
A Stable Primal-Dual Approach for Linear Programming under

Nondegeneracy Assumptions

Maria Gonzalez-Lima ∗ Hua Wei† Henry Wolkowicz ‡

January 15, 2008

University of Waterloo
Department of Combinatorics & Optimization

Waterloo, Ontario N2L 3G1, Canada
Research Report CORR 2004-26

COAP 1172-04

Key words: Linear Programming, large sparse problems, preconditioned conjugate gradi-
ents, stability.

Abstract

This paper studies a primal-dual interior/exterior-point path-following approach for lin-
ear programming that is motivated on using an iterative solver rather than a direct solver for
the search direction. We begin with the usual perturbed primal-dual optimality equations.
Under nondegeneracy assumptions, this nonlinear system is well-posed, i.e. it has a nonsin-
gular Jacobian at optimality and is not necessarily ill-conditioned as the iterates approach
optimality. Assuming that a basis matrix (easily factorizable and well-conditioned) can be
found, we apply a simple preprocessing step to eliminate both the primal and dual feasibility
equations. This results in a single bilinear equation that maintains the well-posedness prop-
erty. Sparsity is mantained. We then apply either a direct solution method or an iterative
solver (within an inexact Newton framework) to solve this equation. Since the linearization is
well posed, we use affine scaling and do not maintain nonnegativity once we are close enough

∗Research supported by Universidad Simón Boĺıvar (DID-GID001) and Conicit (project G97000592),
Venezuela. E-mail mgl@cesma.usb.ve

†Research supported by The Natural Sciences and Engineering Research Council of Canada and Bell Canada.
E-mail h3wei@math.uwaterloo.ca

‡Research supported by The Natural Sciences and Engineering Research Council of Canada. E-mail hwolkow-
icz@uwaterloo.ca

0URL for paper: orion.math.uwaterloo.ca/˜hwolkowi/henry/reports/ABSTRACTS.html This report is a revi-
sion of the earlier CORR 2001-66.

1

to the optimum, i.e. we apply a change to a pure Newton step technique. In addition, we
correctly identify some of the primal and dual variables that converge to 0 and delete them
(purify step).

We test our method with random nondegenerate problems and problems from the Netlib
set, and we compare it with the standard Normal Equations NEQ approach. We use a
heuristic to find the basis matrix. We show that our method is efficient for large, well-
conditioned problems. It is slower than NEQ on ill-conditioned problems, but it yields
higher accuracy solutions.

Contents

1 Introduction 4
1.1 Background and Motivation . 4
1.2 Outline and Main Contributions . 6

2 Duality, Optimality, and Block Eliminations 7
2.1 Linearization . 8
2.2 Reduction to the Normal Equations . 9

2.2.1 First Step in Block Elimination for Normal Equations 9
2.2.2 Second Step in Block Elimination for Normal Equations 9

2.3 Roundoff Difficulties for NEQ Examples . 10
2.3.1 Nondegenerate but with Large Residual 10
2.3.2 Degenerate Case . 11

2.4 Simple/Stable Reduction . 14
2.5 Condition Number Analysis . 16
2.6 The Stable Linearization . 17

3 Primal-Dual Algorithm 19
3.1 Initialization and Preprocessing . 20
3.2 Preconditioning Techniques . 20

3.2.1 Optimal Diagonal Column Preconditioning 21
3.2.2 Partial (Block) Cholesky Preconditioning 21

3.3 Change to Pure Newton Step Technique . 21
3.4 Purify Step . 24

4 Numerical Tests 24
4.1 Well Conditioned AB . 28
4.2 NETLIB Set - Ill-conditioned Problems . 30
4.3 No Backtracking . 34

5 Conclusion 34

2

List of Tables

4.1 nnz(E) - number of nonzeros in E; cond(·) - condition number; AB optimal basis
matrix, J = (ZN −XAT) at optimum, see (3.1); D time - avg. time per iteration
for search direction, in sec.; its - iteration number of interior point methods. *
denotes NEQ stalls at relative gap 10−11. 25

4.2 Same data sets as in Table 4.1; two different preconditioners (incomplete Cholesky
with drop tolerance 0.001 and diagonal); D time - average time for search direc-
tion; its - iteration number of interior point methods; L its - average number of
LSQR iterations per major iteration; Pre time - average time for preconditioner;
Stalling - LSQR cannot converge due to poor preconditioning. 26

4.3 Same data sets as in Table 4.1; LSQR with Block Cholesky preconditioner. No-
tation is the same as Table 4.2. 26

4.4 Sparsity vs Solvers: cond(·) - (rounded) condition number; D time - average time
for search direction; its - number of iterations; L its - average number LSQR
iterations per major iteration; All data sets have the same dimension, 1000×2000,
and have 2 dense columns. 29

4.5 How problem dimension affects different solvers: cond(·) - (rounded) condition
number; D time - average time for search direction; its - number of iterations.
All the data sets have 2 dense columns in E. The sparsity for the data sets are
similar; without the 2 dense columns, they have about 3 nonzeros per row. . . . 30

4.6 LIPSOL results D time - average time for search direction; its - number of itera-
tions. (We also tested problems sz8,sz9,sz10 with the change two dense columns
replaced by two sparse columns, only 6 nonzeros in these new columns. (D time,
iterations) on LIPSOL for these fully sparse problems: (0.41, 11), (2.81, 11),
(43.36, 11).) . 31

4.7 LIPSOL failures with desired tolerance 1e−12; highest accuracy attained by LIP-
SOL. 33

4.8 NETLIB set with LIPSOL and Stable Direct method. D time - avg. time per
iteration for search direction, in sec.; its - iteration number of interior point
methods. 35

4.9 NETLIB set with LIPSOL and Stable Direct method continued 36
4.10 NETLIB set with LIPSOL and Stable Direct method continued 37

List of Figures

4.1 Iterations for Degenerate Problem . 28
4.2 LSQR iterations for data set in Table 4.4. Odd-numbered iterations are predictor

steps; even-numbered iterations are corrector steps. 32

3

4.3 Iterations for Different Backtracking Strategies. The data is from row 2 in Table
4.1. 38

1 Introduction

The purpose of this paper is to study an alternative primal-dual path-following approach for
Linear Programming (LP) that is based on an (inexact) Newton method with preconditioned
conjugate gradients (PCG). We do not form the usual normal equations system, i.e. no ill-
conditioned system is formed. For well-conditioned problems with special structure, our ap-
proach exploits sparsity and obtains high accuracy solutions.

The primal LP we consider is

(LP)
p∗ := min cT x

s.t. Ax = b
x ≥ 0.

(1.1)

The dual program is

(DLP)
d∗ := max bT y

s.t. AT y + z = c
z ≥ 0.

(1.2)

Here A ∈ ℜm×n, c ∈ ℜn, b ∈ ℜm. We assume that m < n, A has full rank, and the set of strictly
feasible points defined as

F+ = {(x, y, z) : Ax = b,AT y + z = c, x > 0, z > 0}

is not empty. Our algorithm assumes that we can obtain the special structure A = (B E)
(perhaps by permuting rows and columns), where B is m×m, nonsingular, not ill-conditioned,
and it is inexpensive to solve a linear system with B. Our approach is most efficient under
nondegeneracy assumptions.

Throughout this paper we use the following notation. Given a vector x ∈ ℜn, the matrix
X ∈ ℜn×n, or equivalently Diag (x), denotes the diagonal matrix with the vector x on the
diagonal. The vector e denotes the vector of all ones (of appropriate dimension) and I denotes
the identity matrix, also with the appropriate correct dimension. Unless stated otherwise, ‖.‖
denotes the Euclidean norm. And, given F : ℜn → ℜn, we let F ′(x) denote the Jacobian of F
at x.

1.1 Background and Motivation

Solution methods for Linear Programming (LP) have evolved dramatically following the intro-
duction of interior point methods. (For a historical development, see e.g. [45, 50] and the refer-
ences therein.) Currently the most popular methods are the elegant primal-dual path-following

4

methods. These methods are based on log-barrier functions applied to the nonnegativity con-
straints. For example, we can start with the dual log-barrier problem, with parameter µ > 0,

(Dlogbarrier)

d∗µ := max bT y + µ
∑n

j=1 log zj

s.t. AT y + z = c
z > 0.

(1.3)

The stationary point of the Lagrangian for (1.3) (x plays the role of the vector of Lagrange
multipliers for the equality constraints) yields the optimality conditions

AT y + z − c
Ax− b

X − µZ−1

 = 0, x, z > 0. (1.4)

For each µ > 0, the solution of these optimality conditions is unique. The set of these
solutions forms the so-called central path that leads to the optimum of (LP) as µ tends to 0.
However, it is well known that the Jacobian of these optimality conditions grows ill-conditioned
as the log-barrier parameter µ approaches 0. This ill-conditioning (as observed for general non-
linear programs in the classical [19]) can be avoided by changing the third row of the optimality
conditions to the more familiar form of the complementary slackness conditions, ZXe−µe = 0.
One then applies a damped Newton method to solve this system while maintaining positivity
of x, z and reducing µ to 0. Equivalently, this can be viewed as an interior-point method with
path-following of the central path.

It is inefficient to solve the resulting linearized system as it stands, since it has special
structure that can be exploited. Block eliminations yield a positive definite system (called the
normal equations, NEQ) of size m, with matrix ADAT , where D is diagonal; see Section 2.2.
Alternatively, a larger augmented system or quasi-definite system, of size (m + n)× (m + n) can
be used, e.g. [51], [45, Chap. 19]. However, the ill-conditioning returns in both cases, i.e. we first
get rid of the ill-conditioning by changing the log-barrier optimality conditions; we then bring
it back with the backsolves after the block eliminations; see Section 2.2.2. Another potential
difficulty is the possible loss of sparsity in forming ADAT .

However, there are advantages when considering the two reduced systems. The size of the
normal equations system is m compared to the size m+2n of the original linearized system. And
efficient factorization schemes can be applied. The augmented system is larger but there are
gains in exploiting sparsity when applying factorization schemes. Moreover, the ill-conditioning
for both systems has been carefully studied. For example, the idea of structured singularity
is used in [49] to show that the normal equations for nonlinear programming can be solved in
a stable way in a neighbourhood of the central path. However, the backsolve step can still
be negatively affected by ill-conditioning if the assumptions in [49] are not satisfied; see our
Example 2.2 below. In particular, the assumption of positive definiteness of the Hessian in [49]
does not apply to LP . For further results on the ill-conditioning of the normal equations and

5

the augmented system, see e.g. [49, 52, 53] and the books [45, 50]. For a discussion on the
growth in the condition number after the backsolve, see Remark 2.6 below.

The major work (per iteration) is the formation and factorization of the reduced system.
However, factorization schemes can fail for huge problems and/or problems where the reduced
system is not sparse. If A is sparse, then one could apply conjugate-gradient type methods and
avoid the matrix multiplications, e.g. one could use A(D(AT v)) for the matrix-vector multi-
plications for the ADAT system. However, classical iterative techniques for large sparse linear
systems have not been generally used. One difficulty is that the normal equations can become
ill-conditioned. Iterative schemes need efficient preconditioners to be competitive. This can be
the case for problems with special structure, see e.g. [27, 35]. For other iterative approaches see
e.g. [14, 31, 2, 26, 34, 37, 8, 13].

