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Abstract
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1. Introduction

The trust region subproblem, (TRS), consists in minimizing a quadratic (possibly
nonconvex) function subject to a quadratic (or norm) constraint. We present an effi-
cient algorithm for this problem that can exploit sparsity. The algorithm is based on a
parametric eigenvalue problem within a semidefinite programming, SDP, framework. We
include two pairs of primal-dual SDPs. These programs provide a transparent framework
for our algorithm as well as for current algorithms for (TRS).

Let g(x) := xTAx—2a"x, where A = AT is a symmetric real n x n matrix and a € R".
And let s > 0. Computation of the step between iterates, in trust region algorithms for
minimization, requires solution of the trust region subproblem

(TRS) M =min g(x) (1)
subject to xTx = 5% (< 5°). (2)

(For simplicity of exposition, (TRS) refers to the equality constrained case, = s°.

Numerical tests are provided for the inequality case, < s°. We include theoretical details
for the inequality case when they are substantially different.)

It is well known that a vector x yields the global minimum of (TRS) if and only if
there exists A € R such that the following relations hold:

(A~ Al)x=a (stationarity), (3)
x'x =5 (feasibility), (4)
A~ Al = 0 (strengthened second order), (5)

where > 0 denotes positive semidefiniteness. Moreover, if A — Al is positive definite,
then the optimizer x is unique. More recently, it has been shown that strong Lagrangian
duality holds, see Theorem 1.

Currently, most methods for solving (TRS) are based on applying Newton’s method
to the secular equation in A, which is essentially (4) after eliminating x using (3).
The Newton method is safeguarded to maintain positive definiteness in order to satisfy
(5). Each iteration usually requires Cholesky factorizations of A — Af, both for solving
(3) and for safeguarding (5). This can be too expensive for large scale optimization if
sparsity is lost.

The general (TRS) lies somewhere between the pure quadratic (eigenvalue case,
a = 0) and the pure linear (norm, A = 0) case. Both of these cases can be solved
quickly and easily. Define

g(s) :==min{x"Ax - 2a"x | xTx = 5%}, (6)

Thus g describes the optimal solution of problem (1), {2) depending on the norm s of
x. Further define

G(o) =min{y"Ay — 20a"y | yTy = 1}. (7
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Setting x := sy we have ||x|| = s <= ||y|| = 1. Therefore, for s > 0, we get g(s) =
s2G(1/s). It is clear that G(o) and therefore g(s) describe, in limiting behaviour, the
purely quadratic problem (o — 0) as well as the purely linear objective function (o —
oc). We will show below that g(s) is closely related to a parametric (or perturbed)
eigenvalue problem.

1.1. Background

Trust region subproblems appear in the context of nonlinear least squares in work
by Levenberg [20] and in work by Marquadt [24]. These authors worked on the case
where A is positive definite. Applications to general minimization appears in work by
Goldfeld, Quandt and Trotter {11]. Early theoretical results on {(TRS) appear in [8]. In
particular, they study properties of the secular function, which is essential in algorithmic
derivations. Hebden [14] proposed an algorithm which exploits the structure of the
secular function. He made use of earlier work on the structure by Reinsch [35,36].
Gay [ 10] improved on this algorithm and handled the hard case, i.e. the case where the
optimal Lagrange multiplier is equal to the smallest eigenvalue of A. Other algorithms at
this time were proposed in [26,40]. A more efficient treatment of the hard case was the
central point of the seminal work by Moré and Sorensen in 1983 [29]. Their algorithm
has remained as the standard for (TRS). It typically yields an approximate optimal
solution in under ten iterations of a Newton type method. In particular, the algorithm
is particularly efficient in the hard case and typically takes only 2-3 iterations, see
also [27]. Other algorithms are presented in e.g. [9, 12] and more recently, using DC
(difference of convex functions) optimization, in [46].

The (TRS) has appeared elsewhere in the literature under different guises. It is
equivalent to the problem of ridge regression in estimation problems, e.g. [16]; and it
is also equivalent to the problem of regularization for ill-posed problems, e.g. {47].

Recently, there has been a revival of interest with new duality results, relations to
eigenvalue perturbations, and extensions to nonconvex constraint functions, see e.g.
[2,3,7,28,42,43]. The (TRS) problem has been shown to be solvable in polynomial
time, see [18,52]. The polynomiality is derived using detailed estimates in [49]. In
[43], it is shown that strong duality holds for the Lagrangian dual of (TRS); thus,
(TRS) is equivalent to a concave maximization problem and, therefore, it is a tractable
polynomial time problem, by the results for general convex programs presented in {30].
Applications to solving NP-hard problems are given in {13,53]. A recent study of the
subgradients and stability of g(s) is presented in [44]. A surprising result that there is
at most one local-nonglobal optimum for (TRS) is presented in [25].

This paper uses a parametric eigenvalue problem to solve (TRS). Previous charac-
terizations of solutions of (TRS) as a parametric eigenvalue problem appear in {43,
Theorem 3.2]. In addition, independent work on a parametric eigenvalue approach simi-
lar to our work is presented by Sorensen [41], and is continued by Santos and Sorensen
[38]. (Comparisons with our work is given in the concluding Section 5.1.)
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Also, recently, there has been a lot of interest in problems with multiple quadratic con-
straints. The two trust region problem arose in sequential quadratic programming tech-
niques for constrained nonlinear minimization, [5]. Other applications to constrained
optimization appear in e.g. [6]. Multiple quadratic constraints arise in combinatorial
optimization and their Lagrangian relaxations can be shown to be equivalent to semidef-
inite relaxations, e.g. [19,32-34,39]. In [32], (TRS) is the tool that is used to prove
the equivalence of several bounds for quadratic 0,1 optimization. These problems and
relaxations also appear in systems control, e.g. [4].

Thus, (TRS) can be seen to be an important stepping stone between convex pro-
grams on one hand, which yield necessary and sufficient optimality conditions, and
NP-hard problems on the other hand, such as multiple quadratic constrained problems
and, equivalently, hard combinatorial optimization problems. Moreover, the primal-dual
pair of SDP programs we study illustrate many of the important geometric and algebraic
properties of general SDP programs. This pair of SDP programs provide the optimal
solution for (TRS); this is in contrast to general SDP programs which usually arise as
relaxations and provide bounds for the underlying original problem.

1.2. Outline

The main result in this paper is an algorithm that solves (TRS) using matrix-vector
multiplication and no explicit solution of a system of equations, sec Section 4. (The
reader who is only interested in the algorithm can skip directly to this section.) The
algorithm is based on maximizing (unconstrained) a real valued concave function, k(t),
based on a parametric eigenvalue problem, i.e.

2 ]
k(1) = (S + DA(D(D) — 1, where D(1)=| " |

We also provide a general framework for (TRS) based on two primal-dual pairs of
SDPs. These SDP frameworks can be used to derive various algorithms. In addition, the
SDPs are of interest in themselves since they illustrate many interesting properties of
general semidefinite programming.

The paper is organized as follows. We begin with a nonlinear primal-dual pair of SDPs
that solve (TRS). This pair can be used to describe the steps of the state of the art Moré
and Sorensen algorithm, see Remark 4. We then present a linear SDP primal-dual pair.
We show that the steps from before can be done here without Cholesky factorizations;
thus we can exploit structure and sparsity. Both pairs of SDPs are equivalent to (TRS).
The primal-dual SDPs with linear constraints provide the framework for our algorithm
and are essential for dealing with the hard case.

