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Abstract

The general quadratically constrained quadratic program (QQP) is an important modelling tool for many diverse

problems. The QQP is in general NP hard, and numerically intractable. Lagrangian relaxations often provide good

approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations

and can be solved efficiently.

For several special cases of QQP, the Lagrangian relaxation provides the exact optimal value. This means that there

is a zero duality gap and the problem is tractable. It is important to know for which cases this is true, since they can then

be used as subproblems to improve Lagrangian relaxation for intractable QQPs.

In this paper we study the special QQP with orthogonal (matrix) constraints XX T ¼ I. If C ¼ 0, the zero duality gap

result holds if the redundant orthogonal constraints X TX ¼ I are added. We show that this is not true in the general case.

However, we show how to close the duality gap in the pure linear case by adding variables in addition to constraints.
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Keywords: Quadratic objective; Orthogonal constraints; Semidefinite programming; Lagrangian relaxation; Redundant constraints;

Strong duality; Procrustes problem

1. Introduction

We study the quadratic (matrix) program with
orthogonal constraints

QQPO

lO :¼ min Trace AXBX T � 2CX T

s:t: XX T ¼ I ; ð1:1Þ
where A, B are n� n symmetric matrices and C is
n� n. This constraint set is often called the Stiefel
manifold, [13]. If the objective function is written
as kAY � XBk2, with both X, Y orthogonal, then
this is the orthogonal Procrustes Problem. (See e.g.
[11,5,13] for references, theory, and applications.)

The special case that C ¼ 0 in (1.1), the homo-
geneous case, is studied in [2]. These problems
arise as orthogonal relaxations of the quadratic
assignment and graph partitioning problems, e.g.
[1,6,15]. It is shown that the resulting, well-known,
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eigenvalue bounds for these problems can be ob-
tained from the Lagrangian dual of the orthogo-
nally constrained relaxations, but only if the
redundant constraint X TX ¼ I is explicitly added to
the orthogonality constraint XX T ¼ I .

In this paper we show that this strong duality
result does not hold if C 6¼ 0. Nor does it hold for
the pure linear case. We do this with a simple
counter example in the purely linear case using the
property that the dual is independent of the signs
of the individual components of C, see Lemma 2.4;
while the optimal value of the primal is based on
the sum of the singular values of C, see Example
3.2. We then show how to close the duality gap in
the pure linear case by adding variables in addition
to adding constraints. (See Theorem 2.6.)

We still leave open the question: what modifi-
cations are required to the constraints and/or
variables to close the duality gap for the general
case. One purpose of the paper is to present an
approach that might lead to closing this duality
gap. This approach is outlined in the second proof
of Theorem 2.2.

The paper is organized as follows. We complete
this section with notation in Section 1.1. In Section
2, we derive optimality conditions as well as the
dual of (1.1). We do this in stages starting with the
homogeneous case in Section 2.1 and proceeding
to the general case in Section 2.2. We specialize
this to the linear case in Section 2.3, where we also
show how to close the duality gap. The main re-
sults are: in Section 2.1 we present a new proof of
strong duality for the homogeneous case; in Sec-
tion 2.3 we also show how to close the duality gap
in the pure linear case; and in Section 3 we present
the examples with the duality gaps. We summarize
our results in Section 4.

1.1. Notation

We work in the space of real n� n matrices,
Mn, with the trace inner product, hM ;Ni ¼
Trace MTN . The subspace of symmetric matrices
is denoted Sn. This space is equipped with the
L€oowner partial order, i.e. A 
 B denotes A� B is
positive semidefinite.