Although the reduced normal equations approach has benefits as mentioned above, the ill
conditioning that arises for NEQ and during the backsolve step is still a potential numerical
problem for obtaining high accuracy solutions. In this paper we look at a modified approach
for these interior point methods. We use a simple preprocessing technique to eliminate the pri-
mal and dual feasibility equations. Under nondegeneracy assumptions, the result is a bilinear
equation that does not necessarily result in a linearized ill-conditioned system. (Though the
size of our linearized system is n × n compared to m × m for NEQ .) Moreover, in contrast
to NEQ , the backsolve steps are stable. Therefore we can use this stable linear system to
find the Newton search direction within a primal-dual interior point framework. Furthermore,
this allows for modifications in the primal-dual interior point framework, e.g. we do not have
to always backtrack from the boundary and stay strictly interior. We then work on this lin-
ear system with an inexact Newton approach and use a preconditioned conjugate-gradient-type
method to (approximately) solve the linearized system for the search direction. One can still use
efficient Cholesky techniques in the preconditioning process, e.g. partial Cholesky factorizations
that preserve sparsity (or partial QR factorizations). The advantage is that these techniques
are applied to a system that does not necessarily get ill-conditioned and sparsity can be directly
exploited without using special techniques. As in the case mentioned above, the approach is
particularly efficient when the structure of the problem can be exploited to construct efficient
preconditioners. (This is the case for certain classes of Semidefinite Programming (SDP) prob-
lems, see [48].) We also use a change to a pure Newton step and purification techniques to speed
up the convergence. In particular, the robustness of the linear system allows us to apply the
so-called Tapia indicators [18] to correctly detect those variables that are zero at the solution.

1.2 Outline and Main Contributions

In Section 2 we introduce the basic properties for LP interior point methods. Section 2.2
presents the block elimination scheme for NEQ system, i.e. the scheme to find the normal
equations, NEQ . This is compared to the block elimination scheme for our stable method in
Section 2.4. In particular, we show that, as we approach the optimum, the condition number for

6

the NEQ system converges to infinity while (under nondegeneracy assumptions) the condition
number for the stable method stays uniformly bounded. This is without any special assumptions
on the step lengths during the iterations, see Proposition 2.5. In fact, the reciprocal of the
condition number for the NEQ system is O(µ), see Remark 2.6. (In [25] it is shown that
the condition number of the normal equations matrix (not the entire system) stays uniformly
bounded under the nondegeneracy assumption and neighbourhood type restrictions on the step
lengths.) We include numerical examples that illustrate numerical roundoff difficulties. In
Section 3 we present the primal-dual interior point algorithm. The preconditioning techniques
are given in Section 3.2. The change to a pure Newton step technique is described in Section
3.3 while the purification technique appears in Section 3.4. The numerical tests, on randomly
generated problems and the standard NETLIB test set, are given in Section 4; concluding
remarks are given in Section 5.

2 Duality, Optimality, and Block Eliminations

We first summarize the well known duality properties for LP . If both primal and dual problems
have feasible solutions, x, y, z, then: cT x ≥ bT y (weak duality); and p∗ = d∗ and both optimal
values are attained (strong duality).

The well known primal-dual optimality conditions (primal feasibility, dual feasibility, and
complementary slackness) follow from the weak and strong duality properties.

Theorem 2.1 The primal-dual variables (x, y, z), with x, z ≥ 0, are optimal for the primal-dual
pair of LP s if and only if

F (x, y, z) :=

AT y + z − c
Ax− b
ZXe

 = 0. (2.1)

Moreover, for feasible (x, y, z), we get

duality gap = cT x− bT y
= xT

(
c−AT y

)

= xT z.
(2.2)

7

2.1 Linearization

Note that F : ℜn × ℜm × ℜn → ℜn × ℜm × ℜn. Let µ > 0 and let us consider the perturbed
optimality conditions

Fµ(x, y, z) :=

AT y + z − c
Ax− b

ZXe− µe

 =

rd

rp

rc

 = 0, (2.3)

thus defining the dual and primal residual vectors rd, rp and perturbed complementary slackness
rc. Currently, the successful primal-dual algorithms are path-following algorithms that use a
damped Newton method to solve this system approximately with (x, z) > 0. This is done in
conjunction with decreasing µ to 0. The Newton equation (the linearization) for the Newton

direction ∆s =

∆x
∆y
∆z

 is

F ′
µ(x, y, z)∆s =

0 AT I
A 0 0
Z 0 X

 ∆s = −Fµ(x, y, z). (2.4)

Damped Newton steps

x← x + αp∆x, y ← y + αd∆y, z ← z + αd∆z,

are taken that backtrack from the nonnegativity boundary to maintain the positivity/interiority,
x > 0, z > 0.

Suppose that Fµ(x, y, z) = 0 in (2.3). Then (2.3) and (2.2) imply

µ =
1

n
µeT e =

1

n
eT ZXe =

1

n
zT x =

1

n
(duality gap),

i.e. the barrier parameter µ is a good measure of the duality gap. However, most practical
interior-point methods are infeasible methods, i.e. they do not start with primal-dual feasible
solutions and stop with nonzero residuals. Similarly, if feasibility is obtained, roundoff error can
result in nonzero residuals rd, rp in the next iteration. Therefore, in both cases,

nµ = zT x
= (c−AT y + rd)

T x
=

(
cT x− yTAx + rT

d x
)

=
(
cT x− yT (b + rp) + rT

d x
)

=
(
cT x− bT y − rT

p y + rT
d x

)

= (c + rd)
T x− (b + rp)

T y,

(2.5)

i.e. nµ measures the duality gap of a perturbed LP . (See e.g. the survey article on error bounds
[40].)

8

2.2 Reduction to the Normal Equations

The Newton equation (2.4) is solved at each iteration of a primal-dual interior point (p-d i-p)
algorithm. This is the major work involved in these path-following algorithms. Solving (2.4)
directly is too expensive. There are several manipulations that can be done that result in a
much smaller system. We can consider this in terms of block elimination steps.

2.2.1 First Step in Block Elimination for Normal Equations

The customary first step in the literature is to eliminate ∆z using the first row of equations.
(Note the linearity and coefficient I for z in the first row of (2.3).) Equivalently, apply elemen-
tary row operations to matrix F ′

µ(x, y, z), or find a matrix PZ such that the multiplication of
PZF ′

µ(x, y, z) results in a matrix with the corresponding columns of ∆z being formed by the
identity matrix and zero matrices. This is,

I 0 0
0 I 0
−X 0 I

0 AT I
A 0 0
Z 0 X

 =

0 AT I
A 0 0
Z −XAT 0

 , (2.6)

with right-hand side

−

I 0 0
0 I 0
−X 0 I

AT y + z − c
Ax− b

ZXe− µe

 = −

rd

rp

−Xrd + ZXe− µe

 . (2.7)

We let

PZ =

I 0 0
0 I 0
−X 0 I

 , K =

0 AT I
A 0 0
Z −XAT 0

 . (2.8)

2.2.2 Second Step in Block Elimination for Normal Equations

The so-called normal equations are obtained by further eliminating ∆x. (Note the nonlinearity
in x in the third row of (2.3).) Following a similar procedure, we define the matrices Fn, Pn with

Fn := PnK :=

I 0 0
0 I −AZ−1

0 0 Z−1

0 AT I
A 0 0
Z −XAT 0

=

0 AT In

0 AZ−1XAT 0

In −Z−1XAT 0

 .

(2.9)

9

The right-hand side becomes

−PnPZ

AT y + z − c
Ax− b

ZXe− µe

 =

−rd

−rp + A(−Z−1Xrd + x− µZ−1e)
Z−1Xrd − x + µZ−1e

 . (2.10)

The algorithm for finding the Newton search direction using the normal equations is now evident
from (2.9): we move the third column before column one and interchange the second and third
rows:

In 0 AT

0 In −Z−1XAT

0 0 AZ−1XAT

∆z
∆x
∆y

 =

−rd

Z−1Xrd − x + µZ−1e
−rp + A(−Z−1Xrd + x− µZ−1e)

 .

(2.11)
Thus we first solve for ∆y, then backsolve for ∆x, and finally backsolve for ∆z. This block
upper-triangular system has the disadvantage of being ill-conditioned when evaluated at points
close to the optimum. This will be shown in the next section. The condition number for the
system is found from the condition number of the matrix Fn and not just the matrix AZ−1XAT .
(Though, as mentioned above, the latter can have a uniformly bounded condition number under
some standard neighbourhood assumptions plus the nondegeneracy assumption, see e.g. [25].)
Fn is unnecessarily ill-conditioned because Pn is an ill-conditioned transformation.

2.3 Roundoff Difficulties for NEQ Examples

We present several numerical examples with NEQ (cases that are not covered in [49]) involving
combinations of: degeneracy or nondegeneracy; feasible or infeasible starting points; and large
residuals. (Difficulties with degeneracy and NEQ appear in e.g. Figure 4.1 below.)

2.3.1 Nondegenerate but with Large Residual

Even if a problem is nondegenerate, difficulties can arise if the current primal-dual point has a
large residual error relative to the duality gap. This emphasizes the importance of keeping the
iterates well-centered for NEQ .

Example 2.2 Here the residuals are not the same order as µ. We see that we get catastrophic
roundoff error. Consider the simple data

A = (1 1) , c =

(
−1
1

)
, b = 1.

The optimal primal-dual variables are

x =

(
1
0

)
, y = −1, z =

(
0
2

)
.

10

We use 6 decimals accuracy in the arithmetic and start with the following points (nonfeasible)
obtained after several iterations:

x =

(
9.183012 ×10−1

1.356397 ×10−8

)
, z =

(
2.193642 ×10−8

1.836603

)
, y = −1.163398 .

The residuals (relatively large) and duality gap measure are:

‖rb‖ = 0.081699, ‖rd‖ = 0.36537, µ = xT z/n = 2.2528 × 10−8.

Though µ is small, we still have large residuals for both primal and dual feasibility. Therefore,

2µ = nµ is not a true measure of the duality gap. The two search directions,

∆x
∆y
∆z

, that are

found using first the full matrix F ′
µ in (2.4), and second the system with Fn in (2.9) (solving ∆y

first and then backsolving ∆x, ∆z) are, respectively,

8.16989 × 10−2

−1.35442 × 10−8

1.63400 × 10−1

−2.14348 × 10−8

1.63400 × 10−1

,

−6.06210 × 10
−1.35441 × 10−8

1.63400 × 10−1

0
1.63400 × 10−1

.

Though the error in ∆y is small, since m = 1, the error after the backsubstitution for the first
component of ∆x is large, with no decimals accuracy. The resulting search direction results in
no improvements in the residuals or the duality gap. Using the accurate direction from Fs, see
(2.16) below, results in good improvement and convergence.

In practice, the residuals generally decrease at the same rate as µ. (For example, this is
assumed in the discussion in [51].) But, as our tests in Section 4 below show, the residuals and
roundoff do cause a problem for NEQ when µ gets small.

2.3.2 Degenerate Case

We use the data

A =

(
1 0 1 0
0 2 0 −1

)
, b =

(
2
0

)
, c = (1 1 1 1)T . (2.12)

An optimal primal-dual solution is

x∗ =

1
0
1
0

 , y∗ =

(
1
0

)
, z∗ =

0
1
0
1

 .

11

This problem is degenerate; x = [2, 0, 0, 0]T is also an optimal solution. We partition into
index sets B = {1, 3} and N = {2, 4}. Following the analysis in [53], we assume that x, z are
in a certain neighbourhood of the central path and that the residuals are of order µ. Then the
computed values satisfy (again from [53])

∆̂y −∆y = O(u);

∆̂xB −∆xB = O(u); ∆̂xN −∆xN = O(µu); (2.13)

∆̂zB −∆zB = O(µu); ∆̂zN −∆zN = O(u).

