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Abstract. Splitting methods in optimization arise when one can divide an optimization
problem into two or more simpler subproblems. They have proven particularly successful
for relaxations of problems involving discrete variables. We revisit and strengthen splitting
methods for solving doubly nonnegative relaxations of the particularly difficult, NP-hard
quadratic assignment problem. We use a modified restricted contractive splitting method
approach. In particular, we show how to exploit redundant constraints in the subproblems.
Our strengthened bounds exploit these new subproblems and new dual multiplier esti-
mates to improve on the bounds and convergence results in the literature.
Summary of Contribution: In our paper, we consider the quadratic assignment problem
(QAP). It is one of the fundamental combinatorial optimization problems in the fields of
optimization and operations research and includes many fundamental applications. We
revisit and strengthen splitting methods for solving doubly nonnegative (DNN) relaxation
of the QAP. We use a modified restricted contractive splitting method. We obtain strength-
ened bounds from improved lower and upper bounding techniques, and in fact, we solve
many of these NP-hard problems to (provable) optimality, thus illustrating both the
strength of the DNN relaxation and our new bounding techniques.
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Supplemental Material: The software that supports the findings of this study is available within the paper
and its Supplementary Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.
1161) or is available from the IJOC GitHub software repository (https://github.com/INFORMSJoC)
at http://dx.doi.org/10.5281/zenodo.5709968.
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1. Introduction
Splitting methods allow for numerically hard problems
to be divided in simpler subproblems. These methods
have proven to be particularly successful for relaxations
of hard nonlinear discrete optimization problems. We
revisit and provide a strengthened splitting method for
solving the doubly nonnegative (DNN) relaxation of the
quadratic assignment problem (QAP), arguably one of
the hardest of the NP-hard problems. The problem
involves finding an optimal permutation matrix, and
problems with size n � 30 are still considered difficult.
Here the DNN relaxation refers to the semidefinite pro-
gramming, SDP, relaxation with the addition of nonne-
gativity constraints on all, order n4, elements of the
relaxed variable. We use a modified restricted contractive

Peaceman-Rachford splitting method (rPRSM) approach.
We obtain strengthened bounds from improved lower
and upper bounding techniques applied during the
algorithm. As a result, we solve many of these NP-hard
problems to (provable) optimality, thus illustrating both
the strength of the DNN relaxation and our new bound-
ing techniques. In addition, we get improved rates of
convergence from the strengthened subproblems and
dual multiplier estimates. Our results significantly im-
prove on the recent results in Oliveira et al. (2018). We
also comparewith other recent relaxations.

The QAP is one of the fundamental combinatorial
optimization problems in the field of operations
research and includes many important applications.
Proving optimality is particularly difficult, most
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probably because of the many local minima in many
of the instances in the literature (Barvinok and Ste-
phen 2003, Hahn et al. 2010). The QAP models real-
life problems such as facility location. Suppose that
we are given a set of n facilities and a set of n locations.
For each pair of locations (s, t), a distance Bst is specified,
and for each pair of facilities (i, j), a weight or flow Ai,j is
specified, for example, the amount of supplies transported
between the two facilities. In addition, there is a location
(building) costCis for assigning a facility i to a specific loca-
tion s. The problem is to assign each facility to a distinct
location with the goal of minimizing the sum over all
facility-location pairs of the distances between locations
multiplied by the corresponding flows between facili-
ties, along with the sum of the location costs. Other
applications include the following: scheduling, pro-
duction, computer manufacture (very large-scale inte-
gration design), chemistry (molecular conformation),
communication, and other fields (Geoffrion and
Graves 1976, Elshafei 1977, Heffley 1977, Krarup and
Pruzan 1978, Ugi et al. 1979).

Moreover, many classical combinatorial optimization
problems, including the traveling salesman problem,
maximum clique problem, and graph partitioning prob-
lem, can all be expressed as aQAP (Pardalos andWolko-
wicz 1994, Pardalos et al. 1994, Çela 1998, Commander
2003, Bhati and Rasool 2014).

