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Abstract

Black swan events, such as natural catastrophes and manmade market crashes, histori-
cally have a drastic negative influence on investments; and there is a discrepancy on losses
caused by these two types of disasters. In general, there is a recovery and it is of interest
to understand what type of investment strategies lead to better performance for investors.

In this thesis we study classical portfolio optimization, robust portfolio optimization
and some historical black swan events. We compare two main strategies: mean variance
optimization vs robust portfolio optimization on two types of black swan events: natural
vs anthropogenic. The comparison illustrates that robust portfolio optimization is much
more conservative, and has a shorter recovery time than classical portfolio optimization.
Moreover, the losses in the stock investment resulted from a natural disaster are very minor
compared to the losses resulted from an anthropogenic market crash.
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Part I

Introduction
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In this part, we give an introduction to our thesis. We illustrate the motivation of the
thesis, i.e., why we are interested in studying the classical portfolio optimization and robust
portfolio optimization. Then we present some main results from our empirical experiments.
We also outline the contents of our thesis.
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Chapter 1

General

In this thesis we study classical models and robust models of portfolio optimization. We
would like to compare these two approaches during and after a black swan event, i.e., an
unexpected abnormal event. A black swan event can cause massive market losses. We
study the mathematical tools that have been developed to reduce risks and find an optimal
allocation of investments. The main conclusions that we see are that recovery when using
robust portfolio optimization is faster than with classical portfolio optimization; and the
effect of a black swan event arising from nature on the stock market is minor compared to
an anthropogenic black swan event.

1.1 Motivation

In modern times, investment is common to individuals, families, and firms. Due to the glob-
alization of financial markets, investments have become easily accessible, and the variety
of investment opportunities has greatly increased. Major investment instruments include
e.g., bonds, stocks, derivatives and mutual funds. The goal of investment is to maximize
profits while minimizing risks, often by diversification of the investment instruments in the
portfolio. However, the performance of the future market is highly unpredictable.

Portfolio optimization attempts to find the optimal portfolio strategy subject to min-
imizing risk. This is the classical Markowitz philosophy of maximizing profit while not
exceeding an upper bound on the risk. Or conversely, one can minimize risk while main-
taining a minimum level of profit. There are other modifications used. Sharpe ratio is one
of the modifications discussed in this thesis.
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A more modern approach uses robust optimization in order to ensure against catas-
trophic changes, black swan events. We incorporate uncertainties of the parameters into
portfolio optimization. This is more of a min-max approach that looks at worst case
scenarios.

We would like to compare these two strategies using the data from some real world black
swan events. We make a comparison on the performance of these two different strategies
during and after black swan events.

1.2 Main Results

We study classical portfolio optimization and robust portfolio optimization; and we apply
data from historical black swan events to compare mean variance optimization (MVO )
and robust mean variance optimization (RMVO ).

We first obtain historical data of 50 stocks from the 2005 hurricane Katrina. We want
to look at the performance of MVO and RMVO during and after this natural disas-
ter. We compute the optimal portfolios utilizing MVO and RMVO . We observe that
MVO strategy selects a narrow range of stocks and is heavily skewed to some assets. To
the contrary, RMVO selects a diverse range of assets and has a shorter recovery period
after the disaster. The impacts of this natural catastrophe are minor on the stock market;
and the recovery is fast in general for both strategies.

Now we look at the performance of MVO and RMVO on the 2008 financial crisis.
We also compute the optimal portfolios utilizing MVO and RMVO ; and we conclude, as
expected, that RMVO is much more conservative and has a much shorter recovery period
than MVO . However, we observe that an anthropogenic disaster on the stock market has
drastic impacts on the stock market, and the recovery is very slow.

The discrepancy between MVO and RMVO on black swan events is huge and pro-
found. The losses resulted from a man made disaster takes a much longer time to recover
than the losses resulted from a natural catastrophe.

1.3 Outline

In Part II, we study various classical portfolio optimization models. In Chapter 2, we
introduce some financial concepts and present some fundamental portfolio optimization
problems. In Chapter 3, we introduce different methods to measure risks.
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In Part III, we add uncertainties of the parameters to the problems and study ro-
bust portfolio optimization. In Chapter 4, we introduce some background about robust
optimization. In Chapter 5, we study robust portfolio optimization problems.

In Part IV, we look anthropogenic black swan events and those that arise from natural
events. We compare the classical portfolio optimization with the robust portfolio opti-
mization by testing data from real catastrophes. In Chapter 6, we study some historical
black swan events and their effects on the financial markets. In Chapter 7, we compare the
performance of the classical portfolio optimization with the robust portfolio optimization
on black swan event.

In Part V, we conclude our thesis. In Chapter 8, we present our main results and
discuss some future work.
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Part II

Classical Portfolio Optimization
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In this part we study classical portfolio optimization theory, including some widely
used risk measures and the portfolio optimization problems associated with these risk
measures. We first follow the book [13] to give an introduction on the background of
portfolio optimization. Then we study some popular risk measures: Mean Absolute De-
viation(MAD), Semi-Mean Absolute Deviation(Semi-MAD) Mean Variance Optimiza-
tion(MVO), Value-at-Risk(VaR) and Conditional Value-at-Risk(CVaR). The main ref-
erences are books [8, 13] and paper [17].
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Chapter 2

Background on Portfolio
Optimization

In this chapter, we introduce some terminologies and some fundamental portfolio optimiza-
tion models to give a general idea of portfolio optimization.

2.1 Fundamental Models on Optimal Portfolios

In this section, we give some fundamental portfolio optimization models, and we analyze
their objective functions and constraints. This section mainly follows from [8], [13] .

Following the concepts and notations from the book [13], we introduce some basic
terminologies in finance:

• Capital: a certain amount of money that an investor wants to invest;

• Asset: any specific tradable financial instrument;

• Portfolio: the list of proportions of the total capital invested in the various assets.

We number the set of available assets using N = {1, 2, ..., n}. Let xj denote the
percentage of the available capital invested in asset j; and let x = (xj)j=1,...,n be the
vector of decision variables xj, i.e., this defines the portfolio. We then also say that x is
a portfolio or represents the portfolio. Following the book [13], we assume that we must

8



use capital to buy assets, i.e., short sales are not allowed. Thus we have a non-negativity
constraint:

xj ≥ 0 j = 1, ..., n. (2.1.1)

This is equivalent to
x ≥ 0.

Moreover, the sum of the percentages invested in the assets is one, i.e., we have a basic
budget constraint1:

n∑
j=1

xj = 1. (2.1.2)

Let Rj be a random variable that represents the rate of return for asset j at the target
time with given mean µj = E{Rj}. We denote the portfolio rate of return associated with
portfolio x as Rx =

∑n
j=1Rjxj. This is also the weighted sum of the rates of the assets.

The mean rate of return of portfolio x is defined as:

µ(x) = E{Rx} = µTx =
n∑
j=1

µjxj,

where µ = (µj)j=1,..,n is a vector representing the mean rate of return of assets.

Denote the measure of risk associated with portfolio x as %(x). The risk measure
expresses the uncertainty of the return of all the assets. A risk-free portfolio has %(x) = 0,
i.e., this means that the rate of return of portfolio x is known with certainty. For any
other portfolio, we take positive values of %(x). The risk measure we consider here is also
called the dispersion measure, which quantifies the level of variability of the portfolio rate
of return around its expected value. We will introduce a few methods to measure risks in
the following sections.

Now we can build up a mean-risk bi-criteria portfolio optimization problem:

max [µ(x),−%(x)]

s.t.
∑n

j=1 xj = 1

x ≥ 0.

(2.1.3)

The objective function maximizes the mean rate of return of portfolio x and minimizes
the risk measure. In reality, it is not possible to maximize the mean return and minimize

1This budget constraint is equivalent to eTx = 1, where e is an n-dimensional vector of 1’s.
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the risk at the same time. A portfolio with high mean return is usually highly risky and
vice-versa. Hence, we need to adjust the model to allow for the bi-criteria objective. We
now present two views.

One common approach is to impose a lower bound µ0 on the expected rate of return
while minimizing the risk. This yields the following formulation:

min %(x) (risk)

s.t. µ(x) ≥ µ0 (return)∑n
j=1 xj = 1 (budget)

x ≥ 0.

(2.1.4)

Another approach flips the problem and bounds the risk while maximizing the return.
This approach corresponds to paper [2] and yields the following problem:

max µ(x) (return)

s.t. %(x) ≤ %0 (risk)∑n
j=1 xj = 1 (budget)

x ≥ 0.

(2.1.5)

In addition, we would like to introduce the mean-safety optimization problem. The
concept of safety measure is introduced in order to overcome the weakness of risk measure.
Each risk measure %(x) has a well-defined corresponding safety measure µ(x)− %(x), and
the mean-safety optimization problem is modeled as:

max [µ(x), µ(x)− %(x)]

s.t.
∑n

j=1 xj = 1

x ≥ 0.

(2.1.6)

So far, we have given some fundamental portfolio optimization problems (2.1.3) to (2.1.6).
In the rest of Part II, we will discuss methods to measure risk and use more sophisticated
portfolio optimization models that capture the interests of investors.
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Chapter 3

Measuring Risks

In Section 2.1, we introduce a few portfolio optimization models but do not specify risk
measures. In this chapter, we discuss various methods to measure risks and build more
sophisticated and useful portfolio optimization models.

3.1 LP : Mean Absolute Deviation

In the Mean Absolute Deviation (MAD ) model, we measure the risk through the MAD of
portfolio return. The MAD is a dispersion measure that measures the average of the
absolute value of the difference between the random variable of portfolio return Rx and its
expected value. The MAD is defined as:

δ(x) := E{|Rx − E{Rx}|} = E{|
n∑
j=1

Rjxj − E{
n∑
j=1

Rjxj}|}, (3.1.1)

where the random variable Rj is defined in Section 2.1. The references for the following
material are [8, 13].

We introduce the concept of scenario to look at the uncertainty of the return rates of
the assets at the target time. A scenario is defined as a possible situation that can happen
at a target time t, t = 1, ..., T . Denote the probability of the scenario corresponding to
target time t by pt, then

∑T
t=1 pt = 1. For each portfolio return Rj, we assume that its

realization rjt corresponding to scenario t is known. We can define the scenario t by a set
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of the returns of all the assets {rjt, j = 1, ..., n, t = 1, ..., T}. The expected return of asset
j is computed as:

µj =
T∑
t=1

ptrjt. (3.1.2)

The return yt of a portfolio x in scenario t is computed as:

yt =
n∑
j=1

rjtxj. (3.1.3)

Moreover, the expected return of the portfolio µ(x) is computed as:

µ(x) = E{Rx} =
T∑
t=1

ptyt =
T∑
t=1

pt

n∑
j=1

rjtxj =
n∑
j=1

xj

T∑
t=1

ptrjt =
n∑
j=1

µjxj. (3.1.4)

We can rewrite the MAD as:

δ(x) =
T∑
t=1

pt

(∣∣∣∣ n∑
j=1

rjtxj −
n∑
j=1

µjxj

∣∣∣∣) =
T∑
t=1

pt(|yt − µ|). (3.1.5)

The portfolio optimization problem is modelled as:

min δ(x) =
∑T

t=1 pt(|yt − µ|)

s.t. µ(x) = µTx =
∑n

j=1 µjxj

µ(x) ≥ µ0∑n
j=1 xj = 1

x ≥ 0.

