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INDEFINITE TRUST REGION SUBPROBLEMS AND
NONSYMMETRIC EIGENVALUE PERTURBATIONS*
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Abstract. This paper extends the theory of trust region subproblems in two ways: (i) it
allows indefinite inner products in the quadratic constraint, and (ii) it uses a two-sided (upper and
lower bound) quadratic constraint. Characterizations of optimality are presented that have no gap
between necessity and sufficiency. Conditions for the existence of solutions are given in terms of the
definiteness of a matrix pencil. A simple dual program is introduced that involves the maximization
of a strictly concave function on an interval. This dual program simplifies the theory and algorithms
for trust region subproblems. It also illustrates that the trust region subproblems are implicit convex
programming problems, and thus explains why they are so tractable.

The duality theory also provides connections to eigenvalue perturbation theory. Trust region
subproblems with zero linear term in the objective function correspond to eigenvalue problems, and
adding a linear term in the objective function is seen to correspond to a perturbed eigenvalue problem.
Some eigenvalue interlacing results are presented.

Key words, indefinite trust region subproblems, existence and optimality conditions, numerical
solutions, hard case, matrix pencils, nonsymmetric eigenvalue perturbation theory
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1. Introduction. Calculation of the step between iterates in trust region nu-
merical methods for minimization problems involves the minimization of a quadratic
objective function subject to a norm constraint. This trust region subproblem is

rain
(P) subject to

#(y) ytBy 2Cry
Ay b,
ytDy <_ 5, y E .n,

where n; B :nxn is symmetric, A is m x n; b e }m, D is a positive
definite scaling matrix, and 5 > 0 is the trust region radius. The objective function #
provides a quadratic model of a merit function, while the linear constraint Ay b is
a linear model of possibly nonlinear constraints. Note that the trust region quadratic
constraint has the implicit, or hidden, constraint 0 _< ytDy, while a positive 5 yields
the standard generalized Slater constraint qualification of convex programming.

By representing the linear constraint Ay b as y + Zw, where the range of
Z is equal to the null space of A, and ) is a particular solution of Ay b, we can
eliminate this linear constraint. Moreover, we can also eliminate the scaling matrix
D and use complementary slackness to get the simplified problem

min #(y) ytBy 2ty(/SE) subject to yty 1, y n.

Trust region problems have proven to be very successful and important in both
unconstrained and constrained optimization. The theory, algorithms, and applications
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INDEFINITE TRUST REGION SUBPROBLEMS 287

have been described in many papers and textbooks; see, e.g., [3], [9], [6], [11]-[13],
[23], [24], [30], [31], [33]. A well-known algorithm for numerically approximating a
global minimum is given in [13] and [26]. Other numerical algorithms are presented in
[15], [12]. Recently, the trust region subproblem, with the additional linear constraint
Ax b, has been employed as the basic step in the affine scaling variation of interior
point methods for solving linear programming problems; see, e.g., [7], [2], [35]. Affine
scaling methods for general quadratic programming problems, which solve a trust
region subproblem at each step, are given in [16]. In addition, many continuous
relaxations of discrete optimization problems result in norm constraints and therefore
trust region subproblems arise; see, e.g., [22] for a survey.

Generalizations of (/5) are also important. Subproblems with two trust region
constraints appear in sequential quadratic programming (SQP) algorithms; see, e.g.,
[4], [39], [37]. In [37], an algorithm is presented that treats the two trust region prob-
lem by restricting it to two dimensions. More recently, Zhang [40] treated the two
trust region problem using a parametric approach and assuming positive definiteness
of the objective function. (In both [39] and [40], the condition that B- AC is positive
definite for some A, where C is the Hessian for the second trust region constraint, is
very important. This condition is studied here for the indefinite case and shown to be
equally important.) Two trust region subproblems also appear in parametric identifi-
cation problems; see, e.g., [21], [17]. Moreover, it is often useful to consider modelling
the general nonlinear programming problem using quadratic approximations for both
the objective function as well as for the constraints; see, e.g., [5], [27]. Such problems
have up to now been considered too difficult to solve without further modelling using
linear approximations for the constraints One reason for this is that the quadratic
approximations can result in indefinite Hessians for the objective function as well as
for the constraints, resulting in possible unboundedness and infeasibility problens.

The success of trust region methods depends in part on the fact that one can char-
acterize, and hence numerically approximate, the global minimum of the subproblem
(/5). The characterization, which has no gap between necessity and sufficiency, is
independent of any convexity assumptions on the quadratic function it; that is, B
can be indefinite. The choice of the .scaling matrix D can be very important It
is currently restricted to be positive definite in order to maintain tractability of the
subproblem, but it would be advantageous and important to allow a larger class of
matrices in order to obtain scale invariance; see, e.g., [99 p. 59]. Of more interest and
importance is the fact that the feasible set {yyy 1} in (/3) being nonconvex
does not present a problem in the characterization of optimality. Note that we can
add k(yty 1), k > 0, to the objective function without changing the optimum. Thus
if k is large, then the objective function becomes convex. This means that we can
assume that the objective function is convex if desired. However, this is no longer
true if the constraint yty 1 is changed to an indefinite constraint.

In case 0 (no linear term) the stationary points of the trust region subproblem
correspond to the eigenvalues of Bo In [32], the authors related stationarity properties
of (/5) to spectral properties of the parametric border perturbation of B given by

Hence, the above perturbation o B has, as an analog, the perturbation of the purely
quadratic function ytBy by the linear term -2tx in (/5). Other connections be-
tween trust region problems and eigenvalue problems are known in the literature
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288 R. STERN AND H. WOLKOWICZ

If one considers a symmetric perturbation in (1.1), then connections with the trust
region problem are studied in [29] and show up in the theory of divide and conquer
algorithms for symmetric eigenvalue problems; see, e.g., [1]. Moreover, the algorithms
in [13] and [26] are based on finding a Lagrange multiplier smaller than the small-
est eigenvalue of B, and therefore guaranteeing positive definiteness of the Hessian
of the Lagrangian. The success and importance of trust region methods in both
unconstrained and constrained optimization can be attributed to the fact that the
subproblems can be solved very efficiently and robustly, which can be attributed to
their being implicit eigenvalue problems.

