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1 INTRODUCTIONConsider the max-min eigenvalue problem(MMP ) !� := maxvte=0 �min(Cb �Diag (v)); (1.1)where Cb is an (n+1)�(n+1) real symmetric matrix, v 2 <n+1, and Diag (v)denotes the diagonal matrix formed from the vector v. Applications for thisproblem are many and varied, see e.g. [10, 11]. Essential in many of theseapplications is a fast algorithm for (MMP), since it has to be solved manytimes within the application. For example, this problem provides bounds inbranch and bound codes for graph bisection, see e.g. [3, 7]. In this paperwe study two primal-dual interior point algorithms which show that theseproblems can be solved robustly and quickly for very large dimensions.Typically, there is a loss of di�erentiability due to multiplicity of thesmallest eigenvalue at the optimum. In fact, a singleton eigenvalue charac-terizes di�erentiability. Since the smallest eigenvalue is a concave function,subgradient approaches can be used to solve (1.1), see e.g. [2]. More recently,it has been shown that Newton-based algorithms with local quadratic con-vergence are still possible, see e.g. [12]; though the local convergence dependson correctly identifying the multiplicity of the smallest eigenvalue. Since theproblem can be rephrased as minimizing a scalar ! subject to all the eigen-values �i(Cb � Diag (v)) � t, degeneracy corresponds to a high multiplicityof the optimal smallest eigenvalue. Both approaches mentioned above havedi�culty with high degeneracy. However, just as in ordinary linear program-ming, the interior point methods we present do not seem to bothered bydegeneracy.Problem (1.1) can be rephrased using positive semide�nite constraintswhich avoid the nondi�erentiability, see e.g. [12, 1]. Interior point methodsfor problems involving matrix inequalities are studied in [1, 8, 14, 19, 21, 17].(See the latter for a historical overview.) In this paper we study two equiva-lent di�erentiable formulations to (MMP). The �rst is derived using dualitytheory for an equivalent max-min trust region subproblem in conjunctionwith an interior point approach. We then compare this with the secondapproach which is studied in [14].0This paper was presented at the NATO Advanced Study Institute on Algorithms forContinuous Optimization, Il Ciocco, Italy, September, 1993.2



The paper is organized as follows. In Section 2 we present several equiva-lent problems to (MMP). This includes a parametric trust region subproblemas well as a parametric quadratic programming problem. These lead to the�rst algorithm which we use to solve (MMP). This reformulation of (MMP)is dependent on a given row and column of Cb. The 
exibility in choosing thecolumn can have advantages for large sparse problems. We also discuss analternative reformulation of (MMP) using the cone of positive semide�nitematrices. The motivation for the two formulations is in the applications areaas well as in testing out two forms of the algorithm. The equivalent formu-lations allow applications to 0,1 quadratic programming. In Section 3 wepresent the �rst and second derivatives of the matrix functions. In Section4 we present the primal-dual interior point methods. This includes the ma-trix derivatives and duality theory. These algorithms performed extremelywell and exhibited all the favourable properties of interior point methods forlinear programming, e.g.: the iteration count was not a�ected by the dimen-sion of the problem; degeneracy which here refers to a high multiplicity ofthe smallest eigenvalue at the optimum, did not a�ect performance. Thealgorithms are very robust and did not fail on any problems. The numericalresults are reported in detail in [14].1.1 PreliminariesWe brie
y summarize the notation and de�nitions used in the paper. Seee.g. [5] for more details on the various matrix results.We work in the space of real symmetric matrices, denoted S, with the traceinner product hA;Bi := traceAB: The set of positive semide�nite matrices,denoted P, forms a closed convex cone, which is self-polar, i.e. the polar coneP+ := fK = K t : traceKP � 0; 8P 2 Pg = P:The space S is endowed with the Lo�ewner partial order, i.e. A � (resp. �)B denotes A�B is positive de�nite (resp. semide�nite).For v 2 <n; Diag (v) denotes the diagonal matrix formed from the vectorv. Conversely, for a matrix M , diag (M), with lower case d, denotes thecolumn vector formed from the diagonal ofM . The vector e 2 <n denotes thevector of ones; while ei is the i-th unit vector; and Ei is the zero matrix with1 in the i; i position. For a rectangular matrix M , M y denotes the Moore-Penrose generalized inverse. R(M); N (M) denote range space and null3