(3.1.6)

Observe that this model is not a linear program. However, we can reformulate (3.1.6) into
a linear model. Define dt = yt − µ, and let dt = d+

t − d−t such that d+
t ≥ 0, d−t ≥ 0. Then
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(3.1.6) can be formulated as:

min δ(x) =
∑T

t=1 pt|dt| =
∑T

t=1 pt(d
+
t + d−t )

s.t. µ(x) = µTx =
∑n

j=1 µjxj ≥ µ0

d+
t − d−t + µ =

∑n
j=1 rjtxj t = 1, ..., T∑n

j=1 xj = 1

x ≥ 0, d+
t ≥ 0, d−t ≥ 0.

(3.1.7)

Now we have a linear program that minimizes the MAD .

3.1.1 Semi Mean Absolute Deviation

In the Semi Mean Absolute Deviation (Semi-MAD ) model, we assume that the rate of
return of the portfolio has a normal distribution [13]. Then, the proportionality relation

between the MAD and the standard deviation is δ(x) =
√

2
π
σ(x). Since investors are

concerned with under-performance of a portfolio, we consider risks only that deviate below
the expected return in the Semi-MAD model. The Semi-MAD is defined as:

δ̄(x) := E{max{0,E{
n∑
j=1

Rjxj} −
n∑
j=1

Rjxj}}. (3.1.8)

Adapted from the MAD optimization problem (3.1.7), the Semi-MAD optimization
problem is formulated as follows:

min δ̄(x) =
∑T

t=1 ptdt
s.t. µ(x) = µTx =

∑n
j=1 µjxj

µ(x) ≥ µ0

dt ≥ µ− yt t = 1, ..., T

yt =
∑n

j=1 rjtxj t = 1, ..., T

dt ≥ 0∑n
j=1 xj = 1

x ≥ 0.

(3.1.9)

Theorem 3.1.1 ( [13]). Minimizing the MAD is equivalent to minimizing the Semi-MAD
as δ(x) = 2δ̄(x).
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3.1.2 Accounting for Transaction Costs

When buying and selling an assent, transaction costs including commissions and other
handling charges may incur. Here we present two types of transaction costs frequently used
in practice: fixed and proportional transaction costs; and we build mixed integer models
to incorporate transaction costs. Buying and selling an asset often incur transaction costs,
and high transaction levels may result in expensive costs. Investors tend to invest capital
in a relatively small number of assets since transaction costs may reduce the net portfolio
return. The following material for this section is heavily based on the book [13].

We let variable Xj, j = 1, ..., n, be the amount of money invested in asset j. Let C̄
be a constant representing the available capital, the total amount of money including the
investment in assets and transaction costs. Let Kj(Yj) indicate the transaction costs paid
for asset j. We assume that transaction costs for the assets are independent from each
other, then the transaction cost function for a portfolio or the total amount of transaction
costs is

K(X1, ..., Xn) =
n∑
j=1

Kj(Xj).

First, we consider fixed transaction cost that is independent of the amount of money
invested in an asset. Let uj be a non-negative constant representing the transaction cost
for asset j, and let uj be 0 if selecting asset j does not incur any fixed transaction cost.
We express the fixed transaction cost for asset j as

Kj(Xj) =

{
uj if Xj > 0,

0 otherwise.

We call this cost structure Pure Fixed Cost (PFC).

For each asset, we introduce a binary variable vj, j = 1, ..., n. We assign 1 to variable
vj if asset j is selected in our portfolio, and 0 otherwise. Then we can express the above
function in a linear form:

Kj(Xj) = ujvj.

Moreover, we have the following constraint:

Ljvj ≤ Xj ≤ Ujvj, j = 1, ..., n,

where Lj and Uj are positive lower and upper bounds. Observe that Lj cannot be 0, and
Uj can possibly equal to C̄.
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Next, we introduce proportional transaction costs that are variables and depend on the
amount of money invested in an asset. Let wj denote the rate specified for asset j, and let
wj be 0 if proportional transaction cost does not incur for asset j. The transaction cost is
a percentage of the quantity invested in asset j and can be expressed as:

Kj(Xj) = wjXj.

The above cost structure is called Pure Proportional Cost (PPC).

When selecting an asset j for a portfolio, either fixed transaction cost or proportional
transaction cost or both may incur. We express the total transaction cost in a portfolio as

n∑
j=1

Kj(Xj) =
n∑
j=1

ujvj +
n∑
j=1

wjXj.

Now we consider the portfolio optimization problem accounting for transaction costs.
We modify the constraint on expected return as follows:

n∑
j=1

µjXj −
n∑
j=1

Kj(Xj) ≥ µ0C̄.

The budget constraint is modified as

n∑
j=1

Xj +
n∑
j=1

wjXj +
n∑
j=1

ujvj = C̄.

The deviation constraint can be expressed as

n∑
j=1

µjXj −
n∑
j=1

(rjt − wj)Xj +
n∑
j=1

ujvj ≤ dt t = 1, ..., T.

Suppose we use Semi-MAD for our risk measure, we can adapt (3.1.9) and express the
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portfolio optimization problem with transaction costs as

min
∑T

t=1 ptdt

s.t. Ljvj ≤ Xj ≤ Ujvj j = 1, ..., n∑n
j=1(µj − wj)Xj −

∑n
j=1 ujvj ≥ µ0C̄∑n

j=1 µjXj −
∑n

j=1(rjt − wj)Xj +
∑n

j=1 ujvj ≤ dt t = 1, ..., T∑n
j=1 Xj +

∑n
j=1 wjXj +

∑n
j=1 ujvj = C̄

dt ≥ 0 t = 1, ..., T

Xj ≥ 0 j = 1, ..., n

vj ∈ {0, 1} j = 1, ..., n.

(3.1.10)

3.1.3 MAD Example

In this section, we present an example using MAD, and the MATLAB Financial Toolbox
[14] to find optimal portfolios. We work with a list of 30 US stocks from diverse industries.
We obtain the historical daily stock prices from the first trading day of year 2000 to the
last trading day of year 2010, using Yahoo Finance. We assume that cash is risk free and
has a zero interest rate. First, we calculate the daily rate of return for all the stocks. We
use the following formula to compute daily rate of return(DRoR) for stocks based on the
daily price values:

DRoR(i) =
Price(i+ 1)− Price(i)

Price(i)
, (percentage return).

We create a matrix AssetReturns with the results for all the stocks. To obtain the
mean and the covariance matrix, we use the MATLAB commands mean(AssetReturns)
and cov(AssetReturns). Now we have set up the preliminaries.

To implement the MAD model, we create a PortfolioMAD object p in MATLAB, using
the MATLAB command PortfolioMAD. To set up AssetScenarios, we use the MATLAB
command stimulateNormalScenariosbyData to generate 200, 000 number of scenarios based
on our data. We also set up the budget constraint and the non-negativity constraint by
MATLAB command setDefaultConstraints. After we construct the properties for p, we
plot the efficient frontier in Figure 3.1.1. In this plot, the x-axis is the mean absolute
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deviation; and the y-axis is the daily mean rate of return. From the code we obtain: the
optimal portfolio with daily target return 0.1% ; and the optimal portfolio with daily target
risk 2% in Table 3.1.1.

Figure 3.1.1: Example: MAD Efficient Frontier

Ticker Weight(%)
BRK 11.8722

AAPL 44.2148
MCD 2.22366
CVX 13.9044
CAT 26.3887

AMZN 1.39628

Ticker Weight(%)
AAPL 70.2808
CAT 28.5737

AMZN 1.14551

Table 3.1.1: Left: Optimal Portfolio with 0.1% Target Return; Right: Optimal Portfolio
with 2% Target Risk

Now suppose that selling an asset incurs 0.05% transaction costs; and buying an asset
also incurs 0.05% transaction costs. We add these properties to p by using MATLAB
command setCosts. We obtain a new efficient frontier in Figure 3.1.2. We observe that the
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efficient frontier with transaction costs is below the original efficient frontier. With a given
target return, the corresponding risk is higher in the efficient frontier with transaction
costs. Conversely, with a given target risk, the corresponding return is lower.

Figure 3.1.2: Example: MAD Efficient Frontier with Trans. Costs

3.2 QP: Mean Variance Optimization

In 1990, Harry Markowitz won the Nobel prize in Economics for his contributions in Modern
Portfolio Theory. In his ground breaking work, he suggested to measure the risk % based
on the variance

σ2 = E{(R− E{R})2}. (3.2.1)

The variance, or the risk, of a portfolio can be reduced through diversification. A
rational investor spreads investments over different assets since investing the entire capital
in a single asset is highly risky. This activity is called diversification. Portfolios from the
same sector tend to move in the same direction, and diversification reduces volatility of
portfolio performance. The following material in this section is heavily based on material
from [8,13] and the references therein.
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Let ρij represent the correlation coefficient between the returns of assets i and j, where
we set ρii = 1. The correlation coefficient ρij is positive if pairs of assets belong to same
sector; and it is negative if asset i and asset j move in opposite directions, i.e., are negatively
correlated.

Let σj denote the standard deviation of the return of asset j, and let Σ = (σij) ∈ Rn×n

be the symmetric covariance matrix such that σii = σ2
i and σij = ρijσiσj for i 6= j. Then,

we can represent the variance of portfolio x as follows:

σ2(x) =
∑
i,j

ρijσiσjxixj = xTΣx. (3.2.2)

Note that the variance is always non-negative, i.e., xTΣx ≥ 0, ∀x, and it follows that Σ is
positive semi-definite.

Recall that µj is the expected return of asset j, (3.1.2). The Markowitz mean-variance
optimization (MVO) problem can now be formulated using (2.1.4) as:

min 1
2
xTΣx

s.t. µ(x) = µTx =
∑n

j=1 µjxj ≥ µ0 (lower bound on expected return)∑n
j=1 xj = 1

x ≥ 0.

