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Abstract

Semidefinite Programming (SDP) provides strong bounds for many NP-hard com-
binatorial problems. Arguably the most popular/efficient search direction for solving
SDPs using a primal-dual interior point (p-d i-p) framework is the HKM direction. This
direction is a Newton direction found from the linearization of a symmetrized version
of the optimality conditions. For many of the SDP relaxations of NP-hard problems,
a simple primal-dual feasible starting point is available. In theory, the Newton type
search directions maintain feasibility. However, in practice it is assumed that roundoff-
error must be taken into account and the residuals are used to recover feasibility.

We introduce preprocessing for SDP to obtain a modified HKM direction. This
direction attains exact primal and dual feasibility throughout the iterations while: set-
ting the residuals to 0; reducing the arithmetic expense; maintaining the same iter-
ation counts for well-conditioned problems; and reducing the iteration count for ill-
conditioned problems. We apply the technique to the Max-Cut, Lovász Theta, and
Quadratic Assignment problems. We include an illustration on an ill-conditioned two
dimensional problem, a discussion on convergence, and a similar simplification for the
Monteiro-Zhang family of search directions.

This paper can serve as an introduction to both the HKM search direction and
preprocessing (presolve) for SDP.
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1 Introduction

The primal SDP we consider is

(PSDP)
p∗ := max traceCX

s.t. A (X) = b
X � 0.

(1.1)

Its dual is

(DSDP)
d∗ := min bTy

s.t. A ∗(y)− Z = C
Z � 0,

(1.2)

where C,X,Z ∈ Sn , Sn denotes the space of n× n real symmetric matrices, y, b ∈ <m, and
� (�) denotes positive semidefiniteness (resp. positive definiteness), known as the Löwner
partial order; A : Sn → <m is a linear operator and A ∗ is the adjoint operator. We assume
that Slater’s constraint qualification (strict feasibility) holds for both programs.

The SDP model has many applications and can be solved efficiently using primal-dual
interior-point (p-d i-p) methods. In this paper we introduce a preprocessing step to reformu-
late the primal problem PSDP. We show that there are numerical advantages when deriving
search directions for p-d i-p methods using this new formulation.

The HKM search direction was obtained independently by Helmberg, Rendl, Vanderbei,
and Wolkowicz [7] and Kojima, Shindoh, and Hara [9]. Kojima et al. also described a dual
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HKM direction. Later, Monteiro [14] gave another derivation of these directions. (See e.g.
[13, Section 10.3],[23] for derivations and properties of these and other directions.) The HKM
direction is, arguably, the most popular and efficient among the primal-dual interior-point
(p-d i-p) directions for SDP. It is based on applying Newton’s method to a symmetrized
form of the optimality conditions for PSDP. Therefore, in theory, we get fast asymptotic and
polynomial time algorithms; and, primal (resp. dual) feasibility is maintained throughout
the iterations, if one starts with a primal (resp. dual) feasible point. However, in practice,
roundoff error causes degradation in feasibility and the residuals are used to restore the
feasibility, i.e. even though we start with a feasible point, an infeasible p-d i-p algorithm
must be used.

In Linear Programming (LP), the nonnegativity constraints x ≥ 0 is equivalent to x ∈ <n+,
i.e. x is in the nonnegative orthant, a crossproduct of n 1-dimensional cones. Therefore, if a
variable is fixed, it can be eliminated and the problem simplified. This is often done during
the important preprocessing (or presolve) steps for LP, e.g. [12, 6]. Preprocessing for SDP
is difficult and rarely done. (Some preprocessing is done in the matrix completion approach
in e.g. [4, 15], where free variable that can be eliminated in the semidefinite constraints are
identified.) But, SDP often includes simple constraints such as fixing certain components
of matrix variables to given constants. However, the corresponding components cannot, in
general, be eliminated since the matrix variables are restricted to be positive semidefinite.
In this paper we take advantage of such simple constraints and show that a modified HKM
search direction results in exact primal-dual feasibility throughout the iterations, for many
classes of SDPs. In addition, the cost of the backsolve steps in each iteration is reduced,
while the number of iterations is unchanged.

We provide three illustrations on SDP relaxations, each in increasing complexity. We
include two simple n = 2 examples that illustrate the procedure and the stability benefits.
The SDP relaxations are for
(i) Max-Cut: We simply fix the diagonal throughout all the iterations;
(ii) Lovász Theta function: We fix elements of the primal matrix to zero and project the
diagonal to guarantee trace 1;
(iii) Quadratic Assignment problems: We project and rotate the problem and identify zeros
in the primal matrix and then fix these elements to zero. In addition, we project other linear
constraints.

1.1 Background

1.1.1 Optimality Conditions

The following characterization of optimality for PSDP is well known, see e.g. [20].

Theorem 1.1 The primal-dual variables X, y, Z with X � 0, Z � 0 are optimal for (PSDP),
(DSDP) if and only if the residuals satisfy

RD := A ∗(y)− Z − C = 0 (dual feasibility)
RP := A (X)− b = 0 (primal feasibility)
RZX := ZX = 0 (complementary slackness).

(1.3)
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1.1.2 Derivation of Standard and Simplified HKM Directions

We now derive the HKM search direction ∆s =

∆X
∆y
∆Z

 from the following linearization

of the optimality conditions (1.3) obtained after perturbing the complementarity conditions
with barrier parameter µ > 0

A ∗(∆y)−∆Z = −RD

A (∆X) = −RP

Z(∆X) + (∆Z)X = −RC := µI −RZX .
(1.4)

We get
∆Z = A ∗(∆y) +RD (1.5)

and
∆X = −Z−1(∆Z)X − Z−1RC = −Z−1(A ∗(∆y) +RD)X + µZ−1 −X. (1.6)

We substitute this into the second equation and solve for ∆y using

A (Z−1A ∗(∆y)X) = A (µZ−1 −X − Z−1RDX) +RP = A (µZ−1 − Z−1RDX)− b. (1.7)

We can now backsubstitute to get the symmetric matrix ∆Z using (1.5). However, ∆X in
(1.6) need not be symmetric. Therefore we cheat and symmetrize ∆X after backsubstition in
(1.6), i.e. we solve for the system by assuming ∆X is a general matrix and then symmetrize
by projecting the solution back into Sn .

