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Abstract

Two Primal-dual interior point algorithms are presented for the
problem of maximizing the smallest eigenvalue of a symmetric matrix
over diagonal perturbations. These algorithms prove to be simple,
robust, and efficient. Both algorithms are based on transforming the
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problem to one over the cone of positive semidefinite matrices. One
of the algorithms does this transformation through an intermediate
transformation to a trust region subproblem. This allows the removal
of a dense row.
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1 INTRODUCTION

Consider the maz-min eigenvalue problem

(MMP) w*:= max )\min(Cb — Diag (v)), (1.1)
where C® is an (n+1) x (n+1) real symmetric matrix, v € **!, and Diag (v)
denotes the diagonal matrix formed from the vector v. Applications for this
problem are many and varied, see e.g. [10, 11]. Essential in many of these
applications is a fast algorithm for (MMP), since it has to be solved many
times within the application. For example, this problem provides bounds in
branch and bound codes for graph bisection, see e.g. [3, 7]. In this paper
we study two primal-dual interior point algorithms which show that these
problems can be solved robustly and quickly for very large dimensions.

Typically, there is a loss of differentiability due to multiplicity of the
smallest eigenvalue at the optimum. In fact, a singleton eigenvalue charac-
terizes differentiability. Since the smallest eigenvalue is a concave function,
subgradient approaches can be used to solve (1.1), see e.g. [2]. More recently,
it has been shown that Newton-based algorithms with local quadratic con-
vergence are still possible, see e.g. [12]; though the local convergence depends
on correctly identifying the multiplicity of the smallest eigenvalue. Since the
problem can be rephrased as minimizing a scalar w subject to all the eigen-
values )\;(C® — Diag (v)) < ¢, degeneracy corresponds to a high multiplicity
of the optimal smallest eigenvalue. Both approaches mentioned above have
difficulty with high degeneracy. However, just as in ordinary linear program-
ming, the interior point methods we present do not seem to bothered by
degeneracy.

Problem (1.1) can be rephrased using positive semidefinite constraints
which avoid the nondifferentiability, see e.g. [12, 1]. Interior point methods
for problems involving matrix inequalities are studied in [1, 8, 14, 19, 21, 17].
(See the latter for a historical overview.) In this paper we study two equiva-
lent differentiable formulations to (MMP). The first is derived using duality
theory for an equivalent max-min trust region subproblem in conjunction
with an interior point approach. We then compare this with the second
approach which is studied in [14].
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The paper is organized as follows. In Section 2 we present several equiva-
lent problems to (MMP). This includes a parametric trust region subproblem
as well as a parametric quadratic programming problem. These lead to the
first algorithm which we use to solve (MMP). This reformulation of (MMP)
is dependent on a given row and column of C®. The flexibility in choosing the
column can have advantages for large sparse problems. We also discuss an
alternative reformulation of (MMP) using the cone of positive semidefinite
matrices. The motivation for the two formulations is in the applications area
as well as in testing out two forms of the algorithm. The equivalent formu-
lations allow applications to 0,1 quadratic programming. In Section 3 we
present the first and second derivatives of the matrix functions. In Section
4 we present the primal-dual interior point methods. This includes the ma-
trix derivatives and duality theory. These algorithms performed extremely
well and exhibited all the favourable properties of interior point methods for
linear programming, e.g.: the iteration count was not affected by the dimen-
sion of the problem; degeneracy which here refers to a high multiplicity of
the smallest eigenvalue at the optimum, did not affect performance. The
algorithms are very robust and did not fail on any problems. The numerical
results are reported in detail in [14].

1.1 Preliminaries

We briefly summarize the notation and definitions used in the paper. See
e.g. [5] for more details on the various matrix results.

We work in the space of real symmetric matrices, denoted S, with the trace
inner product (A, B) := trace AB. The set of positive semidefinite matrices,
denoted P, forms a closed convex cone, which is self-polar, i.e. the polar cone

Pt :={K = K':traceKP >0, VP € P} = P.

The space S is endowed with the Loéwner partial order, i.e. A = (resp. »)
B denotes A — B is positive definite (resp. semidefinite).