In this paper we consider generalizing (/5) in two ways and relating these trust
region subproblems to eigenvalue perturbation theory. The ellipsoidal constraint
ytDy <_ is replaced by a two-sided constraint, while the positive definite scaling
matrix D is replaced by a possibly indefinite matrix C. Specifically, we consider the
problem

min
(P) subject to

it(y) ytBy 2Cry
<_ ytCy <_ , y E n,

where B and C are symmetric matrices with no definiteness assumed, and -oc _< _<
( <_ cx. The motivation for this paper is to extend the existing theory of trust region
subproblems (in light of the above discussion on applications) in the hope that this
will be a step in the direction of solving general problems with quadratic objectives
and quadratic constraints. Note that unlike the definite case, a change of variables
will not reduce the problem to the form (/5). Moreover, it is not clear that solving
the equality constrained problem is equivalent to solving the inequality constrained
problem, along with a complementary slackness condition. For example, if

then the equality constrained problem ytCy I is bounded below while the inequality
case, with -c, a 1, is unbounded.

Indefinite quadratic constraints arise when considering indefinite inner product
spaces or Minkowski spaces; see, e.g., [14], [8]. In this case, the generalized distance
function, or norm, arising from the indefinite inner product, can be zero and/or
complex valued. The two-sided constraint is a step toward the solution of problems
with two quadratic.constraints and generalizes the standard problem where the left-
hand side constraint is implicitly understood to be >_ 0.

The paper is organized as follows. In 2 we give necessary and sufficient optimality
conditions for (P), as well as a general existence theorem. Then in 3 a further
analysis is undertaken. We transform (P) to a "standard form" where the matrix
pencil B- AC satisfies a certain regularity condition, and use this form to catalog the
various conditions under which an optimum for (P) can exist.

In 4, we apply our results to obtain spectral information regarding the completely
general parametric border perturbation of B given by

(1.2) A(t)= vt t

under the assumption that the spectral decomposition of B is known.
In 5 we present a general dual program for (P). This dual program is a true

concave maximization problem and shows that these trust region subproblems are
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INDEFINITE TRUST REGION SUBPROBLEMS 289

implicitly convex. Moreover, the dual program provides bounds on the optimal value
of (P). This provides stopping criteria for algorithms for (P) based on duality gap
considerations.

We conclude with an appendix to show how the algorithm and results in [13] and
[26] can be extended to our more general two-sided indefinite trust region subproblems.
Note that an interior point primal-duM algorithm, based on the duality theory given
here, is presented in [28].

1.1. Notations. M - 0 means that a real symmetric matrix M is positive def-
inite, while M - 0 indicates that M is positive semidefinite. (The reverse notations
M -< 0, M 0 will be used to denote negative definiteness and negative semidefi-
niteness, respectively.) 7(M) denotes the range space of M; while Af(M) denotes the
null space of M. M is the Moore-Penrose generalized inverse of M. For

if, _> O,, N, (3)+ "=
0 otherwise.. Optimality conditions. Our results will generally be stated for the mini-

mization problem

min #(y) ytBy- 2Cry(P) subject to

where -cx _</3 <_ a _< cx, and both B and C may be indefinite. The maximization
versions of the results will always be analogous in an obvious way.

We have the following theorem, which extends a result of Gay [13] and Sorensen
[30], where C was assumed to be positive definite and/3 0 < a is implicitly assumed;
see, also, Fletcher [9]. Our theorem does not tell us when problem (P) possesses
minimizing point, but rather, it tells us when a given feasible point yields a minimum.
There is no gap between the necessary and sufficient optimality conditions and there
is no assumption on boundedness of the feasible set or the objective function. The
three optimality conditions are, respectively, stationarity, nonnegative definiteness,
and complementary slackness and multiplier sign.

THEOREM 2.1. Let y be a feasible point for (P). Then y gives the global minimum
for (P) if there exists a Lagrange multiplier ) E such that

(2.1) (B )C)y

(2.2) B-ACO,

and

(2.3) ik(t3 ytCy) >_ 0 >_ A(ytCy c).

Furthermore, if

(2.4) B-/C - 0,

then y is the unique minimizing point. Moreover, suppose that the following constraint
qualification holds:

(2.5) Cy 0 implies
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290 R. STERN AND H. WOLKOWICZ

Then y solves (P) if and only if the conditions (2.1)-(2.3) hold, for some
Proof. First consider sufficiency. Let y, A satisfy the above optimality conditions,

where y is feasible. There are three cases to consider. [:l

Case (i). Suppose that < ytCy < a. Then, the optimality condition (2.3)
implies that 0. That # is convex now follows from (2.2). Thus y is a global
unconstrained minimum of the convex function # and y solves (P).

Case (ii). Suppose that

(2.6) ytCy c

By (2.1),(2.2), we see that y minimizes the Lagrangian function

L(z, A):- #(z)- A(zCz-

over [}n. That is,

#(y) L(y, A)

_
L(z, A)

Since < yCy implies A

_
0, it follows that A(zCz- c)

_
O, for all feasible z. This

in turn yields #(y)

_
#(z), for all feasible z.

Case (iii). Suppose that yCy . Then the conclusion follows similarly to Case
(ii).

This proves the if part. The furthermore part of the theorem now follows easily.
Now consider the necessity part of the statement. If Cy O, then the constraint

qualification implies that we have an unconstrained problem and the optimality con-
ditions hold trivially with A 0. Otherwise, we again need to consider the same three
cases. For Case (i), we again conclude that the quadratic function # must be convex.
Therefore we can choose A 0 to satisfy the optimality conditions. For Case (ii), we
associate with the constraint the (isotropic) cone

K {w E n wtCw 0}.

(Note that the standard linear independence constraint qualification holds, since
Cy 0 by the constraint qualification assumption.) Suppose that y solves (P).
By differentiating the Lagrangian function with respect to y, we obtain the Lagrange
equation (2.1) as a first-order necessary condition for optimality. Hence there exists

_< 0 such that (2.1) holds, and it only remains to verify the second-order condition
(2.2). Let us denote by Ty the set of tangent directions to the constraint at y; that is,

Ty {w n wtCy 0}.

The standard second-order conditions state that B AC is positive semidefinite on
Ty. Now let v n be a direction such that

(2.7) v C_ K U Ty.

For each such v, we can construct a feasible point z y + Ov, where 0 0 and
ztCz c. In order to accomplish this, consider the solvability of the equation

(2.s) (y + Ov)C(y + Ov)
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INDEFINITE TRUST REGION SUBPROBLEMS 291

This becomes

(2.9) ytCy + 20vtCy + 02vtCv ,
and from (2.6), this in turn becomes

(2.10) O[2vtCy + OvtCv] O.