SUMMARY: Standard HKM Direction for General SDP

Solve for ∆y in: A (Z−1A ∗(∆y)X) = A (µZ−1 − Z−1RDX)− b
Backsolve : ∆X = µZ−1 −X

−.5 (X(A ∗(∆y) +RD)Z−1 + Z−1(A ∗(∆y) +RD)X)
∆Z = A ∗(∆y) +RD

(1.8)

The above derivation uses dual feasibility to eliminate ∆Z in the linearized complemen-
tarity equation. Then this latter equation was used to eliminate ∆X in the primal feasibility
equation. This resulted in the symmetric positive definite system in ∆y, i.e. the first equa-
tion in (1.8). The solution was then used in the next two backsolve steps in (1.8).

The search direction is then used to find steplengths αP > 0, αD > 0 that maintain
(sufficient) positive definiteness, X + αP∆X � 0, Z + αD∆Z � 0. Both X,Z are updated
along with y ← y + αD∆y.

Note that if we first update y ← y + αD∆y and then update Z ← A ∗(y) − C, then
dual feasibility is exact in the sense that Z − (A ∗(y) − C) = 0. We can do this for primal
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feasibility as well using a reformulation of the constraints. Suppose that the matrix variable

X is split into two vector variables

(
v
u

)
, e.g. the diagonal elements in v and the strictly

upper triangular off-diagonal elements in u (columnwise). We can write X = X(v, u),
v = V (X), u = U(X) and X = X(V (X), U(X)). After an appropriate pivot operation we
find linear operators K,L such that

A
(
X

(
v
u

))
= b iff


[I K]

(
v
u

)
= c

L
(
v
u

)
= d

(1.9)

We can now substitute for X in the above derivation and eliminate v so that the backsolve in
(1.8) is for the variable u only. i.e. this can ignore roundoff and simplify the backsubstitution
steps, while maintaining exact primal-dual feasibility and fast convergence. We update as
above using

y ← y + αD∆y then Z ← A ∗(y)− C (1.10)

i.e. the residual RD = 0.

SUMMARY: Simplified HKM Direction for General SDP

Solve for ∆y in: A (Z−1A ∗(∆y)X) = A (µZ−1)− b
Backsolve : ∆u = U {µZ−1 −X

−.5 (X(A ∗(∆y))Z−1 + Z−1(A ∗(∆y))X)}
∆v = −K(∆u)
∆Z = A ∗(∆y)

(1.11)

If the linear operator K is simple and/or the dimension of u is small relative to v, then the
preprocessing has simplified the backsolve step as well as improved the accuracy after this
backsolve. (We assume good accuracy in the reformulation.) Unlike the LP case, we show
below that this is true for many classes of SDP.

1.2 Outline

In Sections 2.1, 2.2, 3, we illustrate the new simplified/improved direction on three relax-
ations of hard combinatorial problems: Max-Cut, Theta Function, and Quadratic Assign-
ment, respectively. The examples in Section 2 are intuitive and based on the original struc-
ture of the matrix variables, i.e. for Max-Cut SDP we simply fix the diagonal to be all ones,
while for the Theta Function SDP we fix appropriate zeros and provide a projection that
guarantees the correct trace. In Section 3 we consider the SDP relaxation for the Quadratic
Assignment Problem, QAP. The original relaxation does not satisfy Slater’s constraint qual-
ification. Therefore, a projection/regularization is applied. The new matrix variable does
not have any obvious fixed elements or structure. We find a rotation of the matrix space so
that the matrix variable has O(n3) fixed zeros and other special structure. Numerical tests
were done to compare the two HKM directions. The tests illustrated that exact feasibility
holds for the simplified direction, while the number of iterations were essentially the same.
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The MATLAB programs are available with URL:
orion.math.uwaterloo.ca:80/˜hwolkowi/henry/software/imprhkm.d/readme.html

We include two illustrative n = 2 examples in Section 2.3. These examples show the ben-
efits of maintaining exact feasibility for ill-conditioned problems. The MATLAB programs
are available with URL:
orion.math.uwaterloo.ca:80/˜hwolkowi/henry/software/imprhkm.d/readme.html

We conclude in Section 4 with comments on: polynomial time convergence theorems;
extension of the exact feasibility procedure to the Monteiro-Zhang family of search directions
and to general SDPs.

2 Exact Primal-Dual Feasibility

In this section we look at two applications of the simplification technique and obtain exact
primal-dual feasibility in each case. These applications follow intuitively from the special
structure of the models and the choice of the operators K,L in (1.9) are clear. These two
examples serve as an introduction to the more subtle application to QAP in Section 3.

2.1 Max-Cut Problem

The Max-Cut problem (MC) consists in finding a partition of the set of vertices of a given
undirected graph with weights on the edges so that the sum of the weights of the edges cut
by the partition is maximized. Following is the well-known semidefinite relaxation of MC.

(P)
mc∗ ≤ ν∗ := max traceQX

s.t. diag (X) = e
X � 0, X ∈ Sn ,

(2.1)

where diag (X) denotes the vector formed from the diagonal elements of the matrix X and
e denotes the (column) vector of all ones, of appropriate dimension. This relaxation has
been extensively studied. It has been found to be surprisingly strong both in theory and in
practice, e.g. [5, 10].

We use a preprocessing approach exploited in [24], i.e. we let v denote the diagonal
elements of X and x denote the elements taken columnwise from the strict upper triangular
part of X. The operators K,L in (1.9) are both zero, we identify x with u, and c = e, the
vector of all ones. This defines the operators U, V . Equivalently, we can define the operator
offDiag (S) := S − Diag (diag (S)), i.e. the operator sets the diagonal to 0. We use the
well-known optimality conditions

Theorem 2.1 The primal-dual variables X, y, Z with X � 0, Z � 0 are optimal for (P),(D)
if and only if

Diag (y)− Z −Q = 0 (dual feasibility)
diag (X)− e = 0 (primal feasibility)
ZX = 0 (complementary slackness).
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We assume that we start with a primal-dual strictly feasible pair, e.g. X̂ = I and y chosen
so that Z = Diag (y)−Q � 0. We update y, Z using (1.10) so that the dual residual RD = 0.