For v € R", Diag (v) denotes the diagonal matrix formed from the vector
v. Conversely, for a matrix M, diag (M), with lower case d, denotes the
column vector formed from the diagonal of M. The vector e € R" denotes the
vector of ones; while e; is the i-th unit vector; and FE; is the zero matrix with
1 in the ¢,% position. For a rectangular matrix M, M' denotes the Moore-
Penrose generalized inverse. R(M), N (M) denote range space and null



space, respectively. For a square matrix M, det(M) denotes the determinant.
For two m x n matrices M, N, the Hadamard product, or entrywise product,

is denoted M o N.

2 EQUIVALENT FORMULATIONS

Without loss of generality, we can subtract elements summing to 0 from the
diagonal and assume that the element C{),1 =0, i.e.

A
e-[° Y]

(In general, it may be more advantageous to choose a particular dense row
and column for the vector b.) Therefore, from Theorem 4.1 in [13], an equiv-
alent max-min problem is the parametric trust region subproblem

(TRP) (n+1)w*= max min wt(C — Diag (u))z — 20z, (2.1)
ute=0 zlz=n
where z,u € R". Then, from the duality theory in Theorem 5.1 in [16], we
get the equivalent problem

_ gt ™Y _ t
(n+1w* = 515&:)(() C_Dia{gn(igc_ﬂton)\ b'(C — Diag (u) — AI)'d, (2.2)

where -! denotes the Moore-Penrose generalized inverse. With y = u + e,
this is further equivalent to

(n+1)w* = max f(y) := y'e — b/(C — Diag (y))!b
(D)  subject to C — Diag(y) = 0 (2.3)
y € R,

where e is the vector of ones. This is in the form of a dual linear program
where our linear operator Diag (y) corresponds to the matrix A* in linear
programming. Therefore, we label it with (D). We solve (MMP) by solving
(D). Note that the Moore-Penrose inverse is never actually used in the nu-
merical algorithms, since we will restrict C' — Diag (y) > 0. We summarize
the relationships between the various problems in the following.



Theorem 2.1 Suppose that y solves (2.3) with value f(y) = (n+ 1)w*. Let:
¢
A= ﬁ, u =y — Ae;
n

7 o— — mta.
z =0, a:==z7;

zt=2+w, forsomew e N(C,) such that z'z = n; (2.4)

and

Then:
1. u, X solves (2.2) with optimal value (n + 1)w*;

2. a < n, w ezxists for (2.4) and u,x solves the TRP (2.1) with optimal
value (n + 1)w*,

3. z,Z are eigenvectors for the optimal eigenvalue w* with optimal pertur-

bation v for (MMP).

Proof: Statement 1. follows from the translation y = w + Ae. The duality
theory in [16] yields 2. Also, it is shown in [13] that the so-called hard case
holds at the optimum perturbation. Therefore, « < n. Now we have that
u solves (TRP) with u’e = 0 and z solves the inner minimization problem
for this u. Therefore, the following positive semidefiniteness conditions and
stationarity conditions hold with Lagrange multiplier A, see e.g. [4, 15],

C —diag (u)—AI = 0, (C—diag(u)— M)z = (C—diag(u)—A)z =b. (2.5)

t b
—-b O,
of D(t) with eigenvector z, since (C, — AI)Z = b. By (2.5), we could also

choose z in the definition of z and ¢, rather than . Moreover, the optimality
conditions €, — AI > 0 implies A < Apin(Cy). Therefore, by the interlacing

Let C, := C — diag (u) and D(t) :=

. Then ) is an eigenvalue



theorem for eigenvalues, e.g. [5], A = Amin(D(¢)). To find the optimal shift v,
we see that this implies

t n\ — biz

n+1l n+l

is the smallest eigenvalue of the shifted matrix

t
n+1

D(t) I = C® — diag (v),

thereby defining the n 4+ 1 dimensional vector
v = ( ntl, . ) , t=X+ Dbz (2.6)

Therefore, v is the optimal perturbation of C'® and
(n+1)w* =nX — bz, (2.7)

since the latter is the optimal value of (TRP), see (2.2).
O

The dual problem to problem (D) is the min-max of the Lagrangian, i.e.

i t X(C — Di .
min max f(y) + trace X(C' — Diag (y))
The inner problem is the unconstrained maximum of a concave function, and
so we can delete the maximization by adding the stationary point condition
as a constraint, i.e. we get that the primal problem, or the dual of (D), is

w*=min f(y) + trace X(C — Diag (y))
(P)  subject to Vf(y)—diag(X)=10 (2.8)
X =0.