Section 3 provides detailed analysis of the functions that arise in the above SDP
primal-dual pairs. A parametric eigenvalue problem, equivalent to (TRS), is derived
in Section 3.1. Theorem 14 provides the relationships that form the basis of our algo-
rithm. Section 3.2 discusses the hard case inside the SDP framework; while Section 3.3
describes the various functions associated with (TRS).
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Section 4 provides the detailed outline of the algorithm. The algorithm is based on
the parametric eigenvalue problem but also uses the special structure that arises from the
SDP programs. Results of computational tests are presented in Section 5. Test problems
were chosen randomly but taken from several classes in order to exhibit all the different
possible cases that can occur for {TRS). The algorithm never failed to find an optimum
and the average number of iterations was approximately 4.5. The main work in each
iteration is one application of the Lanczos algorithm. However, after the first iteration,
subsequent iterations involve applying Lanczos after perturbing the first diagonal element
of a matrix. Therefore the Lanczos algorithm finds the minimum eigenvalue very quickly
using the eigenvector from the previous iteration. For large dimensions, the amount of
work for the whole algorithm was 1.8 times that of the first iteration. We solved tens of
thousands of problems with dimensions varying from 100 to 2000.

2. Duality and semidefinite programming

Semidefinite programming, SDP, is an extension of linear programming, where the
nonnegativity (elementwise) is replaced by a positive semidefiniteness condition, de-
noted X > 0. SDP has recently appeared in many applications, see e.g. [1,22,23,32,43].
In particular, a hidden semidefinite condition arises in many quadratic programming
problems, since a quadratic function is bounded only if the Hessian is positive semidef-
inite. The (TRS) has a quadratic objective and a quadratic constraint; we shall see that
SDP is the hidden key to deriving algorithms for this problem.

We now present two programs which are dual to (TRS) and which exhibit strong
duality, see (8) and (14). Moreover, these programs maximize a concave function and
so they show that (TRS) is, implicitly, a convex minimization problem, and so is a
tractable polynomial time problem, by the work in [30]. Each of these dual programs
leads to a pair of primal-dual SDPs, The first pair of primal-dual SDP’s can be used
to derive the algorithm for (TRS) in [29]; while the second pair is used to derive our
algorithm.

2.1. A nonlinear primal-dual pair of SDPs

First recall that
L(x,A) = xTAx — 2aTx — A(|Jx]% = %)

denotes the Lagrangian of (TRS). In [43] it is shown that there is no duality gap for
Lagrangian duality for (TRS).

Theorem 1. (i) Strong duality holds for (TRS), i.e.
wro= minmAax L(x,A) = max min L(x, A).

Moreover, attainment holds for x and uniquely for A.



278 F. Rendl, H. Wolkowicz/Mathematical Programming 77 (1997) 273-299
(ii) A dual problem for (TRS), withour a duality gap, is

(D) =A£rha})é0h(/\), (8)

where h(A) = As* — a"(A — AD)'a, and -' denotes the Moore-Penrose generalized
inverse.

A proof is given in [43]. Alternate proofs for strong duality appear in { 21, Problem 3]
and also in {46].

Example 2 (Hard case). Let

10 _ T _
A—[O _l:l, a=(10)", s=1.

The constraint in the dual problem is equivalent to A < —1, which also implies that

the optimal A for the dual is A = —1. The optimal value for the dual is u* = —1.5.
However, x, = (A — AI)fa = (0.5 0)". Substituting into the objective function we see
that g¢(x,) = —0.75. Moreover, x, lies inside the disk and not on the boundary, i.e.

complementary slackness fails. This illustrates one of the weaknesses of Lagrangian
duality, i.e. the attainment point in the Lagrangian is not necessarily the optimum point
for (TRS), even though there is a zero duality gap.

Slater’s constraint qualification holds for the dual program (8). We can therefore
derive its dual program.

Corollary 3. The dual program to (8) is

(DD) p" =min h(A) +trace X(A — Al)
subject to % — ||(A — Al Tal* — trace X =0, (9)
X > 0.

Remark 4. The above primal-dual pair of SDPs can be used to derive the algorithm
in {29, equation (3.6)]. Though the function 4 is not used explicitly, the algorithm
actually is trying to sotve (D). In fact, it applies Newton’s method to a modified
form of the stationarity condition h'(A) =[x — s = 0, ie. to 1/[lxy]| — 1/s = 0,
where x, = (A — AIDta. The latter equation is almost linear which improves the
performance of Newton’s method. Backtracking is done in order to safeguard the positive
semidefiniteness constraint in (D). Note that the duality gap at feasible points, between
(D) and (DD), is given by the complementary slackness equation

duality gap = trace X(A — Al). (10)

Now, let x4, = (A — Al)'a and ||x, + z||2 = s%. Then, [29, equation (3.6)] in our
notation is
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qlea+2) =(A — X} (A= A)xy) +2 (A= Al)z
=h(A)+ZT(A—‘/\[)Z (1])

The first equality is the key in [29] for handling the hard case. For fixed A, a linpack
routine for estimating the smallest singular value of A — Al is used to find a z (a
direction of negative curvature) to make zT(A — A/)z small. In our framework, we set
X = zz'. This is equivalent to making the duality gap term, or complementary slackness
term, small.

Thus, the algorithm in [29] can be described as applying Newton’s method with
backtracking to (D); while the hard case step in {29] can be described as: find X to
reduce the duality gap between (D) and (DD) while maintaining feasibility in (DD).
( Alternatively, backtracking can be avoided by applying an interior-point method directly
to (D), see [37].)

Remark 5. The above provides a pair of primal-dual SDP programs where the ob-
jective functions are not linear. In the inequality constrained case, |x|| < s, we must
have the Lagrange multiplier nonpositive, A < 0. This is an added constraint in (D).
Correspondingly, the equality constraint in (DD) is changed to > 0.

2.2. A linear primal-dual pair of SDPs

The above nonlinear pair of SDPs provides an explanation for current algorithms
for (TRS). We now exploit the strong Lagrangian duality in Theorem 1 (in particular
attainment for vy defined below) and show that (TRS) can be reformulated as an
unconstrained concave maximization problem. This latter problem can be formulated as
a primal-dual linear SDP. The special structure of these formulations are exploited in
our algorithm.

Homogenization yields

p*=  min x"Ax —2ypa'x
lxl{=s, .\'Szl

max min_ x'Ax — ZyOaTx + tyé —1
tIxll=s. 3=

> max min  x'Ax — 2y0aTx + tyg —1

x| =t

max minxTAx — 2yoa'x + 1y — t+ A(Jlx]P + 33 —sF = 1)
l. E¥RY))

\Y

= max minx' Ax — 2voa'x + ryg — r+ A(||x]|? = %)
rA XN

max (max minxTAx — 2yoa"x + ryd — r + A(||x|* - sz))

rooxx

= max min x"Ax — 2ypa"x + A(||x|* — 5%)
.\‘.'\'(*):l

=/_L,
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where we have equated r with 1+ A. We have used Theorem 1 for the last two equalities.
The final equality also uses the symmetry of the function.
Define

k(t) = (s> + DA(D(1)) — 1, (12)

where, for t € R, the symmetric (n+ 1) x (n 4+ 1) matrix

r o —al
D) = [_a A J (13)

and A; denotes the smallest eigenvalue. Then the third expression in the above chain
implies that an unconstrained dual problem to (TRS) is

m{axk(t). (14)

Thus, the nonconvex constrained problem (TRS) is transformed to an unconstrained
maximization of a concave function from R to R. Note, in the case that A, (D(t)) is
simple, the derivative satisfies

K(t)y=(s*+ 1)y -1, (15)

where (‘3) is the normatized eigenvector for A;(D(¢)), i.e. a stationary point &'(¢) =0
is equivalent to the feasibility condition for (TRS) for sx, i.e. s2—[|sx||? = 0. In fact, we
shall see that this still holds for some normalized eigenvector in the case that A;(D(t))
is not simple. (As mentioned above, in the case of an inequality constraint, || x|| < s,
we have to include the extra constraint A; (D (1)) < 0.)