Here ·̂ denotes the computed solution, and u is the unit roundoff. The results (2.13) hold
independent of the condition number of the system. Furthermore, the analysis in [53] implies
that the computed solutions progress well, i.e. with step lengths close to one.

We now present two degenerate examples where the bounds (2.13) fail for NEQ .
We first present a pair of x and z that satisfy our assumptions (i.e. they are close to the

central path and the infeasibility residuals are O(µ)). We use MATLAB’s “\” (double precision)
solver on the full system

0 AT I
A 0 0
Z 0 X

∆x
∆y
∆z

 =

−rd

−rp

−ZXe + µe

 (2.14)

and consider this to be the accurate evaluation of the search direction. We then compare this
with the NEQ approach, i.e. we solve

0 AT In

0 AZ−1XAT 0
In −Z−1XAT 0

∆̂x
∆̂y
∆̂z

 =

−rd

−rp + A(−Z−1Xrd + x− µZ−1e)
Z−1Xrd − x + µZ−1e

 .

We solve ∆̂y first, and then backsolve for ∆̂x and ∆̂z. We simulate the fl(·) operation by
keeping the 8 most significant digits after each arithmetic operation.

Example 2.3 We start with infeasible x and z

x =

9.9985999 × 10−1

2.3975770 × 10−4

9.9983748 × 10−1

1.7333628 × 10−4

 , z =

1.3758855 × 10−4

9.9979802 × 10−1

2.8397156 × 10−4

1.0001754

obtained by perturbing the optimal x∗ and z∗. We get

µ = 2.1× 10−4, rp =

(
−3.0× 10−4

3.1 × 10−4

)
, rd =

−4.2× 10−5

1.8× 10−4

1.0× 10−4

−1.7× 10−5

 .

12

Therefore the residuals are of order µ. The solutions for ∆y satisfy

∆y =

(
−2.9255369 × 10−5

−1.8441334 × 10−1

)
, ∆̂y =

(
−2.9262363 × 10−5

−1.8441335 × 10−1

)
,

∆y − ∆̂y =

(
6.99389248 × 10−9

5.29186195 × 10−9

)
.

Since the system for ∆y is diagonal, the error is approximately equal to the unit roundoff, 10−8.
But the backsolve step

∆x = Z−1Xrd − x + µZ−1e + Z−1XAT ∆y

is inaccurate because Pn in (2.9) was an ill-conditioned transformation:

∆x =

1.92649415 × 10−4

−1.19476143 × 10−4

1.098805846 × 10−4

6.722683477 × 10−5

 , ∆̂x =

1.5234654 × 10−4

−1.1947615 × 10−4

1.5017835 × 10−4

6.7226831 × 10−5

 ,

∆x− ∆̂x =

4.0302875 × 10−5

7.3832399 × 10−12

−4.0297765 × 10−5

3.7664799 × 10−12

 .

Although the nonbasic variables have absolute error O(µu), this is not true for the basic variables,
where we get approximately O(u

µ). (In terms of relative error, it is O(u

µ2), since (∆x,∆y,∆z)

is O(µ).)

Example 2.4 This second example shows that catastrophic error can occur in ∆̂y. In this
example, we change the data matrix A to

A =

(
1 0 1 0
2 2 2 −1

)
, b =

(
2
4

)
, c = (1 1 1 1)T . (2.15)

An optimal solution is

x∗ = (1 0 1 0)T , z∗ = (0 1 0 1)T .

We let the initial x and z be

x =

9.9985681 × 10−1

8.1713298 × 10−5

1.0001432
1.634266 × 10−4

 , z =

1.9454628 × 10−4

9.9961681 × 10−1

1.9454628 × 10−4

1.0001916

 .

13

Again, we check the duality gap parameter and the residuals:

µ = 2.1 × 10−4, rp =

(
9.99999994 × 10−9

1.99959995 × 10−8

)
,

rd =

4.77999995 × 10−9

−1.50000001 × 10−9

4.77999995 × 10−9

5.75000003 × 10−9

 .

In this case ∆̂y is quite inaccurate:

∆y =

(
6.47338334 × 10−1

−3.23651175 × 10−1

)
, ∆̂y =

(
−1.5866402 × 10−1

7.935 × 10−2

)
,

∆y − ∆̂y =

(
8.060023536 × 10−1

−4.030011751 × 10−1

)
.

For ∆x we have

∆x =

1.16701057 × 10−4

2.39921125 × 10−5

−1.16711057 × 10−4

4.79842209 × 10−5

 , ∆̂x =

7.4739018 × 10−5

8.9878474 × 10−5

−1.5868482 × 10−4

−1.7864276 × 10−5

 ,

∆x− ∆̂x =

4.196203945 × 10−5

−6.588636152 × 10−5

4.197376255 × 10−5

6.584849696 × 10−5

 .

For ∆z we have

∆z =

−3.59881646 × 10−5

6.4730235 × 10−1

−3.5988165 × 10−5

−3.2365118 × 10−1

 , ∆̂z =

−3.598 × 10−5

−1.587 × 10−1

−3.598 × 10−5

7.935 × 10−2

 ,

∆z − ∆̂z =

−8.16462922 × 10−9

8.06002352 × 10−1

−8.16462922 × 10−9

−4.03001181 × 10−1

 .

2.4 Simple/Stable Reduction

There are other choices for the above second step in Section 2.2.2, such as the one resulting in
the augmented (quasi-definite) system [50, 46].

14

In our approach we present a different type of second elimination step. We assume that we
have the special structure A = (B E) (perhaps obtained by permuting rows and columns),
where B is m × m, nonsingular and not ill-conditioned, and it is inexpensive to solve the
corresponding linear system Bu = d, i.e. a factorization B = LU can be found with both
L and U triangular and sparse. For example, the best choice is B = I obtained when x includes
a full set of slack variables. Though it is desirable for B to be well-conditioned, there is no need
for B to be a feasible basis matrix.

We partition the diagonal matrices Z,X using the vectors z =

(
zm

zv

)
, x =

(
xm

xv

)
with

lengths m and v = n−m. With K given in (2.8), we define the matrices Fs, Ps with

Fs : = PsK =

In 0 0 0
0 B−1 0 0
0 −ZmB−1 Im 0
0 0 0 Iv

0 0 AT In

B E 0 0
Zm 0 −XmBT 0
0 Zv −XvE

T 0

=

0
I

0 AT

B−1E 0
In

0

0
0

−ZmB−1E −XmBT

Zv −XvE
T

0
0

 .

(2.16)

The right-hand side becomes

−PsPZ

AT y + z − c
Ax− b

ZXe− µe

 = −Ps

rd

rp

−Xm(rd)m + ZmXme− µe
−Xv(rd)v + ZvXve− µe

=

−rd

−B−1rp

ZmB−1rp + Xm(rd)m − ZmXme + µe
Xv(rd)v − ZvXve + µe

 .

(2.17)

Our algorithm uses the last two rows to solve for ∆xv, ∆y. We then use the second row to
backsolve for ∆xm and then the first row to backsolve for ∆z. The matrix B−1 is never evaluated,
but rather the required operation is performed using a system solve. Therefore, we require this
operation to be both efficient and stable. Moreover, if we started with exact dual feasibility and
we find the steplength α > 0 that maintains positivity for x, z, then we can update y ← y+α∆y
first, and then set z = c − AT y; thus we maintain exact dual feasibility (up to the accuracy of
the matrix multiplication and vector subtraction). There is no reason to evaluate and carry the
residual to the next iteration. This works for the normal equations backsolve as well. But, if we
start with exact feasibility for the primal as well, we can also update xv ← xv + α∆xv and then

15

solve Bxm = b−Exv. Thus we guarantee stable primal feasibility as well (up to the accuracy in
the matrix vector multiplications and additions, and the system solve for xm). This is discussed
further at the end of Section 2.6.

The matrix derived in (2.16) is generally better conditioned than the one from the normal
equations system (2.9) in the sense that, under nondegeneracy assumptions, the condition num-
ber is bounded at the solution. We do not change a well-posed problem into an ill-posed one.
The result proved in Proposition 2.5 shows the advantages of using this Stable Reduction.

2.5 Condition Number Analysis

Proposition 2.5 Let Fn and Fs be the matrices defined in (2.9) and (2.16). Then, the condition
number of Fn diverges to infinity if x(µ)i/z(µ)i diverges to infinity, for some i, as µ converges to
0. The condition number of Fs is uniformly bounded if there exists a unique primal-dual solution
of problems (1.1) and (1.2).

Proof. Note that

F T
n Fn =

In −Z−1XAT 0
−AXZ−1 (AAT + (AZ−1XAT)2 + AZ−2X2AT) A

0 AT In

 . (2.18)

We now see, using interlacing of eigenvalues, that this matrix becomes increasingly ill-conditioned.
Let D = Z−1X. Then the nonzero eigenvalue of D2

iiA:,i(A:,i)
T diverges to infinity, as µ con-

verges to 0. Therefore the largest eigenvalue of the matrix in the middle block AD2AT =∑n
i=1 D2

iiA:,i(A:,i)
T must diverge to infinity, i.e. the largest eigenvalue of F T

n Fn diverges to in-
finity. Since the smallest eigenvalue cannot exceed 1, this implies that the condition number of
F T

n Fn diverges to infinity, as µ→ 0 and x(µ)i/z(µ)i diverges to infinity, for some i.
On the other hand, the condition number of Fs is uniformly bounded. This follows from

the fact that the submatrix within the box in Fs (2.16) is exactly F ′
µ in (2.23). As shown in

Theorem 2.8 below, F ′
µ is nonsingular at the solution, i.e. F ′

0 is nonsingular. Nonsingularity of
Fs at µ = 0 now follows from the observation that the two backsolve steps are stable.

Remark 2.6 We can observe that the condition number of the matrix F T
n Fn is greater than the

largest eigenvalue of the block AZ−2X2AT ; equivalently, 1
cond(F T

n Fn)
is smaller than the reciprocal

of this largest eigenvalue. With the assumption that x and z stay in a certain neighbourhood of
the central path, we know that mini(zi/xi) is O(µ). Thus the reciprocal of the condition number
of Fn is O(µ).

16

2.6 The Stable Linearization

The stable reduction step above corresponds to the following linearization approach. Recall the
primal LP

(LP)
p∗ = min cT x

subject to Ax = b
x ≥ 0.

(2.19)

An essential preprocessing step is to find a (hopefully sparse) representation of the null space of
A as the range of a matrix N , i.e. given an initial solution x̂, we get

Ax̂ = b⇒ Ax = b if and only if x = x̂ + Nv, for some v ∈ ℜn−m .

For our method to be efficient, we would like both matrices A,N to be sparse. More precisely,
since we use an iterative method, we need both matrix vector multiplications Ax and Nv to be
inexpensive. If the original problem is in symmetric form, i.e. if the constraint is of the type

Ex ≤ b, E ∈ ℜm×(n−m),

(applications for this form abound, e.g. the diet problem and minimum cost production problem;

see e.g. [45, Chap. 16][46]) then we can add slack variables and get A = (Im E) ,N =

(
−E

In−m

)
.

More generally, in this paper we assume that

A = (B E) , N =

(
−B−1E
In−m

)
, (2.20)

where E is sparse and the linear system Bv = d is nonsingular, well-conditioned and inexpensive
to solve. (For example, B is block diagonal or triangular. Surprisingly, this structure holds for
most of the NETLIB test set problems. See the comments and the Tables 4.8– 4.10 in Section
4.2.)

We can now substitute for both z, x and eliminate the first two (linear) blocks of equations in
the optimality conditions (2.3). We obtain the following single block of equations for optimality.
By abuse of notation, we keep the symbol F for the nonlinear operator. The meaning is clear
from the context.