The NP-hardness of the QAP (1.1) is proven in Garey
and Johnson (1979). The cardinality of the feasible set of
permutation matricesΠ is n!, and it is known that prob-
lems typically havemany local minima. Until now, there
were three main classes of methods for solving QAP.
The first type is heuristic algorithms, such as genetic
algorithms (Drezner 2003), ant systems (Gambardella
et al. 1999), and meta-heuristic algorithms (Bashiri and
Karimi 2012). Thesemethods usually have short running
times and often give optimal or near-optimal solutions.
However, the solutions from heuristic algorithms are
not reliable, and the performance can vary depending
on the type of problem. The second type is branch-and-
bound algorithms. Although this approach gives exact
solutions, it can be very time consuming and in addition
requires strong bounding techniques. For example,
obtaining an exact solution using the branch-and-bound
method for n � 30 is still considered to be computation-
ally challenging. The third type is based on SDP. SDP is
proven to have successful implementations and pro-
vides tight relaxations (Zhao et al. 1998, Anstreicher and
Brixius 2000). There are many well-developed SDP solv-
ers based on, for example, interior point methods
(Mitchell et al. 1998, Wolkowicz et al. 2000, Anjos and
Lasserre 2011). However, the running time of the interior
pointmethods do not scalewell, and the SDP relaxations
become very large for the QAP. In addition, adding
additional polyhedral constraints such as interval [0, 1]
constraints can result in having O(2n2) constraints, a
prohibitive number for interior pointmethods.

Recently, Oliveira et al. (2018) used an alternating direc-
tion method of multipliers (ADMM) to solve a facially
reduced (FR) SDP relaxation. The FR allows for a natural
splitting of variables between the SDP cone and polyhe-
dral constraints. The algorithm provides competitive
lower and upper bounds for QAP. In this paper, wemod-
ify and improve on this approach. (Our work also follows
and relates to that in Li et al. (2021) that concentrates on
the min-cut problem. In addition, we note the work in
Hu et al. (2019) that also uses FR on QAP problems but
concentrates on exploiting group symmetry structure.)

1.1. Background
We let Rn denote the usual Euclidean space of dimension
n, and let Sn denote the space of real symmetric matrices
of order n. We use S

n
+ (Sn++, respectively) to denote the

cone of n-by-n positive semidefinite (definite) matrices.
We write X�0 if X ∈ S

n
+, and X � 0 if X ∈ S

n
++. Given

X ∈ R
n×n, we use tr(X) to denote the trace of X. We use ◦

to denote the Hadamard (elementwise) product. Given a
matrix A ∈ Rm×n, we use range(A) and null(A) to denote
the range of A and the null space of A, respectively. For
n ≥ 1, en denotes the vector of all ones of dimension n; En
denotes the n × n matrix of all ones. We omit the sub-
scripts of en and En when the dimension is clear. Also, we
define u0 to be the first unit vector.

It is known (Edwards 1977) that many of the QAP
models, such as the facility location problem, can be
formulated using the trace formulation:

p∗QAP :� min
X∈Π 〈AXB − 2C,X〉, (1.1)

where A,B ∈ S
n are real symmetric n × n matrices, C is

a real n × n matrix, 〈·, ·〉 denotes the trace inner prod-
uct, that is, 〈Y,X〉 � tr(YXT), and Π denotes the set of
n × n permutation matrices.

Remark 1.1. We note that the location problem is
symmetric in facilities and locations; that is, the opti-
mal value is independent of which of A, B is chosen
for distance data and which for flow data. However,
the facility location interpretation does not make sense
if there are zero distances. In particular, the data are
troublesome if both matrices A, B have zeros in off-
diagonal positions, as is the case for many of the
instances in the quadratic assignment problem library
Burkard et al. (1991), the data source that we use.

We use the following notation from Oliveira et al.
(2018). We denote the matrix lifting

Y :� 1
x

( )
(1 xT) ∈ S

n2+1, x � vec(X) ∈ R
n2 , (1.2)

where vec(X) is the vectorization of the matrix X ∈
R

n×n, columnwise. Then Y ∈ S
n2+1
+ , the (convex) cone of

real symmetric positive semidefinite matrices of order

Graham et al.: A Restricted Dual PRSM for a Strengthened DNN Relaxation for QAP
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n2 + 1, and the rank, rank(Y) � 1. Indexing the rows
and columns of Y from zero to n2, we can express Y in
(1.2) using a block representation as follows:

Y � Y00 ȳT

ȳ Ȳ

[ ]
, ȳ �

Y(10)
Y(20)
⋮

Y(n0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and Ȳ � xxT �

Ȳ(11) Ȳ(12) ⋯ Ȳ(1n)
Ȳ(21) Ȳ(22) ⋯ Ȳ(2n)
⋮ ⋱ ⋱ ⋮

Ȳ(n1) ⋱ ⋱ Ȳ(nn)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.3)

where

Ȳ(ij) � X:iXT
:j ∈ R

n×n, ∀i, j � 1, : : : ,n, Y( j0) ∈ R
n,

∀j � 1, : : : ,n, and x ∈ R
n2 :