space, respectively. For a square matrixM , det(M) denotes the determinant.For two m� n matrices M;N , the Hadamard product, or entrywise product,is denoted M �N .2 EQUIVALENT FORMULATIONSWithout loss of generality, we can subtract elements summing to 0 from thediagonal and assume that the element Cb1;1 = 0; i.e.Cb = " 0 �bt�b C # :(In general, it may be more advantageous to choose a particular dense rowand column for the vector b.) Therefore, from Theorem 4.1 in [13], an equiv-alent max-min problem is the parametric trust region subproblem(TRP ) (n+ 1)!� = maxute=0 minxtx=n xt(C �Diag (u))x� 2btx; (2.1)where x; u 2 <n: Then, from the duality theory in Theorem 5.1 in [16], weget the equivalent problem(n+ 1)!� = maxute=0 maxC�Diag (u)��I�0n� � bt(C �Diag (u)� �I)yb; (2.2)where �y denotes the Moore-Penrose generalized inverse. With y = u + �e,this is further equivalent to(D) (n+ 1)!� = max f(y) := yte� bt(C �Diag (y))ybsubject to C �Diag (y) � 0y 2 <n; (2.3)where e is the vector of ones. This is in the form of a dual linear programwhere our linear operator Diag (y) corresponds to the matrix At in linearprogramming. Therefore, we label it with (D). We solve (MMP) by solving(D). Note that the Moore-Penrose inverse is never actually used in the nu-merical algorithms, since we will restrict C � Diag (y) � 0. We summarizethe relationships between the various problems in the following.4



Theorem 2.1 Suppose that y solves (2.3) with value f(y) = (n+1)!�. Let:� := yten ; u := y � �e;�x = Cyyb; � := �xt�x;x = �x+ w; for some w 2 N (Cu) such that xtx = n; (2.4)and �z :=  1�x ! ; z :=  1x ! ; t := �+ bt�x; v :=  nn+1 tu� tn+1e ! :Then:1. u; � solves (2.2) with optimal value (n+ 1)!�;2. � � n, w exists for (2.4) and u; x solves the TRP (2.1) with optimalvalue (n+ 1)!�,3. z; �z are eigenvectors for the optimal eigenvalue !� with optimal pertur-bation v for (MMP).Proof: Statement 1. follows from the translation y = u + �e. The dualitytheory in [16] yields 2. Also, it is shown in [13] that the so-called hard caseholds at the optimum perturbation. Therefore, � � n. Now we have thatu solves (TRP) with ute = 0 and x solves the inner minimization problemfor this u. Therefore, the following positive semide�niteness conditions andstationarity conditions hold with Lagrange multiplier �, see e.g. [4, 15],C�diag (u)��I � 0; (C�diag (u)��I)�x = (C�diag (u)��)x = b: (2.5)Let Cu := C � diag (u) and D(t) := " t �bt�b Cu # : Then � is an eigenvalueof D(t) with eigenvector �z, since (Cu � �I)�x = b: By (2.5), we could alsochoose x in the de�nition of z and t, rather than �x. Moreover, the optimalityconditions Cu � �I � 0 implies � � �min(Cu). Therefore, by the interlacing5



theorem for eigenvalues, e.g. [5], � = �min(D(t)): To �nd the optimal shift v,we see that this implies � � tn+ 1 = n�� btxn+ 1is the smallest eigenvalue of the shifted matrixD(t) � tn + 1I = Cb � diag (v);thereby de�ning the n + 1 dimensional vectorv :=  nn+1tu� tn+1e ! ; t = � + btx: (2.6)Therefore, v is the optimal perturbation of Cb and(n+ 1)!� = n� � btx; (2.7)since the latter is the optimal value of (TRP), see (2.2). 2The dual problem to problem (D) is the min-max of the Lagrangian, i.e.minX�0maxy f(y) + traceX(C �Diag (y)):The inner problem is the unconstrained maximum of a concave function, andso we can delete the maximization by adding the stationary point conditionas a constraint, i.e. we get that the primal problem, or the dual of (D), is(P ) !� = min f(y) + traceX(C �Diag (y))subject to rf(y)� diag (X) = 0X � 0: (2.8)Moreover, there is no duality gap between primal and dual problems, sinceSlater's constraint quali�cation holds for (D). In addition, if y;X is a feasiblepair for the primal and dual problems, then the duality gap is justtraceX(C �Diag (y)): (2.9)6



