smooth Formulations via Lifting

Because of the special structure of the nondifferentiable part of the objective func-
tion, problem (2.1) can be converted to a smooth one by introducing new variables
and constraints into the problem. For example, for each 7 = 1,...,n, we can intro-
duce a new set of variables zf where I = 0,..., M and zj; where [ = 0,..., M;

2 k3

.Then problem (2.1) can be rewritten as (1.6).

The problem (1.6) is a linearly constrained, convex and twice differentiable
problem and standard techniques can be used to solve it. However the higher

dimensional problem is computationally expensive to solve.

We can design an interior-point algorithm for this problem in a way analogous
to our derivation in Subsection 3.1. First, we express the primal-dual central path.
The central path is continuously differentiable, however, it is expressed in a very
high dimensional space compared to our formulations in Section 3. To compare the
underlying interior-point algorithms, we can eliminate the “new variables” (those
not present in the formulations of Section 3) from the nonlinear system defining
the central path. Let v € R" denote the dual variables corresponding to the linear

+

equations expressing x in terms of z,z™, and z~.

After eliminating all of these new variables except v, the nonlinear system of
equations and inequalities are equivalently written as
Ge+c+ ATutv(z) = 0, u>0;
Az +s = b, s>0;
Su = pe.

In the above v(z) : R" — R"™ is continuously differentiable at all interior points

and is completely separable, that is, [v(z)], only depends on z;. Therefore, if we

89



derive the search directions based on this latest system, we end up with the normal

equations determining Az whose coefficient matrix is:
G + Diag [v'(z)] + AT(ST'U) A.

Compared to the search directions from Section 3, the search direction derived here
has only a diagonal perturbation to the left-hand-side matrix and this perturbation
Diag [v(z)] is independent of A,b, ¢, G and only depends on the nondifferentiable
part of the data.

Another approach to comparing different interior-point algorithms in our setting
would be to derive the search directions for each formulation in their own space and
then consider the Ax components of each of these search directions. I.e., compare
the projections of the search directions in the z-space. This way of comparing
the search directions could lead to different conclusions than the above. As it
will become clear, our way of comparing these different formulations exposes the
similarities in an extremely easy and elegant way. One drawback of the compact
central path system that we derived is, the compact system is “more nonlinear”
than the high dimensional, original formulation. The latter is the usual approach
to quadratic programming and yields a bilinear system of equations and strict
linear inequalities. In our compact system above, in addition to the usual bilinear

equations (such as Su = pe), we also have the nonlinear system involving v'(z).

4.6 Local Lifting

We can introduce a pair of new variables :1;;»", z; for each ¢+ € E(x) with z; = d;.

This converts a problem into a differentiable one in the neighborhood of the current

90



iterate. The problem becomes

min  F(z) + ZieN(z) filzi) + EieE(m)( i (@) + fi (27)),
s.t.  Ax <b,
(4.38)
zi=dy+zf — a7, i € E(x),

zf, 27 >0, i € E(x).

z )

A point € R™is a point on a central path corresponding to (4.38), if and only
if

Ar+s=b,s>0
(VF(x))+ ‘;’;ﬁ (z;) + (ATw); = 0, for all 7 € N(x),

2

with z; € (dq, dii41),
(VF(2))i + L=t (dy) + (ATu); +v; = 0, for all i € E(x),

with z; = dj,
(VF(2))i + %4(d) + (ATu)i —wi =0, for all i € E(x),

with T; = d,’l,
(4.39)
u >0,

zi =dy+af —a7, i€ E(x),
af, 27 >0, i€ E(x),

vy, w; 2> 0, 1€ E(‘T)v

uisi =p, t=1,...,m,

Uimi_ = M NS E({E),

wiz} = p, i € E(x).

91



Note that v; + w; = Ap;;. For the quadratic function, the above system becomes

3

Ar+s=10b, s >0

(Gz); + ¢ + pa + (ATu); = 0, for all © € N(z),
with z; € (di, di+1),

(Gz)i + ¢ + pi—1 + (ATu); + v; =0, forall i € E(x),
with z; = d;,

u >0,

Uisi = f, i=1,...,m, (4.40)

zf, >0, 27 >0, i € B(z),

w; >0, v; >0, i € E(x),

v +w; = Apy, i € E(2),

zi =dy +xf —x7, i € E(x),

ViT; = [, i € E(x),

wiz) = p, i € E(x).

7

The last four equalities form a system

v +w; = Api,
z; = d; —I—QZZL—;U;,
: (4.41)
Vi = [
wizh = p. )
This allows us to express the dual variable v; as a function of z;
2uAp;
U,([L‘,) AP (442)

a 20 — Apalx; — dg) + (402 + Apf(x; — du)z)%'

Note that v;(dy) = % > 0. In a neighborhood of d;; the variables w;, = and

92



x; are positive and solving a system (4.40) is equivalent to solving

Ar+s=b, s>0

(Gz)i + i + pa + (ATu); = 0, for all i € N(z),
with z; € (di, dii41),

(Gx); + ¢ + pa—1 + (ATw); + v;(z;) = 0, foralli € E(x), (4.43)
with z; = dy,

u >0,

UiSi = [y 1=1,...,m.

This approach appears to be similar to the “spline approximation” approach.
We are just modeling the jumps in the gradient of f;(x;) by a function s;(x;), such
that

Proposition 4.2 Suppose an interior point method is applied to the problem (4.38)
and a search direction (Ax, Au, As) is obtained at a point (x,u,s). Then the same

direction can also be obtained by applying the interior point method to the problem

(4.5), with fi(x;) = fi(x;) + si(x;), where si(x;) = v;(x;) is given by ({.42).

Therefore, the search direction computed in this Local Lifting approach can also

be treated in the class of search directions Az obtained for m solving the system
G+ D+ AT(ST'U)A|Ar = —(Gz +c+d) — ATS™ Ury + ope].  (4.44)

where D and d are the diagonal matrix and a vector determined by a particular
approach (e.g., smoothing via quadratic spline, smoothing via cubic spline, global

lifting, local lifting).

93



Note that the above unification of these various approaches go even deeper. In
subsection 4.4, the sensitivity analysis leads to the linear system of equations (4.34)

which is also in the above form.

The main reason for this is the fact that we derived our algorithm from the nec-
essary and sufficient conditions for optimality and these conditions change slightly

going form one of our formulations to another.

4.7 Probability Analysis for Number of Break

Points

Recall that f : R® — R" is a convex function which is the sum of a strictly
convex quadratic function and n, convex, separable, piecewise linear functions. So,
f is differentiable everywhere except at the break points of the piecewise linear

components.

The problem we have been considering is

min  f(z)

s.t. z € P,

where P C R" is a polyhedron.
For every z € R, define the level set of f:
C(z) = {r €R™: f(z) < 2},

which is convex (since f is) and closed (since f is continuous). Suppose that our

optimization problem has an optimal value z* and it is attained. Then we ask the

94



question “How likely is it that there exist
r€C(z)NPandi€{l,2,...,n} such that
Z; is a break point of f;?”

Proposition 4.3 Let f, C(z), P, and z* be as defined above. Then, C(z) is a
compact, conver set for every z € R™. Moreover, if P # 0, then z* exists and is

attained by a unique x* € P.

Proof: We already established that C(z) is closed and convex for every z € R".
Since f is the sum of a strictly convex quadratic function and n, convex, piecewise
linear functions, f is coercive. Thus, C(z) is bounded for every z € R™. Therefore,
C(z) is compact for every z € R™. We deduce that if P # ), then z* is finite and is
attained. f is strictly convex (since it is the sum of a strictly convex function and
some other convex functions); hence, there must be a unique minimizer of f on the

compact, convex set C(z*) N P. [ |

In our analysis, restricted to the domain of our applications, we may assume
0 € P. Recall that # denotes the current investment holdings and we would expect
it to be feasible. (By a simple translation of the coordinate system, we can place
& at the origin.) Now, for each j, z; > 0 represents buying and z; < 0 represents
selling. Since neither of these two activities is free, we conclude that each piecewise
linear function has a break point at zero. Therefore, the objective function f is

nondifferentiable on the hyperplanes,
{z e R":z; =0}
for every j.

95



From a practical viewpoint, we immediately have an answer to our question.
Since the investor cannot be expected to trade every single stock/commodity in

every planning horizon, break points at optimality are unavoidable!

From the theoretical viewpoint the answers depend on the probabilistic model

used and calculating the probabilities exactly would be complicated.