SUMMARY: Improved HKM Direction for Max-Cut Problem

Solve for ∆y in : (Z−1 ◦X)∆y = µdiag (Z−1)− e
Backsolve : offDiag (∆X) = offDiag (µZ−1 −X)

−0.5 (offDiag (Z−1Diag (∆y)X) + offDiag (XDiag (∆y)Z−1))
diag (∆X) = 0
∆Z = Diag (∆y)

This simplified/modified HKM direction differs in an obvious way from the standard ap-
proach in that primal feasibility is maintained at each iteration, i.e. the diagonal of ∆X is
fixed at zero at each iteration.

2.2 Lovász Theta Function Problem

Let G = (V , E) be an undirected graph; and let n = |V| and m = |E| be the number of nodes
and edges, respectively. The Lovász theta number (defined in [11]) is the optimal value of
the following SDP

(TP)

θ(G) := p∗ := max traceEX
s.t. traceX = 1

traceEijX = 0, ∀(i, j) ∈ E
X � 0, X ∈ Sn ,

(2.2)

where Eij = (eie
T
j + eje

T
i )/
√

2 is the ij unit matrix in Sn , ei is the i-th unit vector in <n,
and E is n× n matrix of all ones. The dual of (TP) is

(DTP)

d∗ := min z
s.t. zI +

∑
(i,j)∈E

yijEij − Z = E

Z � 0, Z ∈ Sn ,
(2.3)

where z ∈ <, y = (yij)(i,j)∈E ∈ <m. The theta number has important properties, e.g. it is
tractable (can be computed in polynomial time) and it provides bounds for the stability and
chromatic numbers of the graph, see e.g. [8, 10]. We use a preprocessing approach described
in detail in [22]. This is similar to the approach used above for the Max-Cut problem, i.e.
we find the linear operators K,L in (1.9).

First, we need the following definitions. Let Gc = (V , Ec) be the complement graph of
G, i.e. Ec is the edge set complement to E . (We do not consider loops as edges.) Let

mc = |Ec| =
(
n
2

)
−m. Define the linear operators u2sMatEc : <mc → Sn and u2sMatE :

<m → Sn as follows. (We identify the vector components for x ∈ <m or x ∈ <mc : xij with
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xk, k =

(
j − 1

2

)
+ i, if i < j and with xk, k =

(
i− 1

2

)
+ j, if i > j.)

(u2sMatEc (x))ij :=

{
0 if i = j, or (i, j) or (j, i) ∈ E
xij/
√

2 otherwise,

(u2sMatE (x))ij :=

{
xij/
√

2 for (i, j) or (j, i) ∈ E
0 otherwise.

The division by
√

2 makes the mapping a partial isometry. Let u2svecEc := u2sMatEc †

denote the Moore-Penrose generalized inverse mapping onto <mc , i. e.
√

2 times the vector
taken columnwise from the upper triangular part of X corresponding to the edge set Ec;
similarly u2svecE := u2sMatE † maps Sn onto <m; u2svecEc (resp. u2svecE ) is an inverse
mapping if we restrict to the subspace of matrices with zero in positions corresponding to
the edge set E (resp. Ec). The adjoint operator u2sMatEc ∗ = u2svecEc , since

〈u2sMatEc (v), S〉 = trace u2sMatEc (v)S

= vTu2svecEc (S) = 〈v, u2svecEc (S)〉 ,

and similarly the adjoint operator u2sMatE ∗ = u2svecE . The composite mapping

PE := u2sMatE u2sMatE ∗ = u2sMatE u2sMatE † (2.4)

is the orthogonal projection onto the subspace of matrices with nonzeros only in positions
corresponding to the edge set E. Similarly the following projection

PEc := u2sMatEc u2sMatEc ∗ = u2sMatEc u2sMatEc †. (2.5)

We can represent feasible points in the following way. Let X̂ ∈ Sn be such that trace X̂ =
1, traceEijX̂ = 0, for all (i, j) ∈ E . We let V denote a n×(n−1) matrix satisfying V T e = 0.
For stability, we choose V with orthogonal columns and set

PV := V V T , (2.6)

to be the projection onto the set of vectors v with vT e = 0. (Nonorthogonal choices of V
that exploit sparsity can be used.) Then, X � 0 is primal feasible if and only if

X = X̂ + Diag (V d) + u2sMatEc (x), for some d ∈ <n−1, x ∈ <mc .

Similarly, Z � 0 is dual feasible if and only if

Z = zI + u2sMatE (y)− E, for some z ∈ <, y ∈ <m.

To obtain optimality conditions we use the dual problem (DTP). Recall the primal (TP)
given in (2.2). Slater’s CQ (strict feasibility) holds for (TP) and (DTP), which implies that
we have strong duality with the Lagrangian dual (e.g. [19]). Since Slater’s condition is also
satisfied for the dual program, we have primal attainment and get the following well-known
characterization of optimality for (TP), (DTP). (See e.g. [25].)
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Theorem 2.2 Let X̂ be feasible for (TP). The primal-dual variables d, x, z, y with

X = X̂ + Diag (V d) + u2sMatEc (x) � 0, Z = zI + u2sMatE (y)− E � 0

are optimal for (TP),(DTP) if and only if

ZX = 0 (complementary slackness).

To apply the p-d i-p method, we use the perturbed complementary slackness equation.
By multiplying the linearized perturbed complementary slackness equation from the left with
Z−1 we obtain the following equation;

Diag (V∆d) + u2sMatEc (∆x) + Z−1(∆zI + u2sMatE (∆y))X = µZ−1 −X. (2.7)

Applying the trace operator on (2.7) yields

∆ztrace (Z−1X) + trace (Z−1u2sMatE (∆y)X) = trace (µZ−1 −X). (2.8)

By acting with operator PE (see (2.4)) onto (2.7) we obtain the following system

∆zPE(Z−1X) + PE(Z−1u2sMatE (∆y)X) = PE(µZ−1 −X). (2.9)

The equation (2.8) and the system of equations (2.9) make the system of m + 1 equations
and m+1 unknowns that we first solve. There are two equivalent ways for finding ∆x. First,
by applying the operator u2svecEc onto (2.7), symmetrized, and second, by applying the
projection PEc (see (2.5)) onto (2.7), symmetrized. Analogously, we can find the diagonal of
∆X = Diag (V∆d) + u2sMatEc (∆x) in two equivalent ways. For details see the following
summary.