Theorem 2.7 Suppose that Ax̂ = b and the range of N equals the nullspace of A. Also, suppose
that x = x̂ + Nv ≥ 0 and z = c − AT y ≥ 0. Then the primal-dual variables x, y, z are optimal
for (LP),(DLP) if and only if they satisfy the single bilinear optimality equation

F (v, y) := Diag (c−AT y)Diag (x̂ + Nv)e = 0. (2.21)

17

This leads to the single perturbed optimality conditions that we use for our primal-dual method,

Fµ(v, y) := Diag (c−AT y)Diag (x̂ + Nv)e− µe = 0. (2.22)

This is a nonlinear (bilinear) system. The linearization (or Newton equation) for the search

direction ∆s :=

(
∆v
∆y

)
is

F ′
µ(v, y)∆s = −Fµ(v, y), (2.23)

where the Jacobian F ′
µ(v, y) is the matrix

J : = F ′
µ(v, y)

= (Diag (c−AT y)N −Diag (x̂ + Nv)AT)
= (ZN −XAT) .

(2.24)

Therefore, system (2.23) becomes

ZN∆v −XAT ∆y = −Fµ(v, y). (2.25)

We note that the first part of the system (2.25) is usually the large part since it has n − m
variables ∆v. However, this part is inexpensive to evaluate if the matrix E is sparse and the
system Bu = d is inexpensive to solve. The second part is usually the small part since it only
has m variables ∆y. This latter part is the size of the normal equations system that arises in
the standard approaches for LP.

Note that algorithms that use reduced linearized systems of this size do exist, e.g. [45,
Chap. 19] discusses the quasi-definite system of size n × n. These larger systems can be more
efficient in the sparse case. In particular, the distinct division into two sets of (almost orthogonal)
columns can be exploited using projection and multifrontal methods, e.g. [9, 22, 32, 33, 30]. This
allows for parallel implementations that do the QR factorizations for the preconditioning steps.

Under standard assumptions, the above system (2.25) has a unique solution at each point
(v, y) that corresponds to a strictly feasible primal-dual pair x, z. In addition, we now show
nonsingularity of the Jacobian matrix at optimality, i.e. it does not necessarily get ill-conditioned
as µ approaches 0.

Theorem 2.8 Consider the primal-dual pair (LP),(DLP). Suppose that A is onto (full rank),
the range of N is the null space of A, N has full column rank, and (x, y, z) is the unique primal-
dual optimal solution. Then the matrix J of the linear system J∆s = −Fµ (2.23) is nonsingular.

Proof. Suppose that J∆s = 0. We need to show that ∆s = (∆v,∆y) = 0.
Let B and N denote the set of indices j such that xj = x̂j + (Nv)j > 0 and set of indices

i such that zi = ci − (AT y)i > 0, respectively. Under the uniqueness (nondegeneracy) and
full rank assumptions, we get B⋃N = {1, . . . , n}, B⋂N = ∅, and the cardinalities |B| = m,

18

|N | = n−m. Moreover, the submatrix AB, formed from the columns of A with indices in B, is
nonsingular.

By our assumption and (2.25), we have

(J∆s)k = (c−AT y)k(N∆v)k − (x̂ + Nv)k(A
T ∆y)k = 0, ∀k.

From the definitions of B,N and complementary slackness, this implies that

cj − (AT y)j = 0, x̂j + (Nv)j > 0, (AT ∆y)j = 0, ∀j ∈ B,
ci − (AT y)i > 0, x̂i + (Nv)i = 0, (N∆v)i = 0, ∀i ∈ N .

(2.26)

The first line of (2.26) implies AT
B∆y = 0, i.e. we obtain ∆y = 0.

It remains to show that ∆v = 0. From the definition of N we have AN = 0. Therefore,
(2.26) implies

0 = (AB AN)

(
(N∆v)B
(N∆v)N

)

= AB(N∆v)B + AN (N∆v)N
= AB(N∆v)B.

By (2.26) and the nonsingularity of AB, we get

N∆v = 0.

Now, full rank of N implies ∆v = 0.
(An alternative proof follows using (2.16). We can see, after permutations if needed, that

both K and Ps are nonsingular matrices.)

We use equation (2.22) and the linearization (2.25) to develop our primal-dual algorithm.
This algorithm is presented and described in the next section.

3 Primal-Dual Algorithm

The algorithm we use follows the primal-dual interior-point framework, see e.g. the books [45],[50,
P. 198]. That is, we use Newton’s method applied to the perturbed system of optimality con-
ditions with damped step lengths for maintaining nonnegativity (not necessarily positivity)
constraints. Our approach differs in that we eliminate, in advance, the primal and dual linear
feasibility equations. (Within an infeasible approach, they get eliminated completely only after
a steplength of 1 and stay eliminated.) The search direction is found first using a direct fac-
torization in (2.23), and second using a preconditioned conjugate-gradient-type method, LSQR,
due to Paige and Saunders [39]. These are applied to the last two rows of (2.16)-(2.17). This
contrasts with popular approaches that find the search directions by using direct factorization

19

methods on the normal equations system. In addition, we use a change to a pure Newton step,
i.e. we use affine scaling (the perturbation parameter µ = 0) and we do not backtrack to preserve
positivity of z, x once we have found (or estimated) the region of quadratic convergence of New-
ton’s method. Therefore, the algorithm mixes interior and exterior ideas. We also include the
identification of zero values for the primal variable x and eliminate the corresponding indices;
thus reducing the dimension of the original problem. We call this a purification step.

Only indices corresponding to the matrix E are eliminated so that we maintain the (B E)
structure. The procedures are explained in more detail in the following sections.

3.1 Initialization and Preprocessing

The preprocessing involves finding B to satisfy the structure in (2.20) with B mostly upper
triangular and sparse. However, in some cases we can start the algorithm with a feasible approach
i.e. we have initial data x̂, vo, yo such that

Ax̂ = b; xo = x̂ + Nvo > 0; zo = c−AT yo > 0.

The existence of such initial data cannot be assumed in general because finding a feasible solution
is just as difficult as solving the problem to optimality. However, special structure can provide
this initialization, e.g. suppose that both E, b (and so A) are nonnegative elementwise. Then,

with x =

(
x1

x2

)
, we can set x2 = b − Ex1 > 0, for sufficiently small x1 > 0, and vo = 0.

Similarly, we can choose z = c−AT yo > 0 for sufficiently negative y0.

3.2 Preconditioning Techniques

Recall that Z := Z(y) = Diag (c− AT y), X := X(v) = Diag (x̂ + Nv), and the Jacobian of Fµ

(equation (2.24)) is
J := F ′

µ(v, y) = (ZN −XAT) . (3.1)

Since we are interested in using a conjugate-gradient-type method for solving the linear sys-
tem (2.23), we need efficient preconditioners. For a preconditioner we mean a simple nonsingular
matrix M such that JM−1 is well conditioned. To solve system (2.23), we can solve the better
conditioned systems JM−1∆q = −Fµ and M∆s = ∆q . It is clear that the best condition for
JM−1 is obtained when the matrix M is the inverse of J . We look for a matrix M such that
MT M approximates JT J .

We use the package LSQR [39], which implicitly solves the normal equations JT J∆s =
−JT F ′

µ. Two possible choices for the preconditioning matrix M are: the square root of the

diagonal of JT J ; and the partial Cholesky factorization of the diagonal blocks of JT J . In the
following we describe these approaches. Since our system is nonsymmetric, other choices would
be, e.g. quasi-minimal residual (QMR) algorithms [20, 21]. However, preconditioning for these
algorithms is more difficult, see e.g. [6, 7].

20

3.2.1 Optimal Diagonal Column Preconditioning

We begin with the simplest of the preconditioners. For any given square matrix K let us denote
ω(K) = trace (K)/n

det(K)1/n . Let M = arg min ω((JD)T (JD)) over all positive diagonal matrices D. In

[16, Prop. 2.1(v)] it was shown that Mjj = 1/‖J:j‖, the j-th column norm. This matrix has
been identified as a successful preconditioner (see [24, Sect. 10.5], [44]) since ω is a measure of
the condition number, in the sense that it is bounded above and below by a constant times the
standard condition number (ratio of largest and smallest singular values).

3.2.2 Partial (Block) Cholesky Preconditioning

From (3.1) we obtain that

JT J =

(
NT Z2N −NT ZXAT

−AXZN AX2AT

)
.

Suppose that z, x lies near the central path, i.e. ZX ∼= µI (approximately equal). Then the off
diagonal terms of JT J are approximately 0, since AN = 0 by definition of N , and XZ is small
when µ is small. In this case, block (partial) Cholesky preconditioning is extremely powerful.

We now look at finding a partial Cholesky factorization of JT J by finding the factorizations
of the two diagonal blocks. We can do this using the Q-less QR factorization, i.e. suppose that
QZRZ = ZN, QXRX = XAT represents the QR factorizations with both RZ and RX square
matrices (using the Q-less efficient form, where QZ , QR are not stored or formed explicitly).
Then

RT
ZRZ = NT Z2N, RT

XRX = AX2AT . (3.2)

We can now choose the approximate factorization

JT J ∼= MT M, M =

(
RZ 0
0 RX

)
.

We should also mention that to calculate this preconditioner is expensive. The expense is
comparable to the Cholesky factorization of the normal equation AZ−1XAT . Therefore, we
tested both a complete and an incomplete Cholesky preconditioner (denoted IC) for the diagonal
blocks.

3.3 Change to Pure Newton Step Technique

Let us assume that the Jacobian of the function F in (2.1) defining the optimality conditions
is nonsingular at the solution. Then, the problem has unique primal and dual solutions, s∗ =
(x∗, y∗, z∗). Therefore, from the standard theory for Newton’s method, there is a neighbourhood
of the solution s∗ of quadratic convergence and, once in this neighbourhood, we can safely apply
affine scaling with step lengths of one without backtracking to maintain positivity of x or z.

21

To estimate the guaranteed convergence area of the optimal solution, we need to use a
theorem due to Kantorovich [28]. We use the form in [15, Theorem 5.3.1]. Let N (x, r) denote
the neighbourhood of x with radius r, and Lipγ(N (x, r)) denote Lipschitz continuity with
constant γ in the neighbourhood.

Theorem 3.1 (Kantorovich) Suppose r > 0, s0 ∈ ℜn, F : ℜn → ℜn, and that F is con-
tinuously differentiable in N (s0, r) with J(s0) nonsingular. Assume for a vector norm and the
induced operator norm that J ∈ Lipγ(N (s0, r)) for some Lipschitz constant γ, and that constants
β, η ≥ 0 exist such that

‖J(s0)
−1‖ ≤ β, ‖J(s0)

−1F (s0)‖ ≤ η.

Define α = βγη. If α ≤ 1
2 and r ≥ r0 := (1 −

√
1− 2α)/(βγ), then the sequence {sk} produced

by
sk+1 = sk − J(sk)

−1F (sk), k = 0, 1, . . . ,

is well defined and converges to s∗, a unique zero of F in the closure of N (s0, r0). If α < 1
2 ,

then s∗ is the unique zero of F in N (s0, r1), where r1 := min[r, (1 +
√

1− 2α)/(βγ)] and

‖sk − s∗‖ ≤ (2α)2
k η

α
, k = 0, 1,

We follow the notation in Dennis and Schnabel [15] and find the Lipschitz constant used to
determine the region of quadratic convergence.

