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Abstract

In this paper, we review basic properties of the Kronecker product,

and give an overview of its history and applications. We then move on

to introducing the symmetric Kronecker product, and we derive sev-

eral of its properties. Furthermore, we show its application in finding

search directions in semidefinite programming.
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1 Introduction

The Kronecker product of two matrices, denoted by A ⊗ B, has been re-
searched since the nineteenth century. Many properties about its trace,
determinant, eigenvalues, and other decompositions have been discovered
during this time, and are now part of classical linear algebra literature. The
Kronecker product has many classical applications in solving matrix equa-
tions, such as the Sylvester equation: AX+XB = C, the Lyapunov equation:
XA + A∗X = H , the commutativity equation: AX = XA, and others. In
all cases, we want to know which matrices X satisfy these equations. This
can easily be established using the theory of Kronecker products.

A similar product, the symmetric Kronecker product, denoted by A⊗sB,

has been the topic of recent research in the field of semidefinite programming.
Interest in the symmetric Kronecker product was stimulated by its appear-
ance in the equations needed for the computation of search directions for
semidefinite programming primal–dual interior–point algorithms. One type
of search direction is the AHO direction, named after Alizadeh, Haeberly, and
Overton. A generalization of this search direction is the Monteiro–Zhang
family of directions. We will introduce those search directions and show
where the symmetric Kronecker product appears in the derivation. Using
properties of the symmetric Kronecker product, we can derive conditions for
when search directions of the Monteiro–Zhang family are uniquely defined.

We now give a short overview of this paper. In Section 2, we discuss the
ordinary Kronecker product, giving an overview of its history in Section 1.2.
We then list many of its properties without proof in Section 2.1, and conclude
with some of its applications in Section 2.2. In Section 3, we introduce the
symmetric Kronecker product. We prove a number of its properties in Section
3.1, and show its application in semidefinite programming in Section 3.2. We
now continue this section with some background and notation.

1.1 Background and Notation

Let Mm,n denote the space of m× n real (or complex) matrices and Mn the
square analog. If needed, we will specify the field of the real numbers by
R, and of the complex numbers by C. Real or complex matrices are denoted
by M

m,n(R) or M
m,n(C). We skip the field if the matrix can be either real

or complex without changing the result. Let Sn denote the space of n × n

real symmetric matrices, and let Rn denote the space of n–dimensional real
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vectors. The (i, j)th entry of a matrix A ∈ Mm,n is referred to by (A)ij ,
or by aij , and the ith entry of a vector v ∈ Rn is referred to by vi. Upper
case letters are used to denote matrices, while lower case letters are used for
vectors. Scalars are usually denoted by Greek letters.

The following symbols are being used in this paper:

⊗ for the Kronecker product,

⊕ for the Kronecker sum,

⊗s for the symmetric Kronecker product.

Let A be a matrix. Then we note by AT its transpose, by A∗ its conjugate
transpose, by A−1 its inverse (if existent, i.e. A nonsingular), by A

1
2 its

positive semidefinite square root (if existent, i.e. A positive semidefinite),
and by det(A) or |A| its determinant.

Furthermore, we introduce the following special vectors and matrices:
In is the identity matrix of dimension n. The dimension is omitted if it

is clear from the context. The ith unit vector is denoted by ei. Eij is the
(i, j)th elementary matrix, consisting of all zeros except for a one in row i

and column j.

We work with the standard inner product in a vector space

〈u, v〉 = uTv, u, v ∈ R
n ,

and with the trace inner product in a matrix space

〈M,N〉 = traceMTN, M,N ∈ M
n (R), or

〈M,N〉 = traceM∗N, M,N ∈ M
n (C),

where

traceM =
n

∑

i=1

mii.

This definition holds in Mn as well as in Sn . The corresponding norm is the
Frobenius norm, defined by ‖M‖F =

√
traceMTM, M ∈ M

n (R) (or√
traceM∗M, M ∈ Mn (C)).
The trace of a product of matrices has the following property:

traceAB = traceBA, ∀ compatible A,B,

i.e. the factors can be commuted.
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A symmetric matrix S ∈ Sn is called positive semidefinite, denoted
S � 0, if

pTSp ≥ 0, ∀ p ∈ R
n .

It is called positive definite if the inequality is strict for all nonzero p ∈ Rn .
The following factorizations of a matrix will be mentioned later:

The LU factorization with partial pivoting of a matrix A ∈ Mn (R) is
defined as

PA = LU,

where P is a permutation matrix, L is a lower triangular square matrix and
U is an upper triangular square matrix.

The Cholesky factorization of a matrix A ∈ Mn (R) is defined as

A = LLT ,

where L is a lower triangular square matrix. It exists if A is positive semidef-
inite.

The QR factorization of a matrix A ∈ Mm,n(R) is defined as

A = QR,

where Q ∈ M
n (R) is orthogonal and R ∈ M

m,n(R) is upper triangular.
The Schur factorization of a matrix A ∈ Mm,n is defined as

U∗AU = D +N =: T,

where U ∈ M
n is unitary, N ∈ M

n is strictly upper triangular, and D is
diagonal, containing all eigenvalues of A.

A linear operator A : Sn −→ Rm is a mapping from the space of
symmetric n × n real matrices to the space of m–dimensional real vectors,
which has the following two properties known as linearity:

A (M +N) = A (M) +A (N), ∀ M,N ∈ S
n ,

and
A (λM) = λA (M), ∀ M ∈ S

n , λ ∈ R.

The adjoint operator of A is another linear operator A ∗ : Rm −→ Sn ,

which has the following property:

〈u,A (S)〉 = 〈A ∗(u), S〉 ∀ u ∈ R
m, S ∈ S

n .
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1.2 History of the Kronecker product

The following information is interpreted from the paper “On the History of
the Kronecker Product” by Henderson, Pukelsheim, and Searle [10].

Apparently, the first documented work on Kronecker products was written
by Johann Georg Zehfuss between 1858 and 1868. It was he, who established
the determinant result

|A⊗ B| = |A|b|B|a, (1)

where A and B are square matrices of dimension a and b, respectively.
Zehfuss was acknowledged by Muir (1881) and his followers, who called

the determinant |A⊗B| the Zehfuss determinant of A and B.
However, in the 1880’s, Kronecker gave a series of lectures in Berlin,

where he introduced the result (1) to his students. One of these students,
Hensel, acknowledged in some of his papers that Kronecker presented (1) in
his lectures.

Later, in the 1890’s, Hurwitz and Stéphanos developed the same deter-
minant equality and other results involving Kronecker products such as:

Im ⊗ In = Imn,

(A⊗B)(C ⊗D) = (AC)⊗ (BD),

(A⊗B)−1 = A−1 ⊗ B−1,

(A⊗ B)T = AT ⊗ BT .