Moreover, there is no duality gap between primal and dual problems, since
Slater’s constraint qualification holds for (D). In addition, if y, X is a feasible
pair for the primal and dual problems, then the duality gap is just

trace X (C — Diag (y)). (2.9)



If f is a linear function, then we see that the objective function of the pri-
mal becomes trace C X, as expected. For general duality results over general
cones, including the cone of positive semidefinite matrices, see ([18]).

We can now apply interior point methods to problem (P) or (D), e.g. we
can consider the following dual log-barrier and shifted log-barrier problems
with log-barrier parameter p | 0:

1.
max f(y) + plog det(C — Diag (y)) (2.10)
subject to y € R™; '
2.
max f(u)
subject to plog(l + %det(C — Diag (y))) > 0 (2.11)

u € RN,

Here det denotes determinant. Note that the functions in the two problems
are concave. (See the comment at the end of Section 3.)

2.1 ALTERNATIVE FORMULATION
A different formulation for (MMP) is given in e.g. [12, 1, 17, 14]
w* = max{w : v'e = 0, C® — Diag (v) = wl}. (2.12)
Using the relation y* = v + we, we get the equivalent problem
w* = max{e'y* : C® — Diag (y*) = 0}. (2.13)
The dual is the min-max of the Lagrangian

: t s a b 1y s
)I(I}lltnonb%x e'y® + trace X*(C° — Diag (y°)).

By setting the first order derivatives of the inner unconstrained problem to
0, we conclude that e — diag (X*) = 0, and €e'y® — trace X*Diag (y*) = 0.
Therefore, the dual program to (2.13) is

min trace C®X®
subject to diag(X®)=¢ (2.14)
X = 0.



This dual can be derived directly from the paired duality results in Theorem
4.1 in [18] upon noting that Diag and diag are adjoint linear operators.
Such dual pairs of linear programs over cones behave much like ordinary
linear programs over the nonnegative orthant, e.g. the duality gap for a given
feasible pair X*,y® is <X", (C® — Diag (ys))>, while complementary slackness
corresponds to a zero duality gap.

We can relate this dual pair with our previous equivalent formulation by
using the Schur complement.

Theorem 2.2 Let X*,y° be an optimal pair for the dual programs (2.13)
and (2.14), with optimal value w*. Partition

a . 1 at s, | s
STt

Let: 1
n
vi=y’ —w'e, t:= (s —w"), T:=ga;
n
A=t —bZ u:=y—de;
and

z:=7%+w, for somew € N(C — Diag (u)) such that z'z = n;

Then 1.,2.,8. of Theorem 2.1 hold. Moreover, X := W — aa® solves (2.8),
the dual of (D).

Proof: First note that the Schur Complement Theorem, see e.g. [9], im-
plies that X is positive definite (resp. semidefinite) if and only if the Schur
complement W — aa’ is positive definite (resp. semidefinite). Moreover, com-
plementary slackness X¢(C®—diag (y°*)) = 0 implies that (C' —diag (y))a = b,
i.e. a satisfies the optimality conditions for the trust region subproblem. The
results now follow from Theorem 2.1.

O

3 DERIVATIVES

In this section we provide the derivatives for Newton’s method. Recall that
the objective function is

f(y) := y'e — b'(C — Diag (y))'b.

8



Denote the log-barrier terms by

g(y) = log det(C — Diag (y)),

and

b(y) = ulog(1 +  det(C — Disg 1)

In addition, we let e; denote the i-th unit vector, E; denote the 0 matrix with
1 in the (¢,¢) position, and

Cy := C — Diag(y), zy:= Cy_lb.