We will use several linear operators, e.g. vecðX Þ
denotes the vector formed (columnwise) from the

matrix X. The adjoint of a linear operator A is
denoted A�, i.e. the adjoint satisfies

hAx; yi ¼ hx;A�yi; 8x; y:

2. Lagrangian duals

The simplest example of a quadratic constrained
quadratic problem is the eigenvalue problem. LetA
be an n� n symmetric matrix. Then the Rayleigh
Principle yields the following formulation of the
smallest eigenvalue:

kminðAÞ ¼ min
xTx¼1

qðxÞ ð¼ xTAxÞ:

This result can be proved easily using Lagrange
multipliers, i.e. the optimum x must be a station-
ary point of the Lagrangian qðxÞ þ kð1� xTxÞ. We
can get an equivalent semidefinite programming
(SDP) problem using Lagrangian duality and re-
laxation. Note that

kminðAÞ ¼ min
x

max
k

xTAxþ k 1
�

� xTx
�
; ð2:1Þ

P max
k

min
x

xTAxþ k 1
�

� xTx
�
; ð2:2Þ

¼ max
A�kI
0

min
x

xTðA� kIÞxþ k; ð2:3Þ

¼ max
A�kI
0

k; ð2:4Þ

¼ kminðAÞ: ð2:5Þ

This follows from the hidden constraints, i.e. the
inner problems have hidden constraints. For ex-
ample, A� kI 
 0 arises since a homogeneous
quadratic function is bounded below if and only if
the Hessian is positive semidefinite.

Note that the above strong duality result still
holds if the quadratic objective function qðxÞ has a
linear term. This case is called the Trust Region
Subproblem, TRS. (See [12, Theorem 5.1] for the
strong duality theorem.) This problem is also
equivalent to a max–min eigenvalue problem, see
[10], which is another way to see that the problem
is tractable. However, strong duality can fail if
there are two constraints, i.e. the so-called CDT
problem [4]. Thus we see that going from one
to two constraints, even if both constraints are
convex, can result in a duality gap. However,
we will see below (Theorem 2.2) that strong
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duality will hold for a nonconvex problem with
nþ 1
2

� �
¼ nðnþ 1Þ=2 constraints.

2.1. Lagrangian duals; the homogeneous case

We now consider our more general problem
(1.1), but with C ¼ 0. Because of the similarity of
the orthogonality constraint to the norm con-
straint xTx ¼ 1, the result of this section can be
viewed as a matrix generalization of the strong
duality result for the Rayleigh Principle given
above.

QQPHO

lO
H :¼ min Trace AXBX T

s:t: XX T ¼ I :
ð2:6Þ

Though this is a nonconvex problem with many
nonconvex constraints, this problem can be solved
efficiently using Lagrange multipliers and eigen-
values, see e.g. [7], or using the classical Hoffman–
Wielandt inequality, e.g. [3]. The optimal value is
the so-called minimal scalar product of the eigen-
values of A and B. We include a simple proof for
completeness using Lagrange multipliers. As was
done for the ordinary eigenvalue problem above,
we note that Lagrange multipliers can be used in
two ways. First, one can use them in the necessary
conditions (Karush–Kuhn–Tucker) for optimality,
i.e. in the stationarity of the Lagrangian. This is
how we apply them now. (The other use is in La-
grangian duality or Lagrangian relaxation where
the Lagrangian is positive semidefinite. This is
done below.) Also, the Lagrange multipliers here
are symmetric matrices since the image of the
constraint XX T � I is a symmetric matrix.

Proposition 2.1. Suppose that the orthogonal diag-
onalizations of A, B are A ¼ V RV T and B ¼ UKUT,
respectively, where the eigenvalues in R are in non-
increasing order, and the eigenvalues in K are in
nondecreasing order. Then the optimal value of
QQPHO is lO

H ¼ Trace RK, and the optimal solu-
tion is obtained using the orthogonal matrices that
yield the diagonalizations, i.e. X � ¼ VUT.