In order to get a rough estimate of the number of the coordinates of the optimal
solution that are at breakpoints, we looked at a simpler problem of unconstrained
minimization of f(z). In addition, we assumed the the matrix G is diagonal, func-
tions f;(x;) are the same for each coordinate, the breakpoints d;; and the gradients
pa are equally spaced. We denote by Ad = d;41 —d;; and by Ap = pjp1 — pi. From
the optimality conditions (2.6), £ minimizes f(z) if and only if 0 € 9f(z) or

OE G,:E,—I—C,—I-af,(”lll), i: 1,...,72.

We can think of a subdifferential as a mapping from R" — R"™ If none of the
coordinates of = are at breakpoints, this point is mapped to a single point. If a
coordinate x; = d;; is at a breakpoint, then the i-th component of the subdifferential
is an interval and the probability of having z; = d;; is equal to the probability of

zero being in this interval.

If the coordinate x; = d;; is at a breakpoint,

0 € [Gidit + ¢ + pi—1, Gidi + ¢i + pal.
Note that the length of this interval is equal to Ap.
If the coordinate z; € (dji, dj+1) is not at a breakpoint,
0=Gz; + ¢+ pa.

96



The interval (d;i, d;i4+1) is mapped to an interval
[Gidi + ¢ + pir, Gidiipr + ¢ + pi

of length G;Ad.

This suggest a hypothesis that ratio of the probability of the i-th coordinate
being at a breakpoint to the probability of the opposite event is

Ap: G;Ad.

We ran some tests for the constrained minimization of such functions. In some ex-
amples this estimate was pretty close, in other cases the number of the breakpoints

was less than predicted, see Table 5.6 in the next section.

97



Chapter 5

Computational Experiments

Both interior-point and active set algorithms are implemented for the case when
the utility function is quadratic and transaction costs are piece-wise linear. To be

more precise, we considered the problem
min $2'Gz + dz + >, fi(wi)
st. mitao+..t+x,=1, (5.1)
Ax < b,
where
pioT; + hio, if z; <dj,
filzi) = pazi + ha, if ;€ [da,day], 1=1,.., M, (5.2)
pin; i + hingy, i x; > ding, .
The IPM algorithm is implemented in MATLAB and the active set method is im-
plemented in C. In Section 5.1 we test the performance of the active set algorithm.
In Section 5.2 we show how the parameters of the problem affect the performance

of the IPM algorithm. In Section 5.3 we look at the connection between these pa-

rameters and the number of the coordinates of the optimal solution z; that have

98



values at points of nondifferentiability. A crossover from the IPM to an active set
algorithm is tested in Section 5.4. For all of the above experiments medium-scale

dense data is used.

We also tested the IPM algorithm on large-scale sparse data. These results are

reported in Section 5.6 and some implementation details are discussed in Section 5.5.

The data is randomly generated in the following way. Vector ¢ corresponds to
the vector of the expected returns, randomly generated in the range (1, 1.3). The

target vector Z is set to zero. The number of the points of nondifferentiability

M, = M 1s the same for each coordinate. The transaction costs are chosen as
follows.
PminZ; + hi07 lf Xy S dmin7
(pmin + W)xz + hih if dmin + % S Z;
filz;) = (e —dinin) (5.3)
S dmin + T M—1
Pmaz i + hiM7 lf Xy Z dma:r.-

We'll say that the transaction costs varied from pn;, t0 Pmar In this case. The
matrix G = aG. Roughly speaking, « is proportional to the inverse of the risk
aversion parameter ¢, i.e., higher values of « correspond to lower values of ¢ and
vice versa. We discuss the effect of changing this constant on the problem in Section

5.2

1. Dense Data. In order to guarantee that the matrix G is positive semi-
definite, we first construct an n x n matrix C with random entries in the
range (-0.5, 0.5) and then form G = CTC. The matrix of the inequality
constraints, A, and the vector of the right hand side, b, are also generated
randomly. In the first series of experiments we generate A and b with random

entries in the range (-0.5, 0.5). We refer to this kind of data as Type 1. In

99



the second series of experiments we generate A with random integer entries
from the set {0,1,2,3}. We refer to this kind of data as Type 2. Each dense
problem has one equality constraint x; + 3 + --- 4+ x,, = 1. The transaction

costs varied form -0.5 to 0.5.

2. Sparse Data. We test 2 types of sparse data. We use the sprandsym com-
mand in MATLAB to generate the matrices G' with a given sparsity. Another
type of data arising in large-scale applications is block-diagonal matrices or
matrices with overlapping blocks on the diagonal. We use sprandsym com-
mand in MATLAB to generate each of the blocks. The transaction costs
varied form -0.05 to 0.05. The matrix of the inequality constraints, A, is also
sparse. In all the experiments, we ensure that A has no zero column or zero
row. If the randomly generated matrix A has one or more zero columns, then
we add a random number to one element in each of these columns, but in a
different row. Then we check the resulting matrix for zero rows and eliminate

them in a similar way.

In order to compare the performance of our implementation with that of com-

mercial package, we convert our problem into a differentiable one (1.6) by introduc-

14+ .24

ing nM new variables z'*, 2%t ... oM+ 1= 2?2 ... 2M~. This problem is then
solved using MOSEK 3, using an interior point method and in CPLEX 9.0 using

the active set method with default accuracy.

We run all the experiments on a SUNW, UltraSparc-IIli, (1002 MHz, 2048
Megabytes of RAM). All execution times are given in CPU seconds. We repeat
each experiment 10 times for the smaller dense problems and 5 times for the large
sparse ones. The average execution times are reported in each table. The requested

accuracy for our MATLAB code is €/100, where € is the parameter of the spline

100



approximation. In Section 5.6 we request the same accuracy from MOSEK. In
Sections 5.1 and 5.4 , where the active set and crossover method are tested, the

relative gap termination tolerance for MOSEK was increased to 10e-14.

5.1 Active Set Algorithm

The active set method is implemented in C for the problem in a standard equality
form. At each iteration of the active set method, the variables are subdivided into
basic and non-basic. A coordinate can be non-basic only if it is equal to one of the
breakpoints (if upper or lower bounds are present, they are treated as breakpoints
too). A Newton’s search direction is taken in the basic subspace. This requires
solving a symmetric linear system at each iteration. The step size is taken so that
all the variables stay in the corresponding intervals between the breakpoints. At
the end of each iteration either one variable is added to the basis or it is dropped
from the basis. We store the inverse of the coefficient matrix of the system. The
next linear system differs form the previous one by one row and column. We use
this fact to update the inverse. The FORTRAN routines for this updates were
kindly provided by Professor M.J.Best. These routines were converted to C by an
automatic translator. To further improve efficiency we used CBLAS routines to

perform basic matrix and vector operations.

These experiments were performed on the dense data Type 2. Each problem
had equality constraints and upper and lower bounds on all variables. In all the
experiments CPLEX and our Algorithm 2 were started with the same initial basis.
Note that for CPLEX we give both total time spent on creating the model and
solution and pure execution time. For the remaining methods these timings were

virtually the same so only total time is given. In Tables 5.1 and 5.2 the transaction

101



CPLEX 9.0 | MOSEK 3 | Algorithm 2

n=600
m=1 26/23 (969) 6 (15) 15 (306)
m=30 |  26/23 (864) | 25 (14) 18 (811)
n=1000

m=1 | 123/107 (1398) 15 (15) 88 (975)
m=50 | 111/ 94 (1078) | 110 (15) | 106 (866)
n=1400
m=1 | 355/316 (1955) | 36 (16) | 305 (1288)
m=70 | 310/271 (1407) | 351 (18) | 362 (1148)

Table 5.1: CPU times for Algorithm 2, CPLEX and MOSEK, M=3.

cost function has 3 breakpoints, the costs are 0.5% for the first interval and 1.5%
for the second one. For Table 5.1 the initial point for the problem is chosen so that

it is feasible and z; ~ %

In practice, a portfolio is rebalanced regularly to reflect the changes in the
market data. Unless the data changes significantly, the current portfolio (target
portfolio), which was optimal before the change, is a very natural choice for the
initial point for an active set method. In our computations we assume that only co-
efficients of the objective function change, while the constraints remain unchanged.
Under this condition, the target portfolio is feasible for our problem. However this
point is always degenerate, since all it’s coordinates are at breakpoints and all the
equality constraints are always active. We noticed that for the case of one equal-
ity constraint Algorithm 2 performs well. Otherwise we solve the LP described in
Section 3.5. We report the time for this LP in a separate column. This time is

also included in the total time for the Algorithm 2. Note that LP accounts for

102



CPLEX 9.0 | Algorithm 2 | LP | At Breakpoints
n=600
m=1 6/3 (325) 1 (327) - 365
m=30 7/4 (472) 4 (231) 3 354
n=1000
m=1 23/9 (374) 4 (370) - 644
m=>50 | 29 /15 (614) 19 (187) | 15 666
n=1400
m=1 57/22 (467) 9 (468) - 941
m="70 | 70/34 (885) 71 (246) | 60 940
Table 5.2: CPU times for Algorithm 2 and CPLEX, warm start.