In fact, this dual problem is a max-min eigenvalue problem with very simple structure.
(We can include —1¢ in the eigenvalue expression by subtracting (t/(s2 + 1))/ from
D(t).) Therefore, (TRS) can be solved by known max—min eigenvalue techniques, see
e.g. [15,31]. These techniques are known to have asymptotic quadratic convergence.
However, these techniques are for general parameter problems and do not exploit the
very special structure of our problem. Moreover, we need fast global convergence rather
than fast asymptotic convergence.

In addition, as mentioned in Section 1.2, the fact that (TRS) can be transformed
into an unconstrained concave maximization problem implies that it can be solved in
polynomial time.

We can change the dual problem (14) into a SDP by adding the variable A.

(DSDP) wr=max (sS+1A—1t
subject to D (t) = Al

(The constraint A < 0 is included in the ||x|| < s case.) This is still the dual to (TRS);
there is no duality gap and strong duality holds. Each feasible dual solution provides a
lower bound on the optimal value p*. Therefore, given any value t and a lower bound
to the smallest eigenvalue, we conclude that

MDD Z2A = u2(G"+DA-1 (16)
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Moreover, Slater’s constraint qualification holds for (DSDP) so that we can take the
Lagrangian dual of this dual to get a semidefinite equivalent for (TRS), see e.g. [51].

(PSDP) ¥ =min trace D(0)X
subject to trace X = 5% + 1
Xn =1
X>0.

(In the inequality constrained case, the additional constraint A < 0 in (DSDP) corre-
sponds to trace X < s?> + 1 in (PSDP). This further emphasizes the fact that the dual
variable A is the shadow price corresponding to the trace constraint or norm constraint;
while ¢ is the shadow price for the constraint on X;;.) This SDP can be obtained directly
as an SDP relaxation of (TRS) if we consider X in the form

i 2, T
x=()°) (v xT)=[yO WT}, with 2 = 1, (17)

X Yox XX

where x is feasible for (TRS). This program provides us with the means of obtaining
upper bounds for (TRS). Moreover, the dual pair of SDPs yields the duality gap at
feasible solutions (A,¢), X, i.e.

duality gap =trace D(0) X — (52«}- DA+t =trace(D(t) — ADX, (18)

i.c. the value of the complementary slackness relation. In the case of the inequality
constraint in (TRS), we need to add A (lraceX — (T + 1)) to the duality gap. So we
get trace D(£)X — (s* + 1) A. The relationship between optimal solutions of the SDP
programs and (TRS) is as follows.

Theorem 6. Suppose thar (A*,1*), and

1 V*T
X* = [ * A'*:|
v X

are optimal for the primal-dual pair (DSDP) and (PSDP), respectively. Then:
(1) u* =max, k(1) =k(t*) =maxa_a;=0h(A) = (A™) = A*s? —a'y*, and ||y*|| < s.
(2) Let the matrix X* be factored as X* = TT", where T = [‘;T] is (n+ 1) x r and

full column rank. Then y* = Tw and, for every 0 # v € R" such that Tv = (n?),)

we have that n, € N'(A — A*I) and the vectors x™ = y* L an,, where

s =y II?
y* T, +sign(y* ")/ T2 + (2 = {ly* )

solve (TRS), with unique optimal Lagrange multiplier A* = A (D(t™) ). Moreover,
X = (J,)(lx*) is optimal for (PSDP) and ()]) is an eigenvector for A* =
A (D(17)).

a =

Proof. First note that the optimal value of each of the pair of dual SDP programs equals
the optimal value of (TRS) by construction and strong duality. Feasibility of X* for
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(PSDP) implies that ||y*|] < s. Moreover, the relationships with the functions & and A
have already been shown. Now let Z* = D(+#*) — A*I. Then, complementary slackness,
trace Z* X~ = 0, implies

g% _ T T
0=z"x=|" "4 a 1o
-a A-MNT| [y X

The complementary slackness and feasibility further yield:

tr=a'y 4+ A%, (19)
X*a= (1" - A*)y*, (20)
(A— X1y =a, (21)
(A— XX =ay", (22)
A— A1~ 0. (23)

From (21) we get stationarity for y*, while (23) gives the second order optimality
condition. Therefore, to prove optimality for (TRS) we need only verify feasibility
(and complementary slackness in the inequality constrained case).

Now, in the case that the smallest eigenvalue is simple, complementary slackness,
Z*X* =0, implies that X* is rank-one; feasibility for (PSDP) yields the factorization
similar to (17). Therefore optimality for (TRS) follows by noting that feasibility of
X in (PSDP) implies feasibility for the solution x* = y*. The Lagrange multiplier
value comes from the eigenvalue—eigenvector equation for ¢ in (DSDP). Uniqueness for
A follows from uniqueness of the Lagrange multiplier in (TRS). (Or from the strict
concavity of the function 4(A).)

In the case that the smallest eigenvalue is not simple, the above argument still holds
except for the simple representation of x*, since X* is not necessarily rank-one. We
use the full rank factorization of X*. First note that 0 = trace Z*TTT = trace T1Z*T
implies that the semidefinite matrix TYZ*T = 0 and, further, that Z*T = 0. Therefore
each column of T is an eigenvector for A; D (t*). The result now follows by noting that
v* is a stationary point and so x* is also a stationary point and, moreover, the formula
for a guarantees that ||x*| = s, see e.g. [29, p.558]. O

The relationship between the optimal solutions of the SDP pair is given in the fol-
lowing corollary. As in ordinary linear programming, the connection is through the
complementary slackness conditions. Possible optimal points for (DSDP) are just ex-
treme points, i.e. points where A;D(¢) = A. However, the possible optimal points for
(PSDP) are not as simple to characterize and depend on being able to solve an inverse
eigenvalue problem.

Corollary 7. Suppose that (A*,t*), are optimal for (DSDP). Then

A= A(D()) and pt=(sT+ DAY -1
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Let T be (n+ 1) x r and full column rank such that (D(t*) — A*IDDT =0 and r > 2
if the multiplicity of the eigenvalue A* is > 2. Then T = (;) can be normalized so that
||lwl| = 1. If v is chosen as in Theorem 6, and z = T(w + z), then X* = 77" solves
(PSDP).

Conversely, suppose that

1 V*T
X* = "5
[-v* X }

solves (PSDP) and X* = TTT with T full column rank. Then the linear equations
pr= (st DA =1, (D) - AT =0,

can be solved for t*, A*, which are then the optimal solutions for (DSDP).

3. Eigenvalue functions

In this section we study the various functions involved in the SDP programs de-
rived above. These functions have special structure that we exploit in our algorithm. In
particular, we present 6 functions: the first 3 describe the functions for the nonlinear
primal-dual SDP pair; while the next 3 describe the corresponding functions for the
linear pair.

3.1. Parametric eigenvalue problem

We first take a closer look at A (D(t)), the smallest eigenvalue of D(z), as 1
varies. At first, the following assumption will be made to guarantee that A;(D(¢)) has
multiplicity 1 for all + € R. For simplicity of notation, we let A be diagonal with
diagonal elements «;. Let { be the multiplicity of A;(A), 1.e.

ap == <@g S0 S ap
Assumption: 35 € {1,...,i}: a; # 0. (24)
Assumption (24) can be rephrased for general symmetric A in geometric terms as

follows, see e.g. [29].