Proof. The constraint GðX Þ :¼ XX T � I maps Mn

to Sn. The Jacobian of the constraint at X acting

on the direction h is JðX ÞðhÞ ¼ XhT þ hX T. (This
can be found by simple expansion and neglecting
the second order term.) The adjoint of the Jaco-
bian acting on S 2 Sn is J �ðX ÞðSÞ ¼ 2SX , since

Trace SJðX ÞðhÞ ¼ Trace hTJ �ðX ÞðSÞ:
But J �ðX ÞðSÞ ¼ 0 implies S ¼ 0, i.e. J � is one–one
for all X orthogonal. Therefore J is onto, i.e. the
standard constraint qualification holds at the op-
timum. It follows that the necessary conditions for
optimality are that the gradient of the Lagrangian

LðX ; SÞ ¼ Trace AXBX T � Trace SðXX T � IÞ
ð2:7Þ

is 0, i.e.

AXB� SXI ¼ 0:

Therefore,

AXBX T ¼ S ¼ ST;

i.e. AXBX T is symmetric, which means that A and
XBX T commute and so are mutually diagonaliz-
able by the orthogonal matrix V. Therefore, we
can assume that both A and B are diagonal and we
choose X to be a product of permutations that
gives the correct ordering of the eigenvalues. �

The second use of Lagrange multipliers is in
forming the Lagrangian dual. The Lagrangian
dual of QQPHO is

max
S¼ST

min
X

Trace AXBX T � Trace SðXX T � IÞ:

ð2:8Þ
However, there can be a nonzero duality gap for
the Lagrangian dual, see [16] and Example 3.1
below. The inner minimization in the dual problem
(2.8) is an unconstrained quadratic minimization
in the variables x ¼ vecðX Þ, with Hessian

B� A� I � S:

We apply the hidden semidefinite constraint again.
This minimization is unbounded only if the Hes-
sian is not positive semidefinite. To close the du-
ality gap, we need a larger class of quadratic
functions. Note that in QQPHO the constraints
XX T ¼ I and X TX ¼ I are equivalent. We add the
redundant constraints X TX ¼ I and arrive at
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QQPHOO
lO
H :¼ min Trace AXBX T

s:t: XX T ¼ I ; X TX ¼ I :

ð2:9Þ

We can use symmetric matrices S and T to relax
the constraints XX T ¼ I and X TX ¼ I , respec-
tively. We obtain a dual problem

DQQPHOO

lO
H P mOH :¼ max Trace S þ Trace T

s:t: ðI � SÞ þ ðT � IÞ � ðB� AÞ;
S ¼ ST; T ¼ T T:

We now prove the strong duality presented in [2]
for the case C ¼ 0. We include two proofs. The
first proof is from [2]. It uses the well-known
strong duality for LAP, the linear assignment
problem, and the known optimal value from
Proposition 2.1. The second proof exploits the
LAP duality results from the first proof. We in-
clude this second proof because it illustrates where
convexity and complementary slackness arise
without using Proposition 2.1. If we hope to ob-
tain a strong duality result for the general case,
then these are the sufficient optimality conditions
that we need to satisfy, i.e. we have the curious
statement: these are the necessary sufficient opti-
mality conditions. We now present the strong du-
ality theorem.

Theorem 2.2. Strong duality holds for QQPHOO

and DQQPHOO, i.e. lO
H ¼ mOH and both primal and

dual are attained.

Proof 1. Let A ¼ V RV T, B ¼ UKUT, where V and
U are orthonormal matrices whose columns are
the eigenvectors of A and B, respectively, r and k
are the corresponding vectors of eigenvalues, and
R ¼ DiagðrÞ, K ¼ DiagðkÞ. Then for any S and T,

ðB� AÞ � ðI � SÞ � ðT � IÞ

¼ ðU � V Þ ðK
h

� RÞ � ðI � �SSÞ � ð�TT � IÞ
i

� ðUT � V TÞ;

where �SS ¼ V TSV , �TT ¼ UTTU . Since U � V is non-
singular, Trace S ¼ Trace �SS and Trace T ¼ Trace
�TT , the dual problem DQQPOO is equivalent to

mOH ¼ max Trace S þ Trace T
s:t: ðK � RÞ � ðI � SÞ � ðT � IÞ 
 0;