CPLEX 9.0 | Algorithm 2 | At Breakpoints

23/9 (374) 4 (370) 644

20/6 (228) 1 (229) 781

18/4 (152) 0.4 (153) 857

Table 5.3: CPU times for Algorithm 2 and CPLEX, warm start, n=1000, m=1,
M=3.

approximately 80% of the total time in these cases. Finding a more efficient way
of dealing with degeneracy would give a big improvement. Table 5.2 shows the
“warm start” timings for CPLEX and Algorithm 2. In the “ warm start” situation
described above only a small percentage of the assets are traded, the rest stay at
the original level (breakpoint). We noticed that increasing the transaction cost
forces more assets to stay at the breakpoints and Algorithm 2 performs best in

these cases, see Table 5.3.

103



5.2 Number of break points M; Spline Neighbor-
hood ¢

1. We tested the MATLAB IPM program in Table 5.4 and varied the number
of break points M from 3 to 101 and the size of the spline intervals e from
0.001 to 0.00001. The transaction costs varied form -0.5 to 0.5. Figure 5.1

illustrates the timings for the cubic spline case.

We can see that increasing e consistently decreases the number of iterations
and cpu time. (Though our theoretical sensitivity results show that the ac-
curacy to the true optimum decreases, see Section 4.4 ). Also, increasing the
number of intervals decreases the number of iterations and CPU time. In

both cases, the problem becomes more like a smooth problem.

We noticed that the difference between the real optimlsolution and the solu-

tion to the spline approximation is always less than e.

2. We also ran our IPM code on the same set of problems, changing only the
value of the constant « in the definition of the matrix G. All the remaining
parameter are fixed: cubic spline, M=51, ¢ = 0.0001, n=1000, m=500. We
noticed that decreasing alpha increases the timings for the problem with
transaction costs, see Table 5.5. We also report the expected return for the
optimal solutions of the problems with transaction costs. Note that smaller
values of a correspond to larger values of the risk aversion parameter, for
example @ = 0.05 gives an extremely risky portfolio with expected return of
321%. In all the further experiments we use the value of a that gives realistic

expected returns.

104



— ~~ ~~ N ~~ ~~ ~~ N ~~ ~ ~~
) W = 0 © WO x N o O O
) =2 o N N N ) o o N N
0 W\ S’ S’ S S — S’ S S —
== o I~ I~ I~ — 0 <t =] —
o <t ) ] I~ I~ 0 D @) I~ I~
— <
[ap)
5 ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~ ~~ ~~
o Ne) o ) D D Q0 =t — ) )
=) ~ &N N~ N N N N
0 S S S S S S S S S S
=] m W = N O D Mmoo I~ o
=) = < © 0o <t <H ) o o <F <t <H
— i a i
o =
(@ p) —
— ~~ ~ ~~ ~~ ~~ p N ~~ ~~ ~~ ~~
o m 0 — D 0 (=] [@p)] (@] — ) D D
=) = o N~ o~ MmN N o~
0 a S S S S S .m S S S S S
= Hlo &4 o o0 o2l o F a4 o
= [ L = (XS s A
=R O
C
5 ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~~
) o I~ I~ I~ I~ <t I~ I~ Ne) Ne)
o o™ — — — — o™ — — — —
0 S’ S’ S’ S S S’ S’ S S S
= i) 0 I~ I~ 0 [ I~ O 0O 0O
o0 Mmoo M MmN 0w Mmoo M MmN M
— ~~ ~ ~ ~ ~ ~~ ~~ ~ ~ ~~
) ) I~ I~ Ne) Ne) ) Ne) Ne) Ne) 0
o o™ — — — — N — — — —
. S S S S S S S S S S
< <t Ne) Ne) e O o Pig) <t [ [
=t o o o o <t o o o o
o 0O — 20O — o 0O — 20O —
[a] jio) I~ o [a] 0 I~ o
— —

Table 5.4: CPU time (iterations) for MATLAB IPM ; n = 1000, m = 500.

105



Time, CPU sec

120 1 €

Figure 5.1: CPU time for MATLAB IPM ; n = 1000, m = 500, cubic spline.

106



a=1 «a=0.5 o=0.1 «a=0.05

Problem with Trans. Costs | 43 (20) 51 (22) 129 (46) 216 (74)
Expected return 1.35 1.56 2.46 3.21

Table 5.5: CPU time (iterations) for MATLAB IPM ; n = 1000, m = 500, M = 101,
e = 0.0001.

5.3 Expected Number of Breakpoints

Following the probability analysis in Section 4.7, we would like to see how the
parameters of the problem influence the number of the coordinates of the optimal
solution coinciding with a breakpoint. For this set of experiments the Hessian
matrix G is always diagonal. We first take G = al, i.e., G is a multiple of the
identity matrix. The matrix of the linear system A has random entries in the range
(-0.5, 0.5), the vector of the right hand sides b has random entries in the range
(0, 1). Note that zero is always feasible for this problems. The rest of the data is

generated as described above. The results are presented in Table 5.6.

In the Table 5.7 matrix G has 4,3,2 or 1 on the diagonal, 25% of each. This
subdivides the set of all coordinates into 4 groups. The rest of the data is as above.
This table shows the number of coordinates of the optimal solution at a breakpoint

in each of these subgroups.

107



a=1 a=2 a=4 a=38
Ap = Ad
Experiment | 167 (42%) 110 (28%) 68 (17%) 48 (12%)
Predicted 50% 33% 20% 11%
Ap = 2Ad
Experiment | 232 (58%) 179 (45%) 122 (31%) 78 (20%)
Predicted 66% 50% 33% 20%
2Ap = Ad
Experiment | 109 (27%) 72 (18%) 33 (8%) 21 (5%)
Predicted 33% 20% 11% 6%

Table 5.6: Number (percentage) of coordinates of the optimal solution at a break-

point, n=400, m=800.

Gii=4 Gii=3 Gii=2 Gii=1
Experiment | 18(18%) 23(23%) 30(30%) 39(39%)
Predicted 20% 25% 33% 50%

Table 5.7: Number(percentage) of coordinates of the optimal solution at a break-

point in each subgroup, n=400, m=800, Ap = Ad.

108



5.4 Crossover

If a more accurate solution is needed, we can do a crossover to an active set algo-

rithm.

Two versions of crossover method between the IPM and active set method was

tested.

In the first type of crossover we used the last iterate of the interior point method
as an initial point for the active set method. However, because of the nature of the
active set method, starting it with an interior point makes all the slack variables
basic. The number of iterations needed for the active set method to finish the
problem is at least the number of the constraints active at the optimum. Since
our active set algorithm takes a Newton’s step at each iteration , this method will
be time consuming. It could perform well if only few constraints are active at the

optimum and few coordinates are at breakpoints.

Another approach is to take a purification step first. We also use the last iterate
of the interior point method as an initial point and we perform several iterations
of the gradient projection method, see, for example, [42]. We stop if the optimal
solution is found or if a constraint should be dropped. In the latter case the last

iterate of the purification step is used to start an active set algorithm.

The purification step was implemented in MATLAB. At each iteration, we keep
track of the set of active constraints and the projection matrix corresponding to
these constraints. We find the orthogonal projection of the negative gradient of
the objective function at the current iterate onto the subspace parallel to the affine
space of the currently active constraints. We find the maximal feasible step size in
this direction and also perform a line search to minimize the true objective function,

along this direction. We either add one more constraint to the active set and update

109



the projection matrix, or stop, depending on the outcome of the line search. This
method has the guarantee that the true objective function value of the final solution
from the purification is at least as good as that of the final IPM solution. This
method performed best in most cases. These results are summarized in Tables 5.8
and 5.9. From the Table 5.8, doing the purification step before the crossover is
always faster. We only present the faster option it the remaining table, the number

of iterations is given in brackets.

When the number of the breakpoints is large, our program is faster than MOSEK.
We found that terminating the approximated problem when the relative gap is
equal to e gives slightly better timings. Also note that our IPM was implemented
in MATLAB and is slower than MOSEK. We ran MOSEK and our code on the
same differentiable problems, and MOSEK was approximately 2.5 times faster than
our MATLAB code.