SUMMARY: Improved HKM Direction for Lovász Theta Function Problem

Solve for ∆y,∆z in :
trace (∆zZ−1X + Z−1u2sMatE (∆y)X) = trace (µZ−1 −X)
PE (∆zZ−1X + Z−1u2sMatE (∆y)X) = PE(µZ−1 −X)

Backsolve :
∆x = u2svecEc (µZ−1 −X)

−0.5u2svecEc (Z−1(∆zI + u2sMatE (∆y))X +X(∆zI + u2sMatE (∆y))Z−1)
∆d = V Tdiag (−∆zZ−1X − Z−1u2sMatE (∆y)X + µZ−1 −X)
∆Z = A ∗(∆y)

Equivalent backsolve :
PEc(∆X) = PEc(µZ

−1 −X)
−0.5PEc(Z

−1(∆zI + u2sMatE (∆y))X +X(∆zI + u2sMatE (∆y))Z−1)
PE(∆X) = 0
diag (∆X) = PV diag (−∆zZ−1X − Z−1u2sMatE (∆y)X + µZ−1 −X)
∆Z = A ∗(∆y)
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As for the Max-Cut we note that the direction is identical to the standard direction except
that PE(∆X) is set to zero so need not be calculated; and, diag (∆X) is centered, equivalently
if we denote with d the diagonal of the standard ∆X, then we reset the diagonal using
d − eT d

n
e, i.e. we apply the orthogonal projection PV that is defined in (2.6) onto d. These

simple modifications guarantee exact primal feasibility throughout the iterations and also
reduce the cost (number of multiplications in the backsolve) of an iteration.

2.3 Illustrative Two Dimensional Examples; Stability

We now consider a two dimensional primal-dual SDP pair (PSDP) and (DSDP). We compare
the standard and simple HKM direction on problems where ill-conditioning arises and the
HKM direction cannot be evaluated accurately.

2.3.1 Example Where Slater’s CQ Fails

We use the data

C =

(
−1 −1
−1 0

)
, A1 =

(
0 1
1 1

)
, A2 =

(
0 1
1 −1

)
, b =

(
ε
−ε

)
, ε ≥ 0.

Therefore the operator A and its adjoint are, respectively,

A (X) =

(
traceA1X
traceA2X

)
, A ∗(y) = y1A1 + y2A2.

The primal constraints imply that X � 0 is feasible if and only if

X = X̂ + α

(
1 0
0 0

)
=

(
1 + α 0

0 ε

)
, with X̂ =

(
1 0
0 ε

)
, 1 + α ≥ 0. (2.10)

Therefore, the optimal value is 0 and

X∗ =

(
0 0
0 ε

)
is the unique optimal primal solution. Slater’s constraint qualification (strict feasibility) is
satisfied for the primal if and only if ε > 0; it is always satisfied for the dual. One dual
optimal solution, independent of ε, is

y∗ = −1

2

(
1
1

)
, with Z∗ =

(
1 0
0 0

)
,

i.e.

Z∗ =

(
1 0
0 0

)
= −1

2

(
0 1
1 1

)
− 1

2

(
0 1
1 −1

)
− C � 0, Z∗X∗ = 0.

For ε > 0, this solution is unique and satisfies strict complementarity. Thus, the SDP is
a stable program in this case, i.e. Slater’s CQ holds for both primal and dual and the
two primal constraints are linearly independent. However, for ε = 0, the dual optimal set
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is unbounded, which can cause numerical difficulties. Difficulties also arise for ε close to
zero. For example, in our tests with ε = 10−13 and a desired relative duality gap 10−12, the
standard HKM direction took 32 iterations, while the simplified direction took 16 iterations
and it maintained exact primal-dual feasibility throughout the iterations. With ε = 10−13

and a desired relative duality gap 10−14, the standard HKM direction took 42 iterations,
while the simplified direction took 21 iterations. With ε = 0 and a desired relative duality

gap 10−14, the algorithm converged with dual optimum y∗ =

(
.5
−1.5

)
; the standard HKM

direction took 33 iterations, while the simplified direction took 18 iterations. For our line
search we ensured that the minimum eigenvalue is nonnegative. (The customary line search
uses a Cholesky factorization which fails since the feasible matrices X all have deficient rank
if ε = 0.)

2.3.2 Unstable Example

We use the same data as in Example 2.3.1 above except that we delete the second constraint

and replace A1 with A3 =

(
0 0
0 1

)
. Interestingly, even though the two constraints in

Example 2.3.1 were linearly independent, the primal feasible set is unchanged with only one

constraint, i.e. it is still the ray of the positive semidefinite cone R =

{(
α 0
0 0

)
: α ≥ 0

}
.

Therefore the primal optimal value and optimum are unchanged. However, the dual optimal
value is unattained. Numerical tests failed to find the optimal solution when starting from
a primal feasible point.

2.3.3 Regularization Example

We use the same data as in Example 2.3.2 above. However, we now exploit the knowledge
of the feasible set to change the dual, i.e. the dual constraint becomes

y3A3 − C = Z +W, for some Z � 0,W = w1A1 + w2A2,

where A1, A2 are given in Example 2.3.1, see e.g. [2, 19]. This is equivalent to the dual in
Example 2.3.1, since the matrix A3 is linearly dependent on the two matrices A1, A2. We

can derive an HKM type direction that finds y =

(
y1

y2

)
as the least squares solution of the

underdetermined 1× 3 system. This regularizes the problem and illustrates that identifying
the feasible set in this way is useful.

3 Partial Exact Primal Feasibility for QAP

In this section we look at the Quadratic Assignment Problem, QAP, and its SDP relaxation
given in [28] and modified in [21]. We find a rotation of the matrix space that identifies fixed
elements so that we can apply our simplification technique for exact feasibility. We do this
for a subset of the primal constraints and thus obtain only partial exact primal feasibility
throughout the iterations.
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This illustrates a procedure that could be applied to general SDPs once feasibility is
attained for some of the constraints.