(3.2.3)

Now we have a quadratic optimization problem. The MVO problem (3.2.3) is equivalent
to each of the following two problems:

max µTx

s.t. 1
2
xTΣx ≤ σ2

0∑n
j=1 xj = 1

x ≥ 0,

(3.2.4)

where σ2
0 is a given upper bound on the variance of the portfolio; and

max µTx− λxTΣx

s.t.
∑n

j=1 xj = 1

x ≥ 0,

(3.2.5)
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where λ is a risk-aversion constant. The equivalence depends on the particular choices of
the constants µ0, σ

2
0, λ.

Observe that (3.2.4) has a convex quadratic constraint and hence is a non-linear pro-
gramming (NLP) problem. QPs and linear objectives with convex quadratic constraints
(3.2.3) to (3.2.5) can be effectively solved by interior point methods.

3.2.1 Maximizing Sharpe Ratio

Before we discuss the Sharpe ratio, we first introduce the efficient frontier developed
by Harry Markowitz. The efficient frontier graphically presents a set of optimal portfolios
maximizing the expected return for a given level of risk or minimizing the risk for a defined
level of expected return. An efficient frontier plots the risk on the x-axis and the mean
rate of return on the y-axis. The risk is commonly depicted by the standard deviation.

Sharpe ratio introduced by William F. Sharpe is defined as the difference between
the return of an investment and the risk-free return over the standard deviation of the
investment. Mathematically, the formula of Sharpe ratio is expressed as:

h(x) =
rp − rf
σp

where rp is return of portfolio, rf is risk-free rate, and σp is the standard deviation of
the portfolio’s excess return. In a graph, the Sharpe point is the tangency point of the
efficient frontier and the line going through the point representing the risk-free asset. The
Sharpe ratio is a measure of return characterizing how well the return compensates for the
risk taken. More specifically, the ratio depicts the excess return when holding a riskier
asset. A high Sharpe ratio is more attractive to investors as the return of a portfolio is
better. A negative Sharpe ratio is possible when the risk-free rate (zero) is greater than
the portfolio’s rate of return. The portfolio optimization problem maximizing the Sharpe
ratio is given below:

maxx h(x) =
µTx− rf
(xTΣx)1/2

s.t.
∑n

j=1 xj = 1

x ≥ 0.

(3.2.6)
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3.2.2 MVO Example

In the following, we present an example using MVO. The example works with the same
30 US stocks in Section 3.1.3; and we set up the preliminaries using the same approach.

We create a Portfolio object p in MATLAB [14] by using command Portfolio. Note
that this command Portfolio specifically implements the MVO model in MATLAB. We
now would like to add properties to p. We implement the MATLAB commands ” estimate-
AssetMoments to estimate mean and covariance of asset returns. We use the MATLAB
function setDefaultConstraints to set up constraints such that the portfolio weights are
non-negative and sum up to 1. Then, we apply the MATLAB function estimateFrontier
and estimatePortMoments to draw the efficient frontier Figure 3.2.1. Recall that the effi-
cient frontier plots the risks or the standard deviation on the x-axis and the mean rate of
return on the y-axis. We use MATLAB functions estimateFrontierByReturn, estimateFron-
tierByRisk, estimateMaxSharpeRatio to emphasize the three dots in the plot. We find the
optimal portfolios corresponding to the three dots in Table 3.2.1. The left table presents
the optimal portfolio with 0.1% target return corresponding to the red dot; the middle
table presents the optimal portfolio with 2.5% target risk corresponding to the yellow dot;
the right table presents the optimal portfolio with maximum Sharpe ratio corresponding
to the green dot. Figure 3.2.2 confirms that the green dot indeed maximizes Sharpe ratio.

Ticker Weight(%)
BRK 12.3132

AAPL 45.7407
MCD 3.22771
CVX 6.29988
CAT 26.8188

AMZN 5.59967

Ticker Weight(%)
AAPL 67.1053
CAT 25.1027

AMZN 7.79192

Ticker Weight(%)
BRK 14.6793

AAPL 39.614
MCD 7.23032
CVX 10.5521
CAT 23.1875

AMZN 4.73677

Table 3.2.1: Left: Optimal Portfolio with 0.1% Target Return; Middle: Optimal Portfolio
with 2.5% Target Risk; Right: Optimal Portfolio with Max Sharpe Ratio

3.3 SP: VaR and CVaR

In this section, we discuss Value-at-Risk, (VaR), and its relative Conditional Value-at-
Risk, (CVaR), developed by financial engineers. VaR is used to reduce risk of high losses.
CVaR is also known as expected shortfall, mean excess loss, or tail VaR . We present a
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Figure 3.2.1: Example: MVO Efficient Frontier

stochastic programming, SP model with CVaR as risk measure. A SP is an optimization
problem with data uncertainty, and we assume that the uncertain parameters are random
variables with known probability distributions. The decision variables in an SP can be
anticipative and/or adaptive. An anticipative decision variable cannot be made depending
on future observations or partial realizations of the random parameters; an adaptive deci-
sion variable can be made after some or all of the random parameters are observed. An
SP including both anticipative and adaptive variables is called a recourse model. A generic
theoretical form of a two-stage stochastic linear program with recourse has the following
form:

maxx aTx+ E[maxy(ω)c(ω)Ty(ω)]

s.t. Ax = b

B(ω)x+ C(ω)y(ω) = d(ω)

x ≥ 0

y(ω) ≥ 0,

(3.3.1)

where x is the first-stage decisions corresponding to the deterministic constraints, Ax = b,
and y(ω) is the second-stage decisions that are made after a random event ω is observed
corresponding to the stochastic constraints involving B(ω), c(ω) and d(ω). The following
material for this section mainly follows from the paper [17] and the book [8].
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Figure 3.2.2: Example: Sharpe Ratio

VaR is a measure representing the risk of loss for investments; it estimates the max-
imum loss with a given probability level over a fixed period of time. Consider a random
variable Y representing loss on a portfolio with a given probability level α ∈ (0, 1) over a
certain time period (loss positive and gains negative). Mathematically, we use VaRα (Y ),
i.e., this is a function of the confidence level α and is defined as

VaRα (Y ) := min{γ : FY (γ) ≥ α}, (3.3.2)

where FY is the cumulative distribution function for Y . Informally, VaRα , as expressed
in (3.3.2), means that the probability of the maximum possible loss of a set of investments,
in a given time period, is at most α. For example, if a portfolio has a one day 1% VaR of
$1000, that means that there is a 0.01 probability that the portfolio will lose a value of
$1000 or more over a one day period. Alternatively, a loss of $1000 or more on this portfolio
is expected to happen in one out of a hundred days.

The risk measure VaR is widely used in financial industries; however, it lacks the sub-
additive property defined for a function f as:

f(x+ y) ≤ f(x) + f(y),∀x, y.

VaR of a combined portfolio can be larger than the sum of two individual VaRs. This vio-
lates the property that risks can be reduced through diversification. Moreover, VaR ignores
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the losses beyond the confidence level. In order to overcome the undesirable features of
VaR, we introduce a coherent risk measure with superior mathematical properties —
Conditional Value-at-Risk, (CVaR ), also known as the expected shortfall, ES .

Derived from VaR, CVaR is defined as the weighted average of VaR and losses ex-
ceeding VaR . CVaR is more sensitive to the loss distributions at the tails than VaR.
Mathematically, we use CVaRα defined as

CVaRα :=
1

α

∫ α

0

VaR γ(Y )dγ.

For example, if the CVaR for a portfolio is $1000 for the 1% tail, that means that the
average loss on the worst 1% of the possible outcomes for the portfolio is $1000.

Now we want to build an optimization problem minimizing CVaR. Consider a portfolio
x ∈ Rn and a random vector y ∈ Rm with a probability density function q(y). The vector
y represents the uncertainties that can affect the loss. Let f(x, y) be a random variable
representing the loss associated with portfolio x and induced by the random vector y. In
this specific setting, the VaRα is defined as

VaR α(x) := min{γ ∈ R : Ψ(x, γ) ≥ α},

where

Ψ(x, γ) :=

∫
f(x,y)<γ

q(y)dy

is the cumulative loss distribution function. The CVaRα corresponding to portfolio x is
defined as

CVaRα (x) :=
1

1− α

∫
f(x,y)≥VaRα (x)

f(x, y)q(y)dy.

Observe that

CVaR α(x) =
1

1− α

∫
f(x,y)≥VaRα(x)

f(x, y)q(y)dy

≥ 1

1− α

∫
f(x,y)≥VaRα(x)

VaR α(x)q(y)dy

=
VaR α(x)

1− α

∫
f(x,y)≥VaRα(x)

q(y)dy

≥ VaR α(x),

24



indicating that CVaR of a portfolio is at least as large as its VaR .

In optimization, CVaR is a coherent risk measure [3] and thus superior to VaR. We will
present an optimization problem minimizing CVaR. Since the definition of CVaR involves
VaR, we consider an auxiliary function to simplify the problem:

Fα(x, γ) := γ +
1

1− α

∫
f(x,y)≥γ

(f(x, γ)− γ)q(y)dy

= γ +
1

1− α

∫
(f(x, y)− γ)+q(y)dy

where (f(x, y)− γ)+ = max{f(x, y)− γ, 0}.

Theorem 3.3.1. ( [8,17]) The function Fα(x, y) has the following properties for the com-
putation of VaR and CVaR:

1. Fα(x, γ) is a convex function of γ.

2. VaR α(x) is a minimizer Fα(x, γ) with respect to γ, i.e., VaR α(x) = argminγFα(x, γ).

3. CVaR α(x) equals the minimal value of the function Fα(x, γ) with respect to γ, i.e.,
minγFα(x, γ) = CVaR α(x).

Consequently, we obtain

minx∈Y CVaR α(x) = minx∈Y,γFα(x, γ). (3.3.3)

Since it is impossible to determine the function p(y), we introduce scenarios o = 1, ..., O.
We assume that all scenarios have the same probability, and each yo represents some value
from historical data or computer stimulation. Define

F̃α(x, γ) := γ +
1

(1− α)O

O∑
o=1

(f(x, y)− γ)+.
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as an approximation to the function Fα(x, γ). Now we approximate (3.3.3) with F̃α(x, γ):

minx∈Y,γ F̃α(x, γ) = γ +
1

(1− α)O

O∑
o=1

(f(x, yo)− γ)+.

We introduce an artificial variable zs to simplify the problem:

minx,z,γ γ + 1
(1−α)O

∑O
o=1 zo

s.t. zo ≥ f(x, yo)− γ, o = 1, ..., O,

zo ≥ 0, o = 1, ..., O,∑n
j=1 xj = 1

x ≥ 0.

