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Method of Reduction in Convex Programming 1 

H E N R Y  W O L K O W I C Z  2 

Communicated by A. V. Fiacco 

Abstract. We present an algorithm which solves a convex program 
with faithfully convex (not necessarily differentiable) constraints. While 
finding a feasible starting point, the algorithm reduces the program to 
an equivalent program for which Slater's condition is satisfied. Included 
are algorithms for calculating various objects which have recently 
appeared in the literature. Stability of the algorithm is discussed. 

Key Words. Convexity, subdifferentials, cones of directions of con- 
stancy, equality set of constraints, stability. 

1. Introduction 

Consider the convex programming problem 

(P) minimize f°(x), 

subject to fk(x)_< 0, k ~ = { 1  . . . .  ,m}, 

where f k :R"~R,  k ~ { 0 } w ~  are convex functions. There are many 
algorithms in the literature that solve (P); see Refs. 1 and 2. These 
algorithms usually require that some constraint qualification holds at the 
optimal solution. Recently, Ben-Israel, Ben-Tal, and Zlobec (Ref. 3) have 
presented a characterization of optimality which does not require any 
constraint qualification. Algorithms based on this characterization were 
then given in Ref. 4. Further simplified characterizations were presented 
in Refs. 5, 6, 7, and 8. In this paper, we present the method of reduction, 
which solves (P) when the constraints are faithfully convex. This algorithm 
is based on the simplified characterizations and does not require any 
constraint qualification. In addition, the algorithm essentially extends any 

1 This research was partially supported by Grant No. NSERC-A3388. 
2 Associate Professor, Department of Mathematics, University of Alberta, Edmonton, 

Alberta, Canada. 

349 

0022-3239/83/0700-0349503.00/0 © 1983 Plenum Publishing Corporation 



350 JOTA: VOL. 40, NO. 3, JULY 1983 

algorithm that works when Slater's condition is satisfied. By a reduction 
process, the algorithm restricts the functions to smaller and smaller linear 
manifolds containing the feasible set. The smallest such linear manifold 
and a feasible point are obtained simultaneously. Slater's condition is 
satisfied for the reduced program, which then involves fewer variables and 
fewer constraints. Similar reductions for general convex programs and their 
dual properties are studied in Abrams and Wu (Ref. 9). 

In Section 2, we present several preliminary definitions and results. 
Section 3 discusses the calculation of the cone of directions of constancy 
of a faithfully convex function h and introduces the notion of numerical 
rank for h. Section 4 finds the equality set of constraints. This is the set of 
constraints which are implicitly equality constraints, though explicitly writ- 
ten as inequality constraints. The algorithm given here is specifically 
designed for faithfully convex functions and differs from the ones given in 
Refs. 4 and 6. We also introduce the notion of numerical rank for the 
program (P). Section 5 presents the method of reduction. This algorithm 
combines the algorithms in the previous two sections to find a feasible 
point for (P) and simultaneously regularize (P). We conclude with a dis- 
cussion on the stability of the algorithm. The numerical rank of (P) enables 
one to find a stable estimate of the solution of (P). This estimate is stable 
with respect to small perturbations, though the original solution might not 
be. 

Note that the usual approach to solving convex programs (P), for which 
Slater's condition is not satisfied, is to positively perturb the right-hand 
sides of the constraint so as to satisfy Slater's condition; i.e., replace 

fk(x)<_O 
by 

fk(x)<--e, ~>0 .  

However, the solution of this perturbed program, denoted Ix (e), converges 
to the solution of the dual to (P) ~/s E,L0. Moreover, for e small, the feasible 
set is very thin, which creates problems in numerical algorithms such as 
feasible direction methods. In particular, if we attempt to use the usual 
technique to avoid jamming (zigzagging), we must negatively perturb the 
right-hand sides of the constraints, thus negating the positive perturbation. 
The algorithm proposed here does the reverse. If Slater's condition is 
satisfied, but the feasible set is thin, as possibly obtained by perturbing (P), 
then the algorithm reduces the program to an affine manifold parallel to 
the feasible set and of a smaller dimension. The new feasible set is no 
longer thin, since it is considered in a space of smaller dimension, and it 
is an approximation to the original feasible set. See the discussions at the 
end of Section 4 and in Section 6. 
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2.  Pre l iminaries  

We consider the convex programming problem 

(P) f°(x) -~ min, 

s.t. f k ( x ) -  O, k ~ = { 1  . . . . .  m}, 

where fk :R"-* R are convex functions, for all k ~ {O}u ~.  Without loss of 
generality, we assume that none of the functions is constant. The feasible 
set of (P) is 

S ={x ~R":fk(x)<--O, for all k ~ } .  

The set of binding constraints at x ~ S is 

(x) = {k ~ ~ :  f~ (x) = 0}. 

An important subset of ~ ,  independent of x, is the equality set 

= = {k ~ ~ :  fk (x) = 0, for all x ~ S}. 

See, e.g., Abrams and Kerzner (Ref. 5). This is the set of indices k for which 
the constraint fk vanishes on the entire feasible set. We then denote 

~<(x)  = ~ ( x ) \ ~  =. 

Note that, unlike ~= ,  ~<(x)  depends on x. Stater's condition holds for (P) 
if there exists ; ~ S, such that 

fk (;)  < 0, for all k ~ ~ .  

This is equivalent to ~ = = O.  
Following Ben-Tal, Ben-Israel, and Zlobec (Ref. 3), we define the 

cone of  directions of constancy of f at x by 

D ~  (x) = {d ~ R " :  there exists ff > 0, with f (x  + ad) = f(x), for all 0 < a -< 6 }. 