From
Cyzy = b, (3.1)
we differentiate with respect to y to get
oc, Oz
C,—2 =0
6;1/ Ty + Y 6;1/ ’
i.e. the n x n Jacobian
Oz 1
6—; = C, 'Diag (z), (3.2)
while 5
L —1
63;’ = C, (Eizy). (3.3)
Therefore of
u) tv—1
s = 100G, (lflwy) (3.4)
1—|[Eimy|[*.
This yields the gradient
a;;(yu) = e— diag(zyz}). (3.5)
Given a symmetric matrix B,
Odet B
= adj (B
63 a .]( )7



where adj denotes the adjoint matriz. Therefore, by Cramer’s rule,

5 ~ )
51(3) = = 1cy trace F;adj (Cy)

= —trace E;C; ",

and
a . —
W) = —diag (C;).
If we differentiate (3.1) twice we get
Oz Oz 0z
—-E—-E—"*4+C Y =0,
dy; Oy Y Oyi0y;
which yields
82z, _ — Oy Bzy
By:0y; = Oy 1(Ez@ ‘|’ Eja_y,)
Also () _ 2Bz )ta(E,’my)
By; 0y; Yy ng
= —2(Ezwy)tha—y:
= _2(Eiwy)t0y_1(ijy)'
Therefore,
wa’;;‘ = —2zyzloC. 7,

where o denotes the Hadamard product.

(3.8)

(3.9)

(3.10)

For a nonsingular matrix function B(t), we can differentiate both sides of

B(t)B(t)™' = I and obtain the derivative

dB(t)™! _ J0B(t)

o —B(t) 173@) L
Therefore, differentiating g twice yields:
8g(y) _ _ O(traceE;Cy)
. ; —traceaE~C_1E~C_1
Gy ;0,7
and
Bgf/é’) = —C,loC;h
Similarly,
agz(/f) — 1+det_(‘éy)/uitrace E;adj (Cy)
= %tracel@iqj_l,

10
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and

dh —det(Cy)  q: -
aﬁf’) — 1_|_det((cy)}ﬂd1ag(0y1). (3.14)

In summary, the gradients and Hessians are:

Vf=e—diag (wwa); (3.15)
Vg = —diag (Cy_l); (3.16)
—det(Cy) . B
h=— Y7 d b 1
V l—l—det(Cy)/,u la‘g (Oy )’ (3 7)
Vif = —2wyw2 o Cy_l; (3.18)
Vig=-C;'oC,*. (3.19)

Note that the above implies that the functions f,g are concave when C),
is positive definite, since Schur’s Theorem on Hadamard products, see e.g.
[6], states that the cone of positive semidefinite matrices is closed under the
Hadamard product.

4 PRIMAL-DUAL METHODS

The optimality condition, or stationarity condition, for the unconstrained
dual log-barrier problem (2.10) is

e — diag (zyz}) — pdiag (C, 1) = 0. (4.1)

Comparing this with the optimality conditions for (2.3) we get the Lagrange
multiplier estimate, or primal variable estimate,

_ -1
X =puC; . (4.2)
The Newton direction for solving (2.10) is found by solving the system

(2zyzl o C' 4+ pC o O )by = e — diag (zyz)) — pdiag (C1).  (4.3)

11



The first two terms after the equality correspond to a step to optimality
while the last term is a centering step in the dual space. This provides a
dual log-barrier method. Alternatively, by adding a slack variable matrix,
we can make (2.3) look more like a linear programming constrained problem,
i.e. we get

w* =max f(y) = yte — b*(C — Diag (y))!b
(D)  subjectto C —Diag(y)—Z =0 (4.4)
we R, Z = 0.

The primal-dual log-barrier problem is then

wi =max f(y)+ plogdet(Z)
(B) subject to C — Diag(y) — Z = 0. (4.5)
The Lagrangian for (4.5) is
L(y, Z,X) = f(y) + plog det(Z) + trace X(C' — Diag (y) — %),
while the optimality conditions F(y,Z,X) = 0 are:
e — diag (z,z}) — diag (X) = 0 (primal feasibility)
—X +pZ' = 0 (complementary slackness) (4.6)
C — Diag(y) — Z = 0 (dual feasibility) '

Z>=0, X 0.