5.5 Linear System Solvers

We compared the MATLAB CPU times for the following three ways of solving the

linear system to compute the search directions for the interior-point algorithms:

1. Chol. Form a sparse matrix AT(S~'U)A, and perform Choleski decomposi-
tion on a matrix

G+ H+ A"(S7'U)A] (5.4)

converted into dense format.

2. Aug. Directly solve the augmented system whose coefficient matrix is

G+H AT
A ~U-ts

110



MOSEK | 102 (25)
MATLAB Purification ASet ASet Crossover
IPM Step(MATLAB) | after Pur. | after IPM total
tol=10e-3
With Pur.Step | 24 (10) 18 (250) 85 (65) 127
No Pur.Step 24 (10) - 430 (333)
tol=10e-4
With Pur.Step | 32 (14) 18 (250) 50 (32) 100
No Pur.Step 32 (14) - 390 (281)
tol=10e-5
With Pur.Step | 35 (16) 18 (246) 48 (30) 101
No Pur.Step 35 (16) - 389 (278)

Table 5.8: CPU time (iterations) for Crossover and MOSEK, n=1000, m=500,
M=101, €=0.0001, Data Type 1.

111




MOSEK | 217 (31)

MATLAB | MATLAB Purification ASet Crossover
Term. Tol. IPM Step(MATLAB) | after Pur. total

10e-3 25 (11) 18 (247) 76 (56) 119
10e-4 34 (15) 18 (248) 52 (33) 104
10e-5 36 (16) 18 (248) 57 (37) 111

Table 5.9: CPU time (iterations) for Crossover with purifiction step and MOSEK,
n=1000, m=500, M=101, ¢=0.0001, Data Type 2.

112



using the 'backslash’.

3. Bcksl. Solve the sparse system whose coeflicient matrix is [G + H + AT(S’_IU)A]
using the 'backslash’.

4. Block LU Solve the augmented system using a block LU approach. We first
compute the LU factorization of the upper left block G + H = L1,Uy;, then
solve multiple rhs triangular systems Li;Uy; = A" and Ly Uyp = A for Uy
and Ly, respectively. Finally we form a matrix § = —U~'S — Ly, U, (a Schur
compliment of —U~'9) and find the LU factorization of S, LyUs = S.
Then

G+H AT Ly 0 Ui Ui
A ~-U~ts Lyy Ly 0 Uy
is the LU factorization of the augmented system. Since the system is symmet-
ric and the matrix G + H is positive definite, it would make more sense to
perform the Choleski decomposition of G + H, but sparse LU decomposition
seems to be much faster in MATLAB.

This approach is beneficial when the matrix G+ H has some special structure,

for example banded or block-diagonal and n >> m.

Remark 5.1 Note that the above approach can be used in solving smooth convex
quadratic problems with n >> m, since the blocks L1, Ly, Uy and Uy have to be
calculated only once. At each iteration, only m X m matriz S has to be factorized.

MATLAB is 2-3 times faster than MOSEK on such QP examples.

In Table 5.10, we summarize the timings for different ways of solving the linear
system per iteration of IPM . The problem parameters are M = 101, ¢ = 0.0001.

In the case when both matrices are dense, we store them in a dense format. For

113



A dense 60% 40% 5%
G
Chol Aug Bcksl | Chol Aug Bcksl | Chol Aug Bcksl | Chol Aug Bcksl
dense 1.8 3.3 2.1 6.6 3.3 65| 41 3.3 41 1.8 87 1.7
40% 12 63 102| 6.8 5.3 6.6 | 42 104 4.1 1.8 3.1 1.8
5% 12 6.7 11.8| 6.7 6.3 65| 42 76 4.1 1.6 4.5 1.6

Table 5.10: MATLAB CPU times for different linear system solvers; n=1000,m=500

the Cholesky case, we do the matrix multiplication in (5.4) in sparse format, but
then convert the matrix into dense format before performing the Cholesky decom-

position. For the remaining two methods the data is kept in a sparse format.

For 7 < m < 7, we found that whenever G and A were both full dense, CPU
times for Chol. were half of those for Aug.. When we made A sparser (while
keeping G full dense), the CPU times became equal around 40% density for A.
When A had only 5% of its entries as non-zeroes, Chol. beat Aug. by a factor of

five.

We notice that keeping the data in a sparse format is only beneficial when both
maftrices are very sparse, 5% or less. Otherwise, keeping the data in a dense format
and doing the Cohleski decomposition is the fastest choice in MATLAB. We'll refer
to this option as Dense Chol..

Table 5.11 is created in a similar way. Only very sparse data is considered and
the timing for the Dense Chol. option is given in a separate column. We can see
that Cholesky is always faster than backslash. When G and A are 1 — 5% sparse,
Cholesky dominates all other methods. We notice that increasing the sparsity and
decreasing the number of constraints improves the performance of the augmented

system. When the sparsity is around 0.5% and the number of constraints is 10%

114



A
5% 1%
G
Chol Aug Bcksl | Chol Aug Bcksl | Dense Chol

m=1000

1% 22 26 33 13 12 34 33

0.5% 26 23 33 16 7 34 33
m=300

1% 17 5 28 12 3 24 17

0.5% 16 3 28 12 1 19 17

Table 5.11: MATLAB CPU times for different linear system solvers; n=3000.

of the number of variables, the augmented system becomes the fastest choice.

In the next series of experiments we model real-life, large-scale portfolio opti-
mization problems with thousands of variables. In such applications with very large
n, a very sparse G, banded (or near-banded) matrix structure makes sense. For this
set of experiments we generate G with overlapping blocks on the diagonal. We also
add upper and lower bounds on all the variables. The number of constraints is equal
to the number of blocks. We also add a budget constraint x1 +z,+-- -+, < 1. We
noticed that addition of the bounds does not change the timings significantly. But
the budget constraint makes the matrix of a condensed system dense. For these
problems augmented system gives much better timings, so only Aug. and Block

LU methods are represented in the Table 5.12.

115



10%

5%

1%

Aug Block LU

Aug Block LU

Aug Block LU

n=3000 (15 blocks) | 2.1 1.7 1.6 1.5 0.6 1.2
n=6000 (30 blocks) | 54 35 |32 32 |14 26
n=9000 (45 blocks) | 10.6 5.6 5.6 5.1 2.4 4.0
n=12000 (60 blocks) | 7.2 7.9 9.1 7.0 3.8 5.6

Table 5.12: MATLAB CPU times for different linear system solvers; block-diagonal

G, blocks: 200 x 200, 10% dense; m=200; upper and lower bounds.

116




5.6 Experiments with Sparse Data

In this section we compare the timings for MOSEK and our IPM algorithm (in
MATLAB) on sparse large scale data. The spline approximation parameter € =
10e — 5. Both MOSEK and MATLAB were terminated when the relative gap was
less than 10e-7. We noticed that for all the examples solved, the objective function
f(z) at the solutions given by MOSEK and MATLAB differ in the seventh or eights
digit.

For the Tables 5.13, 5.14 and 5.15 matrix G was sparse but had no special
structure. In Table 5.13 we solve the same problems changing only the number
of the breakpoints. The timings of our method stay virtually unchanged , while
the timings for the lifted problem solved in MOSEK increase. In the next series of
tests we increase the dimension of the problem, G has 20 non-zeros per row, all the
remaining parameters are fixed, M = 25. In this case our code beats MOSEK by
a constant, see Table 5.14. For Table 5.15, we also increase the dimension of the
problem, but keep the sparsity of G constant. In this case MOSEK performs better

with the increase in dimension.

In the remaining tables the matrix G is block-diagonal with block size approxi-
mately 200 x 200. The blocks are overlapping by 10 diagonal elements on average.
Each block is sparse.

As before, timings of our method stay virtually unchanged with increase in the

number of breakpoints, while the timings for the lifted problem solved in MOSEK

117



Number of Breakpoints | MATLAB | MOSEK

M =101| 83 (15) | 456 (13)

M=51] 78(14)| 230(12)

M =25 82(15) | 129 (12)

M=11| 80(15)| 70 (11)

M=3| 85(15)| 42(10)

No Trans. Costs 74 (15) 30 (9)

Table 5.13: MATLAB and MOSEK CPU time (iterations) for different values of
M; n=5000, G 0.5% dense; m=300, A 1% dense.

118



500 T
—o— MATLAB

—*— MOSEK
450 N

400 N

350 N

300 N

Time, CPU sec
N
(o))
o
T
|

200 T

150 N

100 N

50 -

0 20 40 60 80 100 120

Figure 5.2: MATLAB and MOSEK CPU time (iterations) for different values of
M; n=5000, G 0.5% dense; m=300, A 1% dense.