Condition (24) is violated if and only if a"x = 0 for all x in the eigenspace
corresponding to Ay (A).

We will discuss questions related to the case when (24) does not hold in the following
Section 3.2. If (24) holds, we may without loss of generality assume a; # 0. The
assumption (24) is called the easy case in the literature. If the assumption fails, then
the hard case holds.
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An application of Schur’s determinant theorem on Schur complements yields the
following.

Proposition 8 (see [50]).
det(D(r) = Al) = (t— &) [J (e = 1) ~ Zaf.H(a‘,- —A).
i k=l j*k
Let J :={i | a; # 0}. Note that | € J. Then we get
2
4;

det(D (1) — Al) = [t—/\—zaj_/\}g(ak*/\). (25)

ied

For A & {a; | j € J} define

e
d(A) = A+ Z I
e @A

Note that
d(A) =A+a" (A- A7 la, forA<a.

This function is similar to the secular functions used in current divide-and-conquer
methods and trust region algorithms.

Lemma 9. If (24) holds, then for all t € R we have

A (D(t)) is simple and A (D(t)) < .

Proof. Since the eigenvalues of A interlace those of D(¢) for all ¢+ € R, see e.g. [17,
p. 185], we trivially have A;(D(r)) < «,. By (25) we have to show that t — d(A) =0
has a unique zero A* < a; for all + € R. Now (24) implies that d(A) has a pole at
A=qa; and

lim  d(A) = +oc.

A—ay, A<a

Moreover,
lim d(A) =—c0.
A——00

Since d(A) is continuous for A < a, we see that d(A) =t has at least one solution
A < a for all 1. By the interlacing argument there can be at most one solution A < «;.
(Note also that d is strictly monotonically increasing and convex on (—co,a;).) [

Corollary 10. Suppose that A\ (D(t)) is not simple. Then the hard case holds for
(TRS).
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For a given value ¢, we have seen how to move to the boundary of the feasible set of
(DSDP), 1.e. we use A = A;(D(¢)). The following shows how to move to the boundary
given a value for A.

Corollary 11. Suppose that A < a is given. Then
D(d(A)) — Al > 0 and singular.

We will now investigate the eigenvector corresponding to A;(D(t)). Recall that the
etgenvector can be used to obtain a feasible solution for (PSDP), see Theorem 6.

Lemma 12. Suppose (24) holds and let t € R be fixed. Let y(t) be a normalized
eigenvector corresponding to A (D(t)) and denote its first component by yo(t). Then
yo(1) # 0.

Proof. Suppose yo(t) = 0. Then A, (D(¢)) is an eigenvalue of A, which contradicts
Lemma 9. [J

In view of Lemma 12 we may further normalize the eigenvector y(z) so that it is
norm 1 and yg(t) > 0 for all «.

Lemma 13. If (24) holds and the eigenvector v(t) is normalized, then yo(t) : R —
(0, 1) is strictly monotonically decreasing.

Proof. First note that for t — —oc we have A, (D(r)) —t — 0 and thus y(t) — e.
(Throughout e; denotes the ith canonical unit vector in the appropriately dimensioned
space.) On the other hand if t — +o00 we have A;(D(t)) T a; and therefore yo(r) | 0*.
These are immediate consequences of the properties of d(A). We show now that yo (7}
is monotonically decreasing. Let 1 = ¢ be fixed and suppose y(£o).u2(to),. .., up1(2o)
is an orthonormal basis of eigenvectors of D(7g). Since A;(D(1ty)) is simple, as shown
in Lemma 9, we get, see e.g. Theorem 4.2, Chapter 6 from [45]:

. v t_[() ) T T
v(1) =y(to) + ,Z. PRTSESWTS u;(to)u; (to)ere] y(to)

+ terms of higher order in t — to. (26)

tfor t sufficiently close to tg. Therefore we get

(eTu;(10))*

—l +o(1—19).
TG (g () + ol = 10)

vo(1) = yo(to) + (2 — to) Z

j>1

Now yp(tg) > 0, A;(rg) — A;(t9) < 0, thus for + > o but close to 79 we have
yo(t) < wo(to). U

We now formulate and prove the main resuit of this section, relating A, (D(t)) to the
function g(s), defined by (6).
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Theorem 14. Let A and a be as above. Let t € R and suppose y(t) := (yo(t),z(£)T)T
is a normalized eigenvector of D(t) corresponding to A (D(t)). Suppose (24) holds.

Then yy(t) # 0 and
1
U= z(1)
yo(t)

is the unique optimal solution of

. 1— yo(1)?
T ) — T, vTvz———— 27
mm{u Av—2a'v | el (D)2 } (27)

Conversely suppose v € R" and A € R satisfy

1 - 2
(A—-ADv=a, A — Al positive definite and vty = —2})—0,
Yo

thereby defining vo > 0. Then y := vo(1,¢7) T is an eigenvector of D(t) fort = alv+A
and A|(D(t)) = A.

Proof. Fix ¢ € R. Suppose
[D(t)y — AI]lv=0 and |y||=1.
Expanding we get
(t—ADy—a'z=0,
—yoa+ Az — Az =0, (28)
vi+zTz=1.
By Lemma 12, we may assume yg > 0. Set v := (1/yp)z. Then

Av— Aiv=a,

\2
Ty = 120 (29)

2
Yo
A — Al is positive definite.

The last relation follows from Lemma 9. Thus v is the unique minimizer of (27). To
see the other direction, suppose

Av — Av = a, oTe = s

and A — A/ positive definite. Setting v 1= (yo, vov')T and ¢ := a"v + A we get
(D(t) — Al)y = 0.

Therefore y is an eigenvector of D(r) corresponding to A. Note also that yTy =
ye(1+¢Tv) = 1. Since A — Al is positive definite, we get A < A;(A), therefore
A=A (D(1)). O
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It is interesting to view Theorem 14 using the SDP framework and our dual pair
of SDP programs, see Theorem 6. Since we have assumed the easy case, we see that
normalizing the eigenvector, ||y||> = s> + 1, corresponds to satisfying the trace constraint
in (PSDP). If we set z = A{(D(t)), then (z,1), and X = y(t)y(t)" solve the perturbed
dual pair of SDP programs where (PSDP) has the perturbed constraint X|; = yo(7)?,
and (DSDP) has the appropriate perturbed objective function.

Theorem 14 can be used to solve the minimization problem (1), (2) using the dual
simplex scenario. Suppose A, a and s are given. We have to find ¢ € R such that

1 - V%(t) 2 1
T(t) =/ —————=5 or yg=——",
) V' o 24

where yo(t) denotes the first component of a normalized eigenvector y(t) =
(yo(2),z2()T) corresponding to A;(D{(t)). Then we know from the theorem that
1
s Yo (1)
is the unique solution of our minimization problem with corresponding Lagrange mul-
tiplier A{(D(t)). Note that due to the monotonicity of yg(t), the function 7(7) is also
strictly monotone. Therefore the correct value of ¢ can be approximated by standard
search procedures. We discuss computational issues like finding an interval [, '] that
contains the desired value ¢ in a subsequent section. The main point here is to note that
the present theory solves (1), (2) by successive calculations of the smallest eigenvalue
of D(t). No factorization or solution of a linear system is required, and the possible
sparsity of A can be fully exploited. This is because the norm of the current approximate
solution is calculated using the relation with yg in (27), rather than directly. Moreover,
no explicit safeguarding for positive semidefiniteness of the Hessian A — Al 1s needed.

z(t)

3.2. The hard case

We now discuss the case where condition (24) does not hold. Several authors call
this case the hard case, because numerical problems can be expected in this situation.
We will show now that this case can also be handled by our approach. In fact, the hard
case corresponds to multiplicity greater than one for the smallest eigenvalue of D(r™).
Therefore, the only added complexity comes from the fact that the Lanczos algorithm
is slow when the smallest eigenvalue is not simple. We get an additional speedup in the
hard case by using a primal simplex step.