Here, X,Z are the primal and dual matrices, respectively. Note that the
first two optimality conditions correspond to stationarity of the Lagrangian
for (4.5), e.g. the second condition is obtained from differentiating the La-
grangian with respect to Z. Recall that the derivative of logdet(Z) is Z~*.
The comments in brackets correspond to the corresponding equations for
a linear programming problem, i.e. the corresponding linear programming
equations would be: b — Az =0, XZe = pe, c— A’y — z = 0. Moreover,
note that the transpose, or adjoint operator, of diag (-) is Diag (-).

In our framework, the primal feasibility corresponds to feasibility of z,
in (P), see (2.8). If diag (X) = 0, then this corresponds to z, being feasible
for the trust region subproblem. This emphasizes the fact that we do not
get feasibility for this subproblem due to the hard case occurring at the
optimum. However, at the optimum we also have ZX = 0, which means

12



that the columns of X and also of X2 form a basis for the null space of
Z = C —Diag (y). Therefore. we can use a linear combination of the columns
of X7 to add to z, to get a feasible optimal solution to the subproblem.

Note that if p is fixed and we solve the optimality conditions (4.6), then
the duality gap (2.9) becomes

nf.
We now apply Newton’s method to solve the optimality conditions, F(y, Z, X) =
0, while maintaining the positivity of X, Z, i.e. the system —F'§ = F is:

2zyzl 0 OFF 0 diag (+) oy (e — diag (zyz;) — diag (X))
0 pZ=t.z-1 1 87 | = (—X +pZ™1)
Diag (+) 1 0 80X (C — Diag(y) — 2)
(4.7)
The middle equation implies that
1 1
82 =7 —-—-7ZX7Z — —Z(6X)Z.
7 7

Moreover, since the final equation is linear, if a stepsize of 1 is taken or if this
equation is satisfied by the initial solution estimates, then it is satisfied by
each iteration. We assume that this is indeed the case. Therefore, we have

87 = —Diag (6y), Cy_l =7t

We therefore can eliminate §Z and obtain

l _dZ()Z parshos ] ( 5 ) - ( Vf_(j)t%diza)g((ZX) )

After multiplying through by p and Z~! and eliminating § X, we get

l é diag (#Z_ﬁZDi_;: (ifi)gZ(;)l?jVZf(y) ] ( ?y( )

(et {50 0 s
diag (—pZ7 "+ X) + Vf(y) — diag (X) )’

so that
§X =pZ™ ' — X + nZ 'Diag (6y)Z 7. (4.8)

13



In summary, we have the simplified Newton directions for our algorithm 1:

Sy = (2eyat+ pZ) 0 27 e - ding (ryah) — pdiag (271));
8Z = —Diag(éy); (4.9)
X+6X = ,uZ_l(Z + Diag (5y))Z_1.

Therefore, for the Newton steplength of 1, we can check that both X, Z are
positive definite by checking Z + Diag (8y), respectively. We discuss the line
search in more detail in Section 4.2, below.

4.1 ALTERNATIVE ALGORITHM

The alternative formulation in (2.13) and its dual in (2.14) yield the following
primal-dual optimality conditions:

e — diag (X*) = 0 (primal feasibility)
—X*4+uZ ' = 0 (complementary slackness)
C® —Diag (y*) — Z = 0 (dual feasibility)
70, X* 0.

(4.10)

Here X¢,Z are the primal and dual matrices again, but they are not the
same as in the above formulation. In fact, they are one dimension larger.
This system is more like a linear programming primal dual algorithm in
that there are two linear equations and one nonlinear one formed from the
complementary slackness conditions.

We now apply Newton’s method to solve the optimality conditions, while
maintaining the positivity of X%, 7, i.e. we solve

0 0 diag (+) ( dy* ) ( (e — diag (X*)) )
0 uzt-z' I 572 | =| (=x*+pzt) .
Diag (+) 1 0 6X* (C® — Diag (y*) — Z)

(4.11)
This leads to similar equations for the steps éy®, 67,6 X°, except that the
nonlinear term is discarded. The equations in simplified form, i.e. when we
assume that the slack variable Z = C® — Diag (y*), are:

8y = (pZ™ 0 Z7") (e — pdiag (Z71));
8Z = —Diag(y°); (4.12)
X° 4 6X° = uZ Y(Z + Diag (6y°)) 2.

14



Again, we can check that both X%, Z are positive definite by checking Z +
Diag (6y*). The above equations yield our second algorithm.