For simplicity of notation, we let 

D~(x) = D ~ ( x ) ,  

D~a(x)= ('~ D~(x), for I~C~.  
/cell 

R e m a r k  2.1. Following Rockafellar (Ref. 10), we say that a convex 
function f is faithfully convex if the following condition is satisfied: f is 
affine on a line segment only if it is atfine on the whole line containing that 
segment. For a function f in the class of faithfully convex functions, the 
cone DT(x) is a subspace independent of x. Moreover, Rockafellar has 
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shown that f is faithfully convex if and only if it is of the form 

f(x) = h (Ax  + b ) + a  .x +a,  

where 

A e R  ~×n, 

and the function h :R " ~ R 

b e R  m, a e R " , o ~ e R ,  

is strictly convex. It is easy to see that 

(1) 

and is a subspace independent of x. The symbol N(. ) denotes null space 
and the superscript t denotes transpose. 

We now recall some concepts dealing with directional derivatives and 
subgradients of a convex function f. 

The directional derivative of f at x in the direction d is defined as 

Vf(x; d) = lira [fix + t d ) - f ( x ) ] / t .  
tJ~o 

Convex functions have the useful property that the directional deriva- 
tives exist universally (e.g., Ref. 11, Theorem 23.1). 

A vector ¢ e R"  is said to be a subgradient of a convex function f at 
the point x, if 

f ( z ) > - f ( x ) + ¢  • (z - x ) ,  for all z ~R" ,  

where ¢ .  (z - x )  denotes the dot product in R".  The set of all subgradients 
of f at x is then called the subdifferential of f at x and is denoted by Of(x). 
If f is differentiable at x, then the gradient of f at x is denoted Vf(x) .  Note 
that, in this case, 

of(x) = {Vf(x)}. 

A useful relationship between the subdifferential and the directional 
derivative is (e.g., Ref. 11) 

~f(x ; d) = max{¢, d: ¢ e aflx)}. (2) 

For every subset fl of ~(x) ,  the linearizing cone at x • S, with respect 
to 12, is 

Ca(x) = {d ~ R" :  &. d -< 0, for all & e af k (x) and all k e f~}. 

By (2), we see that 

Ca(x) = {d e R":  V f  k (x ; d) <~ O, for all k e f~}. 
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The cone of  subgradients at x is 

Bn(x) = {~b ~ R "  : ~b = Y, h k~b k, for some h k --> 0 and ~b k ~ Off (x)}. 
kEf~ 

We set 

B~(x ) = {0}. 

Recall that, for M C R"  the polar of M is 

M* ={¢~ ~ R " :  q5 .x ->0, for all x eM}.  

M* is then a closed convex cone in R ' .  Furthermore, if K, L C R  n, then 

K** = cone K, (3) 

the closure of the convex cone generated by K, while 

(K n L ) *  = K* +L*.  (4) 

The linearizing cone and the cone of subgradients have the following 
dual property. 

Lemma 2.1. Suppose that l ) C  ~.  Then, 

B . ( x  ) = -C*a (x ). 

Proof. Since, by (3) and by definition, 

Bk(X ) = ofk (x ) ** = - C ~  (x ), (5) 

we conclude [by (4) and (5)] that 

-C~(x)=- E C~(x)=Ba(x). [] 
k~O 

Gould and Tolle (Ref. 12) used Farkas' lemma to prove the above 
results for differentiable functions on R".  Note that, in this case, Bn(x) is 
finitely generated and therefore closed. In addition, Ba(x) is closed when 

0 g conv U of k (x), 
kElP/ 

since it is then a compactly generated cone; see, e.g., Holmes, Ref. 13. 
We will also need the following two theorems of the alternative. 

Theorem 2.1. (Dubovitskii and Milyutin, Ref. 14). Let C1 . . . . .  Ck 
be open (blunt) convex cones, and let Ck÷l be a convex cone. Then, 

k+l  

N q : ~ ,  
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if and only if there exist vectors 

y~ ~ C*, 

not all zero, such that 

i = l , . . . , k + l ,  

k + l  

y~=O. 
i = l  

Theorem 2.2. Motzkin's Theorem of the Alternative (Refs. 1 and 15). 
Let 

AiER  kxt' , i = 1,2, 3, A I # 0 .  

Then, exactly one of the following two systems is consistent: 

(I) Alxl+Azx2+Aaxa=O,O~xl>-O, x2>-O; 

(II) A~y>O,A~y>-O,A~y=O. 

The algorithm is based on the following regularization technique. 

Theorem 2.3. Let £ ~ S and fk, k ~ ~ =, be faithfully convex. Suppose 
that the n x r matrix A satisfies 

D ~  ~ = ~ ( A ) ,  

the range space of A. Now, consider the program, in the variable y ~ R r, 

(Pr) f°(2 + A y )  ~ min, 

s. t .fk(2 +Ay)_<0, k ~ \ ~  = . 

Then, Slater's condition is satisfied for (Pr), and y = 0 is a feasible point. 
Moreover, if y* solves (Pr), then £ + A y *  solves (P). 

This theorem was presented in Refs. 16 and 17. The proof follows 
readily from the characterization of optimality given in Refs. 5 and 6. If 
the matrix A is chosen to be of full column rank and ~ = ~  O,  then the 
program (P~) has less variables and less constraints than the original program 
(P). In fact, 

r = dim S. 