(3.3.4)

Note that zo can be larger than max{f(x, yo) − γ, 0} and still be feasible. However,
the objective is a minimization involving a positive zo. The optimal solution can never
have zo larger than max{f(x, yo) − γ, 0}, and indeed the optimal solution will have zo =
max{f(x, yo) − γ, 0} precisely. Therefore, zo is a valid substitution for (f(x, yo) − γ)+. If
f(x, yo) is a linear function, the above problem (3.3.4) is simply an LP and can be solved
by the simplex method.

We can also modify problem (3.3.4) to maximize the expected return as follows:

maxx,z,γ µTx

s.t. γ +
1

(1− αj)O

O∑
o=1

zo ≤ Qαj , j = 1, .., J,

zo ≥ f(x, yo)− γ, o = 1, ..., O,

zo ≥ 0, o = 1, ..., O,

n∑
j=1

xj = 1

x ≥ 0,

where J is an index set for different confidence levels and Qαj is the maximum tolerable
CVaR value at confidence level αj.
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In the paper [1], the authors apply model (3.3.4) to minimize portfolio credit risk .
Credit risk is the risk of default that arises from a trading partner failing to fulfilling
their obligations on the due date. The authors consider a portfolio of 197 bonds issued
by 86 obligors in 29 countries. The portfolio is worth 8.8 billion, and the duration is
approximately 5 years. As a result, the test portfolio has an expected portfolio return of
7.26% and an expected loss of 95 million dollars with standard deviation of 232 million of
dollars for one year loss distribution.

3.3.1 CVaR Example

In this section, we present an example using CVaR , and the MATLAB Financial Toolbox
[14] to find optimal portfolios. We work with the same data of 30 US stocks in Section 3.1.3,
and we set up the preliminaries using the same approach.

To implement the CVaR model, we create a PortfolioCVaR object p in MATLAB, using
the MATLAB command PortfolioCVaR. To set up AssetScenarios, we use the MATLAB
command stimulateNormalScenariosbyData to generate 200, 000 number of scenarios based
on our data. We set the probability level α to be 95% in the example by using the MATLAB
command setProbabilityLevel. We also set up the budget constraint and the non-negativity
constraint by MATLAB command setDefaultConstraints. After we construct the properties
for p, we plot the efficient frontier in Figure 3.3.1. In this plot, the x-axis is the conditional
value-at-risk; and the y-axis is the daily mean rate of return. For example, setting the
x-axis (conditional value-at-risk) = 4% means that the average loss in 5% worst cases must
not exceed 4% of the initial portfolio value; and the maximum rate of return corresponding
to this point on the efficient frontier is approximately 0.092%. From the code we obtain:
the optimal portfolio with daily target return 0.1% ; and the optimal portfolio with daily
target risk 3% in Table 3.3.1.

Ticker Weight(%)
BRK 11.162

AAPL 58.1207
CVX 8.69708
CAT 21.6539

AMZN 0.366326

Ticker Weight(%)
BRK 19.1011
PG 9.92408

AAPL 29.6692
MCD 10.2427
CVX 20.174
CAT 10.8889

Table 3.3.1: Left: Optimal Portfolio with 0.1% Target Return; Right: Optimal Portfolio
with 3% Target Risk
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Figure 3.3.1: Example: CVaR Efficient Frontier
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Part III

Robust Portfolio Optimization
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In many optimization problems, the inputs (data) to the problem are unknown or
uncertain. The data uncertainty has a great impact on the optimal solution we are looking
for, as a small change in the data may result in a drastically different optimal solution.
In this part of the thesis, we study the background of robust optimization and how to
incorporate robustness into portfolio optimization.
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Chapter 4

Background on Robust Optimization

This chapter gives some backgrounds on robust optimization, including how to include
uncertainties in optimization problems and duality of robust optimization problems.

4.1 Optimizing with Uncertainties

This section follows closely from the book Optimization Methods in Finance by G. Cor-
nuejols, J. Peña and R. Tütüncü [8].

Robust optimization is a field of optimization that deals with data uncertainty. The
objective of a robust optimization problem is to find the best solution over all possible
realizations with parameters restricted to the uncertainty sets. We use uncertainty sets to
describe the uncertainty in the parameters. There are four common types of uncertainty
sets in robust optimization problems for a specific parameter:

• Uncertainty sets representing a finite number of the possible values of the parameter:
U = {a1, a2, ..., ak}.

• Uncertainty sets representing the convex hull for a finite number of the possible val-
ues of the parameter: U = conv(a1, a2, ..., ak).

• Uncertainty sets representing an interval of the parameter: U = {a : l ≤ a ≤ u}.

• Ellipsoidal uncertainty sets: U = {a : a = a0 +Mu, ||u|| ≤ 1}.
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The shape and the size of the uncertainty sets have a great impact on the robust solutions.

There are a few variations on the definitions and interpretations of robustness. Next, we
will introduce constraint robustness and objective robustness. Data uncertainty affects the
feasibility of potential solutions in constraint robustness and the proximity of the generated
solutions to optimality in objective robustness.

Constraint robustness refers to the situation where the uncertainty of data is in the
constraint. Consider the following optimization problem:

minx ξ(ω)

s.t. G(ω, a) ∈ H,
(4.1.1)

where ω is the decision variable, ξ is the certain objective function, G and H are the
certain structural elements of the constraints, and a is the uncertain parameter. Let U be
the uncertainty set containing all the possible values of the uncertain parameter a. Then,
a constraint-robust optimization problem of (4.1.1) is formed as:

minω ξ(ω)

s.t. G(ω, a) ∈ H, ∀a ∈ U .
(4.1.2)

We seek for a solution that is feasible for all possible values of the uncertain inputs in this
problem.

Objective robustness refers to the situation where the uncertainty of data is in the
objective function. Consider the following optimization problem:

minω φ(ω, a)

s.t. ω ∈ I,
(4.1.3)

where φ is the objective function depending on the uncertain parameter a, and I is the
certain feasible set. As before, let U be the uncertainty set containing all the possible
values of the uncertain parameter a. Then, an objective-robust optimization problem of
(4.1.3) is formed as:

minω∈I maxa∈U φ(ω, a).

Here we seek for solutions that are close to the optimal solution for all possible realizations
of the uncertain parameters. Such solutions are hard to find especially when the uncertainty
set is large. Alternatively, we look for solutions whose worst-case behaviour is optimized.
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The worst-case behaviour of a solution refers to the value of the objective function for the
worst possible realization of the uncertain parameter.

Now consider the following optimization problem when we have uncertain parameters
in both the objective function and the constraints:

minω φ(ω, a)

s.t. G(ω, a) ∈ H.
(4.1.4)

We can reformulate (4.1.4) to fit the form (4.1.2) as follows:

minω ι

s.t. ι− φ(ω, a) ≥ 0

G(ω, a) ∈ H.
(4.1.5)

Note that (4.1.4) and (4.1.5) are equivalent, and (4.1.5) has its all uncertainties in the
constraints.

4.2 Duality

In this section, we study the duality associated with robust counterparts of uncertain
convex programs. We will show that the relation primal worst equals dual best is valid in
robust optimization. The reference is the paper by Beck and Ben-Tal [5].

Consider a general uncertain optimization problem:

(P )

minω Ω(ω, a)

s.t. gi(ω, ci) ≤ 0, i = 1, ...,m,

ω ∈ Rn,

(4.2.1)

where ω is the decision variable, Ω and gi are convex functions, a ∈ Rp and ci ∈ Rqi are
the uncertain parameters restricted to convex compact uncertainty sets:

a ∈ A, ci ∈ Ci, i = 1, ...,m.
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The primal uncertain problem (P) has an uncertain dual problem (D) with the same
uncertain parameters:

(D) maxθ≥0minω

{
Ω(ω, a) +

m∑
i=1

θigi(ω, ci)

}
.

Define a vector ω to be a robust feasible solution of (P) if for every i = 1, ...,m:

gi(ω, ci) ≤ 0, for every ci ∈ Ci.

We can rewrite the constraints in (4.2.1) as

Gi(ω) ≤ 0, i = 1, ..,m,

where Gi(ω) = maxci∈Cigi(ω, ci).

The robust counterpart (RC) of problem (4.2.1) is formulated as follows:

(RC)

min χ(ω) = maxa∈AΩ(ω, a)

s.t. Gi(ω) ≤ 0, i = 1, ...,m,

ω ∈ Rn.

(4.2.2)

The functions χ and Gi are point-wise maxima of convex functions and thus convex. Hence,
the robust counterpart (4.2.2) is a convex optimization problem and thus has a convex dual
problem. The dual of RC (call it DRC) is formulated as:

(DRC) maxθ≥0minω

{
χ(ω) +

m∑
i=1

θiGi(ω)

}
.

The Slater’s condition states that the feasible region must have an interior point. Assume
that the Slater constraint qualification holds for (RC), and (RC) is bounded below. Then
we have val(RC)=val(DRC) by the Strong Duality Theorem [5].

Define a vector ω to be an optimistic feasible solution of (P) if, and only if, for every
i = 1, ...,m:

g(ω, ci) ≤ 0 for some ci ∈ Ci.
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The optimistic counterpart (OC) of (P) consists of minimizing the best possible objective
function over the set of optimistic feasible solutions. Then the optimistic counterpart of
problem (4.2.1) is formulated as:

(OC)

min [mina∈AΩ(ω, a)]

s.t. gi(ω, ci) ≤ 0 for some ci ∈ Ci, i = 1, ...,m,

ω ∈ Rn.

(4.2.3)

Let χ̂(ω) = mina∈AΩ(ω, a) and Ĝi(ω, ci) = minci∈Cig(ω, ci). Then above problem (4.2.3)
can be formulated as:

min χ̂(ω)

s.t. Ĝi(ω) ≤ 0, i = 1, ...,m,

ω ∈ Rn.

(4.2.4)

The above problem is not convex in general.

The optimistic counterpart of (D) (call it DOC) is

(DOC) maxθ≥0maxa∈A,ci∈Ciminω

{
Ω(ω, a) +

m∑
i=1

θigi(ω, ci)

}
.

Under standard assumptions [5], the optimal values of (DOC) and (DRC) are equal.

Theorem 4.2.1 ( [5]). Consider the general convex problem (P) (problem (4.2.1)), val(DOC)≤
val(DRC). If in addition, the functions f and gi are concave with respect to the unknown
parameters u and vi, then the following inequality holds:

val(DOC) ≤ val(DRC).
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Chapter 5

Robust Portfolio Selection

The future values of security prices, interest rates, etc. are unknown in advance but can
be estimated in many financial optimization problems, and robust optimization perfectly
describes such characteristics. The references for this chapter are [6–9].

