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Abstract2

Let H =

[

M K

K∗ N

]

be a Hermitian matrix. It is known that the eigenvalues of M ⊕N are3

majorized by the eigenvalues of H . If, in addition, H is positive semidefinite and the block K4

is Hermitian, then the following reverse majorization inequality holds for the eigenvalues:5

λ

([

M K

K N

])

≺ λ((M +N)⊕ 0).

Interesting corollaries are included.6
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1 Introduction12

Matrix eigenvalue majorization results have interesting applications in many disciplines of math-13

ematics, e.g. in linear algebra, probability, statistics, combinatorics, etc. It is still a very active14

research topic that attracts many mathematicians. Recent results on this topic can be found in15

e.g., [2, 5, 8, 7, 9].16

An early result concerning eigenvalue majorization is the fundamental result due to I. Schur17

(see e.g [1, 6]), which states that the diagonal entries of a Hermitian matrix A are majorized by its18

eigenvalues, i.e., diag(A) ≺ λ(A). This result can be easily extended to block Hermitian matrices.19

More precisely, if

[

M K

K∗ N

]

is Hermitian, then20

λ(M ⊕N) ≺ λ

([

M K

K∗ N

])

. (1.1)

Here and throughout, K∗ denotes the Hermitian conjugate transpose of K; and M ⊕ N denotes21

the direct sum of M and N , i.e., the block diagonal matrix

[

M 0
0 N

]

.22

In this paper, we present the following reverse majorization inequality for a Hermitian positive23

semidefinite 2× 2 block matrix. The proof and some interesting consequences are given in the next24

Section.25

Theorem 1.1. Let H =

[

M K

K∗ N

]

be a Hermitian positive semidefinite matrix. If, in addition,26

the block K is Hermitian, then the following majorization inequality holds:27

λ

([

M K

K N

])

≺ λ((M +N)⊕ 0). (1.2)

Here, and throughout the paper, 0 is a zero block matrix of compatible size.28

1.1 Preliminary Results29

Let Mm×n(C) be the space of all complex matrices of size m × n with Mn(C) = Mn×n(C). For30

A ∈ Mn(C), the vector of eigenvalues of A are denoted by λ(A) = (λ1(A), λ2(A), · · · , λn(A)). If A31

is Hermitian, we will always arrange the eigenvalues of A in nonincreasing order: λ1(A) ≥ λ2(A) ≥32

· · · ≥ λn(A).33

For two sequences of real numbers arranged in nonincreasing order,34

x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn),

we say that x is majorized by y, denoted by x ≺ y (or y ≻ x), if35

k
∑

j=1

xj ≤
k

∑

j=1

yj (k = 1, · · · , n− 1), and

n
∑

j=1

xj =

n
∑

j=1

yj.

We make use of the following lemmas in our proof of Theorem 1.1.36
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Lemma 1.2. If A,B ∈ Mn(C) are Hermitian, then37

2λ(A) ≺ λ(A+B) + λ(A−B). (1.3)

Proof. The lemma is equivalent to Ky Fan’s eigenvalue inequality. The proof can be found in [4,38

Theorem 4.3.27]; see also [10, Theorem 7.15].39

Lemma 1.3. Let A ∈ Mm×n(C) with m ≥ n, then we have40

λ(AA∗) = λ(A∗A⊕ 0). (1.4)

2 Proof of Main Result and Corollaries41

Before we give the proof of Theorem 1.1, we show by an example that the requirement K being42

Hermitian is necessary.43

Example 2.1. Let M =

[

1 0
0 4

]

, N =

[

1 1
1 2

]

and K =

[

1 1
0 2

]

. Then44

λ((M +N)⊕ 0) = (4 +
√
2, 4−

√
2, 0, 0),

λ

([

M K

K∗ N

])

= (4 +
√
5, 4−

√
5, 0, 0).

Therefore λ(

[

M K

K∗ N

]

) ⊀ λ(M +N)⊕ 0).45

Proof of Theorem 1.1. Since H :=

[

M K

K N

]

is positive semidefinite, we may suppose46

H ∈ M2n(C) and write H = P ∗P , where P =
[

X Y
]

, for some X,Y ∈ M2n×n(C). Therefore,47

we have M = X∗X, N = Y ∗Y and K = X∗Y = Y ∗X. Note that by Lemma 1.3, we have48

λ

([

M K

K N

])

= λ(PP ∗). The conclusion (1.2) is then equivalent to showing49

{X∗Y = Y ∗X} =⇒ {λ ((X∗X + Y ∗Y )⊕ 0) ≻ λ(XX∗ + Y Y ∗)} . (2.1)

First, note that
(X + iY )∗(X + iY ) = X∗X + Y ∗Y + i(X∗Y − Y ∗X)

= X∗X + Y ∗Y

(X − iY )∗(X − iY ) = X∗X + Y ∗Y − i(X∗Y − Y ∗X)
= X∗X + Y ∗Y

(X + iY )(X + iY )∗ = XX∗ + Y Y ∗ − i(XY ∗ − Y X∗)
(X − iY )(X − iY )∗ = XX∗ + Y Y ∗ + i(XY ∗ − Y X∗).

Therefore we see that50

λ ((X∗X + Y ∗Y )⊕ 0) = 1

2
{λ ((X + iY )∗(X + iY )⊕ 0) + λ ((X − iY )∗(X − iY )⊕ 0)}
= 1

2
{(λ ((X + iY )(X + iY )∗) + λ ((X − iY )(X − iY )∗))}

≻ λ(XX∗ + Y Y ∗),

where the second equality is by Lemma 1.3 and the majorization follows from applying Lemma 1.251

with A = (XX∗ + Y Y ∗), B = i(XY ∗ − Y X∗). 252

As we can see from the above proof, a special case of of Theorem 1.1 can be stated as follows.53
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Corollary 2.2. Let X,Y ∈ Mn(C) with X∗Y is Hermitian. Then we have54

λ(XX∗ + Y Y ∗) ≺ λ(X∗X + Y ∗Y ). (2.2)

Corollary 2.3. Let k ≥ 1 be an integer. If A,B ∈ Mn(C) are Hermitian matrices, then we have55

λ(A2 + (AB)k(BA)k) ≻ λ(A2 + (BA)k(AB)k). (2.3)

Proof. Let X = A and Y = (BA)k. Then XY = A(BA)k is Hermitian. The result now follows56

from Corollary 2.2.57

Corollary 2.4. Let k ≥ 1 be an integer, and let A,B ∈ Mn(C) be Hermitian matrices. Then we58

have59

1. trace[(A2 + (AB)k(BA)k)p] ≥ trace[(A2 + (BA)k(AB)k)p], for p ≥ 1;60

2. trace[(A2 + (AB)k(BA)k)p] ≤ trace[(A2 + (BA)k(AB)k)p], for 0 ≤ p ≤ 1.61

Proof. Since f(x) = xp, is a convex function for p ≥ 1 and concave for 0 ≤ p ≤ 1, corollary follows62

from Corollary 2.3 and a general property of majorization. (See [6].)63

Remark 2.5. A key inequality used in [3] to strengthen some Golden-Thompson type inequalities64

is just a special case of Corollary 2.4 by taking k = 1.65
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