Now in view of (2.7), we see that

(2.11) 0
-2vtCy
vtCv

has the required properties.
Note that the value of the Lagrangian at a feasible point satisfying (2.6) is equal

to the value of the objective function at that point. Moreover, the Lagrangian is a
quadratic and so the second-order Taylor expansions are exact:

+ (z

L(y, ) + (z y)t V2L(y, A)(z y).

This means that

(2.12) () () ( v)’(B C)(z v).

Thus the optimality of y implies

(2.13) vt(B- AC)v >_ 0 Vv

_
K U Ty.

Since the set K has no interior points, by analyticity of the function ytCy, we see
that (2.13), the standard second-order conditions on Ty, and a continuity argument
yield (2.2).

Case (iii) with ytCy follows similarly.
Remark 1. One can use homogenization to apply Theorem 2.1 to more general

quadratic constraints, namely, ytCy + ty, where C is nonsingular.
Remark 2. The optimality conditions (2.1),(2.2),(2.3) are a compact version of

the usual optimality conditions with two constraints that involve two multipliers.
Terminology. If. A is such that the Lagrange equation (2.1) holds for a feasible y,

then is called a Lagrange multiplier and we say that y is a stationary point belonging
to . The set of all such y is denoted by E(A), while the set of all Lagrange multipliers
is denoted by A.

In view of Theorem 2.1, we get the following necessary condition on the symmetric
natrix pencil B- C for (P) to possess a minimizing point.

COROLLARY 2.2. Suppose that C is nonsingular and max{lal, !1} > 0. /f y
solves (P), then

(2.14) Be s.t. B-C0.

ProoJ: If y 0, then the result follows from the nonsingularity of C and Theorem
If y 0, then necessarily we have 0, the optimal value #* 0, and
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292 R. STERN AND H. WOLKOWICZ

/ <_ 0 _< . Since we cannot have both and/ equal to 0, we can assume without
loss of generality that/ < 0. Therefore optimality implies that the system

ytCy < 0, ytBy < 0

is inconsistent. The result now follows from the theorem of the alternative in Lemma
2.3 in [38].

Before stating our main existence result (Theorem 2.4 below), we distinguish
between two subcases of (2.14).

We say that we are in the regular case or the positive definite pencil case provided
that (P) is feasible and

:t X s.t.B- XC - 0.

We are in the irregular case or the positive semidefinite pencil case if (P) is
feasible and (2.14) holds, but for no A E R do we have B- AC 0.

Remark 3. Characterizations of various definiteness properties for matrix pencils
were given by Hershkowitz and Schneider [18] and by Wsing and Vhlig [34]. See also
[14]. We do not use those results in this paper, however.

In the next section we see that in the regular case, the set

J "= {A e R" B- AC - 0}

is an open subinterval of the real line which is bounded if C is indefinite and unbounded
if C is definite. On the other hand, in the irregular case with a nonsingular pencil
B- tC, the number is unique. This is taken up in the following lemma. (Recall
that a pencil being singular means that det(B tC) =_ O. The pencil is nonsingular,
for example, if either B or C is a nonsingular matrix.)

LEMMA 2.3. Suppose that the irregular case holds and the function det(B tC)
is not identically 0 in t. Then there is only one value such that (2.14) holds.

Proof. Suppose’that 5 is such that B-hC

_
O. Then any convex combination

of B- AC and B- 5C is positive semidefinite. Hence

(2.16) B C c(5 )C
_

0 Va e [0, 11.
Now consider the analytic function

h(a) det[B C a(5 )C].

Then h(0) det(B C) 0, and the assumption on the determinant implies that
there exists/ R such that h(/) 0. Hence analyticity implies that h(c) = 0 for
all sufficiently small a > 0. But then by (2.16), for such a we would have

B- XC- X)C 0,

which contradicts being in the irregular case.
We now have the following result regarding the existence of a minimizing point

for problem (P).
THEOREM 2.4. Consider problem (P) with C nonsingular.
1. If (P) possesses a minimizing point and max{lal, I/1} > 0, then condition

(2.14) holdS.
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INDEFINITE TRUST REGION SUBPROBLEMS 293

2. Conversely, assume that (P) is feasible, (2.14) holds, and both c and are

finite. Then we have the following cases.

(a) regular. (P) possesses a minimizing point.
(b) irregular. (P) possesses a minimizing point if and only if (2.1) (2.3) are

consistent, in which case y is a minimizing point with associated Lagrange multiplier

Proof. Part 1 follows immediately .from Corollary 2.2. To prove Part 2(a) assume
that (2.15) holds and suppose, to the contrary, that (P) does not possess a minimum.
Suppose that y is a feasible point. Then there would exist a sequence of feasible
vectors {Yi}=l such that

< vi,

and

Without loss of generality we can assume that

Yi ,d as i---,x3.
I1  11

We claim that

(2.20) dtBd < O.

If this did not hold, then dtBd a > 0 would imply that

for all sufficiently large i. But then (2.18) yields #(y) cx3, contradicting (2.17).
Now (2.20) and the regularity condition (2.15) together imply

(2.22) d Cd < b < O,

for some b. It then follows that

(2.23)
XyCyi
i1  11

<

for all sufficiently large i. From (2.18) we then obtain
which contradicts the feasibility of the sequence {Yi}=l. This completes the proof of
Part 2(a).

To prove Part 2(b), suppose that the optimality conditions are satisfied. Since
we have an irregular pencil, i.e., is unique in (2.14) and B- AC is singular, then
from the lemma in [20, p. 408], the two systems

Bu O, utCu < O,
By=O,. vtCv > O,

must be consistent. Therefore, if ytCy < B, we can find a feasible point using y + tv,
since (y + tv)tC(y / tv) > , for sufficiently large t. Similarly, we can use y + tu if
ytCy > a. These points satisfy the stationarity conditions and so are optimal. [3

The following is an example of the irregular case, with the necessary and sufficient
optimality conditions in Part 2(b) of the previous theorem not holding, i.e., with the
problem being unbounded. Take B diag(2,-2), C- diag(-1, 1), and (1,2).
It is readily checked that there does not exist a minimizing y for problem (P). Now
note that -2 and B-C 0. Hence the equation (B- C)y is inconsistent.
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294 R. STERN AND H. WOLKOWICZ

3. Further analysis(a / 1). In this section we treat the special case of
(P) where C is nonsingular and a 1, i.e., we have the single constraint problem

min
subject to

#(y) "= ytBy- 2Cry
ytCy 1, y E n.