3. Calculating the Cone of Directions of Constancy 

Recall that the cone of directions of constancy D 7, of a faithfully 
convex function f :  R n -~ R, is a subspace of R n independent of the choice 
of x ; see Remark 2.1. An algorithm for calculating D 7, when f is differen- 
tiable, is given in Ref. 18. The algorithm can be modified to use subdifferen- 
rials, rather than gradients (see Ref. 17). 
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The algorithm is based on the fact that D 7 lies in the orthogonal 
complement of O, for any O e 0f(x). By repeatedly considering the restric- 
tion of f to this orthogonal complement, we calculate D 7. We stop when 

of(Pe,) = {0}, 

for the set of k + 1 affinely independent points e ~ e {0} u Ek under consider- 
ation. Then, 

D7 = ~ (P) or {0}, 

depending on the current value of k. See flowchart in Fig. 1. (Note that 
q~ e Of(y) is taken as a row vector in the flowcharts.) 

l ls ~Pi-1 

I i = i+1 ] 

¢ 

, ,  , 

Find A i ER (p-i+l)x(p-i) 

such that 

R(Ai) = N(qSPi_l). 

I T  = 

O, forsomeOe af(Pi_lx) ? l 

m  ,oo I I Is j = p - i + 1  ? 
4,~o 

yes 

~ ls <p  ? 

l °° 
Df i~  R(A O) = [O1. I 

j = j + l  
x = e jE:Ep_i+ 1 

I yes 

[ I o~nR(Ao) = R(P, ,, 1 

Fig. 1. Flowchart to find D f  n~(Ao) .  
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Improvements in efficiency and accuracy have been made for this 
algorithm. However, it appears that we cannot overcome completely the 
question of stability. This is because a key step involves testing whether a 
variable is exactly zero, which is imposssible on the computer. For example, 
to find D T and D ~ for the two functions 

fl(x) = 0.01x 2 and f2(x) = 0.001x 2, 

on a machine with two decimals accuracy, requires checking whether or not 

V/i(0) = Vfi(1) = 0, i = 1 , 2 .  

(8) 

~.t Ji = { k e P  i :X k ~ 0 in (3.4) } l ~  

Find Ai+ 1ER nixni+l  such that 

R(Ai+ 1) = ~")Dfk Pi 

I I 

4, 
~- s t e p i ( O < i - < t ) :  

Is 0 e af k (-~)Pi, for some kE Pi ? 

4,yes  4 ,no  

Ji = { kEP i :  Oeafk(x)Pi} / Isthe system 
~.k~kpi = 0 

kEP i 
(10) 

~ X  k = 1 ,Xk>0  , ~bkE~3fk(x) 
kEP 
consistent? 

4,no 

/5 = = P~ 
(11) 

ke j i  Dp= n R(A o) = R(P i 

I Pi+l = P i \ J i  

Pi+l = PiAi+l 

I 

I i =  i +1  / 
I J 

(9) 

Fig. 2. Flowchart to find ~ =  and D ~  = n ~ ( A o ) .  
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Let ~1 e R n, 
Po = Io.n, 

T o = P  
/ x  

R 0 = R o = 

and i = 1. 

step i : .d 
R i = R i _ I U  {kETi_ 1 : fk(xi) --< O} 

T i = Ti_ 1 \ tk4ETi_l : fk(xi) --< O} !l TM 

I 

4, 

4, 

Pi = Pi- lAi  1 

isTi__~'? ~ 

" I  f°rs°mekeTi?4,no yes " 

[ z!1+1 = S(Ri)zj I 

4, 
I Does zj solve the program (Ri) ? I 

4,no 
l .... i = J + l  

Solve the regularized program 
(R), using S(R) and the initial 
feasible point y = O. 
If y* solves (R), then 

x* = x + Py* 
solves (P). 

4, 

~i+1 = ~ i+p iz i  I 

4, 

Fig. 3. Flowchart for the method of reduction. 
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We would then conclude wrongly that 

D 7 = {0}, 

while 

D~  = R .  

Essentially, we are finding an approximation for the second derivative. The 
instability is a result of the instability in numerical differentiation. We could 
improve our accuracy by checking the gradient at some point large than 
1, or by improving the estimate of the second derivative analytically (if the 
second derivative is given analytically), but this does not completely remove 
the problem. Thus, we might calculate the subspace D 7 with a dimension 
larger than it actually has. However, if we consider a bounded region fL 
then we can conclude that 

If(y)-f(x)t<E, for all x, y ~ I ' / o D ~ ,  (6) 

where D ~ is calculated using the desired accuracy E > 0. More precisely, if 

~q n D  7 C conv{Pyi}~--+~, 

where conv denotes convex hull, and 

]]Py/]] -< K, for all i, 
then we require 

II-< E/2K, for all $ ~ ~f(Py,). 

Moreover, given a desired tolerance ~ > 0, we can similarly guarantee that, 
if d ~ D 7, then 

If(d)- f(0)l < ,,  if Ildll-< g .  

Thus, the algorithm numerically finds the cone of directions of almost 
constancy. 

The question of calculating D 7 might be compared to the problem of 
finding W(A), the null space of a matrix A. This problem is unstable. We 
can define the rank of a faithfully convex function f as n - dim D 7. Then, 
finding the rank of a faithfully convex function is unstable [and, as we shall 
see in the sequel, vital to the stability of solving (P)]. We can now define 
the numerical rank of f. This extends the notion of numerical rank for 
matrices given in Ref. 19. We let 

Ilfll, -- max{lf(x)l: Ilxll- tL 

This defines a seminorm on the space of continuous functions on R".  It is 
a norm on the subspace of functions which are identically zero, whenever 
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they are zero on the entire t-ball. This includes all faithfully convex 
functions. 