3.1 Background

The QAP in the trace formulation is

(QAP ) µ∗ := min
X∈Π

traceAXBXT − 2CXT ,

where A,B are real symmetric n × n matrices, C is a real n × n matrix, and Π denotes
the set of permutation matrices. (We assume n ≥ 4 to avoid trivialities.) One of the many
applications of QAP is the modelling of the allocation of a set of n facilities to a set of n
locations while minimizing the quadratic objective arising from the distance between the
locations in combination with the flow between the facilities. See e.g. [18, 3].

We use the Kronecker product, or tensor product, of two matrices, A⊗B, when discussing
the quadratic assignment problem QAP;Mn,k is the space of n× k real matrices;Mn is the
space of n× n real matrices; vec (X) ∈ <nk denotes the vector formed from the columns of
X ∈ Mn,k; ei is the ith unit vector, and here Eij := eiej is a unit matrix in Mn,k. We use
the partition of a symmetric matrix Y ∈ Sn2+1 into blocks as follows.

Y =

[
y00 Y T

0

Y0 Z

]
=


y00 Y 01 . . . Y 0n

Y 10 Y 11 . . . Y 1n

...
...

. . .
...

Y n0 Y n1 . . . Y nn

 , (3.1)

where the index 0 refers to the first row and column. Hence Y0 ∈ <n
2
, Z ∈ Sn2

, Y p0 ∈ <n,
and Y pq ∈Mn, p, q 6= 0. When referring to entry r, s ∈ {1, 2, . . . , n2} of Z, we use the pairs
(i, j), (k, l) with i, j, k, l ∈ {1, 2, . . . , n}. This identifies the element in row r = (i − 1)n + j
and column s = (k−1)n+l by Y(i,j),(k,l). This notation is going to simplify both the modeling
and the presentation of properties of the relaxations. If we consider Z as a matrix consisting
of n × n blocks Y ik, then Y(i,j),(k,l) is just element (j, l) of block (i, k). We introduce more
notation below as we need it.

3.2 SDP Relaxation and HKM Direction

The following SDP relaxation is described in [28]:

(SDPO)

min traceLQY
s.t. b0diag (Y ) = I, o0diag (Y ) = I

arrow (Y ) = e0, traceDY = 0

Y � 0, Y ∈ Sn2+1,

(3.2)

where

D :=

[
n −eT ⊗ eT

−e⊗ e I ⊗ E

]
+

[
n −eT ⊗ eT

−e⊗ e E ⊗ I

]
.
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Let x = vec (X) denote the vector obtained columnwise from X ∈ Mn . The matrix LQ ∈
Sn2+1 is motivated from

traceAXBXT − 2CXT = traceLQYx,

for

Yx =

[
1 xT

x xxT

]
. (3.3)

Thus

LQ :=

[
0 −vec (C)T

−vec (C) B ⊗ A

]
.

The operators acting on the matrix Y ∈ Sn2+1 are defined as follows.

b0diag (Y ) :=
n∑
k=1

Y(k,·),(k,·) (sum of diagonal blocks)

o0diag (Y ) :=
n∑
k=1

Y(·,k),(·,k) (sum of diagonal elements)

arrow (Y ) := diag (Y )−
(
0, (Y0,1:n2)T

)
(diagonal minus 0 row).

For more details see [28]. Slater’s condition fails for (SDPO), since D � 0 and traceDY = 0.
The first step in the preprocessing is to satisfy Slater’s condition. We can exploit the structure
and project onto the minimal face to get a simpler SDP. The minimal face can be expressed
as (see [28]).

V̂ S(n−1)2+1V̂
T ,

where V̂ is an (n2 + 1)× ((n− 1)2 + 1) matrix,

V̂ :=

[
1 0

1
n
(e⊗ e) V ⊗ V

]
,

and V is an n× (n− 1) matrix containing the basis of the orthogonal complement of e i. e. ,
V T e = 0; e.g.

V :=

[
In−1

−eT
]
.

Let us define the operator GJ̄ : Sn2+1 → Sn2+1, called the gangster operator, as it shoots
holes in a matrix. For matrix Y and i, j = 1, . . . , n2 +1, the (i, j) component of the gangster
operator is defined by

(GJ̄(Y ))ij :=

{
Yij if (i, j) ∈ J̄
0 otherwise.

The set J̄ is the union of two sets; J̄ = Ĵ ∪ (0, 0) where Ĵ is a set of indices of (up to
symmetry) the off-diagonal elements of the diagonal blocks and the diagonal elements of the
off-diagonal blocks.

Ĵ := {(i, j) : i = (p− 1)n+ q, j = (p− 1)n+ r, q 6= r} ∪
{(i, j) : i = (p− 1)n+ q, j = (r − 1)n+ q, p 6= r, (p, r 6= n)

((r, p), (p, r) 6= (n− 2, n− 1), (n− 1, n− 2))}.
(3.4)
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The off-diagonal block (n−2, n−1) and the last column of off-diagonal blocks are redundant
and so excluded (up to symmetry) from Ĵ .

The projection onto the minimal face in conjunction with the gangster operator, helped in
eliminating many redundant constraints and reduced the number of variables. The resulting
equivalent relaxation is greatly simplified

(QAPR2)
µR2 := min trace L̄R := trace (V̂ TLQV̂ )R

s.t. GJ̄(V̂ RV̂ T ) = E00

R � 0,

(3.5)

where R, L̄ ∈ S(n−1)2+1. The constraint GJ̄(V̂ · V̂ T ) is full rank (onto).
The dual of (QAPR2) is (we use S for the dual variable)

(DQAPR2)
νR2 := max S00

s.t. V̂ T (G∗
J̄
(S))V̂ � L̄.

(3.6)

Note that the gangster operator is self–adjoint, i.e. G∗
J̄

= GJ̄ . Slater’s CQ is satisfied for
both primal and dual programs.

Theorem 3.1 The primal-dual variables R, S, Z with R � 0, Z � 0 are optimal for (QAPR2),
(DQAPR2) if and only if

V̂ TG∗
J̄
(S)V̂ + Z − L̄ = 0 (dual feasibility)

GJ̄(V̂ RV̂ T )− E00 = 0 (primal feasibility)
ZR = 0 (complementary slackness).