119



Dimension | MATLAB | MOSEK

n=21000 | 902 (13) | 1000 (15)

n=18000 | 695 (14) | 788 (15)

n=15000 | 433 (14) | 588(15)

n=12000 | 262 (13) | 370 (13)

n=9000 | 146 (13) | 224 (11)

n=6000 | 71 (14) | 143 (11)

n=3000 | 24 (14) | 64 (11)

Table 5.14: MATLAB and MOSEK CPU time (iterations) for different values of n:
G has 20 non-zeros per row; m=300, A 1% dense; M=25.

120



1000 ‘ ‘ *

—&— MATLAB
—*— MOSEK

900 -

800 -

700

600 -

500 -

Time, CPU sec

400 -

300

200

100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
n x 10

Figure 5.3: MATLAB and MOSEK CPU time (iterations) for different values of n:
G has 20 non-zeros per row; m=300, A 1% dense; M=25.

121



Dimension | MATLAB | MOSEK

n=12000 | 1980 (13) | 1026(11)

n=9000 | 593(14) | 425 (11)

n=6000 | 117 (13) | 162 (11)

n=3000 | 16 (13) | 63 (11)

Table 5.15: MATLAB and MOSEK CPU time (iterations) for different values of n:
G is 0.5% dense; m=300, A 1% dense; M=25.

increase, Table 5.16. For Table 5.17, we increase the dimension of the problem,
but keep the block size constant. In this case our MATLAB code beats MOSEK
by a constant factor. Also note that MOSEK is approximately 2 times faster on a
smooth problem without the transaction costs than our MATLAB code.

Some additional experiments on a very large data are reported in Table 5.18.

Note that for these problems MOSEK spends around 50% of time on preprocessing.

122



Number of Breakpoints | MATLAB | MOSEK

M=101| 97 (13) | 825 (13)

M=51| 95(13) | 440 (13)

M=25| 94 (13) | 215 (11)

M=11| 95 (13) | 117 (10)

M=3/| 101 (14) | 78 (10)

No Trans. Costs 93 (13) 46 (9)

Table 5.16: MATLAB and MOSEK CPU time (iterations) for different values of
M: block-diagonal G, 45 blocks 200 x 200, 10% dense; m=200, A 10% dense; upper

and lower bounds.

123



900 T

—Oo— MATLAB
—*— MOSEK
800 1

700 *

600 - N

500 - T

400 b

Time, CPU sec

300 N

200 N

100 o i

0 20 40 60 80 100 120

Figure 5.4: MATLAB and MOSEK CPU time (iterations) for different values of
M: block-diagonal G, 45 blocks 200 x 200, 10% dense; m=200, A 10% dense; upper

and lower bounds.

124



Number of Blocks | MATLAB | MOSEK
75 blocks
n=15000 164 (13) | 401 (11)
60 blocks
n=12000 131 (13) | 303(11)
45 blocks
n=9000 94 (13) | 215 (11)
30 blocks
n=6000 53 (12) | 135 (11)
15 blocks
n=3000 26 (12) | 64 (11)

Table 5.17: MATLAB and MOSEK CPU time (iterations) for different number of
blocks: block-diagonal G, blocks: 200 x 200, 10% dense; m=200, A 10% dense;

upper and lower bounds, M=25.

n Blocks A M | MATLAB | MOSEK
Number Size Density Overlap | m Density

53400 89 600 0.006 9 | 500 0.1 | 51| 3114 (15) | 8797(11)

100000 1000 100 0.1 10 | 200 0.01 | 25 2966(15) | 5595(16)

CAN'T

200000 10000 20 0.1 5 | 300 0.01 | 11 | 18010 (17) | SOLVE

Table 5.18: MATLAB and MOSEK CPU time (iterations) for some large-scale

problems.

125




450 T

—O— MATLAB
—*— MOSEK
400 |

350 1

300 1

N
a
o
T
|

Time, CPU sec
N
o
o
T
l

150 - N

100 N

50 N

O | | | |
10 20 30 40 50 60 70 80

Number of Blocks

Figure 5.5: MATLAB and MOSEK CPU time (iterations) for different values of n:
block-diagonal G, blocks: 200 x 200, 10% dense; m=200, A 10% dense; upper and
lower bounds, M=25.

126



Chapter 6

Conclusion

In this thesis we considered the expected utility maximization problem in pres-
ence of convex non-differentiable transaction costs and linear or piece-wise linear
constraints. We used subdifferentials to derive the optimality conditions for this
problem, which allowed us to develop the relevant theory in a clear and concise
way.

We showed that the problem can be solved efficiently without introducing new

variables or constraints. Two major approaches were considered.

We showed that approximating the transaction costs with spline functions and
solving the smooth problem with the interior point methods gives a very good

approximation to the optimal solution.

We also developed an active set algorithm for solving the above problem and
showed that under some assumptions standard for the active set method this algo-
rithm terminates in a finite number of steps. This algorithm performs best when a

“warm start” is possible.

There are some natural extensions to the results of this thesis.

127



It seems that choosing the right parameters for the implementation of the inte-
rior point method can significantly improve it’s performance in the case when the
objective function becomes “less smooth”. Another possible way to speed up the

IPM is varying the spline parameter € from iteration to iteration.

It would be interesting to find an efficient measure of smoothness for such func-
tions and give better estimates of the number of the coordinates of the optimal

solution coinciding with the breakpoints.

One can try to extend Algorithm 2 to the case of non-differentiable nonconvex
transaction costs. Many of the existing algorithms for nonconvex optimization are
based on optimizing a sequence of convex approximations. Using our algorithm
for solving these subproblems would speed up the process and could be a valuable

source of heuristic ideas.

Another direction for further exploration is how degeneracy can be resolved in
our algorithm. It seems possible to generalize some of the existing methods, for

example Bland’s rule for linear programming, to the non-differentiable case.

Finally, it would be very interesting to investigate in more detail the effect
of transaction costs on the choice of the optimal portfolio, both numerically and

analytically.

128



Appendix A

Equivalent Problems

Recall the problem (1.6).

. n M n M7 o, _
min F(l’) + 22:1 El:o J(l'jl) + 22:1 El:o fa (l’zl)
s.t. Axr <b,

n M;I- + n Mi_ -~ -
Ti— Zi:l Zl:o Ty + Ei:l Zl:o Ty =, fori=1,..,n,

0<az} < d;?_H, fori =1,...n, [ =0,.., M;",

0<az; <dy.,, fori=1,....n1=0,.,M.
Let us denote the objective function of this problem by f(z,z~,z%).

Lemma A.1 Problem (2.1) is equivalent to the problem (1.6) in the sense that

(i) x is optimal for (2.1) if and only if (x,x~,z™) is optimal for (1.6) for some

(z=,2%) and
f(z) = flx,2™,2%);
(11) (2.1) is unbounded if and only if (1.6) is unbounded.

129



Proof. Suppose that z is feasible for (2.1). Then we can form the vector (z, 2™, P)

form z in the following way:

for each index i such that z; > &; and x; — ; € [d},d} ]

il %141
zlm =0, for 1=1,..,M,
;r:i»p =di, for I=1,..,L—1,
xin = T; — :%, — dj_L,
{L’i»p:(), for I|=L4+1,..,MT,

and for each index ¢ such that z; < ; and #; — z; € [d;;, di_L+1]

zlm =0, for I=L+1,..,M;
:L'fm =1; —x;, —d,

zlm = dy, for I=1,..,L—1,
;r:i»p =0, for 1=1,.., M.

By construction this vector is feasible for (1.6) and objective functions of these

problems will coincide on x and (z, 2™, 2P) respectively:
flz) = fla, 2™, a).

Suppose a vector (z,z~,27) is feasible for (1.6) but vector (z7,z%) is different

from (2™, xP). Then at least one of the cases described below applies:

Case 1. Suppose 7}, < di+k+1 and :L'Z > 0 for some k < j. Then we can shift
+ +

e = min{d},, — 2}, 2:2;} from CL’Z to ;. The resulting vector will remain feasible.
Below we use the convexity of fi and fl'; and the fact that

a i—ll; + a i—}l; a ’T; a i-; +
ar;(% —€) < ale_c(dik-kl) S aTZ(dw) > 01‘; (%’j +€)

130



to show that the value of the objective value will decrease after the shift. Only two

terms of the objective function will be affected by this change:

ik (Th) + £ (25) =

ot f 4 oo+ f;
ik(wik+€>_€a$+($ik+€)+ s(xl—e)te E +( —€) >
ik

+
aik

dah O+ - te| 3@ —o) - 3K (zh+eo) | >
k\"ik J\Vij oxt Y axi-z k

k(T e) + f5 (2l —e).