Lemma 3.2 The Jacobian F ′(v, y) = (Diag (c−AT y)N −Diag (x̂ + Nv)AT) in (3.1) is Lip-
schitz continuous with constant

γ = σmax(F
′ − F ′(0)) ≤

√
2‖A‖‖N‖, (3.3)

where σmax(F
′ − F ′(0)) is the largest singular value of the linear transformation G(v, y) :=

F ′(v, y) − F ′(0) : ℜn → ℜn×n.

Proof. For each s = (v, y) ∈ ℜn we get the matrix F ′(s) ∈ ℜn×n. This mapping is denoted
by the affine transformation F ′ : ℜn → ℜn×n. Therefore G(s) := F ′(s) − F ′(0) is a linear
transformation. The largest singular value of the matrix representation is denoted σmax :=
σmax(G). This satisfies ‖F ′(s)−F ′(s̄)‖ = ‖G(s− s̄)‖ ≤ σmax‖s− s̄‖. Hence by setting s = 0 and
s̄ to be the singular vector corresponding to the largest singular value, we conclude γ = σmax.

Now let ∆s =

(
∆v
∆y

)
. Since

‖F ′(s)− F ′(s̄)‖ = max
‖(F ′(s)− F ′(s̄))∆s‖

‖∆s‖

22

= max
‖Diag (AT (y − ȳ))N∆v −Diag (AT ∆y)N(v − v̄)‖

‖∆s‖

≤ max
‖AT (y − ȳ)‖‖N∆v‖ + ‖AT ∆y‖‖N(v − v̄)‖

‖∆s‖
≤ ‖A‖‖N‖‖y − ȳ‖+ ‖A‖‖N‖‖v − v̄‖
≤
√

2‖A‖‖N‖‖s − s̄‖,

a Lipschitz constant is γ =
√

2‖A‖‖N‖.
Observe that the Lipschitz constant depends on the representation matrix N that we

consider. In particular, N can be chosen so that its columns are orthonormal and ‖N∆v‖=‖∆v‖
and ‖N(v − v̄)‖ = ‖v − v̄‖ . In this case, the Lipschitz constant γ ≤

√
2‖A‖.

We can evaluate the largest singular value σmax in the above Theorem 3.1 as follows. Consider
the linear transformation L : Rn 7→ Rn2

defined by

L
(

v
y

)
:= vec (Diag (AT y)N Diag (Nv)AT) ,

where vec (M) denotes the vector formed columnwise from the matrix M . The inverse of vec is
denoted Mat . Let w ∈ Rn2

. The inner-product

〈
L

(
v
y

)
, w

〉
= 〈vec (Diag (AT y)N Diag (Nv)AT) , w〉

=

〈(
v
y

)
,

(
NT diag (AT W T

2)
Adiag (NW T

1)

)〉
,

where W1 is the first n−m columns of Mat (w) and W2 is the remaining m columns of Mat (w).
Therefore, the adjoint operator of L is

L∗(w) =

(
NT diag (AT W T

2)
Adiag (NW T

1)

)
.

We can use a few iterations of the power method to approximate efficiently the largest eigenvalue
of L∗L (which is the equivalent to the square of the largest singular value of L). This can be
done without forming the matrix representation of L.

We also need to estimate β, the bound on the norm of the inverse of the Jacobian at the
current s = (v, y), i.e.

β ≥ ‖J−1‖ =
1

σmin(J)
. (3.4)

Finally, to estimate η, we note that

‖J−1F0(v, y)‖ = ‖J−1(−ZXe)‖ ≤ η. (3.5)

23

The vector J−1(−ZXe) is the affine scaling direction and is available within the predictor-
corrector approach that we use.

We now have the following heuristic for our change to a pure Newton step technique.

Theorem 3.3 Suppose that the constants γ, β, η in Theorem 3.1 satisfy (3.3)-(3.4)-(3.5), re-
spectively. And, suppose that s0 = (v0, y0) and α = γβη < 1

2 . Then the undamped Newton
sequence sk generated by sk+1 = sk − J(sk)

−1F (sk) converges to s∗, the unique zero of F in the
neighbourhood N (s0, r1).

Remark 3.4 Theorem 3.3 guarantees convergence of the affine scaling direction to a solution
of F (s) = 0 without backtracking. But, it does not guarantee convergence to a solution with x, z
nonnegative. Nonetheless, all our numerical tests successfully found nonnegative solutions.

3.4 Purify Step

Purifying refers to detecting variables that are zero at optimality. This is equivalent to identifying
active constraints, e.g. [10, 11, 12]. We use the Tapia indicators [18] to detect the x variables
going to zero. (See also [36, 1].) This is more difficult than the change to a pure Newton step,
as variables can increase and decrease while converging to 0, see e.g. [23].

Our tests were divided into two cases. Our infeasible code has a starting point that satisfies
strict positivity, but primal-dual feasibility Ax = b,AT y + z = c may fail. For this case, once
we identify a variable xj converging to zero, we remove the corresponding column in A and
components in c, z. The infeasibility at the next iteration stays small. To maintain the (B E)
structure of our data matrix A, we limit our choice of dropping variables to those associated
with E. In the case of our feasible code (our starting point satisfies positivity as well as both
primal and dual feasibility), we have more involved book-keeping so that we maintain feasibility
after dropping variables with small positive values.

4 Numerical Tests

Our numerical tests use the well known NETLIB LP data library as well as randomly generated
data. We compare our algorithm with the well known MATLAB based linear programming
solver LIPSOL [54], www.caam.rice.edu/˜zhang/lipsol/. (We use the same preprocessing as
LIPSOL: delete fixed variables; delete zero rows and columns; ensure that A is structurally full
rank; shift nonzero lower bounds; find upper bounds.)

Our randomly generated problems use data A, b, c, with a known optimal basis in A and
optimal values x, y, and z. For the infeasible code tests, we used the same starting point strategy
given in LIPSOL. For the feasible code tests we applied one Newton step from the optimal point
with a large positive µ, in order to maintain feasibility of the starting point. In addition, we

24

data m n nnz(E) cond(AB) cond(J) NEQ Stable direct

D time its D Time its

1 100 200 1233 51295 32584 0.03 ∗ 0.06 6

2 200 400 2526 354937 268805 0.09 6 0.49 6

3 200 400 4358 63955 185503 0.10 ∗ 0.58 6

4 400 800 5121 14261771 2864905 0.61 ∗ 3.66 6

5 400 800 8939 459727 256269 0.64 6 4.43 6

6 800 1600 10332 11311945 5730600 5.02 6 26.43 6

7 800 1600 18135 4751747 1608389 5.11 ∗ 33.10 6

Table 4.1: nnz(E) - number of nonzeros in E; cond(·) - condition number; AB optimal basis
matrix, J = (ZN −XAT) at optimum, see (3.1); D time - avg. time per iteration for search
direction, in sec.; its - iteration number of interior point methods. * denotes NEQ stalls at
relative gap 10−11.

ensure that the Jacobian of the optimality conditions at the optimum is nonsingular (so the
optimal x, y, z are unique) and its condition number is not large, since we want to illustrate how
the stable system takes advantage of well-conditioned, nondegenerate, problems. The iteration
is stopped when the relative duality gap (including the relative infeasibility) is less than 10−12.
The computations were done in MATLAB 6.5 on a 733MHz Pentium 3 running Windows 2000
with 256MB RAM.

To find the search direction, we use either a direct or iterative method to solve J∆s = −Fµ.
The direct method uses [L,U,P,Q]=lu(·) in MATLAB to find LU factors of J . The permutations
P,Q exploit the sparsity of J . (Note that using lu(·) is generally slower than using \ with a
single right-hand side, but we have two right-hand sides (for the predictor and corrector steps)
and use the factors twice.) The iterative method uses an inexact Newton approach. The linear
system is solved approximately using LSQR [39] with different preconditioners. We use adaptive
tolerance settings for LSQR: atol = max(10−13, 10−10µ), btol = max(10−10, 10−10µ). Both direct
and iterative approaches share the same interior-point framework and include the change to a
pure Newton and purify steps. They differ only in the method used for computing the search
direction.

The normal equation, NEQ , approach uses chol(·) in MATLAB to find a Cholesky factor-
ization of AZ−1XAT . It then uses the Cholesky factor with the MATLAB \ (backslash) in both
the predictor and corrector step. (We note that using “chol(·)” is generally three times slower
than using \ (backslash) directly on NEQ .) The NEQ approach can solve many of the ran-
dom generated problems to the required accuracy. However, if we set the stopping tolerance to
10−15, we do encounter quite a few examples where NEQ stalls with relative gap approximately
10−11, while the stable system has no problem reaching the desired accuracy.

25

data set LSQR with IC for diagonal blocks LSQR with Diag

D Time its L its Pre time D Time its L its Pre time

1 0.15 6 37 0.06 0.41 6 556 0.01

2 3.42 6 343 0.28 2.24 6 1569 0.00

3 2.11 6 164 0.32 3.18 6 1595 0.00

4 NA Stalling NA NA 13.37 6 4576 0.01

5 NA Stalling NA NA 21.58 6 4207 0.01

6 NA Stalling NA NA 90.24 6 9239 0.02

7 NA Stalling NA NA 128.67 6 8254 0.02

Table 4.2: Same data sets as in Table 4.1; two different preconditioners (incomplete Cholesky
with drop tolerance 0.001 and diagonal); D time - average time for search direction; its - iter-
ation number of interior point methods; L its - average number of LSQR iterations per major
iteration; Pre time - average time for preconditioner; Stalling - LSQR cannot converge due to
poor preconditioning.

data set LSQR with block Chol. Precond.

D Time its L its Pre time

1 0.09 6 4 0.07

2 0.57 6 5 0.48

3 0.68 6 5 0.58

4 5.55 6 6 5.16

5 6.87 6 6 6.45

6 43.28 6 5 41.85

7 54.80 6 5 53.35

Table 4.3: Same data sets as in Table 4.1; LSQR with Block Cholesky preconditioner. Notation
is the same as Table 4.2.

26

The tests in Tables 4.1-4.2-4.3 are done without the change to a pure Newton step and
purification techniques. The stable method with the direct solver and also with the diagonal
preconditioner consistently obtains high accuracy optimal solutions. The stable method is not
competitive in terms of time compared to the NEQ approach for this test set. One possible
reason is that the condition numbers of J , the Jacobian at the optimum, and of the basis
matrix AB, are still too large for the iterative method to be effective. We provide another set of
numerical tests based on well conditioned AB in the following subsection.

We also performed many tests with the change to a pure Newton step. Using our test
for α in Theorem 3.3 with the inexpensive bound for γ, we can usually detect the guaranteed
convergence region at µ = 10−6 or with the relative gap tolerance at 10−4 or 10−5. We also
encountered a few examples where the change begins as early as µ = 10−4 and some examples
where the change begins as late as µ = 10−8. After the test is satisfied, we use an undamped
Newton method, i.e. we use the affine scaling direction with step length 1 without limiting x
and z to be nonnegative. It usually takes only one iteration to achieve the required accuracy
10−12. This is not a surprise considering the quadratic convergence rate of Newton’s method.

If we compare the method without a change to a pure Newton step, then we conclude that
the change technique gives an average 1 iteration saving to achieve the desired accuracy. We also
encountered several instances where NEQ did not converge after the change to a pure Newton
step, while our stable method had no difficulty. We should mention that NEQ is not suitable
for a pure Newton step because the Jacobian becomes singular. Moreover, a catastrophic error
occurs if a z element becomes zero.