Hurwitz used the symbol × to denote the operation. Furthermore, Stéphanos
derives the result that the eigenvalues of A⊗B are the products of all eigen-
values of A with all eigenvalues of B.

There were other writers such as Rados in the late 1800’s who also dis-
covered property (1) independently. Rados even thought that he wrote the
original paper on property (1) and claims it for himself in his paper published
in 1900, questioning Hensel’s contributing it to Kronecker.

Despite Rados’ claim, the determinant result (1) continued to be asso-
ciated with Kronecker. Later on, in the 1930’s, even the definition of the
matrix operation A⊗ B was associated with Kronecker’s name.

Therefore today, we know the Kronecker product as “Kronecker” product
and not as “Zehfuss”, “Hurwitz”, “Stéphanos”, or “Rados” product.
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2 The Kronecker Product

The Kronecker product is defined for two matrices of arbitrary size over
any ring. However in the succeeding sections we consider only the fields of
the real and complex numbers, denoted by K = R or C.

Definition 2.1 The Kronecker product of the matrix A ∈ Mp,q with the
matrix B ∈ Mr,s is defined as

A⊗B =







a11B . . . a1qB
...

...
ap1B . . . apqB






. (2)

Other names for the Kronecker product include tensor product, direct
product (Section 4.2 in [9]) or left direct product (e.g. in [8]).

In order to explore the variety of applications of the Kronecker product
we introduce the notation of the vec –operator.

Definition 2.2 For any matrix A ∈ Mm,n the vec –operator is defined as

vec (A) = (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)
T , (3)

i.e. the entries of A are stacked columnwise forming a vector of length mn.

Note that the inner products for Rn2
and Mn are compatible:

trace (ATB) = vec (A)Tvec (B), ∀ A,B ∈ M
n .

2.1 Properties of the Kronecker Product

The Kronecker product has a lot of interesting properties, many of them are
stated and proven in the basic literature about matrix analysis ( e.g. [9,
Chapter 4] ).

2.1.1 Basic Properties

KRON 1 (4.2.3 in [9]) It does not matter where we place multiplication
with a scalar, i.e.

(αA)⊗ B = A⊗ (αB) = α(A⊗B) ∀α ∈ K, A ∈ M
p,q, B ∈ M

r,s.
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KRON 2 (4.2.4 in [9]) Taking the transpose before carrying out the Kro-
necker product yields the same result as doing so afterwards, i.e.

(A⊗ B)T = AT ⊗ BT ∀A ∈ M
p,q, B ∈ M

r,s.

KRON 3 (4.2.5 in [9]) Taking the complex conjugate before carrying out
the Kronecker product yields the same result as doing so afterwards, i.e.

(A⊗B)∗ = A∗ ⊗B∗ ∀A ∈ M
p,q(C), B ∈ M

r,s(C).

KRON 4 (4.2.6 in [9]) The Kronecker product is associative, i.e.

(A⊗ B)⊗ C = A⊗ (B ⊗ C) ∀A ∈ M
m,n, B ∈ M

p,q, C ∈ M
r,s.

KRON 5 (4.2.7 in [9]) The Kronecker product is right–distributive, i.e.

(A+B)⊗ C = A⊗ C +B ⊗ C ∀A,B ∈ M
p,q, C ∈ M

r,s.

KRON 6 (4.2.8 in [9]) The Kronecker product is left–distributive, i.e.

A⊗ (B + C) = A⊗ B + A⊗ C ∀A ∈ M
p,q, B, C ∈ M

r,s.

KRON 7 (Lemma 4.2.10 in [9]) The product of two Kronecker products
yields another Kronecker product:

(A⊗B)(C ⊗D) = AC ⊗ BD ∀A ∈ M
p,q, B ∈ M

r,s,

C ∈ M
q,k, D ∈ M

s,l.

KRON 8 (Exercise 4.2.12 in [9]) The trace of the Kronecker product of
two matrices is the product of the traces of the matrices, i.e.

trace (A⊗ B) = trace (B ⊗ A)

= trace (A)trace (B) ∀A ∈ M
m, B ∈ M

n.

KRON 9 (Exercise 4.2.1 in [9]) The famous determinant result (1) in
our notation reads:

det(A⊗ B) = det(B ⊗ A)

= (det(A))n(det(B))m ∀A ∈ M
m, B ∈ M

n.

This implies that A ⊗ B is nonsingular if and only if both A and B are
nonsingular.
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KRON 10 (Corollary 4.2.11 in [9]) If A ∈ Mm and B ∈ Mn are non-
singular then

(A⊗ B)−1 = A−1 ⊗ B−1.

This property follows directly from the mixed product property KRON

7.

The Kronecker product does not commute. Since the entries of A ⊗ B

contain all possible products of entries in A with entries in B one can derive
the following relation:

KRON 11 (Section 3 in [11]) For A ∈ Mp,q and B ∈ Mr,s,

B ⊗ A = Sp,r(A⊗ B)ST
q,s,

where

Sm,n =
m
∑

i=1

(eTi ⊗ In ⊗ ei) =
n

∑

j=1

(ej ⊗ Im ⊗ eTj )

is the perfect shuffle permutation matrix. It is described in full detail in
[6].

2.1.2 Factorizations, Eigenvalues and Singular Values

First, let us observe that the Kronecker product of two upper (lower) trian-
gular matrices is again upper (lower) triangular. This fact in addition to the
nonsingularity property KRON 9 and the mixed product property KRON
7 allows us to derive several results on factors of Kronecker products.

KRON 12 (Section 1 in [14]) Let A ∈ Mm, B ∈ Mn be invertible, and
let PA, LA, UA, PB, LB, UB be the matrices corresponding to their LU factori-
zations with partial pivoting. Then we can easily derive the LU factorization
with partial pivoting of their Kronecker product:

A⊗B = (P T
ALAUA)⊗ (P T

BLBUB) = (PA ⊗ PB)
T (LA ⊗ LB)(UA ⊗ UB).

KRON 13 (Section 1 in [14]) Let A ∈ Mm, B ∈ Mn be positive (semi)-
definite, and let LA, LB be the matrices corresponding to their Cholesky fac-
torizations. Then we can easily derive the Cholesky factorization of their
Kronecker product:

A⊗ B = (LAL
T
A)⊗ (LBL

T
B) = (LA ⊗ LB)(LA ⊗ LB)

T .
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The fact that A ⊗ B is positive (semi)definite follows from the eigenvalue
theorem established below.