Suppose a is orthogonal to the eigenspace corresponding to a;. After having chosen
the coordinate system using the orthonormal eigenvectors of A, we get that A is diagonal
and

a1=-~-=a,-=0.

To avoid trivialities, we also assume a # 0. From our discussion in Section 1 it is
clear that if s > 0 is sufficiently small, then the optimal solution to the trust region
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problem is still unique, because in this case the quadratic part of the objective function
is substantially smaller than the linear term. Therefore an optimal x will be “almost”
parallel to a. As s gets larger, uniqueness of the optimal solution may be lost. The key to
understanding the behaviour of the optimal solution lies again in the smallest eigenvalue
A1(D(t)) and the corresponding eigenspace. We recall the definition of d(A).

a’

2
d()=r+) —
jes i

VA # aj: j € J (30)

Note that d does not have a pole at a;. Let
to:=d(ay).
We denote the multiplicity of the eigenvalue a; of A by i. Clearly, i > 1.

Lemma 15. A;(D(t)) = a; with multiplicity i + 1. Moreover, there exists an eigen-
vector y with first component different from 0.

Proof. To show that A;(D(#)) = a; we first note that d’(A) > 1. Therefore A < a;
implies d(A) < d(a;). Suppose A < a;. Then the characteristic polynomial, see (25),
satisfies

det(D(to) — Al) = [d(ay) —d(A)] H(ak -A) >0,
k=1

because each factor on the right-hand side is positive. Therefore, by interlacing,
A (D(19)) = a;. The muliplicity of a; is at least i + 1, by the definition of f.
Since A is a principal submatrix of D(t), and the multiplicity of a; in A is precisely
i, it follows from the interlacing theorem that the multiplicity of «; in D(#) can be at
most i. This proves the first part of the lemma.

To see the second part, we note that there are i pairwise orthogonal eigenvectors
€2, ...,¢eis for ay. Thus there exists another eigenvector y in their orthogonal comple-
ment, SO

y=(yOsO»---aO,)’i+l,-~~ayn)T~

Now the assumption y; = O implies that the columns of D(1) corresponding to
Yitls---» Yy are linearly dependent, contradicting the assumption that o; < i < -+ <
a,. The proof also shows that if we assume | y|| = 1, then y is uniquely determined. [J

We now distinguish between two cases for yo = yo(#o0).
Case 1: (1 — y3)/y% > s% In this case we can proceed similarly as in the previous
section, because the following observation shows that 7" < 1.
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Lemma 16. If t < ty then A\(D(t)) is simple and less than «,. The corresponding
eigenvectors have first component nonzero. Moreover, there exists some t < ty such that

1 —Y()(t)z — 2
yo(1)?

We omit the proof, because the argument is essentially the same as in the previous
section.

Case 2: (1 — y3)/y3 < 5% In this case let y = (yp, denote the normalized
eigenvector for D(1p) having yo # 0. Define u := (1/yg)z and select ¢ from the
eigenspace of a; from A of norm 1. By construction, ¢ L u. Now it is a simple matter

zT)T

to verify that

Xi=u+ (sz Sl _2y’2’)u
Yo
satisfies the optimality conditions with A = ;. Thus * = #.

In our algorithm we treat the hard case, and the “almost” hard case, similar to
the approach in [29], i.e. we find a vector which allows us to move to the correct
radius while improving the objective function. In [29], this is done using the Cholesky
factorization and a linpack routine which estimates the smallest singular value and vector,
see Remark 4. We proceed using the framework of our dual pair of SDP programs. As
seen above, the possibility of the hard case is indicated by (1 — y3)/y3 < s%, or

equivalently, by
ya > 1/(145%). (31)

Now if (31) holds, then the matrix

1 vo)

X=—= 1" Vo X (32)
G <X Lo 1)

is feasible for (PSDP) with trace X < | + s>. We can now check the duality gap using

the feasible pair (z,t), X. If we are within our tolerances for the norm of x and for the

duality gap, then we stop.

3.3. Six useful functions

In the above semidefinite framework, we can treat the pair of SDP programs as linear
programs and try and apply techniques from linear programming. There were also several
other functions that arose from this framework. These can be divided into two groups.
We now list these functions and their properties. The first group of three functions form
the basis for the current algorithms for (TRS) and require the Cholesky factorization
to find derivatives for Newton’s method and for safeguarding positive definiteness. (See
Remark 4.) The corresponding functions for our algorithm appear as the second group
of three functions.
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3.3.1. The quadratic dual
The following three functions arise from the quadratic dual pair (D) and (DD). The
properties we present are described in [43].

(a) H(A) = As? — aT(A — AD'a

Recall that p* = max4.-a;=0 £(A). This function is strictly concave on the open interval
{(—oc,A1(A)) and it diverges to —oc as A decreases to —oo. In the easy case, it also
diverges to —oc as A increases to A} (A). Therefore the maximum occurs in the open
interval (A;(A), —00).

However, in the hard case, the maximum of 2(A) may be at the boundary point
A (A).

(b) R(A) =52 —d" ((A— A T)%a

The derivative of 4 is equivalent to the feasibility condition of (TRS). Solving 4'(A) =
0, subject to the semidefinite condition, is clearly equivalent to solving (TRS). This
function is concave on the same region that 4 is.

In the hard case, the derivative can be > 0 at the optimum. Moreover, the (one-
sided) derivative formula does not necessarily hold with the Moore-Penrose generalized
inverse, but may require some other generalized inverse.

1 1
@ =S G
We can solve the equivalent, square rooted, reciprocal equation, subject to the semidef-
inite condition. The function ¢ is almost linear and is convex on the region that h is
concave. This is the function currently used to get fast algorithms for (TRS).
In the hard case, Newton’s method predicts points that can lie on the wrong side of
the smallest eigenvalue of A.

3.3.2. The SDP dual
The following three functions arise from the dual pair (PSDP) and (DSDP). The
properties we present can be derived from the relations with the above three functions.

(a) k(1) = (s + 1) A(D(1)) ~ 1 (33)

Recall that w* = max, k(r). This function is strictly concave in the easy case, since the
maximum eigenvalue is a concave function. It is coercive since it diverges to —oc as |¢
goes to oo.

In the hard case, the function is not differentiable at points where the multiplicity of
the eigenvalue changes. It is linear and equal to a constant plus (—f) when ¢ becomes
sufficiently large. The linearity follows from interlacing, i.e. when D(¢) has a multiple
smallest eigenvalue, then interlacing implies that the eigenvalue becomes and stays equal
to the smallest eigenvalue of A, for larger values of 7.

(b) K(t)y=(s*+ Dyg(r) — 1 (34)
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The derivative of k is equivalent to the feasibility condition of (TRS) under a nor-
malization condition, where yg is the normalized first component of the eigenvector for
A(D()).

The function is convex, nonincreasing, and can have a jump discontinuity at the point
where the hard case is detected, i.e. when vy becomes 0.

(c) Y1) :=+/s24+1— ! (35)

yo(1)

We can solve the equivalent, square rooted, reciprocal equation. There are advantages
for solving the equation ¢ (t) = 0. This equation is almost linear, nonincreasing, and
concave.