4.2 LINE SEARCHES

For algorithm 1, the line search consists in verifying that the new X and Z
are positive definite. At the current iterates X, Z > 0, we need to check that

Z — tDiag (8y) = 0, for Z,

where ¢ > 0 is the step length. For X, when the error ||pZ~' — X|| is small,
then a reasonable heuristic is to check

Z + tDiag (6y) > 0, for X.

Let Z = R'R be the Cholesky factorization of Z. Then the above is equivalent
to finding ¢ > 0 such that

I £ tR*(Diag (6y))R™* = 0.

With this change, the problem is equivalent to the step length problem in
ordinary linear programming, i.e. suppose that the matrix Diag (6y) is not
negative semidefinite (in which case the step length can be infinite and so is
chosen to be 1). Then we get that the step for Z is

1
" Amax(R~*(Diag (6y))R™)

b

tz := min{l

while, if the matrix Diag (éy) is not positive semidefinite (in which case the
step length can be infinite and so is chosen to be 1) the step for X is

1
—Amin( R~*(Diag (8y))RB~)

}.

tx := min{1,
By the above we see that we can use any upper bound for the maximum

eigenvalue and any lower bound for the minimum eigenvalue. Note that for
an n X n symmetric matrix K, see [20],

Amax(K) < trace K + \/m\/trace K? B <trace K>2;
n

n n

15



Amin(K) > trace K _ \/m\/trace K? _ <trace K>2‘

n n n

We can find the traces using Z7!, e.g.
trace (R™*(Diag (§y))R™') = trace Diag (§y)Z ' = dy'diag (Z71).

Alternatively, to find the bounds, we could first shift R~*(Diag (§y))R™* by
a multiple of the identity to guarantee that it is positive definite and then
calculate its norm. We then shift by a multiple of the identity to guarantee
that it is negative definite and find the norm of the negative of the matrix.
By shifting back, we get the values for the largest and smallest eigenval-
ues. Alternatively, we could calculate the largest and smallest eigenvalues of
Diag (§y)Z~" directly.

Note that if tx = 1, then 6 X is a good step for X. However, if tx < 1,
then X + tx6X is not necessarily equal to uZ~'(Z + Diag (tx8y))Z . This
situation almost never arose in practice. But an extra safeguard was added
to ensure that X remain positive definite.

After finding these maximum steplengths, we then multiply the step
length by .90 to guarantee that we do not get too close to the boundary.
Because of the nonlinearity in algorithm 1, we then take one steplength for
both variables; while algorithm 2 uses different steplengths in the primal and
dual variables.

From numerical tests, it appears that the step length 1 for X is usually
not too large, i.e. it does not usually lose positive definiteness. But, the step
length for Z is much too large immediately after p is decreased. When p is
not decreased, the step length 1 seems good for both variables.

An efficient line search could be done using a Lanczos type algorithm
to calculate the smallest eigenvalues of Uy — ady, C, + Béy. Or inverse
iteration can be used so the matrices from the Cholesky factorization do not
get inverted.

4.3 THE ALGORITHM

The algorithms presented above differ only in the optimality conditions that
Newton’s method solves. We present the following outline for the algorithm

1:

16



Algorithm 4.1 Suppose that C® is given. Find initial estimate y so
that Z = C — Diag (y) is positive definite and well conditioned. Find
an initial p and set X = uZ ' so that X 1is well conditioned, e.g. set

p= I&Z"lll' Repeat the following steps.

1. If the convergence criteria is satisfied, e.g. if p < given tolerance, then:

(a) If X is not positive definite, then recalculate it using (4.12) with

tx5y.
(b) Recalculate p = max{tracfo(fz), ”e_diag(myféi_diag(x)n}, to ensure
primal feasibility.

c if the convergence criteria, u | given tolerance, is still sat-
STOP if th g teria, p j gi tol , s still sat

1sfied.
2. Solve the Newton system for the directions by,67,6X.

3. Find a step length that preserves positive definiteness for the primal
and dual variables X, Z, and update the variables.