KRON 14 (Section 1 in [14]) Let A ∈ M
q,r, B ∈ M

s,t, 1 ≤ r ≤ q, 1 ≤
t ≤ s, be of full rank, and let QA, RA, QB, RB be the matrices corresponding
to their QR factorizations. Then we can easily derive the QR factorization
of their Kronecker product:

A⊗ B = (QARA)⊗ (QBRB) = (QA ⊗QB)(RA ⊗RB).

KRON 15 (in proof of Theorem 4.2.12 in [9]) Let A ∈ Mm, B ∈ Mn,

and let UA, TA, UB, TB be the matrices corresponding to their Schur factoriza-
tions. Then we can easily derive the Schur factorization of their Kronecker
product:

A⊗ B = (UATAU
∗
A)⊗ (UBTBU

∗
B) = (UA ⊗ UB)(TA ⊗ TB)(UA ⊗ UB)

∗.

A consequence of this property is the following result about eigenvalues.
Recall that the eigenvalues of a square matrix A ∈ Mn are the factors

λ that satisfy Ax = λx for some x ∈ Cn . This vector x is then called
the eigenvector corresponding to λ. The spectrum, which is the set of all
eigenvalues, is denoted by σ(A).

Theorem 2.3 (Theorem 4.2.12 in [9]) Let A ∈ Mm and B ∈ Mn. Fur-
thermore, let λ ∈ σ(A) with corresponding eigenvector x, and let µ ∈ σ(B)
with corresponding eigenvector y. Then λµ is an eigenvalue of A ⊗ B with
corresponding eigenvector x ⊗ y. Any eigenvalue of A ⊗ B arises as such a
product of eigenvalues of A and B.

Corollary 2.4 It follows directly that if A ∈ Mm, B ∈ Mn are positive
(semi)definite matrices, then A⊗ B is also positive (semi)definite.

Recall that the singular values of a matrix A ∈ Mm,n are the square
roots of the min(m,n) (counting multiplicities) largest eigenvalues of A∗A.

The singular value decomposition of A is A = V ΣW ∗, where V ∈
Mm,W ∈ Mn are unitary and Σ is a diagonal matrix containing the sin-
gular values ordered by size on the diagonal. It follows that the rank of A is
the number of its nonzero singular values.
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KRON 16 (Theorem 4.2.15 in [9]) Let A ∈ Mq,r, B ∈ Ms,t, have rank
rA, rB, and let VA,WA,ΣA, VB,WB,ΣB be the matrices corresponding to their
singular value decompositions. Then we can easily derive the singular value
decomposition of their Kronecker product:

A⊗ B = (VAΣAW
∗
A)⊗ (VBΣBW

∗
B) = (VA ⊗ VB)(ΣA ⊗ ΣB)(WA ⊗WB)

∗.

It follows directly that the singular values of A ⊗ B are the rArB possible
positive products of singular values of A and B (counting multiplicities), and
therefore rank (A⊗ B) = rank (B ⊗ A) = rArB.

For more information on these factorizations and decompositions see
e.g. [7].

2.1.3 The Kronecker Sum

The Kronecker sum of two square matrices A ∈ Mm, B ∈ Mn is defined as

A⊕ B = (In ⊗ A) + (B ⊗ Im).

Choosing the first identity matrix of dimension n and the second of di-
mension m ensures that both terms are of dimension mn and can thus be
added.

Note that the definition of the Kronecker sum varies in the literature.
Horn and Johnson ([9]) use the above definition, whereas Amoia et al ([2])
as well as Graham ([6]) use A⊕ B = (A⊗ In) + (Im ⊗ B). In this paper we
will work with Horn and Johnson’s version of the Kronecker sum.

As for the Kronecker product, one can derive a result on the eigenvalues
of the Kronecker sum.

Theorem 2.5 (Theorem 4.4.5 in [9]) Let A ∈ Mm and B ∈ Mn. Fur-
thermore, let λ ∈ σ(A) with corresponding eigenvector x, and let µ ∈ σ(B)
with corresponding eigenvector y. Then λ+µ is an eigenvalue of A⊕B with
corresponding eigenvector y ⊗ x. Any eigenvalue of A ⊕ B arises as such a
sum of eigenvalues of A and B.

Note that the distributive property does not hold in general for the Kro-
necker product and the Kronecker sum:

(A⊕B)⊗ C 6= (A⊗ C)⊕ (B ⊗ C),
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and
A⊗ (B ⊕ C) 6= (A⊗B)⊕ (A⊗ C).

The first claim can be illustrated by the following example: Let A = 1, B =
2, C = I2.

(A⊕ B)⊗ C = (1 ∗ 1 + 2 ∗ 1)⊗ I2 = 3I2,

whereas the right hand side works out to

(A⊗ C)⊕ (B ⊗ C) = (1I2)⊕ (2I2) = I2 ⊗ 1I2 + 2I2 ⊗ I2 = I4 + 2I4 = 3I4.

A similar example can be used to validate the second part.

2.1.4 Matrix Equations and the Kronecker Product

The Kronecker product can be used to present linear equations in which the
unknowns are matrices. Examples for such equations are:

AX = B, (4)

AX +XB = C, (5)

AXB = C, (6)

AX + Y B = C. (7)

These equations are equivalent to the following systems of equations:

(I ⊗ A)vecX = vecB corresponds to (4), (8)
[

(I ⊗A) + (BT ⊗ I)
]

vecX = vecC corresponds to (5), (9)

(BT ⊗A)vecX = vecC corresponds to (6), (10)

(I ⊗ A)vecX + (BT ⊗ I)vecY = vecC corresponds to (7). (11)

Note that with the notation of the Kronecker sum, equation (9) can be
written as

(A⊕ BT )vecX = vecC.

2.2 Applications of the Kronecker Product

The above properties of the Kronecker product have some very nice applica-
tions.

Equation (5) is known to numerical linear algebraists as the Sylvester
equation. For given A ∈ Mm, B ∈ Mn, C ∈ Mm,n, one wants to find all
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X ∈ Mm,n which satisfy the equation. This system of linear equations plays a
central role in control theory, Poisson equation solving, or invariant subspace
computation to name just a few applications. In the case of all matrices
being square and of the same dimension, equation (5) appears frequently in
system theory (see e.g. [3]).

The question is often, whether there is a solution to this equation or
not. In other words one wants to know if the Kronecker sum A ⊕ BT is
nonsingular. From our knowledge about eigenvalues of the Kronecker sum,
we can immediately conclude that this matrix is nonsingular if and only if
the spectrum of A has no eigenvalue in common with the negative spectrum
of B:

σ(A) ∩ (−σ(B)) = ∅.
An important special case of the Sylvester equation is the Lyapunov

equation:
XA+ A∗X = H,

where A,H ∈ M
n are given and H is Hermitian. This special type of matrix

equation arises in the study of matrix stability. A solution of this equation
can be found by transforming it into the equivalent system of equations:

[

(AT ⊗ I) + (I ⊗ A∗)
]

vec (X) = vec (H),

which is equivalent to

[

A∗ ⊕ AT
]

vec (X) = vec (H).