5.1 Robust Multi-Period Portfolio Selection

In this section, we follow [8] closely to come up with a robust multi-period portfolio selection
model. Suppose an investor wants to adjust his portfolio selections in the next L investment
periods and maximize his wealth at the end of period L. Let x0 = (x0

1, x
0
2, ..., x

0
n) be the

current portfolio that an investor holds where xlj represents the number of shares of asset i
in the portfolio, for j = 1, ..., n, and let x0

0 be his cash holdings. Let slj denote the number
of shares of asset j sold at the beginning of period l, and let blj denote the number of shares
of asset j bought at the beginning of period l, for j = 1, ..., n and l = 1, ..., L. Then xlj
represents the number of shares of asset j in the portfolio at the beginning of period l, and

xlj = xl−1
j − slj + blj, j = 1, ..., n, l = 1, ..., L.

Let P l
j be the price of a share of asset j in period l, and assume that no interest is earned

on cash account, i.e., P l
0 = 1 for all l. Since the objective is to maximize wealth at the end

of period L, we can formulate the objective function as follows:

max
n∑
j=1

PL
j x

L
j .
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We assume that selling and purchasing an asset occurs a proportional transaction cost,
denoted ηlj and τ lj respectively, that are known at the beginning of period 0, and all transac-
tion costs are paid from the cash account. At the beginning of period l, the total available
cash is the sum of cash balance from last period and the proceeds from sales minus the
cost of new purchases. Therefore, we have the following balance equation:

xl0 = xl−1
0 +

n∑
j=1

(1− ηj)P l
js
l
j −

n∑
j=1

(1 + τj)P
l
jb
l
j, l = 1, ..., L.

For technical reasons, we replace the above equation with an inequality:

xl0 ≤ xl−1
0 +

n∑
j=1

(1− ηj)P l
js
l
j −

n∑
j=1

(1 + τj)P
l
jb
l
j, l = 1, ..., L.

This inequality implies that the investor can burn some of his cash, but in reality this will
never happen if the goal is to maximize wealth. Thus, this constraint will also be satisfied
at equality.

If all the future prices PL
j are known, then we can formulate a deterministic optimization

problem:

max
∑n

j=1 P
L
j x

L
j

s.t. xl0 ≤ xl−1
0 +

∑n
j=1(1− ηj)P l

js
l
j −

∑n
j=1(1 + τj)P

l
jb
l
j, l = 1, ..., L,

xlj = xl−1
j − slj + blj, j = 1, ..., n, l = 1, ..., L,

xlj ≥ 0, j = 0, ..., n, l = 1, ..., L,

slj ≥ 0, j = 1, ..., n, l = 1, ..., L,

blj ≥ 0, j = 1, ..., n, l = 1, ..., L.

(5.1.1)

Observe that (5.1.1) is an LP that can be easily solved by the simplex method or an interior
point method.

In reality, we do not know the future prices PL
j . We can modify (5.1.1) into a robust

optimization problem in order to incorporate the uncertain parameter PL
j . Note that

uncertainty is involved in both the objective function and the constraints. So we move all
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the uncertainty to the constraints and reformulate the problem as follows:

maxx,s,b,ζ ζ

s.t. ζ ≤
∑n

j=1 P
L
j x

L
j

xl0 ≤ xl−1
0 +

∑n
j=1(1− ηj)P l

js
l
j −

∑n
j=1(1 + τj)P

l
jb
l
j, l = 1, ..., L,

xlj = xl−1
j − slj + blj, j = 1, ..., n, l = 1, ..., L,

xlj ≥ 0, j = 0, ..., n, l = 1, ..., L,

slj ≥ 0, j = 1, ..., n, l = 1, ..., L,

blj ≥ 0, j = 1, ..., n, l = 1, ..., L.

(5.1.2)

In order to find a solution for the above problem, we need to choose an appropriate
uncertainty set for the uncertain parameter PL

i . Assume that future prices can be random,

and P l =

P
l
1
...
P l
n

. Denote the expected value of the vector P l with µl =

µ
l
1
...
µln

 and its

covariance matrix with V l. We follow a 3−σ approach, and the corresponding uncertainty
set for P l is

U l := {P l :
√

(P l − µL)T (V l)−1(P l − µl) ≤ 3}, l = 1, .., L.

The complete uncertainty set U is the Cartesian product of the sets defined as

U = U1 × ...× UL.

The uncertainty is involved in the first two constraints. First, we consider the constraint:

ζ ≤
n∑
i=1

PL
j x

L
j .

Consider RHS, the expected value at the end of period L is

E(RHS) = xL0 +
n∑
j=1

µLj x
L
j = xL0 + (µL)TxL,
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and the standard deviation is σ =
√

(xL)TV TxL. If PL
i is normally distributed, the

constraint becomes

ζ ≤ E(RHS)− 3σ = xL0 + (µL)TxL − 3
√

(xL)TV TxL.

The inequality of the constraint is satisfied more than 99% of the time for a guarantee.

Now we consider the second constraint in (5.1.2). We rewrite the constraint to isolate
all uncertain terms on RHS:

xl0 − xl−1
0 ≤

n∑
j=1

(1− ηj)P l
js
l
j −

n∑
j=1

(1 + τj)P
l
jb
l
j, l = 1, ..., L.

The expected value of RHS is

E(RHS) = (µl)TDl
ηs
l − (µl)TDl

τb
l = (µl)T

[
Dl
η −Dl

τ

] [sl
bl

]

where Dl
η =

1− ηl1
. . .

1− ηln

 and Dl
τ =

1 + τ l1
. . .

1 + τ ln

 are diagonal matrices,

and the standard deviation is

σ =

√[
sl bl

] [Dl
η

Dl
τ

]
V l
[
Dl
η Dl

τ

] [sl
bl

]
.

Then the constraint becomes

xl0 − xl−1
0 ≤ (µl)T

[
Dl
η −Dl

τ

] [sl
bl

]
− 3

√[
sl bl

] [Dl
η

Dl
τ

]
V l
[
Dl
η Dl

τ

] [sl
bl

]
.

Again, if PL
i is normally distributed, the inequality of the constraint is satisfied more than

99% of the time for a guarantee.

5.2 Robust MVO, RMVO

Recall that in Section 3.2, we have introduced the (equivalent) mean-variance optimization
(MVO ) problems (3.2.3) to (3.2.5). Since problem (3.2.4) is not quadratic, we will focus
on problems (3.2.3) and (3.2.5). Now let

X = {x ∈ Rn|
n∑
j=1

xj = 1, x ≥ 0}. (5.2.1)
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We can rewrite (3.2.3) as below:

min 1
2
xTΣx

s.t. µ(x) = µTx =
∑n

j=1 µjxj ≥ µ0

x ∈ X

(5.2.2)

where Σ is the covariance matrix, and µ0 is lower bound on expected return. Problem
(3.2.5) is equivalent to

max µTx− λxTΣx
s.t. x ∈ X (5.2.3)

where λ is a risk aversion constant. Now we would like to add robustness into this problem.
We follow article [16] and book [8] to study robust mean-variance optimization (RMVO).

In general, the distribution of the population mean µ and the population covariance
matrix Σ are often unknown. Thus, the sample mean µ̄ and the sample covariance matrix
Σ̄ may not be a good approximation. Yet the central limit theorem tells us that when size
n is large, the distribution is normal. As an approach, we use intervals for uncertainty sets
that contain possible values of these parameters ( [4]). An uncertainty set for the expected
return µ is given as

Uµ = {µ : µL ≤ µ ≤ µU}; (5.2.4)

and uncertainty set for the covariance matrix Σ is taken as

UΣ = {Σ : ΣL ≤ Σ ≤ ΣU ,Σ � 0}, (5.2.5)

where µL, µU ,ΣL,ΣU are the extreme values of the intervals. A compound uncertainty set
describing uncertainty for both µ and Σ is given as

U = {(µ,Σ) : µ ∈ Uµ,Σ ∈ UΣ}. (5.2.6)

With the uncertainty sets Uµ,UΣ,U , we can reformulate problem (3.2.3) into the RMVO below:

minx {maxΣ∈UΣ x
TΣx}

s.t. minµ∈Uµ µ
Tx ≥ µ0

x ∈ X .

(5.2.7)

This minimax problem (5.2.7) is discussed in article [9].
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Moreover, we can reformulate (3.2.5) into RMVO as well:

max
x∈X
{ min
µ∈Uµ,Σ∈UΣ

µTx− λxTΣx} (5.2.8)

This RMVO problem (5.2.8) is introduced in article [11], and a solution algorithm is
provided.

Proposition 5.2.1 ( [16]). Let x∗(λ) denote an optimal solution of (5.2.8) for a given
positive value of λ. Then, x∗(λ) is also an optimal solution of (5.2.7) for

µ0 = min
µ∈Uµ

µTx∗(λ).

Proposition 5.2.2 ( [16]). Let x ∈ Rn be a non negative vector and let U be in (5.2.4)
to (5.2.6) with a positive semidefinite matrix ΣU . Then, an optimal solution of the problem

min
(µ,Σ)∈U

µTx− λxTΣx

is µ∗ = µL and Σ∗ = ΣU regardless of the values of the non negative scalar λ and the
vector x.

With the result of Proposition 5.2.2, we can reduce problem (5.2.8) to the following
maximization problem:

max
x∈X

(µL)Tx− λxTΣUx. (5.2.9)

This is a standard QP problem and can be solved by QP algorithms. Similarly, we can
reduce the minimax problem (5.2.7) to the following minimization problem:

min xTΣUx

s.t. (µL)Tx ≥ µ0

x ∈ X ,

(5.2.10)

where ΣU is also assumed to be positive semidefine.
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5.2.1 Robust Maximum Sharpe Ratio

We follow article [16] and book [8] to study robust maximum Sharpe ratio. Recall that in
Section 3.2.1, we have introduced Sharpe ratio:

h(x) =
µTX − rf
(xTΣx)1/2

.

The corresponding optimization problem for finding the highest Sharpe ratio is formulated
as below:

maxx
µTx− rf
(xTΣx)1/2

s.t. x ∈ X ,
(5.2.11)

where rf is the known return for risk-free assets. Observe that this optimization problem
has a nonlinear objective function. We follow an approach introduced by D. Goldfarb
and G. Iyengar [9] to reduce (5.2.11) into a convex problem. First, we rewrite h(x) as a
homogeneous function:

h(x) =
µTx− rf
(xTΣx)1/2

=
(µ− rfe)Tx
(xTΣx)1/2

,∀k > 0,

where e is an n-dimensional vector of 1’s, and eTx = 1. When X takes the form (5.2.1),
the normalization constraint eTx = 1 can be replaced by the alternative normalization
constraint (µTx − rf )

Tx = 1. Then the objective function is equivalent to minimizing
xTΣx that is convex and quadratic. When X is not in the form (5.2.1), we apply lifting
technique to homogenize X . Define

X+ := {x ∈ Rn, κ ∈ R|κ > 0,
x

κ
∈ X} ∪ (0, 0). (5.2.12)

Note that X+ has a higher dimension than X . We add (0, 0) to the set to get a closed set.
Observe that X+ is a cone. Then, we formulate an equivalent problem to (5.2.11) below:

maxx h(x)

s.t. (x, κ) ∈ X+.
(5.2.13)

Adding the normalization constraint (µTx− rf )Tx = 1 does not affect the optimal solution
of problem (5.2.13) since h(x) is homogeneous in x. Thus, we formulate the following
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problem that is equivalent to problem (5.2.13):

maxx
1

(xTΣx)1/2

s.t. (x, κ) ∈ X+

(µ− rf )Tx = 1.