In the hard case, this function is not defined when vy = 0. Therefore, it may not
provide useful information in the hard case, for r > r*.

4. The dual simplex algorithm

In this section we describe our algorithm to solve the inequality constrained (TRS).
We have shown (see Remark 4) that the nonlinear primal-dual SDP pair can be used to
describe current algorithms, e.g. [29], for (TRS). Our algorithm is based on replacing
the nonlinear primal-dual SDP pair by the linear primal-dual pair, (DSDP) and (PSDP),
and taking similar steps, though without backtracking. In addition, it is based on solving
max, k(r) (see (33)) or k'(r) =0 (see (34)), for t € R. We exploit the structure
of Y(r) (see (35)) and k(r). The main computational step is the eigenvalue and
eigenvector computation for D(r) (see (13)) for various values of +. We assume that a
subroutine is available, that calculates with “sufficient accuracy” the smallest eigenvalue
along with a normalized eigenvector of a symmetric matrix. We do not assume any
knowledge about whether the hard case occurs or not. Our algorithm is set up to handle
this situation automatically. In fact, the algorithm takes advantage of the structure of the
hard case, or near hard case, and usually takes fewer iterations.

The method we are going to describe parallels that of the dual simplex algorithm for
linear programming. Therefore we call this a dual simplex method. We first outline the
algorithm with notation familiar from linear programming.

1. Start with the variable 7 and evaluate the basic variable (extreme point) (r, A) of the
(dual) feasible set; we use the smallest eigenvalue A = A (D(t)).

2. Using complementary slackness, find an approximate solution to the primal problem
(PSDP); we use a normalized eigenvector v for A found above, and X = (s%+ 1) yy'.
Therefore the first constraint in (PSDP), the trace constraint, is satisfied.

3. With the previous values from X; (equivalently from yy), we use various forms
of inverse interpolation to predict a value for ¢ such that the second constraint in
(PSDP), X;; = 1 (equivalently () = 0), is closer to being satisfied and/or the
duality gap is decreased. (Note that this means we are using the shadow price
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interpretation of r.) An important ingredient of this is taking a primal step, i.e.
moving to the boundary of the primal feasible set and reducing the duality gap.

We now describe in detail the main steps of the algorithm.

4.1. Initialization

We first derive intervals that contain the optimal value 1 and the optimal parameter
value t*.

Lemma 17. Let A, a and s be given. Let t*, A* be optimal for (DSDP). Then
1
M(A)—;Ilall << M(A) + slall. (36)

Proof. From (19),
A =ay.

But X* = 0 in Theorem 6 implies that [|y*||> < trace X* = 5%, i.e.
|77 = A7 < [al's.

Since A (D(*)) = A" < A (A), the upper bound is proved.

If the hard case holds, then t* = A, (D(1*)) = A* = A;(A), and the lower bound is
proved.

If the hard case does not hold, then A* is a simple eigenvalue of D (). Let a normal-
ized eigenvector be (vo(t*),z(#*)T)T. From Lemma 12, we know that (yo(*) # 0.
Set

1
vt o= ().
yo(r*)
To derive the lower bound we consider two cases.
Case 1. t* > A (A). In this case the lemma is proved.
Case 2: t* < A((A). We get, using (28), (29) and the fact that r > A (D(¢)), that

A = = (A — AT = (A (A) = A sE > (M(A) — 1) s

Let A = PDPT be the spectral decomposition of A with PPT =/, and D containing the
eigenvalues of A. Set b := PTa. Then we can use 1 = d(A), see Lemma 9, to get an
upper bound on * — A}. From (25)

b2 b2
L /\* = f] — J
{ ‘ Z,\_,(A)n)q Z/\_,‘(A)*f*%-}:kb%/(Ak(A)_AT)

J i

b= 2
gz . < llall ,
; /\_,‘(A)——l* A(A) — 1+
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since A{(A) — 1* > 0 and ||b|| = ||a||. From the above sets of inequalities we have

g2 lal?
(A (A) = )5 < S

Therefore we conclude
. a
A1 (A) = %] < ”—sﬂ
After noting again that A;(A) — t* > O, the proof is complete. [

Note that we only need upper and lower bounds on the smallest eigenvalue of A to
apply this lemma. Upper and lower bounds on the optimal value can similarly be found,
i.e. if v is a normalized eigenvector for A;(A), then

SAL(A) = 2lalls < w* < 5PA(A) + 2s]a"e] < sPA1(A) + 2s]jall. (37)

Algorithm Part 1: Initialization.

Input: A, a,s is the data for (TRS); feastol, dgaptol, zerotol are respectively, tolerances
tor feasibility, duality gap, and accuracy in determining ¢.
Find: the smallest eigenvalue and corresponding eigenvector for A — use e.g. Lanczos
algorithm with restart.
Find the bounds for intervals of uncertainty:
1o < t* <t (initial interval of uncertainty for *)
w' < p* < p (initial interval of uncertainty for x*, duality gap)
Ser:
te = t6 (¢ denotes current estimate of 1*)
th=1f, 1 =1}
1) =10, 15 = £§ (p denotes previous estimate of r*)

4.2. Stopping criteria

We stop if we have reached a solution which is almost optimal and almost feasible,
or if the interval of uncertainty for r cannot be made any smaller, i.e. this interval has
reached machine accuracy. More precisely, suppose we are given: feasibility and duality
gap tolerances, feastol and dgaptol, respectively;, machine accuracy macheps; and the
current duality gap u® — uf, where u® > u* > uf. We stop when the current estimate
of the optimum, denoted v, satisfies

llell € s(1 + feastol)
and the current duality gap u" — u' satisfies
pt = u' < (u + Ddgaptol:
or, we stop when the current interval of uncertainty for * satisfies

" — " < (| + V)ymacheps.
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Note that the relationships between duality gap and complementary slackness show
that almost feasibility and a small duality gap imply almost stationarity, see (18)
and (21).

The output from the program yields intervals of uncertainty for ¢*, A*, u* and an
almost feasible point v with objective value in the interval of uncertainty for w*.

4.3. Generating an improved iterate

The new trial point r, is generated in several different ways. We would like to use the
properties of yy, the first component of a normalized eigenvector of D(r), see Section
3.1. The values of yy are used to predict a new value for . (This compares to the
dual simplex method where shadow prices are used to find new values.) We solve the
stationarity condition &'(¢) =0 (see (34)) by solving the modified equation ¢(f) =0
(see (35)). Ideally, we would like to use inverse interpolation on yg of the form

t(30) = co + —— + 2 (38)
-y
(possibly with ¢; = —c», if only two points are available). This takes care of the fact

that for yp — 0, we have t — +oc, and yg — | implies t+ — —oc, see the above
Section 3.1. Using the information from the previous iterates, we first compute the c;
and set

r+=t(y*)=t(—;;:).

The inverse interpolation works well in the easy case when we interpolate with points
on the same side of t*. Recall that ¢ is concave, nonincreasing, and almost linear.
However, in the hard case, or near hard case, the function yo(t) can be wildly different
on opposite sides of t*. This can result in very poor interpolation. To overcome this
problem, the algorithm performs a primal step in the update part, i.e. a move to the
boundary of the (PSDP) feasible set.

Since our interpolation scheme does not take into account the monotonicity of yp, it
may be the case that the new trial point is outside the interval of interest. In this case
we exploit the concavity of k(1): we use the intersection point of the tangent lines to
k(r) at two points on opposite sides of t*, call this (s, k(#2)); the value k(#) provides
an upper bound on the optimal value w*, while 7 provides a new interpolation point.