It has a unique solution X if and only if A∗ and −AT have no eigenvalues
in common. For example, consider the computation of the Nesterov–Todd
search direction (see e.g. [5]). The following equation needs to be solved:

1

2
(DV V + V DV ) = µI − V 2,

where V is a real symmetric positive definite matrix and the right hand side
is real and symmetric, therefore Hermitian. Now, we can conclude that this
equation has a unique symmetric solution since V is positive definite, and
therefore V and −V T have no eigenvalues in common.

Another application of the Kronecker product is the commutativity equa-
tion. Given a matrix A ∈ Mn, we want to know all matrices X ∈ Mn that
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commute with A, i.e. {X : AX = XA} . This can be rewritten as AX−XA =
0, and hence as

[

(I ⊗ A)− (AT ⊗ I)
]

vec (X) = 0.

Now we have transformed the commutativity problem into a null space prob-
lem which can be solved easily.

Graham ([6]) mentions another interesting application of the Kronecker
product. Given A ∈ Mn and µ ∈ K, we want to know when the equation

AX −XA = µX (12)

has a nontrivial solution. By transforming the equation into

[

(I ⊗ A)− (AT ⊗ I)
]

vec (X) = µvec (X),

which is equivalent to

[

A⊕ (−AT )
]

vec (X) = µvec (X),

we find that µ has to be an eigenvalue of
[

A⊕ (−AT )
]

, and that all X satis-
fying (12) are eigenvectors of

[

A⊕ (−AT )
]

(after applying vec to X). From
our results on the eigenvalues and eigenvectors of the Kronecker sum, we
know that those X are therefore Kronecker products of eigenvectors of AT

with the eigenvectors of A.
This also ties in with our result on the commutativity equation. For

µ = 0, we get that 0 has to be an eigenvalue of
[

A⊕ (−AT )
]

in order for a
nontrivial commutating X to exist.

There are many other applications of the Kronecker product in e.g. signal
processing, image processing, quantum computing and semidefinite program-
ming. The latter will be discussed in the following sections on the symmetric
Kronecker product.
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3 The Symmetric Kronecker Product

The symmetric Kronecker product has many applications in semidefinite
programming software and theory. Much of the following can be found in De
Klerk’s book [5], or in Todd, Toh, and Tütüncü’s paper [12].

Definition 3.1 For any symmetric matrix S ∈ Sn we define the vector
svec (S) ∈ R

1
2
n(n+1) as

svec (S) = (s11,
√
2s21, . . . ,

√
2sn1, s22,

√
2s32, . . . ,

√
2sn2, . . . , snn)

T . (13)

Note that this definition yields another inner product equivalence:

trace (ST ) = svec (S)T svec (T ), ∀ S, T ∈ S
n .

Definition 3.2 The symmetric Kronecker product can be defined for
any two (not necessarily symmetric) matrices G,H ∈ Mn as a mapping on
a vector svec (S), where S ∈ Sn :

(G⊗s H)svec (S) =
1

2
svec (HSGT +GSHT ).

This is an implicit definition of the symmetric Kronecker product. We
can also give a direct definition if we first introduce the orthonormal matrix
Q ∈ M

1
2
n(n+1)×n2

, which has the following property:

Qvec (S) = svec (S) and QT svec (S) = vec (S) ∀ S ∈ S
n . (14)

Orthonormal is used in the sense of Q having orthonormal rows, i.e. QQT =
I 1

2
n(n+1). For every dimension n, there is only one such matrix Q. It can be

characterized as follows (compare to [12]).
Consider the entries of the symmetric matrix S ∈ S

n :

S =











s11 s12 . . . s1n
s12 s22 . . . s2n
... . . .

. . .
...

s1n s2n . . . snn











,
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then

vec (S) =











































s11
s21
...

sn1
s12
...

sn2
...

s1n
...

snn











































and svec (S) =





































s11√
2s21
...√
2sn1
s22√
2s32
...√
2sn2
...

snn





































.

We can now characterize the entries of Q using the equation

Qvec (S) = svec (S).

Let qij,kl be the entry in the row defining element sij in svec (S), and in the
column that is multiplied with the element skl in vec (S). Then

qij,kl =







1 if i = j = k = l,
1√
2

if i = k 6= j = l, or i = l 6= j = k,

0 otherwise.

We will work out the details for dimension n = 2:

Q =





1 0 0 0
0 1√

2
1√
2

0

0 0 0 1



 ,

we can check equations (14):

Qvec (S) =





s11
1√
2
s21 +

1√
2
s12

s22



 =





s11
2√
2
s21

s22



 = svec (S),

and

QT svec (S) =









s11
s21
s21
s22









=









s11
s21
s12
s22









= vec (S).
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Note that equations (14) imply that

QTQvecS = QT svec S = vec (S), ∀ S ∈ S
n .

Furthermore, these equations show that QTQ is the orthogonal projection
matrix onto the space of symmetric matrices in vector form, i.e. onto vec (S),
where S is a symmetric matrix.

Let us now define the symmetric Kronecker product using the matrix
introduced above.

Definition 3.3 Let Q be the unique 1
2
n(n + 1) × n matrix which satisfies

(14). Then the symmetric Kronecker product can be defined as follows:

G⊗s H =
1

2
Q(G⊗H +H ⊗G)QT , ∀ G,H ∈ M

n .

The two definitions for the symmetric Kronecker product are equivalent.
Let G,H ∈ Mn , U ∈ Sn , and Q as before.

(G⊗s H)svec (U) =
1

2
Q(G⊗H +H ⊗G)QT svec (U)

=
1

2
Q(G⊗H +H ⊗G)vec (U) by (14)

=
1

2
Q((G⊗H)vec (U) + (H ⊗G)vec (U))

=
1

2
Q(vec (HUGT ) + vec (GUHT )) by (10)

=
1

2
Qvec (HUGT +GUHT )

=
1

2
svec (HUGT +GUHT ),

where the last equality follows since HUGT +GUHT = HUGT +(HUGT )T ,
and therefore symmetric, and by applying equation (14).

3.1 Properties of the symmetric Kronecker product

The symmetric Kronecker product has many interesting properties. Some
follow directly from the properties of the Kronecker product, others hold for
the symmetric but not for the ordinary Kronecker product, and vice versa.
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The symmetric Kronecker product is commutative:

A⊗s B = B ⊗s A,

for any A,B ∈ Mn . This follows directly from the definition.
Furthermore, we can prove properties according to KRON 1 -KRON 8

with the exception of KRON 4 for which we provide a counter example.