If f is a linear function, then we see that the objective function of the pri-mal becomes traceCX, as expected. For general duality results over generalcones, including the cone of positive semide�nite matrices, see ([18]).We can now apply interior point methods to problem (P) or (D), e.g. wecan consider the following dual log-barrier and shifted log-barrier problemswith log-barrier parameter � # 0:1. max f(y) + � log det(C �Diag (y))subject to y 2 <n; (2.10)2. max f(u)subject to � log(1 + 1� det(C �Diag (y))) � 0u 2 <n: (2.11)Here det denotes determinant. Note that the functions in the two problemsare concave. (See the comment at the end of Section 3.)2.1 ALTERNATIVE FORMULATIONA di�erent formulation for (MMP) is given in e.g. [12, 1, 17, 14]!� = maxf! : vte = 0; Cb �Diag (v) � !Ig: (2.12)Using the relation ys = v + !e; we get the equivalent problem!� = maxfetys : Cb �Diag (ys) � 0g: (2.13)The dual is the min-max of the LagrangianminXa�0maxys etys + traceXa(Cb �Diag (ys)):By setting the �rst order derivatives of the inner unconstrained problem to0, we conclude that e � diag (Xa) = 0; and etys � traceXaDiag (ys) = 0:Therefore, the dual program to (2.13) ismin traceCbXasubject to diag (Xa) = eXa � 0: (2.14)7



This dual can be derived directly from the paired duality results in Theorem4.1 in [18] upon noting that Diag and diag are adjoint linear operators.Such dual pairs of linear programs over cones behave much like ordinarylinear programs over the nonnegative orthant, e.g. the duality gap for a givenfeasible pair Xa; ys is DXa; (Cb �Diag (ys))E, while complementary slacknesscorresponds to a zero duality gap.We can relate this dual pair with our previous equivalent formulation byusing the Schur complement.Theorem 2.2 Let Xa; ys be an optimal pair for the dual programs (2.13)and (2.14), with optimal value !�. PartitionXa := " 1 ata W # ; ys := " sy # :Let: v := ys � !�e; t := n+ 1n (s� !�); �x := a;� := t� bt�x u := y � �e;and x := �x+ w; for some w 2 N (C �Diag (u)) such that xtx = n;Then 1.,2.,3. of Theorem 2.1 hold. Moreover, X := W � aat solves (2.8),the dual of (D).Proof: First note that the Schur Complement Theorem, see e.g. [9], im-plies that Xa is positive de�nite (resp. semide�nite) if and only if the SchurcomplementW �aat is positive de�nite (resp. semide�nite). Moreover, com-plementary slackness Xa(Cb�diag (ys)) = 0 implies that (C�diag (y))a = b,i.e. a satis�es the optimality conditions for the trust region subproblem. Theresults now follow from Theorem 2.1. 23 DERIVATIVESIn this section we provide the derivatives for Newton's method. Recall thatthe objective function isf(y) := yte� bt(C �Diag (y))�1b:8



Denote the log-barrier terms byg(y) := log det(C �Diag (y));and h(y) := � log(1 + 1� det(C �Diag (y))):In addition, we let ei denote the i-th unit vector, Ei denote the 0 matrix with1 in the (i; i) position, andCy := C �Diag (y); xy := C�1y b:From Cyxy = b; (3.1)we di�erentiate with respect to y to get@Cy@y xy + Cy @xy@y = 0;i.e. the n� n Jacobian @xy@y = C�1y Diag (xy); (3.2)while @xy@yi = C�1y (Eixy): (3.3)Therefore @f(u)@yi = 1� btC�1y (Eixy)= 1� jjEixyjj2: (3.4)This yields the gradient @f(u)@y = e� diag (xyxty): (3.5)Given a symmetric matrix B,@ detB@B = adj (B);9