(5.2.14)

Proposition 5.2.3 ( [16]). Given a set X of feasible portfolios with the property that
eTX = 1,∀x ∈ X , the portfolio x∗ with the maximum Sharpe ratio in this set can be found
by solving the following problem with a convex quadratic objective function

minx xTΣx

s.t. (x, κ) ∈ X+

(µ− rf )Tx = 1,

(5.2.15)

with X+ as in (5.2.1). If (x̂, κ̂) is the solution to (5.2.15), then x∗ = x̂
κ̂

.

Following D. Goldfarb and G. Iyengar [9], we relax the normalization constraint (µTx−
rf )

Tx = 1 to (µTx− rf )Tx ≥ 1 and formulate a robust optimization problem maximizing
the Sharpe ratio:

min {maxΣ∈UΣ x
TΣx}

s.t. (x, κ) ∈ X+

minµ∈Uµ(µTx− rf )Tx ≥ 1.

(5.2.16)

Other approaches including using an ellipsoidal uncertainty set is discussed in the article
[18].

5.2.2 Example

We now present an example of portfolio optimization using the RMVO model. Here we
use the same data of 30 US stocks as in Section 3.1.3. From the results in Section 3.2, we
find that the sample covariance matrix Σ̄ is positive semidefinite. We let ΣU = Σ̄ + diag(ε)
where ε ≥ 0. Thus, ΣU � Σ̄, indicating that ΣU is positive semidefinite. Now we can apply
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Proposition 5.2.2 and reduce our problems as follows:

max (µL)Tx− λxTΣUx

s.t.
∑n

j=1 xj = 1

x ≥ 0,

(5.2.17)

and
min xTΣUx

s.t. (µL)Tx ≥ µ0∑n
j=1 xj = 1

x ≥ 0.

(5.2.18)

Then we create a Portfolio object p with such properties in MATLAB [14]. We use
the MATLAB command plotFrontier to draw the efficient frontier in Figure 5.2.1. We use
MATLAB functions estimateFrontierByReturn, estimateFrontierByRisk, estimateMaxSharpeR-
atio to emphasize the three dots in the plot. We find the optimal portfolios corresponding
to the three dots in Table 5.2.1. The left table presents the optimal portfolio with 0.1%
target return corresponding to the red dot; the middle table presents the optimal portfolio
with 2.5% target risk corresponding to the yellow dot; the right table presents the optimal
portfolio with maximum Sharpe ratio corresponding to the green dot.

Ticker Weight(%)
BRK 5.74706

AAPL 48.499
MCD 1.73845
CVX 3.86328
CAT 20.992

AMZN 19.1602

Ticker Weight(%)
BRK 8.59816
BA 1.18014

XOM 2.80894
AAPL 39.2792
MMM 0.827156
MCD 5.60612
CVX 6.98672
CAT 18.8363

AMZN 15.8772

Ticker Weight(%)
BRK 8.8117
BA 1.54952

XOM 3.20649
AAPL 38.0925
MMM 1.3135
MCD 5.94015
CVX 7.21924
CAT 18.4459

AMZN 15.4209

Table 5.2.1: Robust MVO, RMVO; targets: return, risk and max Sharpe ratio
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Figure 5.2.1: Robust MVO, RMVO, Efficient Frontier
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Part IV

Black Swan Events
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A black swan event is an extremely unpredictable and highly improbable event that
has severe consequences. Taleb develop a black swan theory and discuss the impacts of
black swan events on markets in his paper [15]. A central idea is to develop robustness to
black swan events as economy is vulnerable when coping with hazardous events. In this
part, we look at historical black swan events that cause major effects on world economy
and then build robust optimization models to test data.
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Chapter 6

History of Disasters: Effects on
Markets

Historically, natural catastrophes and man-made disasters have great impacts on global
markets. Natural disasters such as hurricanes and earthquakes can cause severe damage
to properties, and can also lead to disruptions of economic activities. In fact, man-made
risks often have greater impacts on market performances than natural catastrophes. In
this chapter, we study several historical natural events and human disasters and look at
market responses to these events.

6.1 Natural Catastrophes

Natural disasters, including hurricanes, tsunamis, droughts and earthquakes, kill 60,000
people per year on average globally, and can cause severe impacts on the world economy.
Natural disasters damage physical properties such as buildings and equipment for firms,
and can disrupt labour and production. The loss sometimes may be catastrophic to corpo-
rations and can result in bankruptcies. As modern business is interconnected worldwide,
the economic downturn in one region may affect the global economy. The Cambridge
Centre of Risk Studies explores six historical natural catastrophes that triggered market
shocks and led to economic recessions in the report [12]. We follow this report to study
two fatal natural catastrophes in recent history: 2005, Hurricane Katrina; 2011, The Great
East Japan Earthquake.
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6.1.1 2005 Hurricane Katrina

Hurricane Katrina is a tropical cyclone that occurred from August 23rd to August 31st
in 2005 in the US and killed over 1, 800 civilians. Katrina caused massive damages in
Louisiana and Mississippi; and the city of New Orleans was hit particularly hard by the
storm. Many buildings were destroyed; and infrastructure was severely damaged. The
total loss was estimated at $125 billion. The performance of the stock market was robust,
with a slight decline in the Dow Jones in August as shown in Figure 6.1.1. As insurance
companies were expected to pay claims, the stock prices of Berkshire Hathaway Inc. fell in
August and September in Figure 6.1.2. Although the impacts of Hurricane Katrina seemed
minimal on the stock market, it has serious political fallouts.

Figure 6.1.1: 2005 Dow Jones Industrial Average (Data Source: [27])

6.1.2 2011: The Great East Japan Earthquake

On 11 March 2011, a magnitude 9.0 undersea megathrust earthquake hit the Pacific coast
of Japan. It still is the most powerful earthquake in the history of Japan, and is known
as the Great East Japan Earthquake. The national crisis deepened as the earthquake trig-
gered a powerful tsunami that caused enormous damage including a level 7 nuclear power
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Figure 6.1.2: 2005 Berkshire Hathaway Inc. Stock Prices (Data Source: [25])

plant meltdown. The extent of damage affected millions of households and near 20,000
people were killed or disappeared. The losses from the earthquake and subsequent events
were devastating to the domestic economy, though it had minimal effect on international
markets. Hundreds of thousands of buildings were damaged, and infrastructure such as
roads railways were destroyed. The World Bank estimated a $235 billion economic cost for
this catastrophe, making it the costliest natural disaster recorded to date. Recovery from
the devastating earthquake and follow-on disasters took several years.

As a result of the disaster, the Nikkei 225, the most prominent measure of the Japanese
stock market, plunged more than 10%. It was the third worst one-day plunge in the
history of the Nikkei. Figure 6.1.3 shows the sharp decline of the Nikkei 225 in March,
and poor performance of Japanese stocks for the rest of year 2011. The stock market was
closed for three full days. The huge devaluations in the stock market resulted in a panic
among investors; and market sentiments also suffered from the catastrophe. According to
the Cambridge report [12], for the year 2011, both personal consumption fell 79%, and
national potential output declined up to 21%. Table 6.1.1 presents the GDP and annual
GDP growth of Japan. As the government implemented stimulus packages to facilitate
reconstruction and boost consumption and investment, the economy slowly recovered in
the second year.
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Figure 6.1.3: 2011 Nikkei 225 Index (Data Source: [31])

Year Annual GDP (trillions of USD) GDP Growth (%)
2010 5.7 4.192
2011 6.157 -0.115
2012 6.203 1.495
2013 5.156 2

Table 6.1.1: GDP of Japan (Data Source: [19,21])

6.2 Anthropogenic Disasters

Anthropogenic disasters are hazards caused by human activities such as wars and terror-
ist attacks. Man-made disasters have a huge impact on our society including economy,
ecosystems, etc.. The most defining event in the US history is probably the 9/11 attacks.
Besides terrorist attacks, man-made financial crisis such as the dot-com bubble in early
2000s also brings devastating results. The 2008 global financial crisis is a bloody disaster
causing huge economic losses in human history. We study these three significant human
disasters in the following.
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6.2.1 Dot-com Bubble

The dot-com bubble was a rapid rise in technology related stock market in 1990s, a pe-
riod of rapid technological advancement in the US. In the late 1990s, the stock market of
Internet-based companies grew massively as the Internet was widely adopted in the US.
The Nasdaq Composite stock market index rose 400% between 1995 and 2000. Figure 6.2.1
shows that Nasdaq rose from under 1000 in 1995 to over 5000 in 2000; and reached its peak
in March 2000. The year 1999 displays a massive growth. In 1999, shares of Qualcomm, a
telecommunication corporation, increased 2, 619% in its value; and many other large-cap
stocks grew more than 900% in value. The bubble burst in 2001 through 2002; Figure 6.2.1
shows a steep decline . During the crash, many online shopping companies and commu-
nication firms went bankrupt. Well known companies such as Cisco, Intel and Oracle lost
more than 80% of their stock values. Figure 6.2.2 has a similar shape as Figure 6.2.1 with
a tremendous growth from 1995 to 2000 and a steep decline in 2001. Figure 6.2.3 presents
the stock prices of Microsoft Corporation from 1995 to 2002. It is obvious that Microsoft
performs much more robust than Cisco during the crash. In 2001, equities entered a bear
market; and US experienced a mild economic recession. The recovery was slow; Nasdaq
did not return to its peak until 2015.

Figure 6.2.1: 1995 to 2002 Nasdaq Composite Index (Data Source: [30])
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Figure 6.2.2: 1995 to 2002 Cisco Stock Prices (Data Source: [26])

6.2.2 2001 US 9/11 Attacks

On 11 September 2001, four passenger airliners were hijacked by Islamic terrorists, and
two of the planes crashed into the World Trade Center in lower Manhattan. As a result,
both 110-story towers collapsed, and thousands of people died and were injured. From an
economic perspective, the attacks not only caused destruction to physical properties but
also interrupted business. The 9/11 attack is the single deadliest terrorist attack in human
history.