Let

LQ � 0 −(vec(C)T)
−vec(C) B ⊗ A

[ ]
,

where ⊗ denotes the Kronecker product. We further scale
LQ in (2.8) and (2.9).With the previous notation andmatrix
lifting, we can reformulate the QAP (1.1) equivalently as

p∗QAP � min 〈AXB − 2C,X〉 � 〈LQ,Y〉

s:t: Y :� 1
x

( )
1
x

( )T
∈ S

n2+1
+

X � Mat(x) ∈ Π, (1.4)

where Mat � vec∗, the adjoint transformation.
Zhao et al. (1998) derive an SDP relaxation as the

dual of the Lagrangian relaxation of a quadratically
constrained version of (1.4), that is, the constraint that
X ∈Π is replaced by quadratic constraints, for example,

||Xe− e||2 � ||XTe− e||2 � 0, X ◦X � X, XTX � XXT � I,

where ◦ is the Hadamard product and e is the vector
of all ones. After applying the so-called facial reduction
technique to the SDP relaxation, the variable Y is

expressed as Y � V̂RV̂
T
, for some full column rank

matrix V̂ ∈ R
(n2+1)×((n−1)2+1) defined in Section 2.1.2.

The SDP relaxation then takes on the smaller, greatly
simplified form after many of the constraints are
shown to be redundant:

(SDP)
min
R

V̂
T
LQV̂ ,R

〈 〉
s:t: G J̄ V̂RV̂

T
( )

� u0

R ∈ S
(n−1)2+1
+ : (1.5)

The linear transformation GJ̄ (·) is called the gangster
operator as it fixes certain elements of the matrix, and
u0 is the first unit vector. The Slater constraint qualifi-
cation, strict feasibility, holds for both (1.5) and its
dual (Zhao et al. 1998, lemmas 5.1 and 5.2). We refer
to Zhao et al. (1998) for details on using the dual of
the Lagrangian dual for the derivation of this facially
reduced SDP.

We now provide the details for V̂ , the gangster
operator GJ̄ , and the gangster index set, J̄ .

1. Let Ŷ be the barycenter of the set of feasible lifted
Y (1.3) of rank one for the SDP relaxation of (1.4). Let

the matrix V̂ ∈ R
(n2+1)×((n−1)2+1) have orthonormal col-

umns that span the range of Ŷ.1 Every feasible Y of the
SDP relaxation is contained in the minimal face, F of
S
n2+1
+ :

F � V̂S
(n−1)2+1
+ V̂

TE S
n2+1
+ ;

Y ∈ F ⇒ range(Y) ⊆ range(V̂),
Y ∈ relint(F ) ⇒ range(Y) � range(V̂):

2. The gangster operator (transformation) is the lin-
ear map GJ̄ : S

n2+1 → R
|J̄ | defined by

GJ̄ (Y) � YJ̄ ∈ R
|J̄ |, (1.6)

where J̄ is a subset of (upper triangular) matrix indices
of Y.

Remark 1.2. By abuse of notation, we also consider
the gangster operator from S

n2+1 to S
n2+1, depending

on the context:

GJ̄ : S
n2+1 → S

n2+1, GJ̄ (Y)
[ ]

ij
� Yij if (i, j) ∈ J̄ or ( j, i) ∈ J̄ ,

0 otherwise:

{
(1.7)

Both formulations of GJ̄ are used for defining a con-
straint which “shoots holes” in the matrix Y with
entries indexed using J̄ . Although the latter formula-
tion is more explicit, it is not surjective and is not used
in the implementations.

3. The gangster index set J̄ is defined to be the union
of the top left index (00) with the set of indices J with
i < j in the submatrix Ȳ ∈ S

n2 corresponding to:

(a) the off-diagonal elements in the n diagonal blocks

in Ȳ in (1:3) ;
(b) the diagonal elements in the off-diagonal blocks

in Ȳ in (1:3) : (1.8)

Many of the constraints that arise from the index set
J are redundant. We could remove the indices in the
submatrix Ȳ ∈ S

n2 corresponding to all the diagonal

Graham et al.: A Restricted Dual PRSM for a Strengthened DNN Relaxation for QAP
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positions of the last column of off-diagonal blocks and
the additional (n− 2,n− 1) block. In our implementa-
tions, we take advantage of redundant constraints
when used as constraints in the subproblems and in
prespecifying dual variables. We denote the redundant
gangster constraints, JR.