where adj denotes the adjoint matrix. Therefore, by Cramer's rule,@g(y)@yi = �1detCy traceEiadj (Cy)= �traceEiC�1y ; (3.6)and @g(y)@y = �diag (C�1y ): (3.7)If we di�erentiate (3.1) twice we get�Ei@xy@yj � Ej @xy@yi + Cy @2xy@yi@yj = 0;which yields @2xu@yi@yj = C�1y (Ei @xy@yj + Ej @xy@yi ): (3.8)Also @2f(u)@yi@yj = �2(Eixy)t @(Eixy)@yj= �2(Eixy)tEi @xy@yj= �2(Eixy)tC�1y (Ejxy): (3.9)Therefore, @2f(u)@y2 = �2xyxty � C�1y ; (3.10)where � denotes the Hadamard product.For a nonsingular matrix function B(t), we can di�erentiate both sides ofB(t)B(t)�1 = I and obtain the derivative@B(t)�1@t = �B(t)�1@B(t)@t B(t)�1:Therefore, di�erentiating g twice yields:@g(y)@yi@yj = �@ (traceEiC�1y )@yj= �traceEiC�1y EjC�1y ; (3.11)and @g(y)@y2 = �C�1y � C�1y : (3.12)Similarly, @h(y)@yi = ��1+det(Cy)=� 1�traceEiadj (Cy)= �det(Cy)1+det(Cy)=�traceEiC�1y ; (3.13)10



and @h(y)@y = �det(Cy)1+det(Cy)=�diag (C�1y ): (3.14)In summary, the gradients and Hessians are:rf = e� diag (xyxty); (3.15)rg = �diag (C�1y ); (3.16)rh = � �det(Cy)1 + det(Cy)=�diag (C�1y ); (3.17)r2f = �2xyxty � C�1y ; (3.18)r2g = �C�1y � C�1y : (3.19)Note that the above implies that the functions f; g are concave when Cyis positive de�nite, since Schur's Theorem on Hadamard products, see e.g.[6], states that the cone of positive semide�nite matrices is closed under theHadamard product.4 PRIMAL-DUAL METHODSThe optimality condition, or stationarity condition, for the unconstraineddual log-barrier problem (2.10) ise� diag (xyxty)� �diag (C�1y ) = 0: (4.1)Comparing this with the optimality conditions for (2.3) we get the Lagrangemultiplier estimate, or primal variable estimate,X = �C�1y : (4.2)The Newton direction for solving (2.10) is found by solving the system(2xyxty � C�1y + �C�1y � C�1y )�y = e� diag (xyxty)� �diag (C�1y ): (4.3)11



The �rst two terms after the equality correspond to a step to optimalitywhile the last term is a centering step in the dual space. This provides adual log-barrier method. Alternatively, by adding a slack variable matrix,we can make (2.3) look more like a linear programming constrained problem,i.e. we get (D) !� = max f(y) := yte� bt(C �Diag (y))ybsubject to C �Diag (y)� Z = 0u 2 <n; Z � 0: (4.4)The primal-dual log-barrier problem is then(B) !�� = max f(y) + � log det(Z)subject to C �Diag (y)� Z = 0: (4.5)The Lagrangian for (4.5) isL(y; Z;X) = f(y) + � log det(Z) + traceX(C �Diag (y)� Z);while the optimality conditions F (y; Z;X) = 0 are:e� diag (xyxty)� diag (X) = 0 (primal feasibility)�X + �Z�1 = 0 (complementary slackness)C �Diag (y)� Z = 0 (dual feasibility)Z � 0; X � 0: (4.6)Here, X;Z are the primal and dual matrices, respectively. Note that the�rst two optimality conditions correspond to stationarity of the Lagrangianfor (4.5), e.g. the second condition is obtained from di�erentiating the La-grangian with respect to Z. Recall that the derivative of log det(Z) is Z�1.The comments in brackets correspond to the corresponding equations fora linear programming problem, i.e. the corresponding linear programmingequations would be: b � Ax = 0; XZe = �e; c �Aty � z = 0: Moreover,note that the transpose, or adjoint operator, of diag (�) is Diag (�).In our framework, the primal feasibility corresponds to feasibility of xyin (P), see (2.8). If diag (X) = 0, then this corresponds to xy being feasiblefor the trust region subproblem. This emphasizes the fact that we do notget feasibility for this subproblem due to the hard case occurring at theoptimum. However, at the optimum we also have ZX = 0, which means12