After perturbing the complementarity conditions with barrier parameter µ > 0, we obtain
the following system

RD := V̂ TG∗
J̄
(S)V̂ + Z − L̄ = 0

RP := GJ̄(V̂ RV̂ T )− E00 = 0
RZR := ZR− µI = 0,

(3.7)

where R,Z ∈ S(n−1)2+1, R � 0, Z � 0 and S ∈ Sn2+1. We now solve the following lineariza-
tion;

V̂ TG∗J̄(∆S)V̂ + ∆Z = −RD

GJ̄(V̂ (∆R)V̂ T ) = −RP

Z∆R + ∆ZR = −RZR.

From dual feasibility we have

∆Z = −V̂ TG∗J̄(∆S)V̂ −RD.

After substituting this into the third equation, we have

∆R = Z−1V̂ TG∗J̄(∆S)V̂ R + Z−1RDR− Z−1RZR.
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(The above is symmetrized in the back substitution step.) After substituting for ∆R into
the primal feasibility equation we obtain the following final positive definite system for ∆S.

GJ̄(V̂ Z−1V̂ TG∗
J̄
(∆S)V̂ RV̂ T ) = GJ̄(V̂ (Z−1RZR − Z−1RDR)V̂ T )−RP . (3.8)

The size of the above linear system is n3 − 2n2 + 1.
We now find strictly feasible (starting) points for (QAPR2) and (DQAPR2). The following

two lemmas correct several typos in [28].

Lemma 3.2 Define the ((n− 1)2 + 1)× ((n− 1)2 + 1) matrix

R̂ :=

 1 0

0 1
n2(n−1)

(nIn−1 − En−1)⊗ (nIn−1 − En−1)

 ,
where En−1 is (n− 1)× (n− 1) matrix of all ones. Then R̂ is positive definite and feasible
for (QAPR2).

Proof. First, note that R̂ is positive definite, since

xTEn−1x ≤ ‖En−1‖‖x‖2 = (n− 1)‖x‖2 < n‖x‖2

implies nIn−1 − En−1 is positive definite.
We complete the proof by showing that

V̂ R̂V̂ T = Ŷ ,

where Ŷ is the barycenter for the unprojected QAP, i.e.

Ŷ =
1

n!

∑
X∈Π

Yx, x = vecX,

and Yx is defined in (3.3).
For simplicity, let us denote I := In−1, E := En−1.

V̂ R̂V̂ T =

[
1 0

1
n
(e⊗ e) V ⊗ V

] [
1 0
0 1

n2(n−1)
(nI − E)⊗ (nI − E)

] [
1 1

n
(eT ⊗ eT )

0 V T ⊗ V T

]
=

[
1 0

1
n
(e⊗ e) V ⊗ V

] [
1 1

n
(eT ⊗ eT )

0 1
n2(n−1)

(nI − E)⊗ (nI − E)(V T ⊗ V T )

]
=

[
1 1

n
(eT ⊗ eT )

1
n
(e⊗ e) 1

n2E ⊗ E + 1
n2(n−1)

(nV V T − V EV T )⊗ (nV V T − V EV T )

]
.

Now it remains to show that nV V T − V En−1V
T = nIn − En. We have

nV V T − V En−1V
T = n

[
In−1 −en−1

−eTn−1 (n− 1)

]
−
[

En−1 −(n− 1)en−1

−(n− 1)eTn−1 (n− 1)2

]
=

[
nIn−1 − En−1 −en−1

−eTn−1 n− 1

]
= nIn − En.
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We now provide a strictly dual-feasible point.

Lemma 3.3 Let

Ŷ =

[
M + n− 1 0

0 In ⊗ (In − En)

]
,

where En is n × n matrix of all ones. Then for M ∈ < large enough, Ŷ is positive definite
and feasible for (DQAPR2).

Proof. It is sufficient to show that V̂ T (G∗
Ĵ
(Ŷ ) + Ŷ00e0e

T
0 )V̂ is positive definite.

V̂ T (G∗
Ĵ
(Ŷ ) + Ŷ00e0e

T
0 )V̂ =

[
M 0
0 (V ⊗ V )T (In ⊗ (In − En))(V ⊗ V )

]
=

[
M 0
0 (V T InV )⊗ (V T (In − En)V )

]
=

[
M 0
0 V TV ⊗ V TV

]
=

[
M 0
0 (In−1 + En−1)⊗ (In−1 + En−1)

]
.

Since In−1 + En−1 is positive definite we have that for M ∈ < large enough,[
M 0
0 (In−1 + En−1)⊗ (In−1 + En−1)

]
is positive definite.

3.3 Preprocessing and Simplified HKM Direction

We continue preprocessing and use the approach described in [21]. This results in a refor-
mulation of the primal constraints and the derivation of the modified HKM direction. More
precisely, we use a particular solution and the general solution of the homogeneous equation
to obtain the reformulation

R = R̂ +H(r), (3.9)

where H is a linear one-one (full column rank) operator.
Below we redefine V̂ by subtracting the sum of all the columns except the first from the

first column. This subtraction does not change the range space and the minimal cone, but
results in an identity matrix being part of this new matrix and allows for simplification and
elimination of many of the constraints. Thus, we set

V̂ ← V̂ M,
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where the nonsingular ((n− 1)2 + 1)× ((n− 1)2 + 1) matrix

M :=

[
1 0
− 1
n
e I

]
, (3.10)

i.e. we subtract ( 1
n

times) all the columns from the first column but leave the other columns

unchanged. The new V̂ is now

V̂ =



11 01×n−1 01×n−1 0 . . .

0n−1×1 In−1 0n−1 0 . . .
11 −eTn−1 01×n−1 0 . . .

0n−1×1 0n−1 In−1 0 . . .
11 0 −eTn−1 0 . . .
. . . . . . . . .

en−1 −In−1 −In−1 . . .

−(n− 2) eTn−1 eTn−1 . . .