Definition 3.1. A faithfully convex function has numerical rank (8, 
6, r), with respect to the norm II" lit, if 

r = inf{rank g: g is faithfully convex and Ill-gil t  < e }, 

e < 8 -< sup{,/: g faithfully convex, I l l -  gll, < w implies rank g - r}. 

The introduction of S guarantees that the numerical rank does not  decrease 
with small increases in 6, and thus is a stable number. 

In summary, the algorithm theoretically finds D ~, the cone of direc- 
tions of constancy. Numerically, we can guarantee only that it finds the 
cone of directions of almost constancy, to a given tolerance e. The dimension 
of D ~ is numerically unstable. However,  using the numerical rank, we can 
find a stable upper bound for the dimension of D 7, equivalently a stable 
lower bound for the numerical rank. 

4. Calculating the Sets ~ and D~o 

In Ref. 5, an algorithm for calculating ~ "  is given for the program 
(P). We now present a modified version of this algorithm, in the case that 
the constraints fk, k e 9 a =, are faithfully convex. In actual fact, the algorithm 
finds 

~ =  a n d D ~  ~ n ~ ( A o ) ,  

in at most t steps, with 

t = min{card ~ (2), n + 1 - dim[S n (2 + gt (A o))]}, 

9 ~ = = {k e 9  a : /k(x)  = 0, for all x ~Sc~ (2 +gt  (A0))}, 

and Ao is any specified n Xno matrix. Recall that D k  is independent of 
x, when the function fk is faithfully convex. If Ao is specified to be the 
identity, then @= and D ~  ~- are found. The generalization to find ~ "  and 
D ~  o will be needed in the sequel. 

The algorithm is a (finite) iterative method. We start with 

~,o=0  

and find the sets 
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at each iteration. The sets J, are defined below. The algorithm terminates 
when 

is reached. The difference between this algorithm and the one in Ref. 5 is 
that, at each iteration, we discard the constraints fk, k e J,; and, by a 
substitution technique, we then consider the remaining constraints as being 
restricted to the subspace D~. In addition, when finding the set ],, we first 
check if & = 0 is in the subdifferential of any of the (remaining) binding 
constraints. Recall that, if 0 ~ Of(x) and f is convex, then f achieves a global 
minimum at x. The algorithm is demonstrated in Example 4.1 below. Note 
that fkOp~ denotes the composition of fk and P ,  i.e., 

fkOpi(y ) = f (P,y ). 

Algorithm B 
Initialization. Let 

2 e S ,  ~o = ~(£), ~ o = ; ~ ,  Po=Ao,  i = 0 .  

ith step, O-~i-<t. Find k e ~ such that 

0 e of k (~)P,. 

Case (i). If such a k exists, use Algorithm A to find the nixn,+t 
matrix A~+~ satisfying 

~(Ai+l) = ( " ]  Df~e,, (7) 
ke]~ 

where 

Then, set 

J, - --{k Oeofk(2)P }. (8) 

~i+1 =~i/.]'i, Pi+I =PiAi+l, ~T+I =~7 '  w J ,  (9) 

and proceed to step i + 1. 

Case (ii). If such a k does not exist, but the system 

k~,  (10) 

k ~ i  

is consistent, then find ,4,+1, P,+I, ~,+1, 9a7+1 satisfying (7) and (9), where 

J~ = (k ~ ~,: Ak ;~ 0 in (10)}. 

Now, proceed to step i + 1. 



J O T A :  V O L  40 ,  N O .  3, J U L Y  1 9 8 3  361  

Case (iii). 
sistent, then stop. 

We conclude that 

If such a k does not exist, but the system (10) is incon- 

~ = ~ 7 ,  

P~  = ~ ( A o )  = ~(Pi). 
(11) 

Before proving the convergence of the algorithm, let us first prove the 
following rather technical lemma. 

Lemma 4.1. Denote 
k A k - [ , ( y ) = f  (x +P/y), 

Then, 

$i A--{x ~R"': fk(x)<--O, for all k ~ ~i}. 

/~(y) =ff_~ (A,y), (12) 

D~ = D~oe,, for all k E ~/, (13) 

D~ 7 c ~ ( A o ) =  ~ (Pt), (14) 

Si C :~ (Ai+I), (15) 

S :~ (~ + ~ (Ao)) C J? + ~ (Pi). (16) 

Proof. Since 

i f (y)  =fk(~ +p/y) =fk(~ +Pi-lAiy) k = f i-1 (A/y), 

relation (12) is proved. 
Now, when f f  is faithfully convex, there exists a strictly convex function 

g, a matrix A, vectors a and b, and a constant c such that 

fk(x) =g(Ax +b)+atx +c, 
with 

see Remark 2.1. Therefore, 
k k - 

f i ( y ) ; f  (x +P~y) 

= g(A(~ +eiy) +b) + a ' ( i  +Piy)+c 

= g(APiy +A£+b)+atPiy +ate+c, 
with 

: AP~\ 
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which equals the cone of directions of constancy of 

fk op~(y ) = g(APiy + b ) + a'Piy + c. 

This proves (13). 
Let us prove (14) by finite induction on i. The result holds for i = 0, since 

~ o = O  and Po=Ao. 

So, let us assume that i -> 1 and that 

D ~7_ ~ ng~(Ao)= 9~(P~_~). (17) 

Note that we will consider D~ as a subset of R"  and as a subset of R n' 
depending on the context, i.e., depending on whether we are considering 
the function fk or fk. First, suppose that d e ~(P~), i.e., 

d=AoAl"" "Aiy, for some)7 ~ R "' 

This implies that 

d ~ ~(Pi-1) = D~7_1 c~ ~ (A0), 

by (17). Now, to show that 

d ~DS~ 7 c~9~(Ao), 

it is sufficient to show that 

d ~ D ~ 7 _  1 =D~_I,  

by (9). So, let 

k ~ J i - i  and a E R .  