4. The notation u0 in (1.5) denotes a vector in {0, 1}|J̄ |
with one only in the first coordinate, that is, the zeroth
unit vector. Therefore, (1.5) forces all the values of

V̂RV̂
T
corresponding to the indices in J̄ to be zero. It

also implies that the first entry of GJ̄ (V̂RV̂
T) is equal

to one, which reflects the fact that Y00 � 1 from (1.3).
Using the alternative definition of GJ̄ in (1.7), the

equivalent constraint is GJ̄ (Y) � E00, where E00 ∈ S
n2+1

is the (0, 1)-matrix with one only in the (00) position.

Therefore, (1.5) forces all the values of V̂RV̂
T
corre-

sponding to the indices in J̄ to be zero, except for the

(0,0)-th element of V̂RV̂
T
.

Because interior point solvers do not scale well,
especially when nonnegative or interval cuts are
added to the SDP relaxation in (1.5), Oliveira et al.
(2018) propose using an ADMM approach. They intro-
duce interval cuts (constraints) and obtain a DNN
model. The ADMM approach is further motivated by
the natural splitting of variables that arises with facial
reduction:

(DNN)

min
R,Y

〈LQ,Y〉
s:t: GJ̄ (Y) � u0

Y � V̂RV̂
T

R� 0
0 ≤ Y ≤ 1: (1.9)

The output of ADMM is used to compute lower and
upper bounds to the original QAP (1.1). For most
instances in QAPLIB,2 Oliveira et al. (2018) obtain
competitive lower and upper bounds for the QAP
using ADMM. And in several instances, the relaxation
and bounds provably find an optimal permutation
matrix.

1.2. Contributions and Outline
We begin in Section 2with themodeling and theory.We
first give a new joint derivation of the so-called gangster
constraints and the facial reduction procedure. Our pro-
posedmodel for solving (1.9) uses redundant constraints
on the variables R, Y. We include optimality conditions
and find explicit values for some of the dual variables by
exploiting the redundant constraints.

In Section 3, we derive the modified rPRSM for
solving the strengthened model. We use redundant
constraints to strengthen the subproblems and the
lower bounds. We add a randomized perturbation

approach to improve upper bounds. The solution run
times are improved by the new dual variable updates
and with new termination conditions.

For our numerical results in Section 4, we use data
from QAPLIB (Burkard et al. 1991). We show significant
improvements over the previous results in Oliveira et al.
(2018). Our concluding remarks are in Section 5.

2. DNN Relaxation and Optimality
In this section, we present details of our DNN relaxa-
tion of the QAP. This is related to the SDP relaxation
derived in Zhao et al. (1998) and the DNN relaxation
in Oliveira et al. (2018). Our approach is novel in that
we see the gangster constraints and facial reduction
arise naturally from the relaxation of the row and col-
umn sum constraints for X ∈Π. The discussion allows
us to see the many redundant constraints that can
then be used to strengthen our subproblems within
our rPRSM algorithm.

2.1. Novel Derivation of DNN Relaxation
The derivation of the SDP relaxation in Zhao et al.
(1998) starts with the Lagrangian relaxation (dual)
and forms the dual of this dual. Then redundant con-
straints are deleted. We now look at a direct approach
for finding this SDP relaxation.

2.1.1. Gangster Constraints. Let De,Z be the matrix
sets of row and column sums equal one, and binary,
respectively, that is,

De :� {X ∈ R
n×n : Xe � e,XTe � e},

Z :� {X ∈ R
n×n : Xij ∈ {0, 1}, ∀i, j ∈ {1, : : :n}}:

We let D �De ∩ {X ≥ 0} denote the doubly stochastic
matrices. The classical Birkhoff-von Neumann theorem
(Birkoff 1946, von Neumann 1953) states that the per-
mutation matrices are the extreme points of D. This
leads to the well-known conclusion that the set of n-
by-n permutation matrices, Π, is equal to the intersec-
tion:

Π �De ∩ Z: (2.1)

It is of interest that the representation in (2.1) leads to
both the gangster constraints and facial reduction for
the SDP relaxation on the lifted variable Y in (1.3) and
in particular on Ȳ. Not only that, but the row-sum con-
straintsXe � e, along with the 0-1 constraint, expressed
as X ◦X � X, give rise to the constraint that the diago-
nal elements of the off-diagonal blocks of Ȳ are all
zero, whereas the column-sum constraintXTe � e along
with the 0-1 constraints give rise to the constraint that
the off-diagonal elements of the diagonal blocks of Ȳ
are all zero. The following well-known Lemma 2.1
about complementary slackness (Hadamard orthogon-
ality) is useful.