The 9/11 attack had a significant impact on US markets. Beginning in March 2001, the
US suffered from a moderate economic recession; and the attacks worsened the recession.
Stock markets were closed for the week following the attack to prevent a stock market
meltdown. When the market reopened on 17 September 2001, the Dow Jones fell 14% and
the S&P declined 11.6% in five trading days, with an estimated loss of 1.4 trillion. We can
see the steep plunge of the stock markets in Figures 6.2.4 and 6.2.5. Airlines suffered the
most from the attacks. American Airlines stock dropped 39%, and United Airlines fell 42%,
as the demand drastically fell following the attack. The insurance industry was another
area that suffered, as companies were expected to pay off claims. Figure 6.2.6 presents the
stock prices of American International Group (AIG), an insurance corporation. The prices
of AIG substantially fell after the attacks. According to Grossi [10], the destruction costs
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Figure 6.2.3: 1995 to 2002 Microsoft Stock Prices (Data Source: [29])

estimated over 90 billion, and insurance companies covered 32 billion. The recession ended
in November 2001 as GDP grew 1.1% in the fourth quarter; however, the adverse influence
lingered.

6.2.3 2008: Global Financial Crisis

The global financial crisis is a severe worldwide financial crisis following the Great Recession
in the US. During the mid 2000s, as the housing prices fell, homeowners had less burden for
their loans. Banks were willing to make large volumes of loans, and real estate developers
excessively borrowed and built houses. As a result, American housing market boomed.
Moreover, financial firms began marketing mortgage-backed securities and other financial
products. As homeowners failed to pay off the loans, the housing bubble burst in 2007.
The value of mortgage-backed securities held by the investment banks greatly declined. In
September 2008, Lehman Brothers, one of the largest investment banks in the US, filed
bankruptcy due to a downturn in the subprime lending market. Table 6.2.1 displays the
GDP, GDP growth and unemployment rate of US during the recession. The growth rate of
GDP was negative in 2008 and 2009; and unemployment once reached 10% at peak. The
great recession in the US officially ended in June 2009; however, Figure 6.2.7 shows that
Dow Jones did not regain its value pre-financial crisis until 2012.
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Figure 6.2.4: Aug to Dec 2001 DJI (Data Source: [27])

Year Annual GDP (trillions of USD) GDP Growth (%) Unemployment Rate (%)
2007 14.452 1.876 4.622
2008 14.713 -0.137 5.784
2009 14.339 -2.537 9.254
2010 14.992 2.564 9.633
2011 15.542 1.551 8.949
2012 16.197 2.25 8.069

Table 6.2.1: GDP of United States (Data Source: [20,22,23])

In 2009, the European debt crisis followed the US Great Recession. The European
debt crisis took place in most European Union member countries and lasted for several
years; and this crisis was caused by devaluation in the currency of euros. In 2009, several
eurozone member countries failed to repay their government debt or to bail out over-
indebted banks. Greece suffered the most from the crisis; the Greek government called for
external help due to high budget deficits in 2010. Figure 6.2.8 presents the stock market
of EU during the recession. Unlike the US, the recovery was extremely slow in the EU due
to inharmonization among the member countries.

Japan was another country hit hard by the financial crisis. As the trade structure
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Figure 6.2.5: Aug to Dec 2001 S&P500 (Data Source: [32])

depended heavily on exports, Japaneses output was responsive and vulnerable to the out-
break of the crisis in the US and Western Europe. The demand for exports steeply fell
as a result of the recession, leading to a shock in domestic industries. The stock market
substantially fell in 2008 as shown in Figure 6.2.9. The result of the financial crisis was
severe to Japaneses’ economy; it took several years for Japan to recover.
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Figure 6.2.6: Aug to Dec 2001 AIG Stock Prices (Data Source: [24])

Figure 6.2.7: 2007 to 2012 Dow Jones (Data Source: [27])
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Figure 6.2.8: 2007 to 2012 Euronext 100 (Data Source: [28])

Figure 6.2.9: 2007 to 2012 Nikkei 225 (Data Source: [31])
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Chapter 7

Numerics

In this chapter, we use MVO and RMVO models to test real data on a natural catastrophe
and an anthropogenic black swan event. We first recall the MVO and RMVO models
introduced in Section 3.2 and Section 5.2. We compute the optimal portfolios for the
MVO and RMVO and then compare the differences between the two optimal portfolios.
We also look at the performance of MVO and RMVO during and after the black swan
event.

7.1 MVO vs RMVO on 2005 Hurricane Katrina

In this section, we compare the performance of MVO and RMVO on a natural disaster.
Recall that we introduced the details about hurricane Katrina in Section 6.1.1. In August
2005, a severe hurricane hit New Orleans and caused massive damages. The response
of the stock market to the catastrophe was robust as the Dow Jones Industrial Index
had a slight decline in late August. We make a comparison between the MVO and the
RMVO strategy.

We mainly study the blue chip stocks since they have a strong history of performance
and thus are more attractive to investors. As we want to analyze the results and make
comparisons, we control the number of stocks to be tractable. Suppose we have chosen 50
US stocks, and we invest into the US stock market from August 1st 2005 to September
15th 2005. We obtain the historical stock prices of the stocks from January 3rd 2000
to September 15th 2005, using Yahoo Finance. Assume that we have an initial balance
$10, 000 in two accounts, one named MVO account and the other named RMVO account.
We look at different targets: return 0.1%, risk 1.5% and max Sharpe ratio.
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In the morning of August 1st 2005 , we have a balance of $10, 000 in both MVO account
and RMVO account. We calculate the current optimal portfolios for the MVO and
RMVO models, using known data (August 1st 2005), in Tables 7.1.1 and 7.1.2; and we
invest all the available balance into the stock market. We first look at the approach of using
a target return 0.1%. In Table 7.1.1, we observe that about the list of selected portfolio is
narrow, and the last three stocks are heavily weighed with each having a over 20% weight.
However, the RMVO strategy selects a wider and more diverse range of portfolios, and
only 1 stock has a weight over 20% in Table 7.1.2. Looking at the approach of 1.5% risk, the
difference in the range of MVO portfolio and the range of RMVO portfolio is even more
obvious. In the second column of Table 7.1.1, the last stock EOG weighs over 50%. The
maximum Sharpe ratio strategy selects a wider range of stocks in both cases; and the third
column in Table 7.1.2 is more diverse than Table 7.1.1. The last three stocks in the third
column of Table 7.1.1 are heavily weighed as well. We conclude that the MVO portfolios
are heavily skewed on some stocks, and the RMVO strategy is much more conservative
than the MVO strategy.

Ticker Weight(%)
BA 0.0818046
PG 0.541192

AAPL 3.41713
CAT 10.9163
BAC 2.71015
OXY 8.45931
AVB 29.07
BXP 22.0523
EOG 22.7518

Ticker Weight(%)
AAPL 6.79535
CAT 10.337
AVB 21.7466
BXP 1.59059
EOG 59.5304

Ticker Weight(%)
BRK 1.77071
BA 0.374633
PG 2.32203

AAPL 3.00427
JNJ 1.13783

MMM 2.10247e-08
CAT 9.5898
BAC 2.89224
OXY 8.47711
WFC 0.689098
AVB 28.3225
BXP 21.9367
EOG 19.4831

Table 7.1.1: Three MVO portfolios: (i) return 0.1%; (ii) risk 1.5%; (iii) max Sharpe ratio
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Ticker Weight(%)
BRK 0.125824
BA 2.8032

AAPL 8.255
MMM 0.13774
CAT 8.89901

AMZN 1.61819
BAC 3.37015
OXY 13.376
WFC 0.68356
AVB 10.1973
EQR 3.1197
BXP 9.44852
EOG 26.4138
DVN 9.30468
MRO 2.2474

Ticker Weight(%)
BRK 1.66937
BA 3.3615

XOM 0.142378
AAPL 7.31802
JNJ 0.836933

MMM 1.47542
CAT 8.2892

AMZN 1.50991
BAC 3.91604
OXY 11.9801
WFC 2.10184
AVB 10.0292
EQR 4.23584
BXP 9.45375
EOG 22.282
DVN 8.47743
MRO 2.92114

Ticker Weight(%)
BRK 2.84356
BA 3.63264

XOM 1.40875
PG 0.849827

AAPL 6.30117
JNJ 2.10815

MMM 2.40602
CVX 0.618248
CAT 7.39889

AMZN 1.34997
BAC 4.16509
GS 0.441978

OXY 10.4506
WFC 3.15046
AVB 9.59293
EQR 5.01313
BXP 9.17394
EOG 18.2098
DVN 7.52668
MRO 3.35821

Table 7.1.2: Three RMVO portfolios: (i)return 0.1%; (ii)risk 1.5%; (iii)max Sharpe ratio

We now compare the performance of MVO and RMVO strategies during and after
the black swan event. By the end of the trading day, we have the current prices of the
50 stocks. We compute the aggregate rate of return of the portfolios and calculate the
current balance in both accounts. We do the same for the next trading day until Sep 15th
2005. We obtain the following three figures Figures 7.1.1 to 7.1.3 corresponding to three
different approaches: target return 0.1%, target risk 1.5% and max Sharpe ratio. In all
three figures, the x-axis is the number of days of investment, and the y-axis is the account
balance. The blue curve corresponds to the MVO strategy and the red curve corresponds
to the RMVO strategy. The hurricane originates around trading 16 and dissipates on
trading day 22. In Figure 7.2.1, both MVO balance and RMVO balance drops slightly
on trading day 16. The RMVO performs better, having a less loss. The red curve in the
figure recovers to $10, 000 on trading day 20; and the blue curve recovers a day later. The
disaster has very little influence on stock market since the recovery is fast. This observation
applies to the other two approaches as well. We conclude that that the stock market is
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hardly influenced with hurricane Katrina; and the recovery period is very short.

Figure 7.1.1: RMVO vs MVO with target return 0.1% on 2005 hurricane Katrina

7.2 MVO vs RMVO on 2008 Financial Crisis

In this section, we apply the MVO strategy and the robust MVO , RMVO, strategy to
test real data to see the comparison between MVO and RMVO on an anthropogenic black
swan event. First, we recall the 2008 Global Financial Crisis introduced in Section 6.2.3.
In 2008, the US stock market crashed mainly due to a housing bubble; and there was a
sharp decline for the Dow Jones Industrial Index. We would like to see how RMVO and
MVO strategies perform when the crash happens.