Thus, we have shown that 

9~(P,) CD57. 

Then, by (12), 

fk (~ + ad) =fk(~ + aAo " " Aiy)  = f~-I (aAi;) ;  

since 

k~J / -1  and ~ ( A i ) C D ~ _  1, 

by (7) and (13), we have 

f~(£ +ad) k = f i -  1 (o)  = f k  (~). 

This implies that 

d ~ D~_~. 
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Conversely, suppose that 

d ~ D ~  7 c ~ ( A o ) .  

Since 

(17) implies that 

To show that 

d = A o A 1  • • • A i - l ] ,  for some 37eR n'-l. 

D ~  7 n ~(Ao) C~(P~), 

it is now sufficient to show that 

= Aiz,  

Suppose that 

Then, by (12) and since 

for some z7 ~ R "'. 

and a ~R.  

By (8), 

af~ (o) = a f  * (~)e,. 

0 ~ Off (0), for all k ~ Ji. 

Note that 

= Ad ,  for some 2 ~ R "' 

This completes the proof of (14). 
To prove (15), we consider two separate cases. 

Case (a). Suppose that 

0 ~ ofki (0), for some k ~ ~i. 

by (7). Thus, 

d ~ D ~  7 and k ~ 7 ,  

we have 

f/g-1 (0) = fk (.~) =fk(2  + ad)  =fk (2  + A o ' ' "  A, - l ( t~ ) )  =/~-1 (a)7). 

This implies that 

; ~ D~_, = ~(A~), 
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• k Therefore, y = 0  is a global minimum for the convex functions f i ,  k eJ~. 
Now, suppose that 37 e S~; i.e., 

fk/(~) _ 0, for all k e ~i. 

Then, 

fk ()7) = O, for all k e Ji, 

since y = 0 is a global minimum for these functions and 

fk(o)=fk(2)=O, for all k e ~,  C ~ o C ~ ( 2 ) .  

Since Si is convex and 0 e S~, we conclude that 

~ e Si, 

This further implies that 

f~, (~ )  = 0, 

i .e.,  

for all 0 - a - 1. 

for all k ~ J~ and 0 -< a -- 1, 

;eD~,  = ~(Ai+l) .  

This proves (15), in case (a). 

Case (b). Suppose that 

0,~. Of~ (0), for all k ~ ~ .  

Also, assume that the system (10) is consistent; i.e., there exist hk > 0 such 
that 

Z XkCk =0, 4,keaf~(O) • (18) 

Note that, if no such Ak'S exist, then the algorithm stops and (15) does not 
require proof. As in case (a), we need only show that 

if f eSi a n d k  ~Ji, then f~ ()~) =0 .  

Suppose the contrary. Then, there exists 

y e Si and 

such that 

f~(y)~O, 
This !mplies that 

Ck" y-~O, 

ko~Ji. 

for all k e ~i, and f~o (y) < O. 

andCko, y < 0 ,  
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for all d, k ~ cffk/(0), k ~ Ji, and ~b ko ~ O[kio (0). 

By Theorem 2.2, this contradicts (18). Therefore, (15) is proved. 
Let us now prove (16), by finite induction on i. The result holds for 

i = 0, since 

Po =Ao.  

So, let us assume that i - 0 and 

Let 

Sc~ (2 +g~ (Ao)) C 2 + ~  (P~-O. 

x ~ S c~ (2 +~(Ao)) .  

Then, the above implies that 

X ----- X + P i - l Y ,  for some g ~ R n'-l. 

k Thus, by definition of f~-i and since x ~ S, 

fk_l(p)=fk(x)<--O. 

Therefore, 

Now, by (15) 

)7 = A~,  for some ~ ~ R "'. 

Substituting for ~ in the expression for x implies that 

x = 2 + A 0 ' ' .  A~?, 

which proves (16). Note that the sets £+~( P~ )  are decreasing linear 
manifolds containing the set S n (2 +~(Ao)) .  The algorithm essentially 
stops when £ + ~  (P~) is the smallest such linear manifold. [] 

We are now ready to prove the convergence of the algorithm. Recall 

that 
P~ = {k ~ ~:  fk (X) = 0, for all x ~ S ~ (2 + ~ (A o))}. 

Theorem 4.1. Suppose that £ ~ S, Ao is an arbitrary n × no matrix, 
and the constraints fk, k s/5= are faithfully convex. Then, the above 
algorithm finds 

/~= and DT,= ~ ( A o )  
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in at most t steps, where 

t = min{card ~(~) ,  no + 1 - dim(S n (~ + ~  (Ao)))}. 

Proof. 
suppose that 

We need to prove that (11) holds when case (iii) occurs. So, 

0 g off (0), for all k ~ ~i, 

and the system (10) is inconsistent. Let  

Ck a_ int Cr~ (0) = {y e R" ' :  ~b kpiy < 0, for all ¢b k ~ ofk (g)}. 

Then, by Lemma 2.1 and since O~Offi(O), we have that 

C* = cone aff('Y)Pi. 

Since (10) is inconsistent, we conclude that the system 

Y k = 0, Y k ~ cone Of k (2)Pi, 
k~Oi 

is inconsistent. Theorem 2.1 now implies that 

O {Y ~Rn' :  (bkPi "y < 0 ,  for all g5 k Eofk(.~)}:~ ~.  
k e ~  

This yields ~ 6 R"~, such that 

ckkPi.~<O, f o ra l l k~ i ,  and4~k ~ofk(~). 