Remark 18. In [29], the Newton method is applied to ¢(A) = 0, to obtain a new
approximation for A*. This iteration converges monotonically if the current estimate is
on the good side of A*, ie. less than A* but bigger than —A;(A). However, the new
approximation can be very poor if the current estimate is on the other side, the bad side,
of A™; this can result in several steps of backtracking to maintain positive definiteness.
For our algorithm, the inverse interpolation for 7* replaces Newton’s method. Inverse
linear interpolation would result in the same monotonic convergence behaviour, though
backtracking is never needed.
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Algorithm Part 2: Find a new estimate ¢,.

ty = (tﬁ + 1) /2 (midpoint is default)
if rf) < ré and t; < ty {points on both sides of t* found already)
Find the intersection point (#, k(2¢)) of the two tangent lines
to the graph of k(1) at the points . and 1"

set t+ =1
update the upper bound " using k(1)
endif

find estimate #f for ¢* using inverse interpolation
if 7¢ is inside current interval of uncertainty

set t. =t
endif

4.4. Updating Information

After having determined the new trial point ¢., we calculate A;(D{t,)) together
with a normalized eigenvector. There exist several publicly available software packages
that are designed specifically to find extreme eigenvalues of symmetric matrices. With a
“Block-Lanczos” approach, the computational effort boils down to essentially a sequence
of multiplications of the form “matrix times vector”. Since we change only one element
of D(t) in the course of the iterations, we can make efficient use of previously calculated
eigenvectors to start new iterations.

We take advantage of the special structure of our problem in several ways.

First, we test the sign of A= A (D(r.)). If the sign is positive and ¢, < t*, then we
cannot get the correct negative sign for larger values of ¢, i.e. the constraint is redundant.

Next, if the sign of A is correct, we check if 1. < t* (bad side), then we take a primal
step to the boundary in (PSDP) while improving the value of the objective function.
(This is equivalent to the negative curvature direction described in Remark 4; however,
we use an existing eigenvector from a previous iteration for the direction.) If, on the
other hand, t; > t* (good side), then we use a steepest descent step to the boundary
in (PSDP) while again improving the value of the objective function.

Algorithm Part 3: Updating.

Find smallest eigenvalue A and

corresponding normalized eigenvector for D(r.).

(Use Lanczos algorithm with previous eigenvector information.)
if A > 0 (wrong sign for Lagrange multiplier)

if . < t* then STOP, x* = Atq, u* = —a'x*
else (correct sign for Lagrange multiplier)

Update lower bound u‘ using the value of the dual function k(. )
endif
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ifr, <t
Perform a PSDP (primal step to boundary)
step and update best feasible data and u"
=t 1,
else
Take a steepest descent step to update p"
Ip 18, I8 — 1,

endif

5. Conclusion
5.1. Summary

We have presented a primal-dual semidefinite framework for trust region subproblems.
This framework can be used to generate and analyze many known and new algorithms.
In particular, we have presented an algorithm for large sparse trust region subproblems.
The algorithm maintains dual feasibility and complementary slackness while iterating
to obtain primal feasibility and reduce the duality gap. Each iteration of the algorithm
requires the calculation of the smallest eigenvalue, and corresponding eigenvector, of
the parametric matrix D(¢). This is done using a Lanczos routine. Therefore sparsity of
the data can be fully exploited and the work of the algorithm is based on matrix vector
multiplications. Moreover, only one element of the matrix is perturbed at each iteration
and so consecutive Lanczos steps become cheaper.

Independent work, on a similar algorithm as presented herein, was done by Sorensen
in [41]. The basic idea of inverse interpolation for a parametric eigenvalue problem
lies behind both algorithms. The parametric eigenvalue connection is made precise
in Theorem 14. The main differences in the two algorithms is that we exploit the
semidefinite framework and the structure of the function k(¢). The structure of this
function allows for very efficient handling of the hard case. In fact, the primal feasibility
step reduces the duality gap and is essentially equivalent to the so-called negative
curvature step taken in [29]. In addition, our approach does not use the optimality
conditions to ensure that the objective value is sufficiently accurate, but rather it reduces
the duality gap directly as do the current family of primal-dual interior-point algorithms
for linear programs.

5.2, Numerics

We have run tens of thousands of tests for the inequality constrained case using
randomly generated problems of various dimensions. There were various forms of the
hard case used. These involved different multiplicities for the smallest eigenvalue of
A. In particular, some of the problems had very high multiplicity, up to n/3. The
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Table |

Dimension Problems Density Iterations CPU sec Work Comment
1540-1565 30 0.01 4.4453 54.1876 1.73

1540-1558 30 0.013 4.1148 56.1322 175 pos. def. Hessian
1500-1565 2 0.01 4.2951 57.0429 4.8589 hard case
1800-1865 12 0.05 4.2453 28.1692 4.2589 hard case

problems were generated to have special properties: general problems using random
A, a,s; general problems but with the hard case; and the random matrix A is chosen
positive definite for both easy and hard case problems.

We had a relative duality gap tolerance of 107° and a feasibility tolerance of 107>.
However, decreasing the desired tolerances did not increase the number of iterations
significantly, thus indicating that we had very fast asymptotic convergence.

Our initial results used a simple linear interpolation. They showed an average number
of approximately 4.5 iterations with essentially zero problems having more than 10
iterations. (More recent tests used the improved interpolation scheme (38). This gave
a 25% reduction in the iteration count in the easy case.) The algorithm has yet to
fail on a problem. Moreover, the number of iterations was, surprisingly, independent of
the dimension of the problem. The time spent in the Lanczos step increased with the
dimension, as expected. However, Lanczos efficiency increased after the first iteration,
since we gain information on the starting approximation to the eigenvector. We observed
that the total work for the algorithm in the easy case was approximately 1.8 times the
work for the first call to the Lanczos algorithm. Since the trust region problem is a
generalization of the minimum eigenvalue problem, we cannot expect to do much better
than this.

The tests were done on a SUN SPARC station | using MATLAB with a fortran
interface for the Lanczos algorithm. Average results for several dimensions are given
in Table 1. The hard case examples had multiplicity of the smallest eigenvalue ranging
from 1 to 6. A multiple of the identity was added when a positive definite matrix was
needed. The work is the amount of work times one Lanczos step.

The codes and this research report are available by anonymous ftp (orion.math.uwater-
loo.ca, in the directory pub/henry/software/trustreg.d) and through WWW using URL
http:/ /orion.math.uwaterloo.ca/ " hwolkowi.

References

{11 F Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial
optimization, SIAM Journal on Optimization 5 (1995) 13-51.

{21 J. Peng and Y. Yuan, Generalizations of the trust region subproblem, Technical Report, Institute of
Computational mathematics and Scientific Computing, Academic Sinica, Beijing 100080, China, 1995.

{3] A. Ben-Tal and M. Teboulle, Hidden convexity in some nonconvex quadratically constrained quadratic
programming. Technical Report, Israel Institute of Technology, Haifa, Israel, 1993.