After a finite number of such steps Case 1 will no longer occur.

Case 2. zy < dy,, and z;; > 0 for some k& < j. Then we can shift € =

tk+

min{dy  , — =, z;} from 27 to z; and the resulting vector will remain feasible.

Similar to the Case 1, the value of the objective value will decrease after the shift:

fieley) + fi(z5;) 2
af: y
a0 — B (0 o) 4 f (e Ot e (a - 0) >
ik i
T - afy; , ofn, _
fik(xik—l—e)—l—fij(:z:ij —€)+e (@x_ (;r;ij —€)— 0££($ik+e)> >

falzg + o)+ fi(x; — e).

After a finite number of such steps Case 2 will no longer occur.

Case 3. z} > 0 and z;; > 0 for some k and j. Then we can deduct € =

min{z}, 2z} from both z} and z;; and the resulting vector will remain feasible.

ik z]

Only two terms of the objective functions will be affected by this change. Since fif

and fl‘; are increasing functions,
iw(2h) + fi(25) >
(2l — ) + fij (25 — ).

131



After a finite number of such steps Case 3 will no longer occur.

If none of the above 3 cases apply, the resulting vector is equal to (z, 2™, zP)

and therefore

(1)

(i)

flz 2=, 2%) > f(z, 2™, 2") = f(x).

Suppose that x is optimal for (2.1). Then (z, 2™, 2?) is feasible for (1.6) and

for any feasible (y,y~,y™)
Flyy™oy®) > Flysy™y”) = fly) 2 fla) = fla, 2™, 2P).
Therefore (z, ™, zP) is optimal for (1.6).

Suppose that (z,z7,27) is optimal for (1.6). Then z is feasible for (2.1).

Suppose y # x is optimal for (2.1). Then

Flyy™ ") = fly) < fz) = fla, 2™, a?) < flz,27,a%).
This contradiction proves that z is optimal for (2.1).

Suppose that (2.1) is unbounded. Then there exists a sequence of feasible
points {zx} such that limy_ f(2x) = —oo. Then the points {(zy, 2}, 2})}
are feasible for (1.6) and

lim f(xg,zp,2%) = lim f(z)) = —o0
k—oo k—oo

. Therefore (1.6) is also unbounded.
Suppose that (1.6) is unbounded, i.e. there exists a sequence of the feasible

points {(zx, 2}, z})} such that limg o f(7k, 2,2} ) = —o0o. Then the points

{z1} are feasible for(2.1) and

lim f(zy) = lim f(zg, 27, 2b) < lim f(xp, 25, 7)) = —oo.
k—oo k—oo k—oo
Hence (2.1) is also unbounded. O

132



Lemma 3.1 Let the function g be a piecewise linear convex function defined by
(3.2). Then

k k k
()= max ajr+ b,
9 ( ) 1=0,...,M; i i

Moreover,

(i) for any l=1,...,M;, for any x satisfying dy < x < dj141,

gf(l’) = afﬂ + bfj

k.
il

if an only if afj =a
(it) for anyl=1,... M,
g; (da) = afjdiy + bf;

if an only if afj = ak or afj =ak_,.

Proof. By Proposition B.1,

For any [, there are two possibilities :

(1) afl = afl_i_l. Note that the linear functions afl:x + bfl and afl_H;L' + bfl_l_l intersect
at dyy1, therefore they coincide. We get that bfl = bfl+1 and afl;r: + bfl =
ale;z: + bfl_l_l for any ©r € R".

(ii) afl < afH_l. Then

afl:x + bfl > ale:z: + bfl_H
if and only if
k k
b — i

T < % dil+1-
A1 — Ay

133



Therefore for any x satisfying d; < x < djj41,
ajpt + by < -0 < ag_ye + 0y < aje b > af e by > > a4 Dy

The 5 — th inequality is satisfied with equality if and only if afj_l = afj.

Next, suppose that © = d;;, then
afol’ + bfo < < afl—ﬂ’ + bfl—l = afl:z: + bfl > aflﬂx + bfl+1 > 2 anﬂ/’ + bei-

Note that the terms number [ and [ — 1 are always equal. The j — th inequality,

where j # [, is satisfied with equality if and only if afj_l = afj. a

Lemma 3.2 Consider the problem

min f(x)
st Sy <RF E=1,...,m, (A1)
yF > akz, + 05 i=1,....n, k=1,....m,
Then xz* € R™ is optimal for (3.1) if and only if (z*,y*) is optimal for (3.5) for
some y* € R™™,
Proof. Let us denote the feasible region of the problem (3.1) by S; and denote
the set of the points € R”, such that (z,y) is feasible for (3.5) for some y € R"™™
by S,. since the objective function of the problem (3.5) depends only on z, solving

this problem is equivalent to minimizing f(z) over S;. If we show that S = 5,

the result will be proven.

Suppose that x is feasible for (3.1). Then we can form the vector (z,y) from =

in the following way:

yF = max{a¥ar + 05, j=1,...,M;}, foreach i =1,2,...,n.

132 (¥Rl

134



Clearly,

yF > akar 4 0F, foreach j=1,...,M;, foreachi=1,2,....n.

132 [¥ Rl

By Lemma 3.1, y¥ = ¢f(z) and >, y*¥ = Y1, gF(x) < h* from feasibility of =.
Vector (z,y) is feasible for (3.5). Therefore S; C 5.

Next, suppose that (z,y) is feasible for (3.5). Then, using Lemma 3.1,

znjglk(:l:) = z”: max {afjxf + bfj} < zn:yf < hy.
=1 i=1

7=1,...,M; P
This proves that x is feasible for (3.1). Therefore Sy C 5.

We showed that S; = S3. This proves the result. O

135



Appendix B

Optimality Conditions for the
Subproblems

The following proposition provides necessary and sufficient conditions for the con-

vexity of the function f;(z;) given by (2.3).

Proposition B.1 Assume that f;; is convex for alll = 0,..., M;. Then the func-
tion fi(x;) defined by (2.3) is convex if and only if

fu—1(da) = fa(da) for each 1=1,... M, (B.1)
and
dfia_y d 7
’ 1) < —(dit) for =1,....,M;.! :
i, (da) < d, (di) for each 1=1,...,M, (B.2)

Proof. First, suppose f;(x;) is convex on R. Since convexity implies continuity,

equations (B.1) are satisfied.

Tn the above df~ and dft denote the left and the right derivatives of f respectively.

136



It is well known (see [29] for example), that if §(¢) is a convex function , then is

right-differentiable and left-differentiable and for any ¢t € R
do- det
—(t) < —(1).
dt () < dt (*)

So, for any [ = 1,..., M; we have

dfi_, dfy
T (dyg) < A
dt (da) < dt

(dir).

To prove the converse, we note that the f;(x;) is continuous, right-deffirentiable and

df¥
dxz;

the right derivative is increasing. This implies that f;(z;) is convex, (see [29]).

O

We formulate the optimality conditions for the subproblems that have to be
solved at each iteration of the Modified Algorithm 2.

Let us consider a problem of minimizing function f(z) given by (2.2), (2.3) over

a region B,

x| g*(z) < RF, k=1,...,m,
B = dy < z; <djp1, 1 € J, forsomel € {0, ..., M;}, (B.3)
x; = dy, i ¢ J, for somel € {1, ..., M;},

where .J is a subset of {1,2,...n}.

Because of the structure of the feasible region, each of the piece-wise linear in-
equality constraints can be substituted by a single linear constraint. The separable

part of the objective function can also be simplified.

For each x € B, if 1 € J and d;; < x; < djyy1 or dy < z; or z; < djgq 1S a
corresponding constraint, then g¥(z;) = a® + b5 and fi(z;) = fu(z;). If i ¢ J and
xr; = dy 1s a corresponding constraint, then gf(:z:,) = afl_l + bfl_l = afl + bfl and
fi(zs) = falz:i) = fa-1(zy).

137



Therefore, the region B can can be represented by

€ ZieJ(aflwi + bfl)"’ Z,'qg](afil’i + be) < hk, k=1,...,m,
B = diy < x; <djjyq,1 € J, for some 1 € {0,..., M}, B.4)
;i =dy, 0 ¢ J, forsome [ € {1,..., M;},

where, for each 7 ¢ J with corresponding constraint z; = dy, L can be either [ or

[—1.