Let 

(19) 

Then, (19) and (20) imply that 

ff(x(a))<O, for all k ~ ~ \ ~ ( £ ) ,  
(21) 

fk (X (a)) < 0, for all k c ~i, 

for all 0 -< a -< t~, some 6 > 0. Furthermore,  if 0 -< a -< &, then [By (20), (14), 
and since: ~a7 C ~(£)] ,  

f f  (x(o~ )) =ff(x + e~& ), 

= fk (~), for all k ~ ~ 7, 

= O, for all k ~ ~ 7 .  (22) 

x (a) = ~ + P a~.  (20) 
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Therefore, (21) and (22) imply that 

x(a)E S ~(¢ +~(Ao)); 

moreover, 

~= c (~(~)\~,)  = ~'7. 

Since 

D~7 n ~ ( A o ) = ~ ( P i ) ,  

by (14), to prove (11) we have only left to show that 

~ 7 C ~  =. (23) 

Let us prove this by finite induction on i. Now, (23) holds for i = 0, since 

~ o = ~ .  

Therefore, let us assume that i -> 1 and 

Since 

~ 7  = ~ L 1  uJ~-l, 

by iteration, it is sufficient to show that 

.r~_lc~ =. 

Suppose the contrary. Then, there exists 

xESn( ,~+~(Ao) )  and ko~Ji-1, 

such that 

fk (x ) <- O, for all k e ~ and fk°(x ) < O. 

But 

x = ~ +Ao"  • • A~y, for some y E R"', 

by (16); and, by (12) and since 

D~_, = ~ (A,), 

by (7) and (13), we have 

fkO(x ) =fko(~ + A o ' "  ' Aft) =f~-°l (Aiy) = 0. 

This contradicts (24). 

(24) 

[] 
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Example 4.1. Suppose S C R 5 is defined by the constraints 

f l ( x )  = exp(xl) + x ~ -  1 -< 0, 

fZ(x ) = x ~ + x 2 + exp(-x3) - 1 - 0, 

:3(x ) 2 2 ~-XI-b X4 q'-X5-- 1 "<0, 

f4(x) = exp(-x2) - 1 -< 0, 

fS (x )= (X l  2 2 - 1 )  + x 2 - 1 - < 0 ,  

f6(x) = Xx + exp(-x4) - 1 -< 0, 

fT(x) = x2 + e x p ( - x s ) -  1 -< 0. 

Let  us find ~ = and D ~ =. 
Initialization. Let  

= (0,0, 1,(~)42,(~)42) 

be the chosen feasible point. Then, 

P o = A o = I s × 5 ,  ~ o =  ~(~)  = {1, 3, 4, 5}, ~ o = Q .  

The corresponding gradients are 

Vf~(2) = (1, O, O, O, 0,), 

vf%~) = (1, o, o, ~ ,  4~), 

v f ( ~ )  = (o, -1,  o, o, o), 

~r/5(Y) = ( -2 ,  0, 0, 0, 0). 

Step O. Since 

Vfk(y)A o = Vfk(~) # 0, for all k e ~o, 

we solve the system given by (10); i.e., 

; 
h + 0 0 ,  1 0 -4-A3 0 A4 q-A5 

°o : J  
A l + h 3 + h 4 + A 5  = 1, Ak-->O. 

A solution is 

A 1 = 2 / 3 ,  /~3 ~-~ /~4 = 0, As= 1/3. 
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Therefore, 

Jo={1,  5}, 9aa ={3,4}, ~ 7  ={1, 5}, l°°l 
A1 1 0 = 0 

0 1 

0 0 

5~(A1)= (-') D~o~Po, 
k~Yo 

P1 =PoA1 =A1. 

Step I. 

while 

we get that 

Since 

~f4()~)p1 = 0, 

Vf3(~)P1 ~ 0, 

Ja = {4}, ~2 = {3}, ~ 2 = {1, 4, 5}, 

[i°il A2 = 1 , 
0 

~ ( A 2 )  -~-D~op 1, P2=PIA2 =A1.  

Step 2. Since 

~2={3} and Vf3(x)P2#O, 

Case (iii) occurs. Stop. We conclude that 

D ~ -  = ~ (P2) = 

~ =  = ~ 2  ={1,4 ,  5}, 

d3 

d4 
d5 

~RS: d3, d4, d5 c R  
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Using the substitution technique, and checking whether 

v f  k (~)P; = 0, 

reduces the number of computations required to find ~ = and D.~ ~, com- 
pared to the algorithms in Refs. 5 and 6. Another improvement is obtained 
by using the result in Ref. 8. There it is shown that one need only find 

such that 

~(Ai+I)=D~, h= E AkfkOPi, 
k ~  

rather than having 9~(Ai+l) equal to the intersection of the cones of 
directions of constancy. One then obtains D~, where 

h = E akf ~, a k > 0 ,  
k a j ,  = 

rather than D~ ~. The cone D~ can be used to regularize (P), instead of 
the cone D~=. 

Finding ~= and Dh (or D~- )  is also an unstable process, since we 
must solve the homogeneous system (10), but the rank of the corresponding 
matrix, with columns ¢ kp~, is unknown. If we assign a numerical rank to 
this matrix (see Section 3), then we can solve (10) within a given tolerance 
e > 0. Thus, (10) becomes 

Y~ ;t~¢kP,=¢, II¢ll<e, (25) 
ke~i 

where 
hk-->O, E A k = I ,  Ckeofk(2). 