298 £ Rendl, H. Wolkowicz/Mathematical Programming 77 (1997) 273-299

|41 S. Boyd. L. El Ghaout, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Conrrol
Theory, Studies in Applied Mathematics, Vol. 15 (SIAM., Philadelphia, PA, 1994},
| 5| M.R. Celis, J.E. Dennis Jr and R.A. Tapia. A trust region strategy for nonlinear equality constrained
optimization, in: Proceedings of the SIAM Conference on Numerical Optimization, Boulder, CO, 1984;
also available as Technical Report TR84-1. Department of Mathematical Sciences, Rice University,
Houston, TX.
6] T.F. Coleman and C. Hempel, Computing a trust region step for a penalty function, SIAM J. Sci. Statist.
Comput. 11 (1990) 180-201.
| 7} O.E. Flippo and B. Jansen, Duality and sensitivity in nonconvex quadratic optimization over a ellipsoid,
Technical Report 93-15, Technical University of Delft, Delft, The Netherlands, 1993.
8] G.E. Forsythe and G.H. Golub, On the stationary values of a second-degree polynomial on the umt
sphere, SIAM J. Applied Mathemarics 13 (1965) 1050-1068.
[9] W. Gander, G.H. Golub and U. von Matt, A constrained eigenvalue problem, Linear Algebra and its
Applications 114/115 (1989) 815-839,
| 10] D.M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput. 2 (1981) 186-197.
{11} S.M. Goldfeldt, R.E. Quandt and H.F. Trotter, Maximization by quadratic hill-climbing, Econometrica
34 (1966) 541-551.
{12] G. Golub and U. von Matt, Quadratically constrained least squares and quadratic problems, Numer.
Math. 59 (1991) 561-580.
| 13] C.-G. Han, PM. Pardalos and Y. Ye. Computational aspects of an interior point algorithm for quadratic
programming problems with box constraints. in: TE Coleman and Y. Li, eds., Large Scale Numerical
Optimization (SIAM, Philadelphia, PA, 1990).
| 14] M.D. Hebden. An algorithm for minimization using exact second derivatives, Technical Report TPS15,
Atomic Energy Research Establishment, Harwell, England, 1973.
|15} C. Helmberg, E Rendl, RJ. Vanderbei and H. Wolkowicz, An interior point method
for semidefinite programming, SIAM Journal on  Optimizarion  (1996) 342-361; URL:
ftp:/ /orion.math.uwaterloo.ca/pub/henry/reports/sdp.ps.gz
[16] A.E. Hoerl and R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems,
Technometrics 12 (1970) 55-67.
| 17] R. Horn and C. Johnson, Marrix Analysis (Cambridge University Press, New York, 1985).
[ 18] N. Karmarkar, An interior-point approach to NP-complete problems, Lecture, 3rd SIAM Conference on
Optimization, Boston, 1989.
[19] S. Kruk, Semidefinite programming applied to nonlinear programming, Master’s Thesis, University of
Waterloo, 1996.
[20] K. Levenberg. A method for the solution of certain problems in least squares, Quart. Appl. Math. 2
(1944) 164-168.
[21] A. Lewis, Take-home final exam, Course CO663 in Convex Analysis, University of Waterloo, 1994.
[22] L. Lovdsz, On the Shannon capacity of a graph, IEEE Transactions on Information Theory 25 (1979)
1-7.
[23] L. Lovdsz and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM Journal
on Optimization | (2) (1991) 166-190.
{24 D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Mati.
I (1963) 431-441.
[25] J.M. Martincz, Local minimizers of quadratic functions on Euclidean balls and spheres, SIAM Journal
on Optimization 4 (1) (1994) 159-176.
|26] J.J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, in: G.A. Watson, ed.,
Numerical Analysis, Lecture Notes in Mathematics, Vol. 630, (Springer, Berlin, 1977) 105-116.
[27] 1J. Moré, Recent developments in algorithms and software for trust region methods, in: Bachem,
Grotschel and Korte, eds., Mathematical Programming, The State of the Art (1983) 268-285.
[28] J.J. Moré, Generalizations of the trust region probicm. Technical Report MCS-P349-0193, Argonne
Nattonal Labs. Argonne, 1L, 1993.
{29 J.J. Moré and D.C. Sorensen, Compuling a trust region step, SIAM J. Sci. Statist. Comput. 4 (1983)
553-572.
|30] Y.E. Nesterov and A.S. Nemirovsky, Inierior Point Polynomial Algorithms in Convex Programming:
Theory and Algorithms (SIAM, Philadelphia, USA, 1994).
[31] M.L. Overton, Large-scale optimization of eigenvalues. SIAM J. Optimization 2 (1992) 88-120.



F. Rendl. H. Wolkowicz/Mathematical Programming 77 (1997) 273-299 299

[32] S. Poljak, F. Rendl and H. Wolkowicz, A recipe for semidefinite relaxation for (0,1)-quadratic
programming, Journal of Global Oprimization 7 (1995) 51-73.

[33] M.V. Ramana. An algorithmic analysis of multiquadratic and semidefinite programming problems, Ph.D.
Thesis. Johns Hopkins University, Baltimore, MD, 1993.

{34] M.V. Ramana and A ). Goldman, Some geometric results in semidefinite programming, Technical Report,
Johns Hopkins University, Baltimore, MD, 1994.

[351 C. Reinsch, Smoothing by spline functions, Numer. Marh. 10 (1967) 177-183.

[36] C. Reinsch, Smoothing by spline functions Il. Numer. Math. 16 (1971) 451-454.

371 E Rendl, RJ. Vanderbei and H. Wolkowicz, Max-min eigenvalue problems, primal-dual interior point
algorithms and trust region subproblems, Optimizarion Methods and Software S (1995) 1-16.

[38] S.A. Santos and D.C. Sorensen, A new matrix-free algorithm for the large-scale trust-region subproblem,
Technical Report TR95-20, Rice University, Houston, TX, 1995,

|39] N.Z. Shor. Quadratic optimization problems, Soviet J. Computer and Systems Science 25 (6) (1987)
1-11.

[40] D.C. Sorensen, Newton’s method with a model trust region modification, STAM J. Numer. Anal. 19
(1982) 409-426.

{41] D.C. Sorensen, Minimization of a large scale quadratic function subject to an ellipsoidal constraint,
Technical Report TR94-27, Rice University, Houston, TX, 1994.

{42] R. Stern and H. Wolkowicz, Trust regions and nonsymmetric eigenvalue perturbations, SIAM J. Mairix
Analysis and Applications 15 (3) (1994) 755-778.

{43] R. Stern and H, Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigenvalue
perturbations, SIAM J. Optimization 5 (2) (1995) 286-313.

[44] R.J. Stern and J.J. Ye, Variational analysis of an extended eigenvalue problem, Linear Algebra and lis
Applications 220 (1995) 391-417.

451 G.W. Stewart IlI, lnrroduction to Matrix Computations ( Academic Press, New York, NY, 1973).

|46] PD. Tao and L.T.H. An, D.C. (difference of convex functions) optimization algorithms (DCA) for
globally minimizing nonconvex quadratic forms on Euclidean balls and spheres. Technical Report, LMI,
INSA, Rouen, Mont Saint Aignan Cedex, France, 1995.

[47] AN. Tikhonov and V.Y. Arsenin, Solutions of lli-Posed Problems (V.H. Winston & Sons, John Wiley
& Sons, Washington, DC, 1977): translation editor Fritz John.

{481 L. Vandenberghe and S. Boyd, Semidefinite programming, S/AM Review 38 (1996) 49-95.

[49] S.A. Vavasis and R. Zippel, Proving polynomial-time for sphere-constrained quadratic programming,
Technical Report, Department of Computer Science, Cornell University, Ithaca, NY, 1990.

| 501 J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press, London, 1965).

|S1] H. Wolkowicz, Some applications of optimization in matrix theory, Linear Algebra and its Applications
40 (1981) 101-118.

[52] Y. Ye. A new complexity result on minimization ot a quadratic function with a sphere constraint, in:
Recent Advances in Global Optimizarion (Princeton University Press, Princeton, NJ, 1992) 19-31.

53] Y. Ye. On affine scaling algorithms for nonconvex quadratic programming, Mathematical Programming
56 (1992) 285-300.