Lemma B.1 Let f(z) be defined by (2.2), (2.3) and let the region B be defined by
(B.4). For any x € B, the objective function f(x) satisfies

flz) = F($)+Zfz‘l(l'i) ‘|‘ZfiL(l'i)7 (B.5)
ieJ i¢T
where, for each 1 ¢ J with corresponding constraint x; = d;;, L can be either [ or

[—1.

Since the above two functions coincide on B, minimizing f(z) over B is equivalent
to minimizing the right hand side of (B.5) over B. We summarize this result in the

following lemma

Lemma B.2 Let f(x) be defined by (2.2), (2.3) and let the region B be defined by
(B.4). Then x minimizes f(x) over B if and only if x minimizes
F(z)+ Zfil(l'i) + Z fir(x:) (B.6)
= igJ
over B, where, for each 1 € J, [ is such that dy < x; < dyy1 ordy < z; or z; < dygq
is a corresponding constraint of B, for each i ¢ J, L is such that either x; = d;1, or

x; = d;p41 18 a corresponding constraint of B.

We can now state the optimality conditions for our subproblem:

138



By Lemma B.2,

we can just give the optimality conditions for a function of the

form (B.6), which is convex and twice differentiable. Let us denote by A the matrix

formed by the coefficients of the linear constraints a¥ and let us denote by b the

vector of the right-hand sides of these constraints. Then z € R™ minimizes f(x)

over B if and only if

Az < b,
dy_y < 2 < d, for alli € J, for some ! € {1, ..., M},
z; = dy, for alli ¢ J, for some I € {1, ..., M},
—(VF(2))i — L(z;) = (ATu)i+ri — s;, foralli € J

with x; € [dy, dit1],
—(VF(2))i — %k(2;) = (ATu)i + Ai,  foralli ¢ Jwith

x; =dy, Le{l—-1,1},
u >0,
uT(Az — b) = 0.
5i >0 for alli € J,
ri >0 for alli € J,
si(zi — di) =0 foralli € J with z; € [du, dit1],
ri(digs —xq) =0  foralli e J with z; € [di, ditg1]-

We first observe that the set of equalities corresponding to ¢ ¢ .J is only needed to

define );, and there are no other equalities or inequalities containing ;. Therefore

we can drop these equations.

Note that, if ¢ € N(z), then from the complementary slackness

S,’ZT,'ZO.

139



If 7N E(z) is not empty, then for each ¢ € J N E(z) at least one of s; and r; is

zero. This allows us to rewrite the optimality conditions in the following way:

3

Ax < b,

di_ < z; < dj, forallz € J, for somel € {1, ..., M},
x; = dy, forall: ¢ J, for somel € {1, ..., M},
—(VF(x)); — Zf—ajf(:z;,) = (ATw);, forall: € N(x)

with x; € (dil7dil+1),
—(VF(x)); — ﬁ(:z;,) = (ATu); +r;, foralli € JN E(z)

dz;
r; > 0, with z; = dyyqq,
—(VF(x)); — ‘;f—ax(a:,) = (ATu); — s;, foralli € JN E(z)
s; > 0, with x; = dy,
u >0,
uT(Az — b) = 0. )
or
Az <, ’
diy_y < x; < dy, foralli € J, forsomel € {1,..., M;},
x; = dy, foralli ¢ J, forsomel € {1,..., M;},

—(VF(z))i — Li(z;) = (ATu)i, foralli e N(z),
with z; € (dy, diy1),

—(VF(2))i — Lz;) > (ATu);, foralli € JN EB(x),
with z; = diy,

—(VF(2))i — L(z;) < (ATu);, forallie N EB(x),
with ; = dy,

u >0,

uT(A;z: —b)=0.

140



Another way to rewrite these conditions is

Ax < b,

dig—1 < x; < dy,

forall: € J, forsomel € {1,..., M;},

z; = dy, foralli ¢ J, forsomel € {1,..., M;},
—(VF(2))i — L(x;) = (ATu)i;, foralli € N(x)
with z; € (di, di41),
—(VF(z)); — L=t (2;) > (ATu);,  foralli € JN E(z) (B.7)

u >0,
uT(A;r: —b)=0.

with x; = d;;, where z; is at an upper bound,
< (ATu);, foralli € JN E(x)

with x; = d;;, where z; is at a lower bound,

/

Recall that for each ¢ € J where d; < z; < dy41 is a corresponding constraint,

Ay = afl and therefore

Ax <b,

dig—1 < z; < dy,

z; = di,

—(VF(z))i — L ()

~(VF(2))i - (e

dx;

~(VF(2)); = #(x)

dz;

u >0,
uT(Aa: —b) =0.

forall: € J, forsomel € {1,..., M;},
forall: ¢ J, forsomel € {1,..., M;},
= >, abuy, for alli € N(z)
with z; € (da, di41),
) > S, abuy, foralli € J N E(x) (B.8)
with x; = d;;, where z; is at an upper bound,
< STk, abuy, foralli € J N E(x)

with x; = d;;, where z; is at a lower bound,

141



We summarize this in the following Lemma.

Lemma B.3 Let the function f(x) be defined by (2.2), (2.3) and let the region B
be defined by (B.3). Then x minimizes f(x) over B if and only if (B.8) are satisfied.

142



Appendix C

Linear Independence

Assume that Algorithm 2 is applied to problem (3.1). Let the vectors ai be defined
by the j iteration of the Algorithm and let I C {1,...,m}, E C {1,...,n}. Assume
further that the vectors

{ol, kel, e, ic E} (C.1)

are linearly independent.

Let us assume without the loss of generality that £ = {1,2,...,p}. Therefore
|E| = p. Let us denote by A the matrix formed by the vectors ai, k=1,...,m,
denote by Ap the submatrix of A? formed by the it’s first p columns, and denote

by Ay the submatrix of A formed by the remaining n — p columns.

Then the matrix formed by the vectors (C.1) has the following form

Ag | Ax
I |0

143



Note that this matrix is nonsingular if and only if the total number of the
constraints in I plus the number of the elements in E is less or equal than n and

the matrix Ay is non-singular.

Lemma C.1 Vectors (C.1) are linearly independent if and only if the total number
of the constraints in I plus the number of the elements in E is less or equal than n

and the matriz Ay ts non-singular.

Recall that we refer to a vector € R" as non-degenerate for the problem

(3.1) if the vectors
{ai, ke l(z?), e, i € E(x?)} (C.2)

are linearly independent.

However the choice of o for a given point z’ is not unique.
2

Lemma C.2 Let 27 be feasible for the problem (3.1). Let the matriz Ay formed
as follows: for each i € E(x?), k € I(x7)
(AN)i»C = a® where [ = D,'(:vj). (C.3)

il

Then then the vectors (C.2) are linearly independent if and only if the total number
of the constraints in I(x’) plus the number of the elements in E(z7) is less or equal

than n and the matriz Ay is non-singular.

This shows that our definition of a non-degenerate point is consistent.

144



Bibliography

1]

2]

[4]

[5]

L. ALTANGEREL, R.I. BOT, and G. WANKA. Duality for convex partially
separable optimization problems. Mong. Math. J., 7:1-18, 2003.

A. BEN-TAL, A. NEMIROVSKI. Lectures on Modern Conver Optimization,
Analysis, Algorithms, and Engineering Applications. MPS-SIAM series on
Optimization, 2001.

A. BEN-TAL, A. NEMIROVSKI. Robust Conver Optimization. Mathematics
of Operations Research, vol. 23, pp.769-805, 1998.

D.P. BERTSEKAS. Nonlinear Optimization. Athena Scientific, Belmont, 1999.

DIMITRIS BERTSIMAS, CHRISTOPHER DARNELL, and ROBERT
SOUCY.  Portfolio construction through mized-integer programming at
Grantham. Mayo, Van Otterloo and Company, Interfaces, vol.29, pp.49-66,
1999.

MICHAEL J. BEST and JAROSLAVA HLOUSKOVA. An Algorithm for Port-
folio Optimization with Transaction Costs. Management Science, vol.51, No.11,

pp.1676-1688, 2005.

145



[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

MICHAEL J. BEST and JAROSLAVA HLOUSKOVA. An Algorithm for Port-
folio Optimization with Variable Transaction Costs. Combinatorics and Opti-

mization Research Report 2004-32, December 2004.

MICHAEL J. BEST and JAROSLAVA HLOUSKOVA. Portfolio selection
and transaction costs. Computational Optimization and Applications, vol. 24,

pp-95-116, 2003.

MICHAEL J. BEST and JAROSLAVA HLOUSKOVA. Quadratic Program-
ming with Transaction Costs. to appear in Computers and Operations Re-

search.