The results are used in our analysis of eigenvalue perturbations.

3.1. The regular case. The condition (2.15) implies that there exists a nonsin-
gular real n n matrix T such that TtBT D and TtCT S are both diagonal.
(We here are utilizing a well-known result on simultaneous diagonalization via congru-
ence; see, e.g., Theorem 7.6.4 in Horn and Johnson [19].) By building a permutation
and a scaling into T if necessary, we can without loss of generality assume that the
matrices D and S are of the forms

D diag(D, Db) diag(d, d dn., db db2,’", dbn)
and

S diag(-Ia, Ib),

where

d > d >.-. > da

> eg >... >

and where Ia and Ib denote identity matrices of orders na and rib, respectively. Here

na nb

where possibly na O. By Sylvester’s Theorem of Inertia, see, e.g., [19], feasibility of
(P) is equivalent to nb > O.

We now introduce the problem

min #T(X) :-- xtDx- 2rtx(PT) subject to xtSx 1.

Upon identifying

y=Tx

and

7 Tt),

it is easy to check that

and

ytCy xtSx.
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INDEFINITE TRUST REGION SUBPROBLEMS 295

Furthermore, it is clear that in the regular case, the problems (P) and (PT) have the
same Lagrange multiplier set A, and for each Lagrange multiplier A we have

E(I) TET(A),

where ’T() denotes the set of stationary points of problem (PT) belonging to A.
Finally, it will be convenient to write

where the number of components of r/a and T]b are na and rib, respectively.
Whenever the regular case holds, we can accomplish this transformation of (P) to

(PT), which we say is a problem in standard form. The regular case of the standardized
problem will now be discussed. Hence we shall assume that (PT) is feasible (i.e.,
nb> 0) and

3E s.t. D-S-O.
Two subcases of (3.1) are going to be considered. These will be referred to as the
"easy" and "hard" subcases. Our analysis of these subcases generalizes that found in
Gander, Golub, and Von Matt [12], where it was assumed that n 0; that is, S I.
(See also [33].)

3.1.1. The easy subcase. In this subcase of (3.1), we assume feasibility and

(3.2) /is not orthogonal to Af(D- AS) for all A s.t. JV’(D- AS) # 0.

Equivalently, if Z {i (D- AS)ii 0}, then there exists at least one component
i E Z such that r/i 0. It is important to note that for fixed A we then have

(3.3) r/e 7(D AS) == rank(D AS) n.

In other words, (3.2) implies that congistency of the first-order condition

(3.4) (D AS)x rl

yields invertibility of D- AS. (Likewise, consistency of (2.1) implies invertibility of
B- AC when (3.2) holds.) For A, denote the unique solution to (3.4) by

(3.5) x (D- S)-1/.

Let us now introduce the function

(3.6) fT()) "= 1 rlt(D S)-2S.

(Note that fT(,h)"= 1 --yt),Cy,, where yx (B- C)-1). Since

(3.7) D- AS S(SD- AI),

it follows that the singularities of fT(’) are the eigenvalues of SD. We call fT(’) the
secular function for problem (PT). It reduces to the secular function in [12] when
n. 0. Define

ro .= # 0}
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296 It. STERN AND H. WOLKOWICZ

and

b.= # 0}.

One can readily check that

Remark 4. Note the use of the distinct subscripts i and j in (3.8). This is adopted
here, and in what follows, for notational convenience.

Feasibility of x), for (PT) is characterized by the equivalence

(3.9) x[Sxx 1 ,==V fT() O.

It is now clear that in the easy subcase of (3.1),

in which case xx, as given by (3.5), is the unique associated stationary point.
Since nb > 0 (feasibility of (PT)), the assumption that (3.1) holds implies that

either

na>O and -dana <dbnb
or

(3.12) na =0.

(See Figs. 1 and 2 for plots of gT for the above two cases, respectively.)
holds, then

If (3.11)

B AC>-Oc==>D AS>.-Oc==A(-da b

while if (3.12) holds, then

(3.14) B- AC >- O <===> D- AS>-O==>A(-,dnb)
We summarize the above discussion in the following lemma.

LEMMA 3.1. Problem (PT) is feasible if and only ifC is not negative semidefinite.
Moreover, the set of t where B- tC is positive definite is an open interval which is
bounded if and only if C is indefinite.

We now introduce the function

(3.15) gT(A) rt(D AS)-lr,

which is called the secular antiderivative function for problem (PT). The implicit
form of this function is

(3.16) g(,,) :: )t(B -/C)-I).

The singularities of gT(’) are those of fT(’) and, what is more,

(3.17) g(A) fT(A)
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INDEFINITE TRUST REGION SUBPROBLEMS 297

10
Plot 1" Case (3.11)

10

FIG. 1. Secular antideriviative.

at all real numbers A which are not singularities. It is readily verified that

At nonsingular points A we also have

(3.19) g()) -2r/(D- ,kS)-3r/.

Now suppose that (3.11) holds. Then, by (3.19), gT(’) is strictly concave on the
interval (-da dbb), which by (3.13) is where B- C >- 0 Furthermore,

gT(A) --OC as A -da
na

and

gT A -oo as , T db.rb

Then there exists a unique A* e (- ,a, dbb) such that g, (A*) fT (A*) 0. It follows
that A* E A, and x. minimizes (PT). Also, for indices i < na we have

gT(A)--OO as A-d’
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298 R. STERN AND H. WOLKOWICZ

10

-5

-10

Plot 2: Case (3.12)

10

FIe. 2. Secular antideriviative.

gT()Toc as AT-d,

while for indices j < nb we have

bgT(A)[Oc as Adj,

Now suppose that (3.12) holds. Then gT(’) is strictly concave on (--oc, dbnb),
gT ,k .].--oc as J,--cx)

gT (, ,], -oo as ) T dbnb
Hence there exists a unique A* e (-oo, db) such that g,(A*) fT(A*) 0. Then
A* E A, and x. minimizes problem (PT). For indices j < nb we have the same
behavior as when (3.11) holds.

Remark 5. If one analyzes the function gT(’) in the special case where na 0,
additional graphical properties may be obtained. In particular, one can exploit the
fact that g() < 0 at every nonsingular point ; see [32] for the details.
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INDEFINITE TRUST REGION SUBPROBLEMS 299

We now can give the following existence and uniqueness result for the easy case.
It includes a necessary and sufficient condition for the simultaneous existence of a
maximizing point and a minimizing point for (P).