that the columns of X and also of X 12 form a basis for the null space ofZ = C�Diag (y). Therefore. we can use a linear combination of the columnsof X 12 to add to xy to get a feasible optimal solution to the subproblem.Note that if � is �xed and we solve the optimality conditions (4.6), thenthe duality gap (2.9) becomes n�:We now apply Newton's method to solve the optimality conditions, F (y; Z;X) =0, while maintaining the positivity of X;Z; i.e. the system �F 0� = F is:264 2xyxty � C�1y 0 diag (�)0 �Z�1 � Z�1 IDiag (�) I 0 3750B@ �y�Z�X 1CA = 0B@ (e� diag (xyxty) � diag (X))(�X + �Z�1)(C �Diag (y)� Z) 1CA(4.7)The middle equation implies that�Z = Z � 1�ZXZ � 1�Z(�X)Z:Moreover, since the �nal equation is linear, if a stepsize of 1 is taken or if thisequation is satis�ed by the initial solution estimates, then it is satis�ed byeach iteration. We assume that this is indeed the case. Therefore, we have�Z = �Diag (�y); C�1y = Z�1:We therefore can eliminate �Z and obtain" � 1�Z � Z Diag (�)diag (�) �r2f(y) #  �X�y ! =  �Z + 1�ZXZrf(y)� diag (X) !After multiplying through by � and Z�1 and eliminating �X, we get" I ��Z�1Diag (�)Z�10 diag (�Z�1Diag (�)Z�1)�r2f(y) #  �X�y ! = �Z�1 �Xdiag (��Z�1 +X) +rf(y)� diag (X) ! ;so that �X = �Z�1 �X + �Z�1Diag (�y)Z�1: (4.8)13



In summary, we have the simpli�ed Newton directions for our algorithm 1:�y = ((2xyxty + �Z�1) � Z�1)�1(e� diag (xyxty)� �diag (Z�1));�Z = �Diag (�y); (4.9)X + �X = �Z�1(Z +Diag (�y))Z�1:Therefore, for the Newton steplength of 1, we can check that both X;Z arepositive de�nite by checking Z �Diag (�y), respectively. We discuss the linesearch in more detail in Section 4.2, below.4.1 ALTERNATIVE ALGORITHMThe alternative formulation in (2.13) and its dual in (2.14) yield the followingprimal-dual optimality conditions:e� diag (Xa) = 0 (primal feasibility)�Xa + �Z�1 = 0 (complementary slackness)Cb �Diag (ys)� Z = 0 (dual feasibility)Z � 0; Xa � 0: (4.10)Here Xa; Z are the primal and dual matrices again, but they are not thesame as in the above formulation. In fact, they are one dimension larger.This system is more like a linear programming primal dual algorithm inthat there are two linear equations and one nonlinear one formed from thecomplementary slackness conditions.We now apply Newton's method to solve the optimality conditions, whilemaintaining the positivity of Xa; Z, i.e. we solve264 0 0 diag (�)0 �Z�1 � Z�1 IDiag (�) I 0 3750B@ �ys�Z�Xa 1CA = 0B@ (e� diag (Xa))(�Xa + �Z�1)(Cb �Diag (ys)� Z) 1CA :(4.11)This leads to similar equations for the steps �ys; �Z; �Xa, except that thenonlinear term is discarded. The equations in simpli�ed form, i.e. when weassume that the slack variable Z = Cb �Diag (ys), are:�ys = (�Z�1 � Z�1)�1(e� �diag (Z�1));�Z = �Diag (�ys); (4.12)Xa + �Xa = �Z�1(Z +Diag (�ys))Z�1:14