MICHAEL J. BEST and MARINA POTAPTCHIK. Portfolio Optimization
Using Nonsmooth Convez Transaction Costs. Combinatorics and Optimization

Research report 2004-30, December 2004.
C. de BOOR. A Practical Guide to Splines. Springer, 2001.

PHELIM P. BOYLE and XIAODONG LIN. Optimal Portfolio Selection with
Transaction Costs. North American Actuarial Journal, vol.1, n.2, pp.27-39,

1997.

BURKE J.V., LEWIS A.S. and OVERTON M.L. Approzimating Subdifferen-
tials by Random Sampling of Gradients. Mathematics of Operations Research
27, 567-584.(2002).

E. W. CHENEY. A. A. GOLDSTEIN. Newton’s Method for Conver Pro-
gramming and T'chebishef approzimation. Numerische Mathematik, vol. 1, pp.

253-268, 1959.

CLARKE F.H. (1983). Optimization and Nonsmooth Analysis. Wiley.f18

146



[16]

[17]

[18]

[19]

[20]

[21]

[22]

A.R. CONN, N. GOULD, M. LESCRENIER, and P.L. TOINT. Performance
of a multifrontal scheme for partially separable optimization. In Advances

in optimization and numerical analysis (Oazaca, 1992), volume 275 of Math.

Appl., pages 79-96. Kluwer Acad. Publ., Dordrecht, 1994.

A.R. CONN, N. GOULD, and P.L. TOINT. Improving the decomposition of
partially separable functions in the context of large-scale optimization: a first

approach. In Large scale optimization (Gainesville, FL, 1993), pages 82-94.
Kluwer Acad. Publ., Dordrecht, 1994.

G.B. DANTZIG, J. FOLKMAN and N. SHAPIRO. On the continuity of the
minimum set of a continuous function. Journal of Mathematical Analysis and

its Applications, 17: 519-548, 1967.

M.J. DAYDE, J.Y. EXCELLENT, and N.I.M. GOULD. Element-by-element
preconditioners for large partially separable optimization problems. SIAM J.
Sei. Comput., 18(6):1767-1787, 1997.

Joydeep DUTTA. Generalized Derivatives and Nonsmooth Optimization, a
Finite Dimensional Tour. Sociedad de Estadstica Investigacion Operativa,

Top (2005) Vol. 13, No. 2, pp. 185-314.

J. ELZINGA and T. G. MOORE. A central cutting plane algorithm for the
convex programmaing problem. Mathematical Programming, vol.8, n.1, pp.134-

145, 1975.

E. ERDOGAN, D. GOLDFARB, G. IYENGAR, Robust portfolio manage-
ment. CORC Tech. Report TR-2004-11, TEOR Dept., Columbia Univ., NY,
NY, USA. 2004.

147



[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

A V. FIACCO. Introduction to Sensitivity and Stability Analysis in Nonlinear

Programming. Academic Press, New York, 1983.

A V.FTIACCO and G.P.MCCORMICK. Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. John Wiley and Sons, New York,

Philadelphia 1990.

D. GOLDFARB, G IYENGAR, Robust portfolio selection problems. Mathe-
matics of Operations Research, 28 (2003)1-38.

J.-L.GOFFIN, J.-P. VIAL, Convex Nondifferentiable Optimization: A Survey
Focused on the Analytic Center Cutting Plane Method, Optimization Methods
and Software, vol.17, n.5, 2002.

A. GRIEWANK and P.L. TOINT. Numerical experiments with partially sep-
arable optimization problems. In Numerical analysis (Dundee, 1983), volume

1066 of Lecture Notes in Math., pages 203-220. Springer, Berlin, 1984.

A.O. GRIEWANK and PH.L. TOINT. On the unconstrained optimization of
partially separable functions. In M.J.D. Powell, editor, Nonlinear Optimiza-
tion. Academic Press, London, 1982.

J.-B. HIRIART-URRUTY, C. LEMARECHAL. Fundamentals of Convex
Analysis. Springer, 2001.

J. LINGERSOLL. Theory of financial decision making. Rowman & Littlefield,
1987.

J. E. KELLEY. The Cutting Plane Method for Solving Convez Programs.
Journal of the STAM, vol.8, pp.703-712, 1960.

148



[32] K. C. KIWIEL. Methods of Descent for Nondifferentiable optimization. Lecture

Note in Mathematics, Springer-Verlag, 1985.

[33] K. C. KIWIEL. A dual method for certain positive semidefinite quadratic
programming problems. STAM Journal of Scientific and Statistical Computing,
vol. 10, no. 1, pp.175-186, 1989.

[34] J. KREIMER and R. Y. RUBINSTEIN. Nondifferentiable optimization via
smooth approximation: General analytical approach. Annals of Operations

Research 39 (1992) 97-119.

[35] C. LEMARECHAL. Nondifferentiable Optimization. Handbooks In Opera-
tions Research And Management Science, Vol. 1, Elsevier Science Publishers

B.V. 1989.

[36] C. LEMARECHA, J.-J. STRODIOT, and A. BIHAIN, On a bundle algorithm
for nonsmooth optimization. Nonlinear Programming 4, O. L. Mangasarian,

R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York, 1991.

[37] A. LI. Some Applications of Symmetric Cone Programming in Financial
Mathematics. M.Math. Essay, Dept. of Combinatorics and Optimization,
Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada,
April 2005.
http://www.math.uwaterloo.ca/CandO Dept/program _of_studies/graduate/ MMathEssays.sht

[38] M. S. LOBO. Convez and Robust Optimization with Applications in Finance.
PhD. thesis, Stanford University, USA, 2000.

[39] M.S. LOBO, M. FAZEL and S. BOYD. Portfolio optimization with linear and

fixed transaction costs. Annals of Operations Research to appear, 2006.

149



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

M. M. MAKELA. Survey on Bundle Methods for Nonsmooth Optimization.
Optimization Methods and Software, Vol.17(1), pp1-29, 2001.

H. MARKOWITZ. Portfolio selection. Journal of Finance, vol. 7, pp.77-91,
1952.

K. G. MURTY. Linear Complementarity, Linear and Nonlinear Programming.
Heldermann Verlag, Berlin, 1988.

Yu. E. NESTEROV and A. S. NEMIROVSKII. Interior-Point Polynomial
Algorithms in Convezr programming. STAM, Philadelphia, PA, USA, 1994.

Yu. E. NESTEROV and M. J. TODD. Self-scaled Barriers and Interior-Point
Methods for Convexr Programming. Mathematics of Operations Research, vol.

22, pp.1-46, 1997.

C. VAN DE PANNE and A. WHINSON. The symmetric formulation of the
simplex method for quadratic programming. Econometrica vol.37, pp507-527,
1969.

AF. PEROLD. Large-scale portfolio optimization. Management Sci.,
30(10):1143-1160, 1984.

H. QI and X. YANG. Regularity and well-posedness of a dual program for
convex best Cl-spline interpolation. Report, University of Southhampton,

Southhampton, England, 2004.

R. TYRRELL ROCKAFELLAR. Convez Analysis Princeton University Press,
Princeton, 1970.

ROCKAFELLAR, R. T. and SUN, J. A finite simplez-active-set method for

monotropic piecewise quadratic programming. Advances in optimization and

150



[50]

[51]

[52]

[53]

[54]

[55]

[56]

approximation, Nonconvex Optimization and it’s Applications, 1, Kluwer Aca-

demic Publishers, Dordrecht, pp.275-292, 1994.

N. Z. SHOR. Minimization Methods for Nondifferentiable Functions. Springer-
Verlag, Berlin, 1985.

N. Z. SHOR. Nondifferentiable Optimization and Polynomial Problems.
Kluwer, Dordrecht, the Netherlands, 1998.

J.B. SCHATTMAN. Portfolio selection under nonconvex transaction costs
and capital gains taxes. PhD. thesis, Rutgers Center for Operations Research,
Rutgers University, USA, 2000.

J.W. SCHMIDT. Dual algorithms for solving convex partially separable opti-
mization problems. Jahresber. Deutsch. Math.-Verein., 94(1):40-62, 1992.

P.L. TOINT. Global convergence of the partitioned BFGS algorithm for convex
partially separable optimization. Math. Programming, 36(3):290-306, 1986.

ROBERT J. VANDERBEI, Linear Programming: Foundations and Exten-
stons. Kluwer Academic Publishers, Boston, MA, 2001.

H. WOLKOWICZ, R. SAIGAL and L. VANDENBERGHE, editors. Handbook
of Semidefinite Programmaing: Theory, Algorithms, and Applications,. Kluwer
Academic Publishers, Boston, MA. 2000.

151