SKRON 1

(αA)⊗s B = A⊗s (αB) = α(A⊗s B) ∀α ∈ R, A, B ∈ M
n

Proof.

(αA)⊗s B =
1

2
Q((αA)⊗ B +B ⊗ (αA))QT

=
1

2
Q(A⊗ (αB) + (αB)⊗ A)QT

= A⊗s (αB) = α(A⊗s B).

SKRON 2

(A⊗s B)T = AT ⊗s B
T ∀A,B ∈ M

n

Proof.

(A⊗s B)T = (
1

2
Q(A⊗B +B ⊗A)QT )T

=
1

2
Q((A⊗B)T + (B ⊗A)T )QT

=
1

2
Q(AT ⊗BT +BT ⊗ AT )QT

= AT ⊗s B
T .

Corollary 3.4 An immediate consequence of this property is that A⊗s I is
symmetric if and only if A is symmetric.
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SKRON 3

(A⊗s B)∗ = A∗ ⊗s B
∗ ∀A,B ∈ M

n (C)

Proof.

(A⊗s B)∗ = (
1

2
Q(A⊗B +B ⊗A)QT )∗

=
1

2
(QT )∗((A⊗ B)∗ + (B ⊗ A)∗)Q∗

= 1 1

2
Q(A∗ ⊗ B∗ +B∗ ⊗ A∗)QT

= A∗ ⊗s B
∗.

SKRON 4

(A⊗s B)⊗s C = A⊗s (B ⊗s C) does not hold in general

Proof. Consider the left hand side, i.e. (A ⊗s B) ⊗s C. The symmetric
Kronecker product is defined for any two square matrices of equal dimension,
say A,B ∈ Mn . The resulting matrix is a square matrix of dimension 1

2
n(n+

1). In order for the outer symmetric Kronecker product to be defined, we

require C to be in M
1
2
n(n+1).

Now, consider the right hand side, i.e. A ⊗s (B ⊗s C). Here, the inner
symmetric Kronecker product is defined if and only if the matrices B and
C are of equal dimensions. This holds if and only if n = 1

2
n(n + 1), which

holds if and only if n = 0 or n = 1. In both cases the result holds trivially.
However, for any bigger dimension, the left hand side and right hand side
are never simultaneously well defined.

SKRON 5

(A+B)⊗s C = A⊗s C +B ⊗s C ∀A,B,C ∈ M
n

4since Q is a real matrix
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Proof.

(A+B)⊗s C =
1

2
Q((A +B)⊗ C + C ⊗ (A+B))QT

=
1

2
Q(A⊗ C +B ⊗ C + C ⊗ A+ C ⊗ B)QT

=
1

2
Q(A⊗ C + C ⊗ A)QT +

1

2
Q(B ⊗ C + C ⊗B)QT

= A⊗s C +B ⊗s C.

SKRON 6

A⊗s (B + C) = A⊗s B + A⊗s C ∀A,B,C ∈ M
n

Proof.

A⊗s (B + C) =
1

2
Q(A⊗ (B + C) + (B + C)⊗A)QT

=
1

2
Q(A⊗B + A⊗ C +B ⊗A + C ⊗A)QT

=
1

2
Q(A⊗B +B ⊗A)QT +

1

2
Q(A⊗ C + C ⊗A)QT

= A⊗s B + A⊗s C.

SKRON 7 (see e.g. Lemma E.1.2 in [5])

(A⊗s B)(C ⊗s D) =
1

2
(AC ⊗s BD + AD ⊗s BC) ∀A,B,C,D ∈ M

n

Furthermore,

(A⊗s B)(C ⊗s C) = AC ⊗s BC, and (A⊗s A)(B ⊗s C) = AB ⊗s AC.
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Proof. This proof is directly taken from [5]. Let S be a symmetric matrix,
then

(A⊗s B)(C ⊗s D)svec (S)

=
1

2
(A⊗s B)svec (CSDT +DSCT )

=
1

4
svec (ACSDTBT +BCSDTAT + ADSCTBT +BDSCTAT )

=
1

4
svec ((AC)S(BD)T + (BC)S(AD)T + (AD)S(BC)T + (BD)S(AC)T )

=
1

2
(AC ⊗s BD + AD ⊗s BC)svec (S).

SKRON 8

trace (A⊗s B) = trace (AB)+
1

2

∑

1≤i<j≤n

(aiibjj + ajjbii

−(aijbji + ajibij)) ∀ A,B ∈ M
n

Proof. Note that

ek = svec (Ejj), if k = (j − 1)n+ 1− (j − 2)(j − 1)

2
∀ j = 1, . . . , n,

and

ek =
1√
2
svec (Eij + Eji), if k = (j − 1)n+ i− j(j − 1)

2
∀ 1 ≤ j < i ≤ n.

Now, the proof follows straight forward:

trace (A⊗s B) =

n(n+1)
2

∑

k=1

(A⊗s B)kk =

n(n+1)
2

∑

k=1

eTk (A⊗s B)ek

=

n
∑

k=1

svec (Ekk)
T (A⊗s B)svec (Ekk)

+
1

2

∑

1≤i<j≤n

svec (
1

2
(Eij + Eji))(A⊗s B)svec (

1

2
(Eij + Eji)).
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Now, for any k = 1, . . . , n, consider

svec (Ekk)
T (A⊗s B)svec (Ekk) =

1

2
svec (Ekk)

T svec (BEkkA
T + AEkkB

T )

=
1

2
trace (EkkBEkkA

T + EkkAEkkB
T )

= trace (eke
T
kBeke

T
kA

T )

= trace (eTkBek)(e
T
kA

T ek) = akkbkk,

and for any 1 ≤ i < j ≤ n, we have

svec (Eij + Eji)
T (A⊗s B)svec (Eij + Eji)

=
1

2
svec (Eij + Eji)

T svec (B(Eij + Eji)A
T + A(Eij + Eji)B

T )

=
1

2
trace (EijBEijA

T + EijBEjiA
T + EijAEijB

T + EijAEjiB
T

+EjiBEijA
T + EjiBEjiA

T + EjiAEijB
T + EjiAEjiB

T )

= trace (EijBEijA
T + EijAEijB

T + EijBEjiA
T + EijAEjiB

T )

= (eTj Bei)(e
T
j A

T ei) + (eTj Aei)(e
T
j B

T ei)

+(eTj Bej)(e
T
i A

T ei) + (eTj Aej)(e
T
i B

T ei)

= bjiaij + ajibij + bjjaii + ajjbii.