S ¼ ST; T ¼ T T: ð2:10Þ

However, since K and R are diagonal matrices,
(2.10) is equivalent to the ordinary linear program

LD
max eTsþ eTt
s:t: kirj � sj � ti P 0; i; j ¼ 1; . . . ; n:

But LD is the dual of the linear assignment
problem

LP

min
P
i;j

kirjyij

s:t:
Pn
j¼1

yij ¼ 1; i ¼ 1; . . . ; n;

Pn
i¼1

yij ¼ 1; j ¼ 1; . . . ; n;

yij P 0; i; j ¼ 1; . . . ; n:

Assume without loss of generality that k1 6 k2
6 � � � 6 kn, and r1 P r2 P � � � P rn. Then LP can
be interpreted as the problem of finding a permu-
tation pð�Þ of f1; . . . ; ng so that

Pn
i¼1 kirpðiÞ is

minimized. But the minimizing permutation is
then pðiÞ ¼ i, i ¼ 1; . . . ; n, and from Proposition
2.1 the solution value mOH is exactly lO

H. �

Proof 2. Using the above notation in Proof 1, we
diagonalize A and B. We can write (2.9) with di-
agonal matrices, i.e.

QQPOO

lO :¼ min Trace V RV TXUKUTX T

s:t: XX T ¼ I ; X TX ¼ I :

With

Y ¼ V TXU ; ð2:11Þ
we get the equivalent problem

QAPOO
lO :¼ min Trace RYKY T

s:t: YY T ¼ I ; Y TY ¼ I :

ð2:12Þ
The Lagrangian for this problem is

LðY ; S; T Þ ¼ Trace RYKY T � Trace SðYY T � IÞ
� Trace ðYTY T � T Þ:

Stationarity for the Lagrangian is

0 ¼ rLðY ; S; T Þ ¼ RYK � SYI � IYT : ð2:13Þ
Similar to the Proof 1, the dual program is
equivalent to the ordinary linear program LD,
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which is the dual of the LAP, LP above. Let Y be
the optimal permutation of LP above and let S, T
be the optimal solutions of LD above. Then the
constraints of LD guarantee that the Hessian of
the Lagrangian LðY ; S; T Þ is positive semidefinite,
i.e. the Lagrangian is convex in Y. In addition,
complementary slackness between LD and LP can
be written as

yij KiiRjj

�
� Sjj � Tii

�
¼ 0; ð2:14Þ

while stationarity can be rewritten as

0 ¼ Y TRYK � Y TSY � T : ð2:15Þ
Since Y is a permutation, these are equivalent
statements. Therefore, we have the three sufficient
conditions for optimality:

primal feasibility ðand so complementary

slacknessÞ;
stationarity of the Lagrangian;

convexity of the Lagrangian: ð2:16Þ

Therefore Y is optimal for (2.12). After using the
transformation (2.11), we get the optimal X for the
original problem. �

Remark 2.3. We first observe that the optimal
values lO

H ¼ mOH ¼ Trace S ¼ Trace T , i.e. the sum
of traces of the Lagrange multipliers. This type of
relationship appears to be common in these types
of problems, e.g. see the eigenvalue problem above
and also the trust region subproblem.

The addition of the redundant constraints clo-
ses the duality gap because the resulting equivalent
linear program LD has a basic feasible solution,
which yields an optimal solution for the original
problem. The addition of the redundant con-
straints X TX ¼ I results in the extra linear equality
constraints needed in LD to ensure that the ex-
treme points are permutation matrices.

2.2. Lagrangian dual; the general case

We now look at the general case where C 6¼ 0.
Note that, as we saw above, we can assume that A,
B are both diagonal if desired, i.e. once we solve
the problem in the diagonalized case then we can
recover the original solution using (2.11). We now

derive the Lagrangian dual for the general non-
homogeneous case.