THEOREM 3.2. Consider the easy subcase of the regular case of problem (P); that
is, (P) is feasible (i.e., nb > 0), and (3.1), (3.2) hold. Then we have the following:

1. The set of Lagrange multipliers A is finite;
2. (P) possesses a unique minimizing point;
3. (P) possesses a maximizing point if and only if na O.
Proof. We can without loss of generality assume that (P) is in the standard form

(PT). Parts 1 and 2 of the theorem follow from the discussion above. (In Part 1
we used the rational property of fT(’) on any open interval that does not contain
a singularity, i.e., using a common denominator reduces the problem to finding the
zeros of a polynomial in A, since the denominator is positive on the open interval.)
In order to prove Part 3, assume first that na > 0. For there to exist a maximizing
point, there would necessarily exist E A such that

This implies

which contradicts (3.11). Sufficiency in Part 3 follows from compactness of the feasible
set and continuity. [:]

Remark 6. Let the hypotheses of Theorem 3.2 hold, with na > 0. In view of the
preceding discussion, we see that there exists at least one Lagrange multiplier (that
is, a critical point of gT(’)) such that g(A) > 0. In particular, there must be such
a number in the interval (dbl, c). However, in view of the preceding theorem, the
corresponding stationary point x, does not give a maximum for problem (PT). In
fact, in Example 4.1 in 4, it will be seen that x, need not even give a local maximum.

We conclude the discussion of the easy subcase with a key lemma that will be
used in the following sections. The lemma also provides a (concave) dual program.
The lemma asserts that in the easy case, the values of the secular antiderivative at its
critical points (which are the Lagrange multipliers) equal the values of the objective
functions of (P) and its standardization at the corresponding set of stationary points.
A variant of this result can be found in [11]; see also [32]. The proof is by direct
substitution, and is omitted.

LEMMA 3.3. Let the hypotheses of Lemma 3.2 hold, and let A. Then

(3.22) gT(A) #T(X) #(y),

where y (B- AC)-1.
The above results yield the following dual program, i.e., the optimal values of the

primal and dual are equal. The details are presented in 5.
max gT(.)DUAL PROGRAM
subject to B-AC___0.

3.1.2. The hard subcase. In this subcase of (3.1), we assume feasibility and
the following condition:

(3.23) r/is orthogonal to Af(D- AS) - 0 for some A .

(3.20) (D- S) _< 0.
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300 R. STERN AND H. WOLKOWICZ

As in the easy case, there is an equivalent statement concerning components of that
are now 0 and correspond to the 0 components of D- AS. We again use the (possibly
empty) index sets

ro {i.v o}

and

r (j., # 0).

The secular function for problem (PT) is

(3.24)
o (v?)fT(A) I + .= (d + /k) 2
iFa jEPb

and the secular antiderivative correspondingly becomes

(3.25)

Since we are still in the regular case, the interval J of real numbers A for which the
matrix pencil D- AS - 0 is given by

J- a b(-dna,dnb)
when na O,
when na > O.

The following discussion deals with both forms of J at once. We introduce the index
sets

Aa={i’d=da )na

and

Ab (j d dbnb).
1. If J contains a critical point A* of gT(’), then necessarily 0 and gTt! ( O.

This implies that we have an isolated local maximum of gT(’) and A* E A, since a
unique minimizing point x for problem (PT) can be obtained by solving (D-)S)x
?. Necessarily then xi 0 for all i Fa, xj 0 for all j Fb, and automatically
x Sx 1 since fT(*) O.

2. Now suppose that J does not contain a critical point of gT(’). Then since gT(’)
is concave on J, we see that gT(’) is monotone on J. We need to consider both the
monotone-increasing and monotone-decreasing possibilities.

(a) If g,(/) > 0 on J, then

for otherwise the assumed monotonicity is violated. (Here denotes the empty set.)
Therefore gT()) has no pole for dbb. Also,D
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INDEFINITE TRUST REGION SUBPROBLEMS 301

because a minimizing vector x for (PT) can be found by simultaneously solving (D-
)* S)x ? and x Sx 1. Necessarily then

xi 0 Vi Fa

and

x=0 VjCAU

Note that selected components xj can be nonzero for j E Ab, j Fb. The set of
vectors x thusly obtained is a submanifold of n-1. However, x will be unique in the
special case where g’T (dbnb) ---O.

(b) If g,(,) < 0 on J, then monotonicity yields

Recall that na > O. Also,

,* -da A,na

because now a minimizing vector x for (PT) can be found by simultaneously solving
(D )* S)x 1 and xtSx 1. Then

0 vj

and

xi 0 Vi Aa U Fa.

Since certain components x may be nonzero for Aa, Fa, the set of vectors
x obtained in this way is a submanifold of ’-1, with x being unique in the special
case where gT(da) O.

3.2. The irregular case. In the irregular case it may be that (P) cannot be
transformed into standard form. Nevertheless, we will study the irregular case of the
standard form problem (PT). We therefore assume that

(3.26) BXe s.t. D-XS>_O,

and (by Lemma 2.3) that is unique. We have the following lemma.
LEMMA 3.4. In the irregular case of the feasible problem (PT), we have

(3.27) na > 0

and

(3.28) _da b
na dnb

Proof. If n 0, then we would have D- AS - 0 on the interval (-oc, dbnb),
violating the uniqueness of . Hence (3.27) holds. Similarly, we must have -de < dbnb
for (3.6) to hold, and if -de K dbnb then D- ,kS - 0 on the interval (-d, d’bnb
which also violates the uniqueness of . Consequently, (3.28) holds, cl
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302 R. STERN AND H. WOLKOWICZ

What follows is an existence theorem for the irregular case of the standard form.
THEOREM 3.5. Assume that we are in the irregular case of problem (PT). Then

(PT) possesses a minimizing point if and only if

(3.29) Aa N Fa
and

(3.30) Ab N Fb .
Proof. Suppose that (PT) possesses a minimizing point x. We first verify (3.29).

It must be shown that

r/ 0 Vi E

To this end, let i E Aa. Then for the necessary condition (3.4) to hold, we must have

(d7 +
Since d + --0, (3.29) follows. Condition (3.4) leads to (3.30) in a similar way.

Now suppose that (3.29) and (3.30) hold. If g,() _> 0, then e A, since a
minimizing vector x* may be constructed by simultaneously solving (D A*S)x 1
and xtSx 1. Then

xi 0 Vi Fa
and

xj 0 Vj A
Since selected components xj can be nonzero for j Ab, j Fb, it follows that the
set of vectors x determined in this way is a submanifold of n-1, with x being unique
in the special case where g,() 0. The analysis for the possibility g,()

_
0 is

similar.