Graham et al.: A Restricted Dual PRSM for a Strengthened DNN Relaxation for QAP
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Lemma 2.1. Let A,B ∈ S
n. If A and B have nonnegative

entries, then

〈A,B〉 � 0wA ◦B � 0: w

Lemma 2.2 and Corollary 2.1 together show how the
representation of Π in (2.1) gives rise to the gangster
constraint on the lifted matrix Y in (1.2). We first find
(Hadamard product) exposing vectors in Lemma 2.2 for
lifted zero-one vectors.

Lemma 2.2 (Exposing Vectors). Let X ∈ Z and let
x :� vec(X). Then the following hold:

1. Row sums: Xen � en ⇒ [(eneTn ⊗ In) − In2] ◦ xxT � 0;
2. Column sums: XTen � en ⇒ [(In ⊗ eneTn ) − In2 ] ◦ xxT � 0.

Proof. The structure of the Kronecker allows for:
1. Let X ∈ Z and Xen � en. We note that X ∈ Zwx ◦ x

−x � 0 and

Xen � enw InXen � enw (eTn ⊗ In)x � en:

We begin by multiplying both sides by (eTn ⊗ In)T
� en ⊗ In:

(eTn ⊗ In)x � en
⇒ (en ⊗ In)(eTn ⊗ In)x � (en ⊗ In)en � en2
⇒ [(en ⊗ In)(eTn ⊗ In) − In2]x � en2 − x
⇒ [(eneTn ⊗ In) − In2]xxT � en2xT − xxT

⇒ tr [(eneTn ⊗ In) − In2]xxT
( ) � tr(en2xT − xxT):

Because x ◦ x � x, we have tr(en2xT − xxT) � 0. There-
fore, it holds that

tr [(eneTn ⊗ In) − In2]xxT
( )

� 0:

We note that [(eneTn ⊗ In) − In2] and xxT are both sym-
metric and nonnegative. Hence, by Lemma 2.1, we
get

[(eneTn ⊗ In) − In2] ◦ xxT � 0:

2. The proof for Item 2 is similar. w

Corollary 2.1. Let X ∈Π, and let Y satisfy (1.2). Let GJ̄ , J̄
be defined in (1.6) and (1.8). Then the following hold:

1. GJ̄ (Y) � u0;
2. 0 ≤ Y ≤ 1, Y�0, rank(Y) � 1.

Proof. Note that
• The matrix (eneTn ⊗ In) − In2 has nonzero entries on

the diagonal elements of the off-diagonal blocks; and
• The matrix (In ⊗ eneTn) − In2 has nonzero entries on

the off-diagonal elements of the diagonal blocks.
Therefore, Lemma 2.2, the definition of the gangster

indices J̄ in (1.8), and the structure of Y in (1.2) jointly

give GJ̄ (Y) � u0; that is, Item 1 holds. Item 2 follows
from (2.1) and the structure of Y in (1.2). w

Proposition 2.1 shows that the current gangster
index set is the largest possible, in the sense that add-
ing an index implies that at least one element of X is
determined.

Proposition 2.1. Suppose that for all X ∈Π, and Y formed
from (1.2), there exists an index (s, t) such that Yst � Yts

� 0, but {(s, t) ∪ (t, s)} ∉ J̄ ; that is, (s, t) is added to the gang-
ster set. Then at least one element of X can be determined.
Therefore, the gangster set cannot be increased.

Proof. There are two cases to consider.
1. Suppose that s � (ij) � t, i, j ≥ 1, and so we have

Y(ij)(ij) � 0. However, Ȳ � xxT, by (1.2), implies that Xij

� 0; this does not hold for all X ∈Π, a contradiction;
that is, we cannot add a diagonal element of Y to the
gangster set.