, (3.11)

i.e. V̂ is (n2 + 1)× ((n− 1)2 + 1) and consists of one row and n blocks of rows with n rows
in each block;

V̂ T =


11 01×n−1 11 01×n−1 11 . . . eTn−1 −(n− 2)

0n−1×1 In−1 −en−1 0n−1 0 . . . −In−1 en−1

0n−1×1 0n−1 0n−1×1 In−1 −en−1 . . . −In−1 en−1

0 0 0 0 0 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

 . (3.12)

Here en−1 denotes the (n− 1)× 1 vector of all ones. We use that notation in the rest of the
chapter, when there is no confusion.

Remark 3.4 Since V̂ redefined, the feasible R̂ for (QAPR2) given in Lemma 3.2 must also
be redefined. Namely, we set

R̂←M−1R̂(M−1)T ,

where M is defined in (3.10). This new R̂ satisfies all the properties in Lemma 3.5 below.
Note, that we can set zeros in the matrix L̄ in the positions that correspond to gangster

positions.

The primal has n3 − 2n2 + 1 equality constraints from the gangster operator and the
matrix R has t((n− 1)2 + 1) variables. Since the matrix V̂ contains an identity matrix, we
can move the gangster constraints onto the matrix R. This can be thought of as a pivot
step and change of dictionary or representation of the problem. To simplifiy the calculations
below, we recall that the minimal face (cone) is{

Y : Y = V̂ RV̂ T , R � 0
}
. (3.13)

Note that the redefined V̂ does not change the range space and leaves the minimal cone
unchanged. We now expand the expression for Y . We use superscripts to denote the block
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structure and subscripts to denote the block sizes. By abuse of notation, we have the
same superscript for two different adjacent blocks that have different sizes. The block sizes
correspond to the multiplication in (3.13). Then

Y =



Y 00
1×1 Y 01

1×n−1 Y 01
1×1 . . . Y 0n

1×n−1 Y 0n
1×1

Y 10
n−1×1 Y 11

n−1×n−1 Y 11
n−1×1 . . .

Y 10
1×1 Y 11

1×n−1 Y 11
1×1 . . .

Y 20
n−1×1 Y 21

n−1×n−1 Y 21
n−1×1 . . .

Y 20
1×1 Y 21

1×n−1 Y 21
1×1 . . .

. . . . . . . . . . . . . . .

Y
(n−1)0
n−1×1 Y

(n−1)1
n−1×n−1 Y

(n−1)1
n−1×1 . . .

Y
(n−1)0

1×1 Y
(n−1)1

1×n−1 Y
(n−1)1

1×1 . . .

Y n0
n−1×1 Y n1

n−1×n−1 Y n1
n−1×1 . . .

Y n0
1×1 Y n1

1×n−1 Y n1
1×1 . . . Y nn

1×n−1 Y nn
1×1


, (3.14)

where the zeros in Y correspond to the off-diagonal elements of the diagonal blocks and the
diagonal elements of the off-diagonal blocks. R is blocked appropriately corresponding to
the column blocks of V̂

R =


R00

1×1 R01
1×n−1 . . . R

0(n−1)
1×n−1

R10
n−1×1 R11

n−1×n−1 . . . R
1(n−1)
n−1×n−1

R20
n−1×1 R21

n−1×n−1 . . . R
2(n−1)
n−1×n−1

. . . . . . . . . . . .

. . . . . . . . . R
(n−1)(n−1)
n−1×n−1

 . (3.15)

We now look at the gangster constraints and move them onto R. (For more details see [21].)
We will use conditions C1-C4 to simplify the backsolve for the HKM direction.

Lemma 3.5 Let R ∈ S(n−1)2+1 � 0. Then R is feasible in (3.5) if and only if:

•C1: R00 = 1
•C2: the diagonal blocks are diagonal
•C3: the arrow operator holds
•C4: the diagonals of the off-diagonal blocks are 0, i.e.

0n−1×1 =

(
−(n− 2) +

∑
j≥1

R0j
1×n−1en−1 +

∑
i≥1

Ri0
n−1×1 −

∑
i,j≥1

Rij
n−1×n−1

)
en−1

•C5: En−1×n−1 −
∑
j≥1

en−1R
0j
1×n−1 −

∑
i≥1

Ri0
n−1×1e

T
n−1 +

∑
i,j≥1

Rij
n−1×n−1 is diagonal

•C6: 0 = 1− trace
(
Rii
n−1×n−1 +Rjj

n−1×n−1

)
+ eT

(
Rij
n−1×n−1

)
e, ∀1 ≤ i < j ≤ n− 1

• R � 0.
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We now can define the operator H in (3.9). Let us denote with Ĵs the set of gangster
indices defined as in (3.4) for ((n − 1)2 + 1) × ((n − 1)2 + 1) matrices and with Ĵsc the
complement of Ĵs. Let s = |Ĵs|, sc = |Ĵsc | and J̄s = Ĵs ∪ (0, 0). Define the linear operator
u2sMatGs c : <sc → S(n−1)2+1,

(u2sMatGs c(r))ij :=

{
rij/
√

2 if (i, j) ∈ Ĵsc
0 otherwise.

Here we identify the vector components r = (rk) ∈ <sc , ordered columnwise from R ∈ Sn ,
with rij, (i, j) ∈ J̄sc . Let u2svecGs c := u2sMatGs †c denote the Moore-Penrose generalized
inverse mapping. This is an inverse mapping if we restrict to the subspace of matrices with
zero on the gangster positions. The adjoint operator u2sMatGs ∗c = u2svecGs c, since

〈u2sMatGs c(v), S〉 = trace u2sMatGs c(v)S

= vTu2svecGs c(S) = 〈v, u2svecGs c(S)〉 .

The linear operator
Parr := arrow arrow †,

is the orthogonal projection of symmetric matrices with first element equal to zero onto
matrices where the first row, first column, and diagonal are all equal. Let R̂ be such that
GJ̄s(R̂) = E00 and arrow (R̂) = e0. Then R is primal feasible if and only if

R = R̂ + u2sMatGs c(r), where
r ∈ Rsc , arrow (u2sMatGs c(r)) = 0, and C5, C6 from Lemma (3.5) are satisfied.