For simplicity, let us consider step i = 0, with 

Let 

Po -~- A o  --~ Z 

h° = E x f f  ~. 
k~Jo 

Note that we can set Ak = 1, if ,To is found using (8) with 

¢ e of~(,~), I1¢11< E 
replacing 

0 e ark (e). 
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The e subscript for h denotes that we have solved (25) and found J0 within 
a tolerance of E -> 0. By continuity of the fk, 

Therefore, 

¢ e Oh,(2). 

h (y) -> h (2) + 6 (Y - 2) - -116 II lly -  zll. 

Thus, in a bounded neighborhood l) of 2, we can claim that 

h (y) -> -8 ,  for all y e 12, for some 8 > 0. 

This is done by setting the tolerance e sufficiently small. Continuing this 
reasoning, we see that, rather than finding ~= ,  we find 

~=(E)3~ =. 

Thus, rather than finding D h, where 

we find 

with the dimensions 

h =  ~ o~kf k, Cek>0, 
k ~  = 

Dh CD~, 

d i m D ~  -<di rnDl .  

This is assuming that we find the cones of directions of constancy exactly. 
However, in any case, the instability in finding ~ =  has the opposite effect 
of the instability in finding the cones of directions of constancy; i.e., we 
are likely to have 

k ~ ~ = ( e ) \ ~  =, 

which results in Dh, being smaller than D~.  Recall that the algorithm in 
Section 2 might result in D ~ being too large. However, combining the two 
arguments, we can conclude that, in a bounded neighborhood of 2, 

If(2) - f (y) ]  < ~, 

for a given tolerance e > 0. Moreover, if we can calculate the cones of 
directions of constancy exactly, perhaps analytically, then 

DE, C D h .  

Thus, we get an inner approximation to D h. Or it may happen that we 
can calculate the dimension of the cones of constancy exactly. Then, we 
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still obtain 

dim D h, --< d imD~,  

though the two subspaces D~, and Dh  might only be close and not equal. 
We can now assign a numerical rank to our program (P). We first 

define the rank of (P) to be d imD~=.  This is equal to the dimension of 
the feasible set S. 

Definition 4.1. The program (P) has numerical rank (6, E, r), with 
respect to the vector norm I1"11, if r = inf{rank (Py): (Py) is the perturbed 
program obtained by perturbing the right-hand sides of the constraints by 
y = (yk)}, i.e., ]~k (x) - y~, with lly II < ~, and the feasible set Sy ¢ 0. 

E < 8 --- sup{n : Ilyll < n, S~ ¢ 0 ~ rank(Py) -> r}. 

Note that it has been shown in Ref. 16 that Slater's condition holds 
for (P) if and only if the interior of the feasible set, int S, is nonempty. This 
is due to the fact that we assume [k, k ~ ~ =, faithfully convex. Thus, Slater's 
condition is equivalent to full rank of (P) and to full numerical rank for 
sufficiently small e. Note also that we might still have a stable program 
without full rank. For example, a linear program is always stable, but might 
not satisfy Slater's condition. 

5. Method of Reduction 

We now collect the machinery presented in the previous two sections 
and formulate the method of reduction. This algorithm first finds a feasible 
point and then solves the general convex program (P) when the constraints 
[k, k ~ ~ = ,  are faithfully convex. Let us denote by S(P) any method that 
solves program (P) under the assumption that Slater's condition is satisfied 
(e.g., Zoutendijk's feasible directions method, ref. 2). The method of 
reduction finds the regularized program (Pr) of Theorem 2.1, in the process 
of finding a feasible point. It then solves (Pc), using S(P~). Furthermore, if 
Slater's condition is not satisfied for the original program (P), the regularized 
program (Pr) will always have fewer constraints and fewer variables than (P). 

Algorithm C 
Initialization. Let 

Po=I,,×,,, T o = ~ ,  g~o= ~ ,  ~ o = ~ ,  n o = n ,  ~ a R " .  
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ith step,/-</-<card~. Set 

~ i  = ~ i - 1  k.J {k E T~-I: fk(£~) _ 0}, (26) 

T~ = T~-I/~,. (27) 

Now, consider the program 

(Ri) ~. fk(~i +pi_ ly)~min ,  
keT~ 

s.t. fk(£i +Pi_ly)<--O, kESrgi,  yERn'-L 

Using the feasible point 0 and Theorem 2.3, regularize this program; i.e., 
find ~ 7 [note that ~ 7 is the equality set for (Ri)] and the ni-1 x n~ matrix 
At satisfying 

D ~  7 = ~(Ai)  

(use Algorithm B). Now, set 

Pi = P i - l A i ,  

to get the reduced program 

(hi) ~ fk(£i +Piy)~min,  
k~Ti 

such that 

(28) 

(29) 

fk($i +P/y) <- 0, k ~ i ,  y ~ R  ~ • 

Note that Slater's condition is satisfied and 0 is a feasible point, by Theorem 
2.3. 

T / = ~ .  

and P = Pi, 

Case (i). Suppose that 

Set 
- i  ~=X 

and solve the reduced program, 

(R) f°(~ +Py)  ~ min, 

such that 

fk($+Py)<--O, k ~ i ,  

using the initial feasible point y = 0 and S(R). 
We conclude that, if y* is a solution of R, then 

x* = J? +Py* 

is a solution of the original program (P). 

y ~R% 
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Case (ii). Suppose that 

T,~®. 

Then, set z~ = 0 and 

]=0 ,1 , . . . ;  

i.e., z~+l is the point obtained after one iteration of S(/~i), applied to point 
i 

Z i. 