We also tested the purification technique. It showed a benefit for the stable direction when n
was large compared to m, since we only identify nonbasic variables. (However, deleting variables
does not help NEQ because AXZ−1AT remains m×m.) The time saving on solving the linear
system for the stable direction is cubic in the percentage of variables eliminated, e.g. if half the
variables are eliminated, then the time is reduced to (1

2)3 = 1
8 the original time. The purification

technique starts to identify nonbasic variables as early as 6–7 iterations before convergence. It
usually identifies most of the nonbasic variables from two to four iterations before convergence.
For all our random generated tests, the purification technique successfully identified all the
nonbasic variables before the last two iterations.

We should also mention the computation costs. For the change to a pure Newton step, we
need to evaluate the smallest singular value of a sparse n × n matrix to find β, and then solve
an n × n linear system to find the value η (see Theorem 3.3). The cost of finding the smallest
singular value is similar to that of solving a system of the same size. Solving this linear system
is inexpensive since the matrix J is the same as for the search direction and we already have a
factorization.

In the above tests we restricted ourselves to nondegenerate problems. See Figure 4.1 for
a comparison on a typical degenerate problem. Note that NEQ had such difficulties on more
than half of our degenerate test problems.

27

0 5 10 15 20 25 30 35 40 45
−15

−10

−5

0

5

10

15

iters

lo
g 10

(r
el

 g
ap

)

stable solver
normal equation solver

Figure 4.1: Iterations for Degenerate Problem

4.1 Well Conditioned AB

Our previous test examples in Tables 4.1-4.2-4.3 are all sparse with 10 to 20 nonzeros per row.
In this section we generate sparser problems with about 3-4 nonzeros per row in E but we still
maintain nonsingularity of the Jacobian at the optimum. We first fix the indices of a basis B;
we choose half of the column indices j so that they satisfy 1 ≤ j ≤ m and the other half satisfy
m+1 ≤ j ≤ n. We then add a random diagonal matrix to AB to obtain a well-conditioned basis
matrix and generate two random (sufficiently) positive vectors xB and zN . We set the optimal

x∗ =

(
xB

xN

)
with xN = 0; and the optimal z∗ =

(
zB
zN

)
, with zB = 0. The data b, c are

determined from b := Ax∗, c := AT y∗ + z∗, y∗ ∈ ℜm random (using MATLAB’s “randn”).
We now compare the performance of three different solvers for the search direction, namely

NEQ solver, direct linear solver on the stable system, and LSQR on the stable system. In this
section, we restrict ourselves to the diagonal preconditioner when we use the LSQR solver. (The
computations in this section were done on a Sun-Fire-480R running SunOS 5.8.)

The problems in Table 4.4 all have the same dimensions. To illustrate that our method can

28

data sets NEQ Stable Direct LSQR

Name cond(AB) cond(J) nnz(E) D Time its D Time its D Time its L its

nnz2 19 14000 4490 3.75 7 5.89 7 0.19 7 81
nnz4 21 20000 6481 3.68 7 7.38 7 0.27 7 106
nnz8 28 10000 10456 3.68 7 11.91 7 0.42 7 132
nnz16 76 11000 18346 3.69 7 15.50 7 0.92 7 210
nnz32 201 12000 33883 3.75 9 18.43 9 2.29 8 339

Table 4.4: Sparsity vs Solvers: cond(·) - (rounded) condition number; D time - average time for
search direction; its - number of iterations; L its - average number LSQR iterations per major
iteration; All data sets have the same dimension, 1000 × 2000, and have 2 dense columns.

handle sparse problems without additional special techniques, we include two full dense columns
(in E). We let the total number of nonzeros increase. The condition numbers are evaluated
using the MATLAB “condest” command. The loss in sparsity has essentially no effect on NEQ ,
since the ADAT matrix is already dense because of the two dense columns. But we can see the
negative effect that the loss of sparsity has on the stable direct solver, since the density in the
system (2.24) increases. For these problem instances, using LSQR with the stable system can
be up to twenty times faster than the NEQ solver.

Our second test set in Table 4.5 shows how size affects the three different solvers. The time
for the NEQ solver is proportional to m3. The stable direct solver is about twice that of NEQ .
LSQR is the best among these 3 solvers on these instances. The computational advantage of
LSQR becomes more apparent as the dimension grows.

We also use LIPSOL to solve our test problems, see Table 4.6. Our tests use LIPSOL’s
default settings except that the stopping tolerance is set to 10−12. LIPSOL uses a primal-dual
infeasible-interior-point algorithm. We can see that the number of iterations for LIPSOL are in
a different range from our tests in Tables 4.4, 4.5 which are usually in the range of 6-8. It can be
observed that LIPSOL in general performs better than the NEQ code we have written. Since
LIPSOL has some special code to deal with factorization, while our method just uses the LU
(or chol) factorization from MATLAB, it is not unexpected to see the better performance from
LIPSOL.

But comparing to the iterative method, we should mention that when the problem size
becomes large, the iterative method has an obvious advantage over the direct factorization
method. This can be seen clearly from the solution times of problems sz8-sz9-sz10 in Table 4.6
and the corresponding time of LSQR in Table 4.5. When the problem size doubles, the solution
time for LIPSOL increases roughly by a factor of 8-10, while the solution time for our iterative
method roughly doubles. This is also true for fully sparse problems as mentioned in the caption
of Table 4.6.

The iterative solver LSQR does not spend the same amount of time at different stages of an

29

data sets NEQ Stable Direct LSQR

name size cond(AB) cond(J) D Time its D Time its D Time its

sz1 400 × 800 20 2962 0.29 7 0.42 7 0.07 7
sz2 400× 1600 15 2986 0.29 7 0.42 7 0.11 7
sz3 400× 3200 13 2358 0.30 7 0.43 7 0.19 7
sz4 800× 1600 19 12340 1.91 7 3.05 7 0.13 7
sz5 800× 3200 15 15480 1.92 7 3.00 7 0.27 7
sz6 1600 × 3200 20 53240 16.77 7 51.52 7 0.41 7
sz7 1600 × 6400 16 56810 16.70 7 51.75 7 0.65 8
sz8 3200 × 6400 19 218700 240.50 7 573.55 7 0.84 7
sz9 6400 × 12800 24 8.9e + 5 2.20 6
sz10 12800 × 25600 22 2.4e + 5 4.67 6

Table 4.5: How problem dimension affects different solvers: cond(·) - (rounded) condition num-
ber; D time - average time for search direction; its - number of iterations. All the data sets have
2 dense columns in E. The sparsity for the data sets are similar; without the 2 dense columns,
they have about 3 nonzeros per row.

interior point method. To illustrate this, we take the data set in Table 4.4. For each problem
we draw the number of LSQR iterations at each iteration; see Figure 4.2.

4.2 NETLIB Set - Ill-conditioned Problems

The NETLIB LP data set is made up of large, sparse, highly degenerate problems, which result
in singular Jacobian matrices at the optimum. These problems are ill-posed in the sense of
Hadamard; we used the measure in [38] and found that 71% of the problems have infinite condi-
tion number. (See also [29].) In particular, small changes in the data can result in large changes
in the optimum x, y, z, see e.g. [4, 5],[3, Pages 9-10], [43, Chapter 8]. Therefore, infeasibility
is difficult to detect and, it is not evident what a non-regularized solution of these problems
means. Nevertheless, we applied our method to these problems. Though our method solves the
problems in the NETLIB data set to high accuracy, our tests show that it is not competitive
(with regard to cpu times) compared to standard LP packages such as LIPSOL version 0.60
[54], when applied exclusively to the NETLIB data set. Ill-conditioning of J in our algorithm
affects the performance of iterative solvers. Direct factorization is preferable for the NETLIB
set.

For general LP problems, we want to find a B that is sparse and easy to factorize in the
(B E) structure. An upper triangular matrix is a good choice. The heuristic we use is to go
through the columns of the matrix A and find those columns that only have one nonzero entry.
We then permute the columns and rows so that these nonzero entries are on the diagonal of B.
(In the case of multiple choices in one row, we picked the one with the largest magnitude.) We

30

data sets LIPSOL

name D Time its

nnz2 0.08 12
nnz4 0.50 14
nnz8 1.69 14
nnz16 2.72 14
nnz32 3.94 13

sz1 0.16 11
sz2 0.15 13
sz3 0.15 14
sz4 0.05 12
sz5 0.03 14
sz6 0.22 15
sz7 0.06 15
sz8 1.55 14
sz9 12.80 15
sz10 126.47 15

Table 4.6: LIPSOL results D time - average time for search direction; its - number of iterations.
(We also tested problems sz8,sz9,sz10 with the change two dense columns replaced by two sparse
columns, only 6 nonzeros in these new columns. (D time, iterations) on LIPSOL for these fully
sparse problems: (0.41, 11), (2.81, 11), (43.36, 11).)

31

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

iterations in interior point methods

nu
m

be
r

of
 L

S
Q

R
 it

er
at

io
ns

nnz2
nnz4
nnz8
nnz16
nnz32

Figure 4.2: LSQR iterations for data set in Table 4.4. Odd-numbered iterations are predictor
steps; even-numbered iterations are corrector steps.

remove the corresponding rows and columns, and then repeat the procedure on the remaining
submatrix. If this procedure is successful, we end up with an upper triangular matrix B.
However, sometimes, we may have a submatrix Â of A such that no column has one nonzero
entry. Usually, such a submatrix Â is much smaller in size. We use an LU factorization on
this small submatrix and find an upper triangular part Û in the U part of the LU factorization
by using the above procedure. The B is then determined by incorporating those columns of
Û after an appropriate permutation. This procedure also results in a useful LU factorization
for B. In our tables, we denote the row dimension of the Â as no-tri-size of B. For NETLIB
problems, surprisingly, most of them have a zero no-tri-size of B as shown in Tables 4.8–4.10.
It is worth noting that some of the NETLIB problems may not have full row rank or the LU
factorization on the submatrix Â may not give an upper triangular U . Thus we may not be able
to identify the upper triangular matrix Û . In Tables 4.8–4.10, these problems are marked with
a “ ∗” in the column of no-tri-size of B. For these singular problems, our solver may not give a
correct answer. (This issue can be resolved by preprocessing to eliminate redundant rows and
by a better LU factorization. This is beyond the scope of this paper.) Among these singular

32

NETLIB problems Highest Accuracy Attained

bnl2 infeasible
cycle 9.19e−11
dfl001 infeasible

etamacro 7.66e−11
fit1p infeasible
fit2p infeasible

greenbea infeasible
grow15 4.35e−10
grow22 9.24e−10
grow7 2.62e−10
kb2 3.75e−12

pilot87 1.21e−8
seba infeasible

Table 4.7: LIPSOL failures with desired tolerance 1e−12; highest accuracy attained by LIPSOL.

problems, “bore3d” and “standgub” have a complete zero row; thus we can easily identify the
linearly dependent row in the matrix A and remove it. Our answers for these two problems are
accurate.

To make a fair comparison on the errors, we changed the error term in LIPSOL to be the
same as ours, which is defined as

error :=
|cT x− bT y|
1 + |cT x| +

‖rp‖
1 + ‖b‖ +

‖rd‖
1 + ‖c‖ . (4.1)

We note that LIPSOL can solve all the NETLIB problems to 8 decimal accuracy. In addition,
we added the preprocessing step that LIPSOL is using to our code.