Again, we can check that both Xa; Z are positive de�nite by checking Z �Diag (�ys). The above equations yield our second algorithm.4.2 LINE SEARCHESFor algorithm 1, the line search consists in verifying that the new X and Zare positive de�nite. At the current iterates X;Z � 0, we need to check thatZ � tDiag (�y) � 0; for Z;where t > 0 is the step length. For X, when the error jj�Z�1 �Xjj is small,then a reasonable heuristic is to checkZ + tDiag (�y) � 0; for X:Let Z = RtR be the Cholesky factorization of Z. Then the above is equivalentto �nding t > 0 such thatI � tR�t(Diag (�y))R�1 � 0:With this change, the problem is equivalent to the step length problem inordinary linear programming, i.e. suppose that the matrix Diag (�y) is notnegative semide�nite (in which case the step length can be in�nite and so ischosen to be 1). Then we get that the step for Z istZ := minf1; 1�max(R�t(Diag (�y))R�1)g;while, if the matrix Diag (�y) is not positive semide�nite (in which case thestep length can be in�nite and so is chosen to be 1) the step for X istX := minf1; 1��min(R�t(Diag (�y))R�1)g:By the above we see that we can use any upper bound for the maximumeigenvalue and any lower bound for the minimum eigenvalue. Note that foran n� n symmetric matrix K, see [20],�max(K) � traceKn +pn� 1straceK2n � �traceKn �2;15



�min(K) � traceKn �pn� 1straceK2n � �traceKn �2:We can �nd the traces using Z�1, e.g.trace (R�t(Diag (�y))R�1) = traceDiag (�y)Z�1 = �ytdiag (Z�1):Alternatively, to �nd the bounds, we could �rst shift R�t(Diag (�y))R�1 bya multiple of the identity to guarantee that it is positive de�nite and thencalculate its norm. We then shift by a multiple of the identity to guaranteethat it is negative de�nite and �nd the norm of the negative of the matrix.By shifting back, we get the values for the largest and smallest eigenval-ues. Alternatively, we could calculate the largest and smallest eigenvalues ofDiag (�y)Z�1 directly.Note that if tX = 1, then �X is a good step for X. However, if tX < 1,then X + tX�X is not necessarily equal to �Z�1(Z +Diag (tX�y))Z�1: Thissituation almost never arose in practice. But an extra safeguard was addedto ensure that X remain positive de�nite.After �nding these maximum steplengths, we then multiply the steplength by .90 to guarantee that we do not get too close to the boundary.Because of the nonlinearity in algorithm 1, we then take one steplength forboth variables; while algorithm 2 uses di�erent steplengths in the primal anddual variables.From numerical tests, it appears that the step length 1 for X is usuallynot too large, i.e. it does not usually lose positive de�niteness. But, the steplength for Z is much too large immediately after � is decreased. When � isnot decreased, the step length 1 seems good for both variables.An e�cient line search could be done using a Lanczos type algorithmto calculate the smallest eigenvalues of Cy � ��y; Cy + ��y. Or inverseiteration can be used so the matrices from the Cholesky factorization do notget inverted.4.3 THE ALGORITHMThe algorithms presented above di�er only in the optimality conditions thatNewton's method solves. We present the following outline for the algorithm1: 16



Algorithm 4.1 Suppose that Cb is given. Find initial estimate y sothat Z = C � Diag (y) is positive de�nite and well conditioned. Findan initial � and set X = �Z�1 so that X is well conditioned, e.g. set� = jjZjjjjZ�1jj : Repeat the following steps.1. If the convergence criteria is satis�ed, e.g. if � < given tolerance, then:(a) If X is not positive de�nite, then recalculate it using (4.12) withtX�y.(b) Recalculate � = maxf trace (XZ)10n ; jje�diag (xyxty)�diag (X)jj10n g; to ensureprimal feasibility.(c) STOP if the convergence criteria, � < given tolerance, is still sat-is�ed.2. Solve the Newton system for the directions �y; �Z; �X:3. Find a step length that preserves positive de�niteness for the primaland dual variables X;Z, and update the variables.4. Check the error in the current Newton system with the current �. If thiserror has decreased from the last iteration, then update � = trace (XZ)10n :5 CONCLUSIONWe have derived two primal-dual algorithms for maximizing the minimumeigenvalue of a diagonally perturbed symmetric matrix. Both algorithmshave been tested extensively. Test results for the second algorithm are givenin [14]. The results for the �rst algorithm, which is based on the trust regionsubproblem, were similar. Therefore, if the matrix has a dense row, the �rtalgorithm should be used since the dense row can be eliminated.References[1] F. ALIZADEH. Combinatorial optimization with semide�nite matrices.In Proceedings of the Second Annual Integer Programming and Combi-natorial Optimization Conference, Carnegie-Mellon University, 1992.17
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