4. Nonsymmetric eigenvalue perturbations. We wish to obtain spectral in-
formation about the real n n parametric border perturbation of B given by (1.2);
that is

where B is a symmetric (n- 1) (n- 1) matrix. We assume that the spectral
decomposition of B is known. In other words, we know an orthogonal matrix P such
that PtBP is diagonal. Then (after including a permutation in P, if necessary) we
have a unitary matrix

such that

(4.1) J(t) "= PtA(t)P
Do 0 0 a
0 D+ 0 a+
0 0 D_

t
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INDEFINITE TRUST REGION SUBPROBLEMS 303

where

and

Do diag(71, 72,..., "no),
D_ diag(/{-, /-,..., "-_ ),

D+ diag(+, 2+,..., /n++),
o oa 0 Vi 1,2,... ,no,
+ +ai >0 Vi=l,2,...,n+,

a-- < 0 Vi 1,2,...,n_,

no+n++n_=n-1.

Note that we allow no, n+, or n_ to be zero.
The spectrum of (t) consists of the no numbers o along with the spectrum of

A(t) := 0 D_ a-
t

Hence we focus attention on A(t).
Without loss of generality we can assume the diagonal orderings

Define

(4.3) S diag(-1,-1,... ,-1, 1, 1,..., 1),

where the number of-l’s is n+ and the number of l’s is n_.
We associate with A(t) the following problem in n, where

=n++n_:

min #(x) :-- tSD2- 2It5(P) subject to 2tS2 1.

Here

diag(D+, D_),
1/2 Vi 1,2,...,n+,

and

D
ow

nl
oa

de
d 

12
/2

7/
15

 to
 1

29
.9

7.
58

.7
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



304 R. STERN AND H. WOLKOWICZ

It is readily checked that the secular antiderivative associated with (P) is given

+ (+) - (,7)(4.4) (A) + Ei=l (/+ ) .= (/- A)

We require the following lemma. The proof, which relies on Schur complements,
is similar to that of Lemma 3.1 in [32], and is therefore omitted.

LEMMA 4.1. The real eigenvalues "of A(t) which differ from the t diagonal entries

9/+ and / are the solutions of

(4.) () t.

The next theorem follows from the discussion in 3.1.1. (Only the minimization
version is stated here; the maximization version is analogous.) The theorem gives
sufficient conditions for realness of the spectrum of A(t) and describes the associated
interlacing.

THEOREM 4.2. Assume that problem (P) is feasible; that is, n_ > O, and that
either

(4.6) n+>0 and %+<_

or

(4.7) n+ 0.

Then problem (P) possesses a unique minimizing point, and the following hold.
1. The matrix A(t) has n- 2 real eigenvalues, including all the eigenvalues of Do

and ft- 1 eigenvalues of ft(t) that interlace the n- 1 eigenvalues of B.
2. Suppose that (4.6) holds. Let Aa denote the unique critical point of (. in the

interval (+ /_). A suJficient condition for the other two eigenvalues of A(t), say
5a <_ 55, tO be real i’s that

(4.8) t _< .().

If the inequality is strict, we get the interlacing

(4.9)

If the inequality is not strict, then

(4.10)

3. Now suppose that (4.7) holds, and let denote the unique critical point of
gt(’) in the interval (-oo, 7_). A sufficient condition for the other two eigenvalues of
(t), again denoted 6a <_ 6b, to be real, is that (4.8) holds. In case (4.8) holds strictly,
we obtain the interlacing

(4.11)

If the inequality (4.8) is not strict, then

(4.12) -oo < 5a ) 5, < %_.
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INDEFINITE TRUST REGION SUBPROBLEMS 305

Remark 7. (a) Suppose that problem (/5) is infeasible. (This includes the case of
purely symmetric border perturbation.) Then

(4.13)
i--1

From the graphical analysis of this function, one can prove the classical result that for
every value t, the spectrum of B interlaces that of A(t). (See Wilkinson [36, 2.39].)

(b) A specialized version of Theorem 4.2 appears in [32], where it was assumed
that n+ 0.

The following example illustrates Lemma 4.1 and the preceding theorem.
Example 4.1. Let

Then

A(t) A(t)= 0 2 1
1 -1 t

1 1
 T(X) X + (e-

In view of Theorem 3.2, there is no maximizing point for problem (P). There is
a minimizing point, however, with corresponding Lagrange multiplier As 1.5310
and critical value -2.4844. The other critical point is A 2.8832 with critical
value 3.4844. (If one uses MATLAB to graph #T(’), then it is seen that A does not
correspond to a local maximum, even though one might suspect this from the graph of
(.).) The eigenvalues of A(t) are real if t <_ -2.4844 or if t _> 3.4844. For the selected
value t -3, the spectrum of n(-3) is {-3.0489, 1.3569, 1.6920}. The interlacing is
of type (4.9).

5. A general dual program. We now return to studying the general program
(P):

min it(y) ytBy- 2Cry(P) subject to <_ytCy<_a, yEn.

In this section we derive a dual problem for (P) which is a true concave maximization
programming problem. This illustrates that (P) is an implicit convex program and
shows why the global minimum can be characterized and found. In fact, it is also
shown that Lagrangian duality holds without any duality gap.

THEOREM 5.1. Suppose that y* solves (P) with optimal value #* it(y*) and
Lagrange multiplier *. Let

(5.1) L(y,,w) it(y) + (a -ytCy) +w(ytCy )

denote the Lagrangian function for (P); let

(5.2) (, w) inf L(y, , w)
y

denote the Lagrange dual functional; and let

(5.3) h(u,w) ua- co- bt(B uC + wC)-lO
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306 1. STERN AND H. WOLKOWICZ

denote the quadratic dual functional. Then the optimal value of (P) satisfies

(5.4) #*= max (p,w),
v_<o,w_<o

while if the regular case holds, then in addition we have

(5.5) #* sup h(p,w).
B--vC+wCO
v<_O,w<_O

Moreover, the maximum in (5.4) is attained by

p* -(-A*)+ and w* -(A*)+,

where

(A)+=(A  fA>O,
0 otherwise.

Proof. If B pC + wC - O, then (p, w) in (5.2) is finite. Moreover, L(y, p, w)
(p, w) for y (B vC + wC)-l. Substituting for y in L yields

(5.7) h(v, w) (, w).