We begin with the homogenized version of (2.9)
above, i.e. we homogenize the linear part.

QAPOO

lO :¼ min Trace AXBX T � 2x0CX T

s:t: XX T ¼ I ; X TX ¼ I ;

x20 ¼ 1: ð2:17Þ

This does not change the problem or its Lagran-
gian dual. The Lagrangian is

LðX ; S; T ;wÞ ¼ Trace AXBX T � 2x0CX T

� SðXX T � IÞ � T ðX TX � IÞ
� wðx20 � 1Þ;

where we have introduced a Lagrange multiplier w
for the constraint on x0 and Lagrange multipliers S
for XX T ¼ I and T for X TX ¼ I . Note that the
gradient of the Lagrangian set to zero is equivalent
to

0 ¼ AXB� Cx0 � SX � XT ; w ¼ Trace CX T:

ð2:18Þ
We get the Lagrangian dual lower bound mO.

lO P mO :¼ max
S;T ;w

min
X ;x0

Trace AXBX T
�	

� SXX T

� TX TX � wx20


� Trace x02CX T

þ Trace S þ Trace T þ w
�
: ð2:19Þ

With x ¼ vecðX Þ, y ¼ x0
x

� �
we get

mO ¼ max
S;T ;w

min
y

yT LQ
�	

� B0DiagðSÞ

�O0DiagðT Þ � wE00



y þ Trace S

þ Trace T þ w
�
; ð2:20Þ

where we define the ðn2 þ 1Þ � ðn2 þ 1Þ matrices

LQ :¼ 0 �vecðCÞT

�vecðCÞ B� A

" #
; E00 :¼

1 0

0 0

� �

ð2:21Þ

and the linear operators

B0DiagðSÞ :¼ 0 0
0 I � S

� �
; ð2:22Þ

O0DiagðT Þ :¼ 0 0
0 T � I

� �
: ð2:23Þ
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There is a hidden semidefinite constraint in (2.20),
i.e. the inner minimization problem is bounded
below only if the Hessian of the quadratic form is
positive semidefinite. In this case the quadratic
form has minimum value 0. This yields the fol-
lowing SDP:

DO
max Trace SþTrace T þw
s:t: LQ�B0DiagðSÞ�O0DiagðT Þ�wE00 
 0:

Equivalently, we get

DO
max Trace S þ Trace T þ w
s:t: B0DiagðSÞ þO0DiagðT Þ þ wE00 � LQ;

where we recall that we have assumed, without loss
of generality, that LQ is an arrow matrix, i.e. B� A
is diagonal. With c ¼ vecðCÞ, we can write the
constraint in matrix form as

�w �cT
�c B� A� I � S � T � I

� �

 0: ð2:24Þ

We now obtain our desired SDP relaxation of
QQPOO as the Lagrangian dual of DO. We intro-
duce the ðn2 þ 1Þ � ðn2 þ 1Þ dual matrix variable
Y 
 0 and derive the dual program to the SDP
ðDOÞ.

SDPO

min Trace LQY
s:t: b0diagðY Þ ¼ I ; o0diagðY Þ ¼ I ;

Y00 ¼ 1;
Y 
 0: ð2:25Þ

The block-0-diagonal operator and off-0-diagonal
operator acting on Y are defined by

b0diagðY Þ :¼
Xn
k¼1

Yðk;�Þ;ðk;�Þ ð2:26Þ

and

o0diagðY Þ :¼
Xn
k¼1

Yð�;kÞ;ð�;kÞ: ð2:27Þ

These are the adjoint operators of B0Diagð�Þ and
O0Diagð�Þ, respectively. The block-0-diagonal op-
erator guarantees that the sum of the diagonal
blocks equals the identity. The off-0-diagonal op-
erator guarantees that the trace of each diagonal
block is 1, while the trace of the off-diagonal
blocks is 0. These constraints come from the or-

thogonality constraints, XX T ¼ I and X TX ¼ I ,
respectively.