We observed improved robustness when using our stable direct factorization method. For
example, when the stopping tolerance is set to 12 decimals, LIPSOL could not solve the subset of
NETLIB problems in Table 4.7 and, incorrectly, finds that several problems are infeasible. Table
4.7 lists the highest accuracy that LIPSOL can get. (LIPSOL does solve problems fit1p, fit2p,
seba when the stopping tolerance is set to 10−8 and does solve problems bnl2, dfl001, greenbea
with tolerance 10−8 and its own error term.) This illustrates the numerical difficulties that arise
for NEQ based methods when the requested accuracy is more than 10−8. Our stable direct
factorization method not only achieved the desired accuracy (except for capri with 1.2e−12,
pilot.ja with 3.7e−12, pilot with 6.7e−12) but also exhibited quadratic convergence during the
final few iterations on these problems. For complete results on the NETLIB problem, see Tables
4.8–4.10. Further numerical tests appear in the forthcoming [47, 42] and in the recent Masters

33

thesis [41]. In [41, 42], a different transformation on the NETLIB problems is used to obtain
the (I E) structure. The numerical tests on the NETLIB problems in [41, 42] show that
the ill-conditioning negatively affects the performance of the stable algorithm. However, it also
observed that much more accurate solutions were obtained by using the stable linearization
approach compared to NEQ . Tests for quadratic programs are done in [17].

4.3 No Backtracking

We now present some interesting numerical results under the condition that the interior point
method takes a complete step to the boundary without the customary backtracking that guaran-
tees sufficient positivity of the variables x, z. We present the results from the three algorithms:
(i) NEQ with backtracking; (ii) stable system with backtracking; (iii) stable system with no
backtracking. Since the NEQ approach is undefined at the boundary, we cannot include a
fourth comparison. No backtracking does not create problems for our stable system, since we
do not need the inverse of X or Z.

See Figure 4.3 for a comparison between NEQ with backtracking and the stable direction
with and without backtracking. In this example, the relative gap stopping tolerance for NEQ is
set to 10−12, which is the highest accuracy NEQ can get for this problem. However, the relative
gap stopping tolerances for both of the stable system approaches are set to 10−14. For the first 4
iterations the three approaches are almost indistinguishable, since the backtrack (we backtrack
with .9998) is such a small step. However, once the duality gap is small, no backtracking
means we are close to taking a complete Newton step so we get a large improvement with
the no-backtracking strategy. We reach the desired tolerance in 6 iterations compared to 8 for
the stable direction with backtracking. The difference with using backtracking for the stable
direction is typical; while stalling for NEQ occurs for about half our tests.

For many tests, we see that the number of iterations are reduced and the last step behaves
just as if the change to a pure Newton step was implemented, i.e. we jump to the stopping
tolerance of 14 decimals. This is probably due to the fact that a full step to the boundary
is closer to a full Newton step, i.e. this is comparable to implementing the pure Newton step
technique. On average, the stable direct method without backtracking results in a 1-2 reduction
in the number of iterations.

5 Conclusion

We have presented a robust alternative for interior-point solutions of LP s. We used a pre-
processing step to eliminate both the primal and dual (linear) feasibility equations. We then
applied an inexact Newton approach to the resulting linear system. We compared this method
to the NEQ approach.

Advantages of our approach include:

34

problems LIPSOL Stable Direct

Name D time its error D time its error no-tri-size of B

25fv47 0.05 25 1.21e-14 0.94 24 8.7e-15 2
80bau3b 0.14 41 4.38e-14 2.84 49 5.5e-13 0
adlittle 0.01 12 4.13e-14 0.01 12 3.7e-16 2
afiro 0.01 8 3.70e-15 0.00 8 3.5e-16 0
agg 0.03 19 1.06e-13 0.10 19 4.5e-13 0
agg2 0.03 17 1.28e-13 0.19 17 1.4e-15 0
agg3 0.03 17 2.38e-15 0.18 16 1.4e-13 0

bandm 0.01 20 1.77e-14 0.05 17 2.3e-15 0
beaconfd 0.01 13 3.64e-14 0.04 13 3.0e-15 0

blend 0.01 12 8.32e-13 0.01 12 3.4e-15 0
bnl1 0.02 28 2.32e-14 0.37 27 3.0e-14 8
bnl2 0.08 7 2.40e+01 2.01 51 7.3e-13 0

boeing1 0.03 22 1.46e-13 0.14 23 4.7e-15 0
boeing2 0.01 20 1.46e-14 0.03 17 7.9e-13 0
bore3d 0.01 18 9.62e-14 0.03 18 3.3e-14 4∗

brandy 0.01 17 8.37e-15 0.04 15 4.2e-13 52
capri 0.02 19 2.76e-13 0.06 20 1.2e-12 0
cycle 0.12 36 9.19e-11 1.98 29 2.5e-13 4

czprob 0.03 36 7.91e-14 1.06 34 7.1e-13 0
d2q06c 0.18 33 1.92e-14 6.21 30 2.1e-13 132∗

d6cube 0.11 25 1.23e-15 3.54 14 4.8e-14 404∗

degen2 0.03 14 3.62e-13 0.14 13 2.4e-15 97∗

degen3 0.25 29 1.22e-13 2.02 17 3.8e-13 159∗

dfl001 19.63 17 2.28e+00 46.65 52 1.0e+01 4275∗

e226 0.01 22 1.05e-13 0.06 21 3.7e-13 0
etamacro 0.02 45 7.66e-11 0.11 37 7.3e-13 16
fffff800 0.03 27 9.21e-14 0.21 25 4.1e-14 0
finnis 0.02 30 7.40e-13 0.08 27 8.6e-13 0
fit1d 0.04 24 4.18e-13 0.50 18 9.2e-15 0
fit1p 0.30 17 1.75e-05 0.25 16 9.2e-14 0
fit2d 0.43 26 7.05e-13 80.99 23 8.4e-15 0
fit2p 0.68 22 2.35e-07 5.76 23 5.1e-14 0

forplan 0.02 23 1.98e-13 0.09 28 7.9e-13 0
ganges 0.04 19 5.14e-14 0.28 20 9.6e-13 12

gfrd-pnc 0.02 20 3.53e-14 0.1 20 9.9e-15 0

Table 4.8: NETLIB set with LIPSOL and Stable Direct method. D time - avg. time per iteration
for search direction, in sec.; its - iteration number of interior point methods.

35

problems LIPSOL Stable Direct

Name D time its error D time its error no-tri-size of B

greenbea 0.24 32 6.01e-04 5.68 45 4.6e-13 2
greenbeb 0.15 38 2.01e-13 5.49 37 6.1e-14 2
grow15 0.03 31 4.35e-10 0.86 12 2.4e-13 0
grow22 0.04 25 9.24e-10 2.27 14 4.3e-14 0
grow7 0.02 37 2.62e-10 0.16 12 2.2e-15 0
israel 0.02 23 5.06e-13 0.04 23 9.6e-14 0
kb2 0.01 34 3.75e-12 0.01 16 1.1e-14 0
lotfi 0.01 19 1.51e-15 0.05 17 9.5e-13 0

maros-r7 2.03 15 1.43e-15 14.97 15 1.3e-15 0
maros 0.05 33 5.24e-13 0.59 31 1.1e-13 4

modszk1 0.02 25 3.23e-13 0.22 68 9.8e-13 0
nesm 0.06 35 1.45e-13 2.77 32 7.3e-13 0
perold 0.04 32 5.66e-13 0.71 37 6.4e-13 0
pilot.ja 0.30 33 2.63e-13 1.34 35 3.7e-12 0
pilot 0.07 35 7.72e-13 13.69 42 6.7e-12 0

pilot.we 0.04 36 7.61e-13 0.95 40 4.5e-15 0
pilot4 0.03 31 1.80e-13 0.3 31 1.5e-13 0
pilot87 0.80 99 1.21e-08 27.58 42 2.8e-15 0
pilotnov 0.06 20 1.73e-13 1.86 24 1.3e-13 0
recipe 0.01 11 1.32e-13 0.01 11 6.1e-15 0
sc105 0.01 11 4.42e-16 0.01 10 6.0e-16 0
sc205 0.01 11 2.26e-13 0.02 10 7.2e-13 0
sc50a 0.01 10 3.34e-15 0.01 10 5.3e-16 0
sc50b 0.01 8 1.35e-15 0.01 8 6.1e-16 0

scagr25 0.01 17 7.46e-15 0.04 16 3.0e-15 0
scagr7 0.01 13 2.50e-13 0.01 13 7.5e-16 0
scfxm1 0.01 18 1.79e-13 0.06 18 2.0e-15 8
scfxm2 0.02 21 4.24e-14 0.13 20 3.3e-15 16
scfxm3 0.03 21 1.21e-14 0.19 20 3.5e-15 24
scorpion 0.01 15 1.99e-13 NA NA NA 132∗

scrs8 0.02 26 7.17e-13 0.1 25 6.2e-13 0
scsd1 0.01 10 6.40e-13 0.12 11 3.3e-14 0
scsd6 0.02 15 7.31e-15 0.42 15 6.1e-15 0
scsd8 0.03 12 1.07e-14 2.64 13 2.2e-15 0
sctap1 0.01 17 5.67e-13 0.05 18 2.6e-14 0

Table 4.9: NETLIB set with LIPSOL and Stable Direct method continued

36

problems LIPSOL Stable Direct

Name D time its error D time its error no-tri-size of B

sctap2 0.03 19 7.33e-13 0.27 16 1.9e-15 0
sctap3 0.04 18 1.46e-13 0.36 21 1.9e-15 0
seba 0.10 23 8.39e-07 0.1 17 7.4e-15 0

share1b 0.01 21 1.92e-13 0.03 24 5.5e-15 66
share2b 0.01 14 5.69e-15 0.01 12 1.2e-14 0

shell 0.02 20 1.61e-15 0.04 12 1.2e-15 494∗

ship04l 0.02 13 1.88e-13 0.24 13 1.9e-15 0
ship04s 0.02 14 2.76e-13 0.14 13 1.7e-15 0
ship08l 0.04 16 3.34e-15 0.49 16 2.4e-15 0
ship08s 0.02 14 2.47e-13 0.2 15 2.0e-15 0
ship12l 0.05 17 9.98e-13 0.62 17 1.0e-14 0
ship12s 0.02 19 3.94e-15 0.21 16 3.7e-15 0
sierra 0.06 17 1.50e-13 0.17 12 5.5e-15 515∗

stair 0.02 15 2.93e-13 0.1 14 4.8e-13 0
standata 0.02 17 1.62e-14 0.13 17 4.5e-15 0
standgub 0.02 17 5.15e-13 0.06 17 4.0e-15 1∗

standmps 0.02 24 9.87e-14 0.19 23 1.7e-14 0
stocfor1 0.01 16 6.84e-13 0.01 19 3.9e-14 0
stocfor2 0.05 22 1.19e-13 0.32 22 1.8e-13 0

tuff 0.02 23 2.83e-16 0.13 20 1.4e-13 0
vtp.base 0.01 23 5.76e-13 0.03 27 3.5e-13 0
wood1p 0.15 21 4.37e-13 0.76 13 6.4e-14 241∗

woodw 0.11 30 6.13e-13 41.59 30 9.6e-14 0

Table 4.10: NETLIB set with LIPSOL and Stable Direct method continued

37

1 2 3 4 5 6 7 8
−16

−14

−12

−10

−8

−6

−4

−2

0

iters

lo
g 10

(r
el

 g
ap

)

NEQ with backtracking
STAB with backtracking
STAB without backtracking

Figure 4.3: Iterations for Different Backtracking Strategies. The data is from row 2 in Table
4.1.

1. under primal and dual nondegeneracy, the resulting linear system for the search direction
does not necessarily get ill-conditioned as we approach the optimum;

2. when the linear system is well-conditioned, one may successfully apply: preconditioned it-
erative methods, a dynamic change to affine scaling without backtracking, dynamic purifi-
cation, and no backtracking from the boundary (taking the complete step to the boundary
is advantageous);

3. high accuracy solutions are obtained for both nondegenerate and degenerate problems;
though for ill-conditioned problems this can be be at the expense of (sometimes signifi-
cantly) larger computational time;

4. exact primal-dual feasibility is maintained throughout the iterations, if we start feasible.