Putting the pieces together, we get

trace (A⊗s B) =

n
∑

k=1

akkbkk +
1

2

∑

1≤i<j≤n

((aijbji + ajibij

+aiibjj + ajjbii)

= trace (AB) +
1

2

∑

1≤i<j≤n

(aiibjj + ajjbii

−(aijbji + ajibij)).

So far, no one has discovered properties corresponding to KRON 9, but
we can say something about the next property.
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SKRON 10

(A⊗s A)
−1 = (A−1)⊗s (A

−1) ∀ nonsingular A ∈ M
n ,

but
(A⊗s B)−1 6= (A−1)⊗s (B

−1) ∀ nonsingular A,B ∈ M
n ,

in general.

Proof. Try to find matrices B and C such that

(A⊗s A)(B ⊗s C) = I.

From SKRON 7 it follows that

(A⊗s A)(B ⊗s C) = AB ⊗s AC,

and
AB ⊗s AC = I,

if and only if B = A−1 and C = A−1.

For the second part of the claim consider

A =

[

1 0
0 1

]

, B =

[

0 1
1 0

]

.

Both matrices are invertible. However, the sum

A⊗ B +B ⊗ A =









0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0









is singular with rank two. A ⊗s B has dimension three. Using this and the
fact that multiplication with Q does not increase the rank of this matrix, we
conclude that the inverse

(A⊗s B)−1 =

(

1

2
Q(A⊗B +B ⊗A)QT

)−1

does not exist.

As for the Kronecker product and the Kronecker sum, we can also estab-
lish a result on expressing the eigenvalues and eigenvectors of the symmetric
Kronecker product of two matrices A and B in terms of the eigenvalues and
eigenvectors of A and of B. Let us first prove a preliminary lemma.
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Lemma 3.5 (adapted from Lemma 7.1 in [1]) Let V be defined as the
matrix which contains the orthonormal eigenvectors vi, i = 1, . . . , n, of the
simultaneously diagonalizable matrices A,B ∈ Mn columnwise. Then, the
(i, j)th column vector, 1 ≤ j ≤ i ≤ n, of the matrix V ⊗s V can be written in
terms of the ith and jth eigenvectors of A and B as follows:

svec (viv
T
j ) if i = j,

1√
2
svec (viv

T
j + vjv

T
i ) if i > j.

Furthermore, the matrix V ⊗s V is orthonormal.

Proof. The (i, j)th column of V ⊗s V, 1 ≤ j ≤ i ≤ n, can be written as

(V ⊗s V )eij ,

where eij denotes the corresponding unit vector. Recall that Eij denotes the
matrix containing all zeros except for a one in position (i, j). Now, observe
that for i 6= j,

(V ⊗s V )eij = (V ⊗s V )
1√
2
svec (Eij + Eji)

=
1

2

1√
2
svec (V (Eij + Eji)V

T + V (Eij + Eji)V
T )

=
1√
2
svec (V EijV

T + V EjiV
T )

=
1√
2
svec (viv

T
j + vjv

T
i ).

To prove orthogonality of V ⊗s V, consider columns (i, j) 6= (k, l), i.e. i 6= k

or j 6= l.

1√
2
svec (viv

T
j + vjv

T
i )

T 1√
2
svec (vkv

T
l + vlv

T
k )

=
1

2
trace (viv

T
j + vjv

T
i )(vkv

T
l + vlv

T
k )

=
1

2
trace (viv

T
j vkv

T
l + viv

T
j vlv

T
k + vjv

T
i vkv

T
l + vjv

T
i vlv

T
k )

=
1

2
(viv

T
j vkv

T
l + 0 + 0 + vjv

T
i vlv

T
k )

= 0.
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The last equality holds since in order for one of the terms, say viv
T
j vkv

T
l , to

be one, we need j = k and i = l. Recall that i ≥ j and k ≥ l. This yields
i ≥ j = k ≥ l = i, forcing all indices to be equal. But we excluded that
option.

Furthermore, for all indices i 6= j, the following proves normality:

1√
2
svec (viv

T
j + vjv

T
i )

T 1√
2
svec (viv

T
j + vjv

T
i )

=
1

2
trace (viv

T
j + vjv

T
i )(viv

T
j + vjv

T
i )

=
1

2
trace (viv

T
j viv

T
j + viv

T
j vjv

T
i + vjv

T
i viv

T
j + vjv

T
i vjv

T
i )

=
1

2
(0 + 1 + 1 + 0)

= 1.

On the other hand, for i = j, we yield the above claims in a similar fashion
by writing the unit vector eii as svec (Eii).

Having proven this result, we can now establish the following theorem on
eigenvalues and eigenvectors of the symmetric Kronecker product.

Theorem 3.6 (Lemma 7.2 in [1]) Let A,B ∈ Mn be simultaneously di-
agonalizable matrices. Furthermore, let λ1, . . . , λn and µ1, . . . , µn be their
eigenvalues, and v1, . . . , vn a common basis of orthonormal eigenvectors.
Then, the eigenvalues of A⊗s B are given by

1

2
(λiµj + λjµi), 1 ≤ i ≤ j ≤ n,

and their corresponding eigenvectors can be written as

svec (viv
T
j ) if i = j,

1√
2
svec (viv

T
j + vjv

T
i ) if i < j.

Proof.

(A⊗s B)
1√
2
svec (viv

T
j + vjv

T
i )
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=
1√
2

1

2
svec (B(viv

T
j + vjv

T
i )A

T + A(viv
T
j + vjv

T
i )B

T )

=
1√
2

1

2
svec (Bviv

T
j A

T +Bvjv
T
i A

T + Aviv
T
j B

T + Avjv
T
i B

T )

=
1√
2

1

2
svec (µiviλjv

T
j + µjvjλiv

T
i + λiviµjv

T
j + λjvjµiv

T
i )

=
1√
2

1

2
svec ((µiλj + µjλi)(viv

T
j + vjv

T
i ))

=
1

2
(µiλj + µjλi)

1√
2
svec (viv

T
j + vjv

T
i ).

Note that these eigenvectors are exactly the columns of V ⊗s V in the
lemma above. We proved that these column vectors are orthogonal. Since
all these vectors are eigenvectors, and since there are n(n+1)

2
of them, we have

shown that they span the complete eigenspace of A⊗s B.

We have seen in Section 2.1 that the Kronecker product of two positive
(semi)definite matrices is positive (semi)definite as well. A similar property
holds for the symmetric Kronecker product.

Theorem 3.7 (see e.g. Lemma E.1.4 in [5]) If A,B ∈ Sn are positive
(semi)definite, then A ⊗s B is positive (semi)definite (not necessarily sym-
metric).