Suppose we have chosen the same 50 stocks as in Section 7.1, and we want to make
investments into the US stock market on Jan 2nd 2008, not knowing what will happen
in the near future. We obtain the historical stock prices of 50 US stocks from Jan 3rd
2000 to Jun 30th 2010, using Yahoo Finance. For a comparison, assume that we have an
initial balance $10, 000 in two accounts, one named MVO account and the other named
RMVO account. We look at different targets: return 0.1%, risk 1.5% and max Sharpe
ratio, and compare two different strategies: MVO vs RMVO .
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Figure 7.1.2: RMVO vs MVO with target risk 1.5% on 2005 hurricane Katrina

In the morning of Jan 2nd 2008, we have a balance of $10, 000 in both MVO account and
RMVO account. We compute the optimal portfolios for the MVO and RMVO models,
using known data (Jan 3rd 2000 to Dec 31st 2007), in Tables 7.2.1 and 7.2.2; and we invest
all the available balance into the stock market. We notice that Table 7.2.1 selects a narrow
range of stocks while Table 7.2.2 includes a more diverse and wide range of stocks. Looking
at the approach of using a minimum of 0.1% return, we observe in Table 7.2.1 that about
half of the stocks have a weight over 10%, and the total weight of these stocks is over 80%
of the portfolio. However, only 3 out of 14 stocks have a weight over 10% in Table 7.2.2.
The same observation applies to the approach of 1.5% risk. The maximum Sharpe ratio
strategy selects a wider range of stocks in both cases; and the third column in Table 7.2.2
is more diverse than Table 7.2.1. We conclude, as expected, that the RMVO strategy is
much more conservative than the MVO strategy.
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Figure 7.1.3: RMVO vs MVO with max Sharpe ratio on 2005 hurricane Katrina

Ticker Weight(%)
BRK 14.8724
BA 1.39364
PG 1.9067

AAPL 13.2675
CVX 1.31665
CAT 8.8396
OXY 16.8255
AVB 4.33138
BXP 17.1386
EOG 20.108

Ticker Weight(%)
BRK 1.14965

AAPL 24.9522
CAT 7.97393
OXY 22.701
BXP 5.30013
EOG 37.9231

Ticker Weight(%)
BRK 16.446
BA 2.32222

XOM 0.136698
PG 6.00876

AAPL 9.76702
CVX 5.45075
CAT 6.70037

ORCL 0.0470805
GS 0.125283

OXY 14.0414
AVB 7.21334
BXP 16.8669
EOG 14.8742

Table 7.2.1: Three MVO portfolios: (i) return 0.1%; (ii) risk 1.5%; (iii) max Sharpe ratio
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Ticker Weight(%)
BRK 4.82866
BA 2.6511

XOM 1.94896
AAPL 17.8057
CVX 1.25289
CAT 6.54697

AMZN 3.46106
GS 3.36099

OXY 13.3651
AVB 4.40273
BXP 5.69126
EOG 18.8738
DVN 8.31705
MRO 7.49376

Ticker Weight(%)
BRK 5.81997
BA 3.5615

XOM 3.06185
PG 0.857093

AAPL 15.3258
MMM 0.045177
CVX 2.60334
CAT 6.59742

AMZN 3.21542
GS 3.94609

OXY 12.0523
AVB 5.33262
BXP 6.42295
EOG 16.264
DVN 7.71313
MRO 7.18128

Ticker Weight(%)
BRK 6.19226
BA 3.91126

XOM 3.63178
PG 2.2888

AAPL 12.5571
JNJ 0.919335

MMM 1.35756
MCD 0.902333
CVX 3.41889
CAT 6.09518

AMZN 2.73372
BAC 0.329861

ORCL 0.772999
GS 3.90162

OXY 10.3707
WFC 0.817085
AVB 5.63363
EQR 0.842926
BXP 6.52638
EOG 13.4126
DVN 6.84681
MRO 6.53717

Table 7.2.2: Three RMVO portfolios: (i)return 0.1%; (ii)risk 1.5%; (iii)max Sharpe ratio

We now illustrate the significance of RMVO when a black swan event hits the stock
market. By the end of the trading day, we have the current prices of the 50 stocks. We
compute the aggregate rate of return of the portfolios and calculate the current balance
in both accounts. We do the same for the next trading day until Jun 30th 2010. We
obtain the following three figures Figures 7.2.1 to 7.2.3 corresponding to three different
approaches: target return 0.1%, target risk 1.5% and max Sharpe ratio. In all three
figures, the x-axis is the number of days of investment, and the y-axis is the account
balance. The blue curve corresponds to the MVO strategy and the red curve corresponds
to the RMVO strategy. In Figure 7.2.1, when the market crashes, both MVO balance
and RMVO balance drop steeply. Around investment day 300, our MVO balance falls to
the lowest point about $4, 700, incurring a 53% loss. The RMVO performs better, having
a balance of $5, 100, incurring a 49% loss. The red curve is above the blue curve after
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the black swan event, indicating that the RMVO balance increases more rapidly than
the MVO balance. On Jun 30th 2010 (the last investment day in the graph), we have a
RMVO balance of $11, 000 and a MVO balance of $9,000. Clearly we have a better gain
with the RMVO strategy and a greater lose with the MVO strategy. The loss recovers
much faster with RMVO strategy. This observation applies to the other two approaches as
well. In Figures 7.2.2 and 7.2.3, the red curve is above the blue curve after the crash. The
RMVO strategy has a higher balance than the MVO strategy; and the recovery period is
much shorter for the RMVO strategy compared to the MVO strategy.

Figure 7.2.1: RMVO vs MVO with target return 0.1% on 2008 financial crisis
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Figure 7.2.2: RMVO vs MVO with target risk 1.5% on 2008 financial crisis

Figure 7.2.3: RMVO vs MVO with max Sharpe ratio on 2008 financial crisis
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Part V

End
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In this part, we conclude our thesis and discuss some future work. Covid-19 has caused
massive economic losses, and interesting future works include studying the impacts of virus
and making some predictions about the recovery.
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Chapter 8

Conclusion

In this thesis, we have studied classical portfolio optimization, robust portfolio optimization
and some historical black swan events. We have compared the MVO and RMVO strategy
and how they influence/help investors during the period immediately after a black swan
event in Chapter 7. We have seen that RMVO selects a much more conservative portfolio
than MVO and recovers faster from a crash. Moreover, the recessions caused by anthro-
pogenic black swan events are more significant. The recovery of the stock market is greatly
slower on an anthropogenic disaster compared to a natural disaster.

8.1 Future Work

Covid-19 is the most recent and the most shocking black swan event in modern history.
The virus has killed an enormous number of people around the world and has paralyzed
the global economy. Many firms have failed and have gone into bankruptcies, and investors
have experienced massive losses. The US stock market has gone into meltdowns four times
in two weeks in March 2020. The meltdowns of the US stock market happened five times in
history: once in 1997, four times in 2020. Not only the US but also many other countries
suffer from the economic recessions resulted from the virus. One future work is to to
study whether robust portfolio optimization helps investors to endure less loss from this
black swan event and compare the results of classical portfolio optimization and robust
portfolio optimization. Another direction is to study the impacts of Covid-19 and predict
the recovery of the global economy.
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Index

(xj), portfolio, 8
Fα, auxiliary function, 25
Kj(Xj), transaction costs, 14
N = {1, 2, ..., n}, assets, 8
P , price of shares, 37
Xj, amount of money invested in asset j, 14
Y , loss on a portfolio, 23
Ψ(x, γ), cumulative loss distribution func-

tion, 24
Σ, covariance matrix, 19
α, probability level, 23
C̄, available capital, 14
δ̄(x), Semi Mean Absolute Deviation, 13
δ(x), Mean Absolute Deviation, MAD , 11,

13, 16
η, proportional selling transaction cost, 37
µj = E{Rj}, 9
σ2, variance, 18
σ2(x),variance of portfolio x, 19
σj, standard deviation of asset j, 19
σp, standard deviation of the portfolio, 20
τ , proportional buying transaction cost, 37
%(x), measure of risk, 9
b, number of shares bought, 37
h(x), Sharpe ratio, 20
rf , risk-free rate, 20
rp, return of the portfolio, 20
s, number of shares sold, 37
uj, fixed transaction cost for asset j, 14
wj, proportional transaction cost for asset j,

14
x, decision variable, 8
CVaR, Conditional Value-at-Risk, 21
DRoR, daily rate of return for stocks, 16
ES, expected shortfall, 24
MAD ,Mean Absolute Deviation, δ(x), 11,

13, 16
MVO, mean variance optimization, 19, 39,

59, 62
RMVO, robust MVO, 39, 43, 59, 62
SP, stochastic programming, 21
VaR, Value-at-Risk, 21
CVaR, 21
VaR , 21
VaRα , 23

adaptive, 21, 22
amount of money invested in asset j, Xj, 14
anticipative, 21, 22
asset, a tradable instrument, 8
assets, N = {1, 2, ..., n}, 8
auxiliary function, Fα, 25
available capital, C̄, 14

black swan event, 47
budget constraint, 9

capital, amount to invest, 8
Conditional Value-at-Risk, CVaRp, 21
constraint robustness, 32
covariance matrix, Σ, 19
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Credit risk, 27
cumulative loss distribution function, Ψ(x, γ),

24

daily rate of return for stocks, DRoR, 16
decision variable, x, 8
diversification, 18

efficient frontier, 20
expected shortfall, ES, 24

fixed transaction cost, 14
fixed transaction cost for asset j, uj, 14
flip, 10

lifting, 42
loss on a portfolio, Y , 23

MATLAB Financial Toolbox, 16, 27
measure of risk, %(x), 9

number of shares bought, b, 37
number of shares sold, s, 37

objective robustness, 32
optimistic counterpart, 35
optimistic feasible solution, 34

portfolio credit risk, 27
portfolio,

proportions of capital invested in assets,
8

portfolio,
(xj), 8

price of shares, P , 37
probability level, α, 23
proportional buying transaction cost, τ , 37
proportional selling transaction cost, η, 37
proportional transaction cost for asset j, wj,

14

Pure Fixed Cost (PFC), 14
Pure Proportional Cost (PPC), 15

recourse, 21, 22
return of the portfolio, rp, 20
risk-free rate, rp, 20
robust counterpart, 34
robust feasible solution, 34
robust optimization, 31

Semi Mean Absolute Deviation, δ̄(x), 13
Sharpe ratio, 20
Sharpe ratio, h(x), 42
Sharpe ratio,h(x), 20
Slater’s condition, 34
standard deviation of asset j, σ, 19
standard deviation of the portfolio,σp, 20
stochastic programming, SP, 21
stochastic programming, SP , 22

transaction costs, Kj(Xj), 14
two-stage stochastic linear program with re-

course, 21, 22

uncertainty sets, 31

Value-at-Risk, VaR, 21
variance of portfolio x, σ2(x), 19
variance, σ2, 18
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