2.2.1. Schur complement
The constraints in (2.24) can be rewritten using

the Shur complement. First, we assume that the
optimal w is known and fixed. From (2.18), we
know that w ¼ Trace CX T. That �w > 0 holds by
the semidefiniteness constraint in (2.24) and since
c 6¼ 0. Therefore,

ð2:24Þ holds () ðB� A� I � S � T � IÞ

þ 1

w
ccT 
 0; ð2:28Þ

() I � S þ T � I � B� A

þ 1

w
ccT � B� A; ð2:29Þ

since w < 0. We immediately have that the diag-
onal elements satisfy

Sii þ Tjj 6AiiBjj �
1

jwj jcðj�1Þnþij
2; 8i; j: ð2:30Þ

Moreover, since the objective function of the dual
involves only the traces of S, T, we can restrict
ourselves to diagonal matrices S, T. What is re-
markable about these equations is that they are
independent of the sign of the individual components
of C. This is a strong hint on how to obtain an
example with a duality gap, see Example 3.2.

Lemma 2.4. Suppose that A;B 2 Sn are diagonal
and c 2 Rn2 . Then the optimal value of the dual
program DO is independent of the signs of the ele-
ments ci of c.

Proof. Let

F :¼ S; T 2 Sn : Bð
�

� A� I � S � T � IÞ

þ 1

w
ccT 
 0

�
:

Suppose that ðS; T Þ 2 F. Then (2.30) holds, i.e.
the diagonal values are independent of the signs of
the elements of c. Since the objective function de-
pends only on the diagonals of S, T, we can as-
sume that both these matrices are diagonal. �
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2.3. The linear case

We now assume that A ¼ B ¼ 0.

QQPLO

lO
L :¼ min Trace � 2CX T

s:t: XX T ¼ I :
ð2:31Þ

Just as in the homogeneous (quadratic) case, we
can characterize the optimal solution, except that
the solution uses singular values rather than ei-
genvalues.

Proposition 2.5. Suppose we have the singular value
decomposition C ¼ URV T, where the singular val-
ues, ri, are in the diagonal matrix R, and U, V are
orthogonal matrices. Then the optimal value of
QQPLO is lO

L ¼ �2Trace R ¼ �2
Pn

i¼1 ri. The op-
timal solution is obtained using the orthogonal ma-
trices that yield the decomposition, i.e. X � ¼ UV T.

Proof. The decomposition implies

Trace CX T ¼ Trace RV TX TU :

Since X, U, V are orthogonal, the diagonal (in fact,
all) elements of V TX TU are 6 1. Therefore the
minimum is attained with V TX TU ¼ I . �

From (2.28), the dual DO in this purely linear
case can be written as follows. Recall that we can
assume S, T are diagonal.

LD
max eTsþ eTtþw

s:t: sjþ ti6 � 1

jwj jcðj�1Þnþij
2
; i; j¼ 1; . . . ;n:

Again we notice that the dual is independent of the
sign of the individual elements of C. This results in
a duality gap, unlike the homogeneous case, see
Example 3.2.

However, we can solve this pure linear case ef-
ficiently using singular values, i.e. it is a tractable
problem. In [9,14], it was conjectured that qua-
dratic problems that are tractable can be solved
with Lagrangian relaxation if appropriate redun-
dant constraints are chosen. We now see that this
holds here if we add variables as well as con-
straints.

Theorem 2.6. Strong duality holds between the pure
linear case and its Lagrangian dual if the following

equivalent problem for the sum of the singular values
is used:

SVD

Pn
i¼1

riðCÞ ¼ max 2Trace YCX T

s:t: WW T ¼ I ; W TW ¼ I ;

W ¼ X Y
V Z

� �
:

ð2:32Þ

Proof. The singular values of C are the largest n

eigenvalues of the symmetric matrix
0 CT

C 0

� �
.