2. If s≠ t, we have Yst � 0. Because X ∈Π, we infer
that Yss or Ytt must be zero. The condition s≠ t and
{(s, t) ∪ (t, s)} ∉ J̄ imply that there are two elements in
X, which are not in the same row and column, and
the product of them is zero. This clearly does not
hold for all X ∈Π, a contradiction; that is, as previ-
ously noted, we cannot add this element of Y to the
gangster set. w

2.1.2. Facially Reduced DNN Relaxations. We have
shown that the representation Π �De ∩ Z gives rise to
the gangster constraint and the polyhedral constraint
on the variable Y given in (1.9). As for the derivation
of the gangster constraint, we now see that the facial

reduction constraint Y � V̂RV̂
T

in (1.9) arises from
consideration of an exposing vector. We define

H :� eTn ⊗ In
In ⊗ eTn

[ ]
∈ R

2n×n2 , (2.2)

and

K :� −eTn2
HT

[ ]
−en2 H
[ ] � 2n −2eTn2

−2en2 HTH

[ ]
∈ S

n2+1:

(2.3)

We note that H arises from the linear equality con-
straints Xe � e,XTe � e. The matrix H in (2.2) is the
well-known matrix in the linear assignment problem
with rank(H) � 2n− 1 and the rows sum up to 2eTn2 .
Then rank(K) � 2n− 1 as well. Moreover, Lemma 2.3
is clear.
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Lemma 2.3. Let H be given in (2.2), and let

X ∈ R
n×n, x � vec(X), Yx � 1

x

( )
1
x

( )T
:

Then we have

Xe � e,XTe � e ⇒ YxK � 0,

where K is defined in (2.3).

Proof. From the definition of H in (2.2), we have

Xe � e,XTe � ewHx � e

w
1
x

( )T −eT
HT

( )
� 0

⇒ 1
x

( )
1
x

( )T −eT
HT

( ) −eT
HT

( )T
� 0

wYxK � 0: w

From Lemma 2.3, K is an exposing vector for all feasible
Yx (Drusvyatskiy and Wolkowicz 2017). Then we can
choose a full column rank V̂ with the range equal to
the nullspace of K and obtain facial reduction; that is,
all feasible Y for the SDP relaxation satisfy

Y ∈ V̂S
(n−1)2+1
+ V̂

TE S
n2+1
+ :

There are clearly many choices for V̂ . We present one
in Proposition 2.2 from Zhao et al. (1998). However, in
our implementations, we follow Oliveira et al. (2018)
and use one with orthonormal columns.

Proposition 2.2 (Zhao et al. 1998). Let

V̂ �
1 0

1
n
en2 Ve ⊗ Ve

[ ]
∈ R

(n2+1)×((n−1)2+1),

Ve � In−1
−eTn−1

[ ]
∈ R

n×(n−1),

and let K be given as in (2.3). Then we have range(V̂)
� null(K). w

Our DNN relaxation has the lifted Y from (1.2) and
(1.4) and the FR variable R from (1.5). The relation
between R, Y provides the natural splitting:

p∗DNN � min 〈LQ,Y〉
s:t: GJ̄ (Y) � u0

Y � V̂RV̂
T

R� 0
0 ≤ Y ≤ 1: (2.4)

A strictly feasible R̂ � 0 for the facially reduced SDP
relaxation is given in Zhao et al. (1998), based on the
barycenter Ŷ of the liftedmatrices Y in (1.2). Therefore,
0 < ŶJ̄ c < 1, and this pair (R̂, Ŷ) is strictly feasible in
(2.4).

2.1.3. Redundant Constraints. We continue in this
section with some redundant constraints for Model
(2.4) that are useful in the subproblems and in prespe-
cifying values of some dual variables. Although the
constraints are redundant for Model (2.4), they are not
redundant when the subproblems of rPRSM are con-
sidered as independent optimization problems. To
derive those constraints, we first recall three linear
transformations defined in Zhao et al. (1998).

Definition 2.1 (Zhao et al. 1998, p. 80). Let Y ∈ S
n2+1 be

blocked as in (1.3). We define the linear transforma-
tion b0diag (Y) : Sn2+1 → S

n by the sum of the n-by-n
diagonal blocks of Y, that is,

b0diag (Y) :�∑n
k�1

Y(k k) ∈ S
n:

We define the linear transformation o0diag (Y) : Sn2+1
→ S

n by the trace of the block Ȳ(ij), that is,

o0diag (Y) :� tr Ȳ(ij)
( )( )

ij
∈ S

n:

We define the linear transformation arrow (Y) : Sn2+1
→ R

n2+1 by the difference of the first column and diag-
onal of Y:

arrow (Y) :� Y(:1) −diag(Y)( ) ∈ R
n2+1:

With Definition 2.1, the following lemma can be
derived from Zhao et al. (1998, lemma 3.1). Lemma 2.4
indeed shows three redundant constraints of (2.4).