Proof. We need to show the following for any s ∈ R
1
2
n(n+1), s 6= 0 :

sT (A⊗s B)s > 0,

(or ≥ 0 in the case of positive semidefinite). By denoting s as svec (S), we
can show that

sT (A⊗s B)s = svec (S)T (A⊗s B)svec (S)

=
1

2
svec (S)T svec (BSA+ ASB)

=
1

2
trace (SBSA+ SASB)

= traceSASB = traceB
1
2SA

1
2A

1
2SB

1
2

= trace (A
1
2SB

1
2 )T (A

1
2SB

1
2 ) = ‖A 1

2SB
1
2‖F

> 0,
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(or ≥ 0 in case of positive semidefinite). The strict inequality for the positive

definite case holds since S is nonzero and both A
1
2 and B

1
2 are positive

definite.

The following property relates positive (semi)definiteness of the ordinary
Kronecker product to positive (semi)definiteness of the symmetric Kronecker
product.

Theorem 3.8 (Theorem 2.10 in [13]) Let A and B be in S
n . Then, A⊗

B is positive (semi)definite if and only if A⊗s B is positive (semi)definite.

Proof. Assume that A⊗B is positive (semi)definite. Let U be a symmetric
matrix. We need to show that svec (U)T (A⊗s B)svec (U) > 0 (≥ 0.)

svec (U)T (A⊗s B)svec (U) =
1

2
svec (U)T svec (BUA + AUB)

=
1

2
trace (UBUA + UAUB)

= trace (UBUA)

= vec (U)Tvec (BUA)

= vec (U)T (A⊗B)vec (U) > 0,

(or ≥ 0 respectively).
To prove the other direction, assume first that A⊗sB is positive definite.

Further, assume for contradiction that A⊗B is not positive definite, i.e. that
there exists an eigenvalue λ ≤ 0. Since any eigenvalue of A⊗B is a product
µη, where µ is an eigenvalue of A and η is an eigenvalue of B, we must assume
that one of the matrices A and B, say A, has a nonpositive eigenvalue µ

and the other one, say B, has a nonnegative eigenvalue η. We denote the
corresponding eigenvectors by a and b.

Let U = abT + baT . Then,

svec (U)T (A⊗s B)svec (U)

= svec (U)T
1

2
svec (BUA + AUB)

=
1

2
trace (UBUA + UAUB) = trace (UBUA)

= trace (abT + baT )B(abT + baT )A
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= trace (abTBabTA+ abTBbaTA+ baTBabTA+ baTBbaTA)

= trace ((Bb)TabT (Aa) + (bTBb)(aTAa) + (aTBa)(bTAb)

+aT (Bb)(Aa)T b)

= ηµ(bTa)2 + (bTBb)(aTAa) + (aTBa)(bTAb) + ηµ(aT b)2

=: P1 + P2 + P3 + P4.

Parts one and four (P1, P4) are nonpositive since ηµ ≤ 0. Part two is non-
positive since

bTBb = ηbT b ≥ 0, (15)

and
aTAa = µaTa ≤ 0. (16)

To prove that part three is nonpositive, consider an arbitrary rank one matrix
vvT . Now,

svec (vvT )T (A⊗s B)svec (vvT ) = svec (vvT )T
1

2
svec (BvvTA+ AvvTB)

=
1

2
trace (vvTBvvTA+ vvTAvvTB)

= trace (vTBvvTAv) = (vTBv)(vTAv)

> 0.

This implies that λ < 0 since for v = b, we can say that bTBb 6= 0, and for
v = a, it follows that aTAa 6= 0. Furthermore, bTBb > 0 implies bTAb > 0,
and aTAa < 0 implies aTBa < 0. From this and equations (15) and (16), we
conclude that bTAb > 0 and aTBa < 0, and therefore, P3 < 0.

This yields that

svec (U)T (A⊗s B)svec (U) = P1 + P2 + P3 + P4 < 0,

contradicting the positive definiteness of A⊗s B.

For A⊗s B positive semidefinite, the result follows analogously.

With this theorem, Theorem 3.7 can be established as a corollary of
Corollary 2.4 and Theorem 3.8.
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3.2 Applications of the symmetric Kronecker product

Amajor application of the symmetric Kronecker product comes up in defining
the search direction for primal–dual interior–point methods in semidefinite
programming. Here, one tries to solve the following system of equations (see
Section 3.1 in [12]):

AX = b,

A ∗y + S = C, (17)

XS = νI,

where A is a linear operator from Sn to Rm with full row rank, A ∗ is its
adjoint, b is a vector in Rm, C is a matrix in Sn , I is the n dimensional
identity matrix, and ν is a scalar.

The solutions to this system for different ν > 0, (X(ν), y(ν), S(ν)), rep-
resent the central path. We try to find approximate solutions by taking
Newton steps. The search direction for a single Newton step is the solution
(∆X,∆y,∆S) of the following system of equations:

A∆X = b−AX,

A ∗∆y +∆S = C − S −A ∗y, (18)

∆XS +X∆S = νI −XS.

In order to yield useful results, system (18) needs to be changed to pro-
duce symmetric solutions ∆X and ∆S.

One approach was used by Alizadeh, Haeberly, and Overton [1]. They
symmetrized the third equation of (17) by writing it as:

1

2
(XS + (XS)T ) = νI.

Now the last row of system (18) reads

1

2
(∆XS +X∆S + S∆X +∆SX) = νI − 1

2
(XS + SX).

Let A be the matrix representation of A and let AT be the matrix represen-
tation of A ∗. Note that if ∆X is a solution of (18) then so is 1

2
(∆X+∆XT ),
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so we can use svec and ⊗s in this context. The same holds for ∆S. The
modified system of equations can now be written in block form:




0 A 0
AT 0 I

0 EAHO FAHO









∆y

svec (∆X)
svec (∆S)



 =





b−AX

svec (C − S −A ∗y)
svec (νI − 1

2
(XS + SX))



 ,

where I is the identity matrix of dimension 1
2
n(n+ 1), and EAHO and FAHO

are defined using the symmetric Kronecker product.

EAHO := I ⊗s S, FAHO := X ⊗s I.

The solution to this system of equations is called the AHO direction. This
search direction is a special case of the more general Monteiro–Zhang family
of search directions. For this family of search directions the product XS is
being symmetrized via the following linear transformation

HP (XS) =
1

2
(P (XS)P−1 + P−T (XS)TP T ), (19)

where P is an invertible matrix. Note, that for P = I, we get

HI(XS) =
1

2
(XS + SX),

which yields the AHO direction.
Using the Monteiro–Zhang symmetrization (see e.g. [12]), we get the fol-

lowing system of equations:




0 A 0
AT 0 I

0 E F









∆y

svec (∆X)
svec (∆S)



 =





b−AX

svec (C − S −A ∗y)
svec (νI −HP (XS))



 , (20)

where the more general matrices E and F are defined as

E := P ⊗s P
−TS, F := PX ⊗s P

−T .