(This can be seen from the variational character-
ization of the singular values, e.g. [8].) Therefore,
using our results in Proposition 2.1 above, we get

Pn
i¼1

riðCÞ ¼ max Trace
I 0

0 0

� �
X Y

V Z

� �

�
0 CT

C 0

� �
X T V T

Y T ZT

� �
s:t: WW T ¼ I ; W TW ¼ I ;

ð2:33Þ
where

W ¼ X Y
V Z

� �
: ð2:34Þ

We know that there is no duality gap for this
program and its Lagrangian dual. And, the ob-
jective function for this program can be simplified
to yield the objective function of the theorem. �

3. Examples with duality gaps

We now present two examples of problems with
duality gaps. First we present the duality gap for
the homogeneous case, C ¼ 0, before adding the
redundant orthogonal constraints. (See [16].)

Example 3.1. Consider the the pure quadratic,
orthogonally constrained problem

l� :¼ min Trace AXBX T

s:t: XX T ¼ I ;
ð3:1Þ

with 2� 2 matrices
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A ¼ 1 0
0 2

� �
; B ¼ 3 0

0 4

� �
:

The dual problem is

lD :¼ max �Trace S
s:t: ðB� Aþ I � SÞ 
 0;

S ¼ ST:
ð3:2Þ

Then l� ¼ 10. But the dual optimal value lD < 10,
i.e. we have

B� A ¼

3 0 0 0
0 6 0 0
0 0 4 0
0 0 0 8

0
BBBB@

1
CCCCA;

and for dual feasibility, we must have S11 P � 3
and S22 P � 6. To maximize the dual, equality
must hold. Therefore �Trace S ¼ 9.

The next example is for the pure linear case
after adding the redundant orthogonal constraints.

Example 3.2. This example uses A ¼ B ¼ 0.

l� :¼ min Trace� 2CX T

s:t: XX T ¼ I ; X TX ¼ I
ð3:3Þ

with 2� 2 matrix

C ¼ 1 �1
1 1

� �
:

We then solve this example with the sign changed
on �1, i.e.

C ¼ 1 1
1 1

� �
:

The dual problem in the second case is

DO
max Trace S þ Trace T þ w
s:t: B0DiagðSÞ þO0DiagðT Þ þ wE00 � LQ;

where

LQ :¼

0 �1 �1 �1 �1
�1
�1
�1
�1

0

2
6664

3
7775: ð3:4Þ

We saw that the dual optimal value does not
change, see Lemma 2.4. But here, the primal does,
since the sum of the singular values of the two

matrices are: 2
ffiffiffi
2

p
in the first instance and just 2 for

the symmetric C, i.e. the optimal values are
�4ð

ffiffiffi
2

p
Þ and �4, respectively. Therefore, we have a

duality gap in the second case.

4. Conclusion

In this note we have studied Lagrangian (and so
SDP) duality gaps for problems with matrix or-
thogonality constraints XX T ¼ I . We saw that in
the homogeneous case we can have a duality gap,
which is closed if we double the number of con-
straints by adding the redundant constraint
X TX ¼ I to the primal problem before taking the
Lagrangian dual.

We then presented a counter example to show
that one can still have a nonzero duality gap for
the general inhomogeneous problem. The duality
gap can occur even for the pure linear problem,
even though the pure linear problem can be solved
efficiently using singular values. The duality gap
can be seen to occur because the sign of an indi-
vidual element of C does not change the dual
problem, see Lemma 2.4.

We then saw that we can close the duality gap in
the pure linear case if we replace the objective with
the homogenized form YCX T, and add both vari-
ables and constraints, see Theorem 2.6. Effectively,
this doubles the number of variables but changes
the linear case to a quadratic case so we can apply
our previous results on the quadratic homoge-
neous case.

We still have the open question of whether we
can find redundant constraints and/or relaxations
to close the duality gap in the general case; or show
that it is not possible.
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