Lemma 2.4 (Zhao et al. 1998, Lemma 3.1). Let V be any
full column rank matrix such that range(V) � range(V̂),
where V̂ is given in Proposition 2.2. Suppose Y � VRVT

and GJ̄ (Y) � u0 hold. Then we have arrow (Y) � 0, b0 diag
(Y) � In and o0 diag (Y) � In.

Proposition 2.3 shows that the constraint tr(R) �
n+ 1 is also redundant for Model (2.4).

Proposition 2.3. With orthonormal V̂ whose range is

equal to range(K), the constraints Y � V̂RV̂
T
, R�0 and

Y ∈ Y yield that tr(R) � n+ 1.

Proof. By Lemma 2.4, b0diag (Y) � In hold. Then with
Y00 � 1, we see that tr(Y) � n+ 1. By cyclicity of the

trace operator and V̂
T
V̂ � I, we see that

tr(R) � tr RV̂
T
V̂

( )
� tr V̂RV̂

T
( )

� tr(Y) � n+ 1: w

Remark 2.1. We take advantage of this in the corre-
sponding R-subproblem and the computation of the
lower bound of QAP. We could add more redundant
constraints to (DNN). For example, we could strengthen
the relaxation by restricting each row/column (ignoring
the first row/column) to be a multiple of a vectorized
doubly stochasticmatrix.

Graham et al.: A Restricted Dual PRSM for a Strengthened DNN Relaxation for QAP
2130 INFORMS Journal on Computing, 2022, vol. 34, no. 4, pp. 2125–2143, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

97
.2

02
.7

5]
 o

n 
25

 A
ug

us
t 2

02
3,

 a
t 1

1:
39

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



2.2. Main Model and Optimality Conditions
We now derive the main splitting model. We define
the cone and polyhedral constraints, respectively, as

R :� R ∈ S
(n−1)2+1 : R� 0, tr(R) � n + 1

{ }
, (2.5)

and

Y :� {Y ∈ S
n2+1 : GJ̄ (Y) � u0, 0 ≤ Y ≤ 1,

b0diag (Y) � I, o0diag (Y) � I,

arrow (Y) � 0}: (2.6)

Replacing the constraints in (2.4) with (2.5) and (2.6),
we obtain the following DNN relaxation that we solve
using rPRSM:

(DNN)

p∗DNN :� min
R,Y

〈LQ,Y〉

s:t: Y � V̂RV̂
T

R ∈ R

Y ∈ Y: (2.7)

The following property of feasible points Y ∈ Y in
Proposition 2.4 is used in the computation of the Y-
subproblem of our algorithm.

Proposition 2.4. For any Y ∈ Y, let X̄ �Mat(diag(Ȳ)) ∈
R

n×n be the matrix formed from the diagonal of Ȳ after
ignoring the (0,0)-th element. X̄ ∈D. Moreover, this holds
for the first row (and column) of Y.

Proof. From the Y constraints b0diag (Y) � I, o0diag
(Y) � I, respectively, we get

∑n
k�1 diag(Y(kk)) � e and

tr(Y(kk)) � 1, ∀i ∈ {1, : : : ,k}, respectively. Then by the
definition of X̄, we immediately have X̄e � e and

X̄Te � e. The nonnegativity constraint in Y implies
X̄ ≥ 0. Therefore, X̄ ∈D.

The equivalent result for the first row and column
follows from the arrow constraint. w

Remark 2.2 ((Doubly) Stochastic Optimal Y). Proposi-
tion 2.4 shows that for any feasible Y ∈ Y, when ignor-
ing the (0,0)-th element, then the diagonal, the first
row, and the first column of Y, can all be reshaped
into doubly stochastic matrices. In fact, in addition to
this, if Y ∈ Y, v ∈ R

n2+1 is a nonnegative random vec-
tor, and we set w � Yv with w← w=w1, then X �
Matw satisfies the row and column sum constraints.
Therefore, for an optimal Y and choosing v ≥ 0, this X
is doubly stochastic, and if v is a unit vector, then we
see that every column of Y is doubly stochastic.