Note that, using property SKRON 7, these matrices can be written as

E = (I ⊗s P
−TSP−1)(P ⊗s P ),

and
F = (PXP T ⊗s I)(P

−T ⊗s P
−T ),

which yields the following lemma.
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Lemma 3.9 If X and S are positive definite, then E and F are nonsingular.

Proof. This can be shown by proving the nonsingularity of each factor.
We observe that the matrix P−TSP−1 is positive definite. Denote its eigen-
values by µi, i = 1, . . . , n, and note that I and P−TSP−1 are simultaneously
diagonalizable. Then, the eigenvalues of I ⊗s P

−TSP−1 are 1
2
(µj + µi), 1 ≤

i ≤ j ≤ n, which is positive. Therefore, the matrix I ⊗s P
−TSP−1 is invert-

ible. Also, P ⊗s P is invertible because of property SKRON 10. The result
for F can be obtained similarly.

Having established nonsingularity of E and F, we can now state the fol-
lowing theorem. It provides a sufficient condition for the uniqueness of the
solution (∆X,∆y,∆S) of system (20).

Theorem 3.10 (Theorem 3.1 in [12]) Let X,S and E−1F be positive de-
finite (E−1F does not need to be symmetric). Then system (20) has a unique
solution.

Proof. We want to show that




0 A 0
AT 0 I

0 E F









∆y

svec (∆X)
svec (∆S)



 =





0
0
0



 , (21)

has only the trivial solution. Consider the equations

Asvec (∆X) = 0, (22)

AT∆y + svec (∆S) = 0, (23)

and
Esvec (∆X) + F svec (∆S) = 0. (24)

Solving equation (23) for svec (∆S), and plugging the result into equation
(24) yields

Esvec (∆X)− FAT∆y = 0. (25)

When multiplying this by E−1 from the left and then by A, we get

Asvec (∆X)−AE−1FAT∆y = 0,
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which is
AE−1FAT∆y = 0,

because of equation (22). Since A has full row rank, and since E−1F is
positive definite, it follows that AE−1FAT is positive definite, and therefore
∆y = 0.

Plugging this back into equations (23) and (25) establishes the desired
result.

Now, we want to know conditions for which E−1F is positive definite.
The following results establish several such conditions.

Lemma 3.11 (part of Theorem 3.1 in [12]) E−1F is positive definite if
X and S are positive definite and HP (XS) is positive semidefinite.

Proof. Let u ∈ R
n(n+1)

2 be a nonzero vector. Denote by k the product
E−Tu, and define K by k = svec (K). Then we have

uTE−1Fu = kTFETk = kT (PX ⊗s P
−T )(P T ⊗s SP

−1)k

=
1

2
kT (PXP T ⊗s P

−TSP−1 + PXSP−1 ⊗s P
−TP T )k

=
1

2
kT (PXP T ⊗s P

−TSP−1)k +
1

2
kT (PXSP−1 ⊗s I)k

>
1

2
kT (PXSP−1 ⊗s I)k

=
1

2
svec (K)T (PXSP−1 ⊗s I)svec (K)

=
1

4
svec (K)T svec (KP−TSXP T + PXSP−1K)

=
1

4
trace (KKP−TSXP T +KPXSP−1K)

=
1

4
traceK(P−TSXP T + PXSP−1)K

=
1

2
traceKHP (XS)K ≥ 0,

where the second equality follows from SKRON 7, and the strict inequality
holds since PXP T ≻ 0 and P−TSP−1 ≻ 0 and from Theorem 3.7, it follows
that PXP T ⊗s P

−TSP−1 ≻ 0.
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Lemma 3.12 (Theorem 3.2 in [12]) Let X and S be positive definite. Then
the following are equivalent:

1. PXP T and P−TSP−1 commute,

2. PXSP−1 is symmetric,

3. FET is symmetric, and

4. E−1F is symmetric.

Proof. The first two statements are equivalent since

(PXSP−1)T = P−TSXP T = (P−TSP−1)(PXP T )

= (PXP T )(P−TSP−1) = PXSP−1,

if and only if the first statement holds.
Note that

FET = (PX⊗sP
−T )(P T⊗sSP

−1) =
1

2
(PXP T⊗sP

−TSP−1+PXSP−1⊗sI).

The last equality follows from property SKRON 7. We know that PXP T

and P−TSP−1 are symmetric. Therefore, FET is symmetric if and only if
PXSP−1⊗sI is symmetric. FromCorollary 3.4, it follows that PXSP−1⊗s

I is symmetric if and only if PXSP−1 is symmetric. This establishes the
equivalence between the second and the third statement.

The equivalence between the last two statements follows from the equa-
tion

E−1F = E−1(FET )E−T = E−1(EF T )E−T = F TE−T = (E−1F )T ,

if and only if the third statement holds.

Theorem 3.13 (part of Theorem 3.2 in [12]) Let X and S be positive
definite. Then any of the conditions in Lemma 3.12 imply that system (20)
has a unique solution.
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Proof. We want to show that one of the conditions in Lemma 3.12
implies that HP (XS) is positive semidefinite. Assume that the second (and
therefore also the first) statement in Lemma 3.12 is true. Let u be a nonzero
vector in Rn . Then

uTHP (XS)u =
1

2
uT (P−TSXP T + PXSP−1)u

= uTPXSP−1u = uT (PXP T )(P−TSP−1)u.

Since PXP T and P−TSP−1 commute and are symmetric positive de-
finite, we can denote their eigenvalue decompositions by Q̄TDPXPT Q̄ and
Q̄TDP−TSP−1Q̄ respectively, where Q̄ is an orthogonal matrix containing their
eigenvectors rowwise. Now we continue the above equation

uT (PXP T )(P−TSP−1)u = uT Q̄TDPXPT Q̄Q̄TDP−TSP−1Q̄u

= uT (Q̄TDPXPTDP−TSP−1Q̄)u.

Since Q̄TDPXPTDP−TSP−1Q̄ is again a positive definite matrix, it follows that
uTHP (XS)u > 0 for all nonzero u. We now conclude from Lemma 3.11 that
E−1F is positive definite. Applying this information to Theorem 3.10, we
get the desired result.

4 Conclusion

We have shown that the symmetric Kronecker product has several properties
according to the properties of the ordinary Kronecker product. However,
factorizations of the symmetric Kronecker product cannot easily be derived
unless we consider special cases (e.g. A and B simultaneously diagonalizable).

When trying to find search directions of the Monteiro–Zhang family, the
properties of the symmetric Kronecker product lead to some nice conditions
for when the search direction is unique.
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