Case (ii) (a). 
such that 

A 

Suppose that, after/ '  iterations of S(R~), we find k ~ T~ 

fk(~ +e~z~)<-O. 

i - i + 1  - i  i 
= Z  h X = X  + P i z  , 

Then, set 

z i (30) 

and proceed to step i + 1. 
A 

Case (ii) (b). Suppose that, after ] iterations of S(Ri), we have not 
found k ~ T~ such that 

fk (~ +P~z~) <- O, 
but z~ solves the program (l~i). 

We conclude that S = ~ .  
Intuitively, the algorithm is straightforward. It uses the usual phase I 

process of placing the constraints in the objective function and then 
minimizing and eliminating constraints from the objective function, when 
they satisfy the feasibility requirements. The proof is given in Ref. 17. A 
computer program and examples are also presented in Ref. 17. 

6. Conclusions 

In this paper, we have presented an algorithm that solves the convex 
program (P) when the constraints fk, k e ~ =, are faithfully convex. Note 
that the class of faithfully convex functions includes all analytic as well as 
all strictly convex functions. The algorithm may also be applied to functions 
which are piecewise faithfully convex, i.e., to functions which can be written 
as the supremum of a finite number of faithfully convex functions. 

We have not assumed differentiability. For applications of 
nondifferentiable functions in optimization, see, e.g., Refs. 20, 21, 22, 23, 
24. Moreover, no constraint qualification, such as Slater's condition, was 
required. Situations where Slater's condition, or for that matter any other 
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constraint qualification, fails, arise, for example, in multicriteria problems 
(Ref. 21). Zoutendijk (Ref. 2) suggests that, when Slater's condition fails, 
then one should solve the perturbed problem 

(P,) minimize f °(x), 

subject to fk(x)--<E, k ~ ,  

where e > 0. This may lead to very small step sizes when using feasible 
direction methods and may cause zigzagging. Note that zigzagging is usually 
overcome by solving the perturbed problem (P,) with E < 0. The algorithm 
presented here suggests the reverse. That is when Slater's condition is 
satisfied, but the feasible set is thin, then one should use less accuracy, so 
that Slater's condition fails, i.e., so that 

This would be equivalent to moving on the boundary or parallel to the 
boundary of the feasible set. Note that, if /~(E) is the optimal value of 
(P,), then/~ (E) converges to the solution of the dual program of (P) as E$0. 
Moreover, if Slater's condition fails, then the Kuhn-Tucker conditions 
might also fail. In this case, the program (P) is an unstable program, in the 
sense that 

lim [/x (e) - / z  (0)]/e = - ~  
e J,0 

(see Ref. 11). Thus, even if there is no duality gap, we obtain an infinite 
marginal improvement in the optimal value with respect to small positive 
perturbations. 

Now, suppose that Slater's condition is satisfied for (P), but that the 
feasible set is very thin; i.e., our algorithm finds 

@=(E) e ®, 

for our chosen tolerance e. This is equivalent to a small (negative) perturba- 
tion in the constraints fk, k ~ ~=(E), which results in these constraints being 
identically 0 on the feasible set S. But, since Slater's condition is satisfied, 
the program (P) is stable with respect to small perturbations. Thus, the 
algorithm is stable when treating such problems. Note that, if one perturbs 
(P) to obtain (P~) above, then one obtains a thin feasible set. 

The regularized program (Pr) satisfies Slater's condition and thus is a 
stable program. Thus, when solving (Pr), we can obtain valid error estimates 
using the Kuhn-Tucker vectors. Indeed, (Pr) is equivalent to the program 

minimize f°(x ), 

subjecttofk(x)<--0, k ~ \ ~ = ,  x ~ + D 7 ~ - ,  
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where ~ is any feasible point of (P). Then, if h is a Kuhn-Tucker vector 
for (Pr), and/zr(E) denotes the optimal value of the perturbed program of 
(Pr), with perturbation vector e, we obtain (see Ref. 11) 

~,(~)-~ (0)-~ -(A, e). 
This shows that if, while finding 9a=(e), we find the cones of directions of 
constancy of the right dimension, and so 

~ ( e ) ~  =, 

then the regularized program which we find is a stable perturbation of the 
original program. Note that finding !~=(e) too large is a stable perturbation, 
while finding it too small results in instability. 

Though the solution that we find may not be stable, due to the instability 
of calculating the cones of directions of constancy, we can talk of stability, 
in some sense, by using the numerical ranks. That is, the solution that we 
find may not be stable with respect to the solution of the original program 
(P). However, by finding a gap between ~ and 8 [see the definition of the 
numerical rank of (P)], the solution which we actually find is stable with 
respect to small perturbation. Thus, the estimate that we find for the 
solution of (P) is stable with respect to small perturbations. This is the 
motivation behind the numerical rank in Ref. 19. 

To summarize, the algorithm presented here solves, theoretically, 
convex programs without assuming any constraint qualifications. In prac- 
tice, due to roundoff errors, it appears to solve the perturbed program (P,), 
by using an approximation to the thin feasible set F~. It appears particularly 
well suited for solving problems with thin feasible sets. Instability might 
arise if Slater's condition fails and the cones of directions of constancy are 
calculated too large. This appears to be counterbalanced by having ~= (e) 
large. Several open questions have been raised by the introduction of 
numerical rank for (P) and remain to be studied. The algorithm has been 
tested on several problems successfully. The success might be attributed 
to the fact that the instability in finding !~= counterbalances, to some extent, 
the instability in finding D ~. Moreover, the instability in finding ~= too 
large does not result in instability of the algorithm. The damaging instability 
arises when calculating D~. However, Algorithm A has been tested on 
numerous faithfully convex functions and only failed on specially designed 
bad examples. 
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