(3.16)

Thus H is defined in (3.16). By linearizing the perturbed complementary slackness from
(3.7) and setting R = R̂ + u2sMatGs c(r) and Z = L̄− V̂ TG∗

J̄
(S)V̂ , we get

u2sMatGs c(∆r)− Z−1(V̂ TG∗J̄(∆S)V̂ )R = −Z−1RZR. (3.17)

Acting with operator GJ̄s onto the previous equation we obtain the following (positive defi-
nite) linear system in ∆S

GJ̄s(Z
−1V̂ TG∗J̄(∆S)V̂ R) = −GJ̄s(µZ

−1 −R).

By acting with the operator u2svecGs c onto the symmetrized equation (3.17), we get

∆r =
1

2
u2svecGs c(Z

−1V̂ TG∗J̄(∆S)V̂ R +RV̂ TG∗J̄(∆S)V̂ Z−1) + u2svecGs c(µZ
−1 −R).

For ∆R = u2sMatGs c(∆r) we set (∆R)(0, 0) = 0. Since the diagonal, first row, and first
column of ∆R should be equal, we apply the operator Parr onto ∆R. Namely, if ∆d is the
diagonal and ∆r is the first row of ∆R, then we reset the diagonal using

∆d← 1

2
(∆d+ ∆r).

Now, for ∆R we set first row to be equal to the first column that is equal to the diagonal
∆d.
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SUMMARY: Improved HKM Direction for QAP

Solve for ∆S in : GJ̄s(Z−1V̂ TG∗
J̄
(∆S)V̂ R) = GJ̄s(R− µZ−1)

Backsolve : ∆r = 0.5u2svecGs c(Z
−1V̂ TG∗

J̄
(∆S)V̂ R +RV̂ TG∗

J̄
(∆S)V̂ Z−1)

+u2svecGs c(µZ
−1 −R)

(∆R)(0, 0) = 0
∆R = Parr(∆R)

∆Z = −V̂ TG∗
J̄
(∆S)V̂

Therefore, in each iteration, conditions C1–C4 in Lemma 3.5 are satisfied exactly.

Remark 3.6 The conditions C5 and C6 from Lemma 3.5 should also be used for for im-
proving the HKM direction, but they are overly complicated for practical use. For instance,
let us look closely to the condition C5

En−1×n−1 −
∑
j≥1

en−1R
0j
1×n−1 −

∑
i≥1

Ri0
n−1×1e

T
n−1 +

∑
i,j≥1

Rij
n−1×n−1

is diagonal. For s, t ∈ {1, . . . , n− 1}, s ≤ t this reduces to∑
j≥1

∆R0j
t +

∑
i≥1

∆Ri0
s −

∑
i,j≥1

∆Rij
st = 0, (3.18)

which is equivalent to ∑
j≥1

(∆R0j
t + ∆R0j

s )−
∑
i<j

(∆Rij
st + ∆Rij

ts) = 0.

Thus in each step ∆R should be fixed such that (3.18) is satisfied, ∀s, t ∈ {1, . . . , n−1}, s ≤ t.

4 Concluding Remarks

In this paper we have presented a preprocessing approach for SDPs that provides a sim-
plification (improvement) for the HKM search direction. The simplification exploits the
structure of individual SDPs and changes the backsolve steps to reduce the arithmetic while
maintaining exact primal (and dual) feasibility. The method is illustrated on three problem
instances: Max-Cut; Lovász theta function; and Quadratic Assignment. Similar techniques
can be applied to many other relaxations of hard combinatorial problems, e.g. to the SDP
relaxation of the graph partitioning problem presented in [26]. These problems all contain
binary constraints which implies that all feasible points of the relaxation have either fixed
elements and/or zeros.

We also included two 2 dimensional examples that illustrated the stability benefits of
maintaining exact feasibility.

Convergence analysis for the new direction is exactly the same as for the standard HKM
direction, since this is an ’exact’ Newton step that ignores the roundoff, i.e. existing conver-
gence theorems hold.
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We note that the simplification can be applied to the complete MZ family of search
directions. Following [13, Section 10.3], define the symmetrization operator

SP (U) :=
1

2

[
PUP−1 + (PUP−1)T

]
, SP :Mn → Sn ,

where P is a given nonsingular matrix. If P = Z1/2, then the standard HKM direction is the
Newton direction for the system (1.3), where the last equation is replaced by the symmetrized
perturbed equation SP (XZ) = µI. (Using XZ rather than ZX is a minor modification.)
The dual HKM direction uses P = X−1/2. Using P = I yields the so-called AHO direction,
see [1]; while P = W−1/2,W = Z−1/2(Z1/2XZ1/2)1/2Z−1/2 is the NT direction studied in
[16, 17]. Arbitrary choices for nonsingular P yield the MZ family of search directions, see
[27]. Thus we consider the symmetrization of (1.4)

A ∗(∆y)−∆Z = −RD

A (∆X) = −RP

SP (Z(∆X) + (∆Z)X) = = µI − SP (RZX).
(4.1)

The solution to this linearization (under existence assumptions) is given by:

Solve for ∆y in :
A [(SPZ·)−1(A ∗(∆y)X)] = RP −A [(SPZ·)−1((RZX −RDX]

Backsolve :
∆Z = RD +A ∗(∆y)
∆X = (SPZ·)−1 [µI − SP (RZX −∆ZX)] .

(4.2)

Therefore the backsolve steps for both ∆Z and ∆X can be simplified/improved under the
appropriate special structure assumptions.

One can generalize this approach to preprocessing for general SDPs. For an LP constraint
Ax = b, we find permutation matrices P,Q so that the equivalent constraint PAQ(QTx) =
Pb yields an equivalent constraint of form

(PAQ)y =

(
Ā 0
C D

)(
v
w

)
=

(
b̄
d

)
with Ā nonsingular or full row rank with relatively low dimensional null space. For example,
in the nonsingular case, we get v = Ā−1b̄ and the variables Qv can be eliminated. Thus
we have to identify submatrices of type Ā. The situation in the SDP case is similar, since
we can express the primal SDP constraint AX = b using (traceAiX) = bi, for appropriate
symmetric matrices Ai. We then use x = svecX, the vector formed from the diagonal and
upper triangular part of X (columnwise), with the upper triangular part multiplied by

√
2,

i.e. traceXY = svecXT svecY . If we let the rows of A be ai = (svecAi)
T , then we get the

equivalent constraint Ax = b and we have the equivalent problem of identifying submatrices
Ā of A.
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