Now if z is feasible for (P), then for all nonpositive v,w we have (u,w) <
L(z, p, w) < #(z). We now have

min #(z)
feasible

sup (u, w),
_<0,w_<0

sup (v, w)
B--vC+wCO
<O,w<O

> sup h(,w).
v<_O,w<_O

Now, from Theorem 2.1, there exists a Lagrange multiplier *. Let * and w* be
chosen as in (5.6). Then

#* L(y*, p*,w*)

_< max (v,w),
v<_O,o_<O

i.e., this and (5.8) imply that (5.4) holds.
If the easy case holds, i.e., y* (B A*C)- , then (5.7) implies

v* *) #*h(v*,w*)=n(y*, ,w

so (5.8) implies that (5.5) holds. Now suppose that the hard case holds. If B- A*C -0, then (5.4) holds by the above. Now suppose that the regular case holds and B-A*C
is singular. Equivalently, D- A*S is singular, where TtBT D and TtCT S
are both diagonal, T nonsingular. Let T(D- A*S)tTt, where denotes the
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INDEFINITE TRUST REGION SUBPROBLEMS 307

Moore-Penrose generalized inverse. From the optimality conditions, we have that
E T4(B- *C). Let k --* * with B- ;kC positive definite (see Lemma 3.1). Let

bk,Odk correspond to Ak as *,w* corresponds to A*. Then, from the simultaneous
diagonalization, we conclude that

(5.9) Yk (B- AkC)-I T(D- AkS)-ITt -. .
Moreover, y* + z for some z in the null space of B- A*C, and we also have z _l_ .
Now L(y,,w) yt(B- C +wC)y- 2Cry + a-w. So

h(k, wk) L(yk, k, w) L(I, *, w*) L(y*, *, w*) #*,

i.e., this and (5.8) yields (5.5). Attainment follows directly from Theorem 2.1.
The equality (5.4) provides the standard Lagrangian dual program without any

duality gap, while the second equality (5.5) provides a quadratic program type dual.
Both duals have no duality gap and both duals are maximizing a concave function
over a convex set and so illustrate that the trust region subproblems are implicit
convex programs. The constraint qualification avoids trivial exceptional cases such
as minimizing x subject to x2 _< 0. Unfortunately, it can rule out cases where a or
is 0 and 0 is optimal for (P) as well as being an unconstrained minimum for , e.g.,
when a 0, 0, B _> 0. The key observation is that there is no duality gap for
the above dual programs. Therefore, we can use a dual algorithm to find the optimal
Lagrange multiplier and then worry about the primal optimum point.

The hard case illustrates the difficulty that can arise in duality, i.e., a Lagrange
multiplier may exist such that the dual is attained, but the infimum of the Lagrangian
may not be attained at a feasible point of the original primal problem.

We can obtain a duality result with only one multiplier.
COROLLARY 5.2. Suppose that we are in the regular case and y solves (P) with

optimal Lagrange multiplier ;k. Define

+ ’(B

Then the optimal value of (P) satisfies

(5.11) #*- sup h(A).
B-)C-O,

Moreover, in the easy case, the maximum is attained, while in the hard case it is
attained for ;k with B )C positive semidefinite and possibly singular.

Proof. From the three cases in Theorem 2.1, we see that at least one side of the
constraint of (P) can be discarded. Therefore we can assume that at least one of
or w is 0 in Theorem 5.1. This yields (5.11). Attainment also follows directly from
Theorem 2.1. D

COROLLARY 5.3. Suppose that C I and < 0 < a, i.e., (P) is the standard
trust region subproblem. Let

(5.12)

Then

(5.13) #*= sup

<0
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308 It. STERN AND H. WOLKOWICZ

Moreover, the maximum is attained in the easy case, while it is attained for , with
B- AC 0 and possibly singular, in the hard case. In addition, if the hard case holds
and the Hessian of the Lagrangian at the optimum A is singular, then

(5.14) #*- sup (A)-- max (A).
B--AC>-O B--AC>-O
)<o A<_o

Proof. The proof is similar to that of Corollary 5.2. The final statement follows
from Theorem 2.1 since the optimum multiplier A* is the only point where B- AC is
positive semidefinite and singular. [3

Note that in the standard version of (P), we could just as well choose < 0,
which implies that the constraint qualification is automatically satisfied.

6. Appendix. We now follow some of the development in [26] and outline an
algorithm for (P) that exploits the Cholesky factorization of B- AC. (See Algorithm
6.1.) We assume that C is nonsingular and that the regular case holds, i.e., there
exits A such that B- AC - 0. In our framework, the algorithm is a primal-dual
type algorithm. We maximize the dual function in order to solve the dual problem.
Therefore each such iteration provides an improved Lagrange multiplier estimator A
and, by weak duality, an improved lower bound on the optimal value. In addition, if
the corresponding solution x is feasible, we get an upper bound on the optimal value.
This upper bound is then further improved by moving along a direction of negative
curvature toward the boundary of the feasible set. When the gap between lower and
upper bounds is small enough, the algorithm stops. Convergence of the algorithm
follows immediately from the concavity of the dual function.

This frameworl also simplifies the description of the algorithm in [26], where the
special case that C I and 0 < a is treated. ( can be set to any negative number.)
Note that in this case, feasibility of x, i.e., xCx <_ a, is a necessary condition of
the hard case and is used as an indicator that the hard case might have occurred.
The Newton step in the hard case will generally be too large, which results in slow
convergence. However, only in this case do we get the added improvement in the
upper bound. A log barrier penalty function can be added to avoid the large step.
Thus it appears that the hard case might actually be preferable.

Many of the statements and results are straightforward extensions from [26] and
we include some of them for completeness. We include results involving our dual
function (see (5.10))

{ ’(B ifA <0,
ifA >_0,

and we discuss some of the advantages that occur by using this dual. This dual
function is concave on the interval where B-AC is positive definite. It is differentiable
if A # 0 with derivative

a-xtCxx if A<0,’(A) [3- xtCx if A > 0.