Since our reduced linear system is larger than the usual normal equations approach, NEQ ,
our method is not competitive for the highly ill-conditioned NETLIB test set, with respect to
CPU time, though we can obtain higher accuracy solutions. We think that improvements in our
preliminary methods for finding B and for the preconditioning in LSQR will result in improved
speed and accuracy.

38

In summary, we believe that our stable approach for interior-point methods for LP s provides:
a first step towards greater reliability; and a means for applying iterative methods for finding
the search direction. Our method has advantages in comparison with the NEQ approach when
the nondegeneracy assumptions are satisfied or when higher accuracy solutions are needed.
Our numerical tests show that we can take direct advantage of sparsity for large sparse well-
conditioned problems.

Acknowledgments
The authors are indebted to Michael Saunders (Department of Management Science and Engi-
neering, Stanford University) for providing the LSQR MATLAB code for the PCG-like method.
The authors would also like to thank Tamas Terlaky (Department of Computing and Software,
McMaster University) for many helpful conversations. In addition, we thank an anonymous
associate editor and three referees for helping us make numerous significant improvements to
the paper.

References

[1] E.D. ANDERSEN and Y. YE. Combining interior-point and pivoting algorithms for linear
programming. Management Science, 42:1719–1731, 1996.

[2] K.M. ANSTREICHER. Linear programming in O((n3/ ln n)L) operations. SIAM J. Optim.,
9(4):803–812 (electronic), 1999. Dedicated to John E. Dennis, Jr., on his 60th birthday.

[3] A. BEN-TAL and A. NEMIROVSKI. Robust solutions of linear programming problems
contaminated with uncertain data. Math. Program., 88(3, Ser. A):411–424, 2000.

[4] A. BEN-TAL and A.S. NEMIROVSKI. Robust convex optimization. Math. Oper. Res.,
23(4):769–805, 1998.

[5] A. BEN-TAL and A.S. NEMIROVSKI. Robust solutions of uncertain linear programs.
Oper. Res. Lett., 25(1):1–13, 1999.

[6] M. BENZI, C.D. MEYER, and M. TU̇MA. A sparse approximate inverse preconditioner
for the conjugate gradient method. SIAM J. Sci. Comput., 17(5):1135–1149, 1996.

[7] M. BENZI and M. TU̇MA. A sparse approximate inverse preconditioner for nonsymmetric
linear systems. SIAM J. Sci. Comput., 19(3):968–994, 1998.

[8] L. BERGAMASCHI, J. GONDZIO, and G. ZILLI. Preconditioning indefinite systems in
interior point methods for optimization. Comput. Optim. Appl., 28(2):149–171, 2004.

39

[9] Å. BJÖRCK. Methods for sparse least squares problems. In J.R. Bunch and D. J. Rose,
editors, Sparse Matrix Computations, pages 177–199. Academic Press, New York, 1976.

[10] J. BURKE. On the identification of active constraints. II. The nonconvex case. SIAM J.
Numer. Anal., 27(4):1081–1103, 1990.

[11] J.V. BURKE and J.J. MORÉ. On the identification of active constraints. SIAM J. Numer.
Anal., 25(5):1197–1211, 1988.

[12] J.V. BURKE and J.J. MORÉ. Exposing constraints. SIAM J. Optim., 4(3):573–595, 1994.

[13] J-S CHAI and K-C TOH. Preconditioning and iterative solution of symmetric indefinite
linear systems arising from interior point methods for linear programming. Comput. Optim.
Appl., 36(2-3):221–247, 2007.

[14] R. DE LEONE and O.L. MANGASARIAN. Serial and parallel solution of large scale linear
programs by augmented Lagrangian successive overrelaxation. In Optimization, parallel
processing and applications (Oberwolfach, 1987 and Karlsruhe, 1987), volume 304 of Lecture
Notes in Econom. and Math. Systems, pages 103–124. Springer, Berlin, 1988.

[15] J.E. DENNIS Jr. and R.B. SCHNABEL. Numerical methods for unconstrained optimiza-
tion and nonlinear equations, volume 16 of Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Corrected reprint of
the 1983 original.

[16] J.E. DENNIS Jr. and H. WOLKOWICZ. Sizing and least-change secant methods. SIAM
J. Numer. Anal., 30(5):1291–1314, 1993.

[17] J. DOMINGUEZ and M.D. GONZALEZ-LIMA. A primal-dual interior-point algorithm for
quadratic programming. Numerical Algorithms, 105:1–30, 2006.

[18] A.S. EL-BAKRY, R.A. TAPIA, and Y. ZHANG. A study of indicators for identifying zero
variables in interior-point methods. SIAM Rev., 36(1):45–72, 1994.

[19] A.V. FIACCO and G.P. McCORMICK. Nonlinear programming sequential unconstrained
minimization techniques. Classics in Applied Mathematics. SIAM, Philadelphia, PA, USA,
1990.

[20] R.W. FREUND, M.H. GUTKNECHT, and N.M. NACHTIGAL. An implementation of
the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM Journal on Scientific
Computing, 14:137–158, 1993.

[21] R.W. FREUND and F. JARRE. A QMR-based interior-point algorithm for solving linear
programs. Mathematical Programming, Series B, 76:183–210, 1996.

40

[22] G. H. GOLUB and V. PEREYRA. The differentiation of pseudoinverses and nonlinear
least squares problems whose variables separate. SIAM J. Numer. Anal., 10:413–432, 1973.

[23] N.I.M. GOULD, D. ORBAN, A. SARTENAER, and Ph.L. TOINT. Componentwise fast
convergence in the solution of full-rank systems of nonlinear equations. Tr/pa/00/56, CER-
FACS, Toulouse Cedex 1, France, 2001.

[24] A. GREENBAUM. Iterative methods for solving linear systems. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[25] O. GÜLER, D. DEN HERTOG, C. ROOS, T. TERLAKY, and T. TSUCHIYA. Degeneracy
in interior point methods for linear programming: a survey. Ann. Oper. Res., 46/47(1-
4):107–138, 1993. Degeneracy in optimization problems.

[26] W.W. HAGER. The dual active set algorithm and the iterative solution of linear programs.
In Novel approaches to hard discrete optimization (Waterloo, ON, 2001), volume 37 of Fields
Inst. Commun., pages 97–109. Amer. Math. Soc., Providence, RI, 2003.

[27] J.J. JÚDICE, J. PATRICIO, L.F. PORTUGAL, M.G.C. RESENDE, and G. VEIGA.
A study of preconditioners for network interior point methods. Comput. Optim. Appl.,
24(1):5–35, 2003.

[28] L.V. KANTOROVICH. Functional analysis and applied mathematics. Uspekhi Mat. Nauk.,
3:89–185, 1948. Transl. by C. Benster as N.B.S. Rept. 1509, Washington D.C., 1952.

[29] C. KEIL and C. JANSSON. Computational experience with rigorous error bounds for the
Netlib linear programming library. Reliab. Comput., 12(4):303–321, 2006.

[30] S. LU and J.L. BARLOW. Multifrontal computation with the orthogonal factors of sparse
matrices. SIAM J. Matrix Anal. Appl., 17(3):658–679, 1996.

[31] O.L. MANGASARIAN. Iterative solution of linear programs. SIAM J. Numer. Anal.,
18(4):606–614, 1981.

[32] P. MATSTOMS. The Multifrontal Solution of Sparse Linear Least Squares Problems. Li-
centiat thesis, Department of Mathematics, Linköping University, Sweden, 1991.

[33] P. MATSTOMS. Sparse QR factorization in MATLAB. ACM Trans. Math. Software,
20:136–159, 1994.

[34] S. MEHROTRA. Implementations of affine scaling methods: approximate solutions of
systems of linear equations using preconditioned conjugate gradient methods. ORSA J.
Comput., 4(2):103–118, 1992.

41

[35] S. MEHROTRA and J.-S. WANG. Conjugate gradient based implementation of interior
point methods for network flow problems. In Linear and nonlinear conjugate gradient-
related methods (Seattle, WA, 1995), pages 124–142. SIAM, Philadelphia, PA, 1996.

[36] S. MEHROTRA and Y. YE. Finding an interior point in the optimal face of linear programs.
Math. Programming, 62(3, Ser. A):497–515, 1993.

[37] A.R.L. OLIVEIRA and D.C. SORENSEN. A new class of preconditioners for large-scale
linear systems from interior point methods for linear programming. Linear Algebra Appl.,
394:1–24, 2005.

[38] F. ORDÓÑEZ and R.M. FREUND. Computational experience and the explanatory value
of condition measures for linear optimization. SIAM J. Optim., 14(2):307–333 (electronic),
2003.

[39] C.C. PAIGE and M.A. SAUNDERS. LSQR: an algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Software, 8(1):43–71, 1982.

[40] J. PANG. Error bounds in mathematical programming. Math. Programming, 79(1-3, Ser.
B):299–332, 1997. Lectures on mathematical programming (ismp97) (Lausanne, 1997).

[41] S. PEREZ-GARCIA. Alternative iterative primal-dual interior-point algorithms for linear
programming. Master’s thesis, Simon Bolivar University, Center for Statistics and Mathe-
matical Software (CESMa), Venezuela, 2003.

[42] S. PEREZ-GARCIA and M. GONZALEZ-LIMA. On a non-inverse approach for solving the
linear systems arising in primal-dual interior point methods for linear programming. Tech-
nical Report 2004-01, Simon Bolivar University, Center for Statistical and Mathematical
Software, Caracas, Venezuela, 2004.

[43] A.N. TIKHONOV and V.Y. ARSENIN. Solutions of Ill-Posed Problems. V.H. Winston &
Sons, John Wiley & Sons, Washington D.C., 1977. Translation editor Fritz John.

[44] A. VAN der SLUIS. Condition numbers and equilibration of matrices. Numer. Math.,
14:14–23, 1969/1970.

[45] R.J. VANDERBEI. Linear Programming: Foundations and Extensions. Kluwer Acad.
Publ., Dordrecht, 1998.

[46] R.J. VANDERBEI. LOQO: an interior point code for quadratic programming. Optim.
Methods Softw., 11/12(1-4):451–484, 1999. Interior point methods.

[47] H. WEI. Numerical Stability in Linear Programming and Semidefinite Programming. PhD
thesis, University of Waterloo, 2006.

42

[48] H. WOLKOWICZ. Solving semidefinite programs using preconditioned conjugate gradients.
Optim. Methods Softw., 19(6):653–672, 2004.

[49] M.H. WRIGHT. Ill-conditioning and computational error in interior methods for nonlinear
programming. SIAM J. Optim., 9(1):84–111 (electronic), 1999.

[50] S. WRIGHT. Primal-Dual Interior-Point Methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, Pa, 1996.

[51] S. WRIGHT. Modifying SQP for degenerate problems. Technical report, Argonne National
Laboratory, 1997.

[52] S.J. WRIGHT. Stability of linear equations solvers in interior-point methods. SIAM J.
Matrix Anal. Appl., 16(4):1287–1307, 1995.

[53] S.J. WRIGHT. Stability of augmented system factorizations in interior-point methods.
SIAM J. Matrix Anal. Appl., 18(1):191–222, 1997.

[54] Y. ZHANG. User’s guide to LIPSOL: linear-programming interior point solvers V0.4. Op-
tim. Methods Softw., 11/12(1-4):385–396, 1999. Interior point methods.

43