4. Check the error in the current Newton system with the current p. If this

error has decreased from the last iteration, then update p = %

5 CONCLUSION

We have derived two primal-dual algorithms for maximizing the minimum
eigenvalue of a diagonally perturbed symmetric matrix. Both algorithms
have been tested extensively. Test results for the second algorithm are given
n [14]. The results for the first algorithm, which is based on the trust region
subproblem, were similar. Therefore, if the matrix has a dense row, the firt
algorithm should be used since the dense row can be eliminated.

References

[1] F. ALIZADEH. Combinatorial optimization with semidefinite matrices.
In Proceedings of the Second Annual Integer Programming and Comba-
natorial Optimization Conference, Carnegie-Mellon University, 1992.

17



2]

[10]

[11]

[12]

J. CULLUM, W.E. DONATH, and P.WOLFE. The minimization of cer-
tain nondifferentiable sums of eigenvalues of symmetric matrices. Math-
ematical Programmaing Study, 3:35-55, 1975.

J. FALKNER, F. RENDL, and H. WOLKOWICZ. A computational
study of graph partitioning. Technical Report CORR, Department of
Combinatorics and Optimization, Waterloo, Ont, 1992. Submitted to
Math. Progr.

D.M. GAY. Computing optimal locally constrained steps. SIAM J. Scu.
Statist. Comput., 2:186-197, 1981.

R. HORN and C. JOHNSON. Matriz Analysis. Cambridge University
Press, New York, 1985.

R. HORN and C. JOHNSON. Topics in Matriz Analysis. Cambridge
University Press, New York, 1991.

A. P. KAMATH and N. K. KARMARKAR. A continuous method for
computing bounds in integer quadratic optimization problems. Journal

of Global Optimization, 2(3):229-241, 1992.

Y. E. NESTEROV and A. S. NEMIROVSKY. Interior Point Polyno-
maal Methods in Convexr Programming : Theory and Algorithms. SIAM
Publications. STAM, Philadelphia, USA, 1993.

D. OUELLETTE. Schur complements and statistics. Linear Algebra
and Its Applications, 36:187-295, 1981.

M.L. OVERTON. On minimizing the maximum eigenvalue of a sym-
metric matrix. SIAM J. Matriz Analysis and Applications, 9:256-268,
1988.

M.L. OVERTON. Large-scale optimization of eigenvalues. SIAM J.
Optimazation, 2:88-120, 1992.

M.L. OVERTON and R.S. WOMERSLEY. Second derivatives for opti-
mizing eigenvalues of symmetric matrices. Technical Report 627, Com-
puter Science Department, NYU, 1993.

18



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. POLJAK and H. WOLKOWICZ. Convex relaxations of 0-1 quadratic
programming. Technical Report 93-18, DIMACS, 1993.

F. RENDL, R. J. VANDERBEI, and H. WOLKOWICZ. A primal-dual
interior point method for the max-min eigenvalue problem. Technical
Report CORR 93-20, SOR 93-15, Department of Combinatorics and
Optimization, Waterloo, Ont, 1993.

D.C. SORENSEN. Trust region methods for unconstrained minimiza-
tion. In M.J.D. Powell, editor, Nonlinear Optimization 1981. Academic
Press, London, 1982.

R.J. STERN and H. WOLKOWICZ. Indefinite trust region subproblems
and nonsymmetric eigenvalue perturbations. Technical Report CORR
92-38, University of Waterloo, Waterloo, Canada, 1992.

L. VANDENBERGHE and S. BOYD. Primal-dual potential reduction
method for problems involving matrix inequalities. Technical report,
Electrical Engineering Department, Stanford University, Stanford, CA
94305, 1993.

H. WOLKOWICZ. Some applications of optimization in matrix theory.
Linear Algebra and its Applications, 40:101-118, 1981.

H. WOLKOWICZ. Explicit solutions for interval semidefinite linear
programming. Research Report CORR 93-29, University of Waterloo,
1993.

H. WOLKOWICZ and G.P.H. STYAN. Bounds for eigenvalues using
traces. Linear Algebra and its Applications, 29:471-506, 1980.

B. YANG and R. J. VANDERBEI. The simplest semidefinite programs
are trivial. Technical Report SOR-93-77, Program in Statistics & Oper-
ations Research, Princeton University, Princeton, NJ, 1993.

19