(Recall that x (B AC)-Ib.) The subdifferential at A 0 is the interval

o (o) x oCxo,  gc 0].
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INDEFINITE TRUST REGION SUBPROBLEMS 309

The signs of h(A) and A tell us which side of the trust region constraint is becoming
active. For example, if A < 0 and a > 0, then we maximize h(A) by solving

o ’() xCz,
and exploit the rational structure of this equation by applying Newton’s method to
solve

1 1
(6.2) 0, z (B AC)-,

i.e we iterate using A ,- A-__(5L The function is almost linear but has a singularity,().
where xtCxa 0. The algorithm is based on solving for feasibility of xa, while
maintaining the optimality conditions. In our framework we are solving the simple
dual problem, which means that we are equivalently maximizing the function h(A)
rather than just solving (6.1). The dual function does not have the singularity at

xtCxa O. By using implicit differentiation on the Lagrange equation (2.1), we see
that

O (B- C)-Cx,

0(a) z[C(B- aC)-Cx’(a)= Oa (xCx)

Oh’()t)
O -2xtC(B-

() ((x[Cz)1/2 ,/-) zCx
’() v x[C(B- C)-Cx"

If both a and xtCx are negative, then we can replace them by their negative values
in the definition of . We exploit the Cholesky factorization of the positive definite
pencil B- AC RtR, where R is upper triangular. The following algorithm applies
Newton’s method to update A.

ALGORITHM 6.1.
Let and x be given with B- )C RtR positive definite and RtRx .
Let y Cx and "y ytx. Solve Rtq y.
If < 0 or" () 0 and 9/> a),

If a7 > O, let ) )- (1"11/2-1) _7_

-[ qt q

If a’y <_ O, let ,k - (’- a)2qtq.

Else if ) > 0 or ( 0 and "y < ),

If ’y > O, let/ - (111/2 -/)_7_
f qt q
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310 R. STERN AND H. WOLKOWICZ

If 2qt q
End

If C is positive definite, then c is positive and this algorithm reduces to that
presented in [26]. Note that the algorithm stops if b 0. However, this is not
a failure, since this indicates that we have solved the dual problem if we solve an
eigenvalue problem, e.g., if >_ > 0 we need to solve suPB_AC0 A. We have
therefore found the optimal value of the primal problem.

The following lemma is generalization of Lemma 3.4 in [26]. We have modified
the results and added comments to include the role of our dual function. We include
the proof for completeness. Note that for A < 0, the dual function satisfies

(A)

with h(A) h(A) if B- AC 0. (The case A > 0 follows similarly.)
LEMMA 6.1. Let 0 < a < 1 be given and suppose that

B- AC RR, (B- AC)x , A<0,

where x (B- AC)# when B- AC is singular. Let z satisfy

(6.3) (x

Then

where #* is the optimal value of (P).
Proof. For any z E n we have

(6.5) (x / z) -(llRxll2 A(x + z)C(x + z)) + IIRzll 2.

Then for any z which satisfies (6.3), we have

#(x -t- z) (A) + IIRzll 2 <_ (A) / al(A)l.

Moreover, if #* #(x + z*), where x + z* is feasible, then (6.5) implies

( + z*) > -(lIRxll ) (),

i.e., weak duality holds. The last two inequalities yield the lemma. [:l

From the lemma we now conclude that if #* _< 0, then -#(x+z) >_ (1-a)(-(A))
and so

Similarly, if #* > 0, then for good approximations , we have h() > 0 and -(x+z)
(1 + a)(-h(A)) >_ (1 / a)(-#*). Therefore, in both cases we conclude that

i.e., the lemma yields a nearly optimal solution to (P). Alternatively, we get the
interval

(6.6) () < ,* < ,( + z) < h() + lh()l.
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INDEFINITE TRUST REGION SUBPROBLEMS 311

(Note that the error hi#* <_ alh(,k)l if/* <_ 0, which is the case if, e.g., y 0 is
feasible as in the standard trust region subproblem. This is reversed if h(A) > 0.)

The lemma is used in the case that the current iterate yields a strictly feasible
estimate, i.e., < ,Cx, < a. Then a vector z with ]]z] 1 and ]]Rz]] smM1, is
computed using a Linpack routine for estimating the smallest singular value. om
(6.5), we see that if we can find T such that X+TZ satisfies the constraint with equality,
then we should get a good improvement in our estimate of the optimum. In addition,
note that x is optimal for subproblem, e.g., if A < 0, then x is optimal for (P) with
a replaced by xCx. We can therefore continue with a new modified problem with

replaced by xCx. In addition, if we know that the optimal Lagrange multiplier
is negative, then we can actually replace by a.

The lemma provides stopping criterion since we can conclude that the duality
gp is bounded by a#*. However, a smller gap is obtained from (x + z) h().

Safeguarding must be done in order to maintain positive definiteness of the pencil
during the iterations. The safeguarding procedure needs parameters AL, AU,AS, and
A, such that [AL, Au] is an interval of uncertainty that contains the optimal Lagrange
multiplier A*, while - As T with the interval [AS, AT] containing the
intervM of positive definiteness. For example, given B- AC 0, updating AL, Au
follows from the concavity of the dual function.

ALGORITHM 6.2.
Safeguarding A"

< 0,
Au min{Av, A}

Else
AL max{AL, A}

End

Note that we do not have to consider A 0 as a speciM case unless it is the
optimal multiplier, in which case the algorithm stops. However, updating As and
AT does not follow as easily. It is not immediately clear how to use the information
from the Cholesky factorization to improve the estimates for the interval of positive
definiteness. Note that only one of these needs to be updated since we can immediately
determine which side of the current A the optimal A* is on. Initial estimates can be
calculated from

bi biAs max --, AT min
c<0 Cii c>0 Cii

The following outlines an iteration for an algorithm for (P). Convergence is
guaranteed by the properties of the dual program. We have not included the instances
where safeguarding and updating of the safeguarding parameters are done.

ALGOPTHM 6.3.
Suppose A and x are given with B AC RtR positive definite and R Rx.

1. If the convergence criteria is satisfied, then STOP.
2. Take a Newton step as described in Algorithm 6.1.
3. Backtrack if necessary until the dul functional is improved and the pencil is

positive definite. (Find the Cholesky factorization B- AC RtR.)
4. If < xtCx < a, then #(x) provides an upper bound on the optimal value;

improve this upper bound using, e.g., T, or use some other technique for the
primal problem.
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312 R. STERN AND H. WOLKOWICZ

A MATLAB program has been written and tested on randomly generated prob-
lems that satisfy our assumptions. The test results showed an average of 3.4 iterations
for convergence. This program can be obtained using anonymous ftp from prince-
ton.edu in the directory pub/henry. See the readme file for the description of the
contents of this directory. A detailed numerical study of this algorithm is currently
being done. Moreover, the dual program is particularly well-suited for interior point
methods. A primal-dual interior point method is presented in [28]. It is shown to be
very robust and efficient. In particular, it does not need to treat the hard case in any
special way.
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