Define the orthogonal projection PV � V̂V̂
T
, and let

α,δ > 0 be the shift and scale parameters. Note that

Y � V̂RV̂
T
implies

δ〈LQ,Y〉 � δ〈LQ + αI,Y〉 − (n+ 1)δα
� δ〈LQ + αI,PVYPV〉 − (n+ 1)δα
� 〈δ(PVLQPV + αI),Y〉 − (n+ 1)δα: (2.8)

Therefore, the original objective value is

〈LQ,Y〉 � 1
δ
〈δ(PVLQPV + αI),Y〉 − (n + 1)α:

By abuse of notation, we use

LQ ← δ(PVLQPV + αI): (2.9)

We use these values for our lower and upper bounds,
because the data are integer valued, and we can
improve the bounds by rounding.

The Lagrangian function of Model (2.7) is

L(R,Y,Z) � 〈LQ,Y〉 + Z,Y − V̂RV̂
T

〈 〉
: (2.10)

Because a strictly feasible R̂, with Ŷ � V̂R̂V̂ , exists, we
conclude that the following first-order optimality con-
ditions for Model (2.7) hold:

0 ∈ −V̂T
ZV̂ +NR(R), (dual R feasibility), (2.11a)

0 ∈ LQ +Z+NY(Y), (dual Y feasibility), (2.11b)

Y � V̂RV̂
T
, R ∈R, Y ∈ Y, (primal feasibility),

(2.11c)

where the set NR(R) (respectively, NY(Y)) is the nor-
mal cone to the set R (respectively, Y) at R (respec-
tively, Y). By the definition of the normal cone, we can
easily obtain the following Proposition 2.5.

Proposition 2.5 (Characterization of Optimality for
(2.7)). The primal-dual R, Y, Z are optimal for (2.7) if, and
only if, (2.11) holds if, and only if,

R � PR R + V̂
T
ZV̂

( )
, (2.12a)

Y � PY(Y − LQ − Z), (2.12b)

Y � V̂RV̂
T
: (2.12c)

We use (2.12) as one of the stopping criteria of the
rPRSM in our numerical experiments.

2.2.1. Dual Multiplier. As in all constrained optimiza-
tion, the Lagrange (dual) multiplier, here denoted Z,
is essential in finding an optimal solution and critical
in obtaining strong lower bounds. Moreover, a com-
pact set of dual multipliers is an indication of stability
for the primal problem. If the optimal Z would be
completely known for the Lagrangian function in
(2.10), then the primal feasibility equation Y � V̂RV̂

T

can be ignored in the optimality conditions in (2.11).
We now present properties on Z that are exploited in
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our algorithm in Section 3. Theorem 2.1 shows that
there exists a dual multiplier Z ∈ S

n2+1 of Model (2.7)
that, except for the (0, 0)-th entry, has a known diago-
nal, first column, and first row and known elements
in the redundant gangster positions. This allows for
faster convergence for our algorithm of Section 3.

Theorem 2.1. Let EA � 1 0
0 En2 − In2 − IJR

[ ]
, where IJR is

the zero matrix except for one in the positions of the redun-
dant gangster elements JR, Item 3, on page 3. Let

YA :�
{
Y ∈ S

n2+1 : GJ\JR(Y) � E00, 0 ≤ EA ◦Y ≤ 1,

arrow (Y) � 0
}
,

and let

ZA :�
{
Z ∈ S

n2+1 : (Z+ LQ)ij � 0, ∀i, j in arrow positions;

and ∀ij ∈ JR
}
:

Consider the following problem:

min
R,Y

〈LQ,Y〉 : Y � V̂RV̂
T
, R ∈ R, Y ∈ YA

{ }
: (2.13)

Then the following holds:
1. The feasible sets of (2.7) and (2.13) are the same.
2. Let (R∗,Y∗,Z∗) be an optimal primal-dual solution for

(2.13). Then Z∗ ∈ ZA.
3. Let (R∗,Y∗) be an optimal pair for (2.7). Then there

exists Z∗ ∈ ZA such that (R∗,Y∗,Z∗) solves (2.11); that is,
they are an optimal primal-dual solution for (2.7).

Proof. Note that Y ⊂ YA, where we remove the b0diag ,
o0diag and the polyhedral constraints on the diagonal,
the first row and column, the redundant gangster con-
straints, but leave the arrow constraint. Clearly, every
feasible solution of (2.7) is feasible for (2.13) because
Y ⊂ YA. Consider a feasible pair (R,Y) to (2.13). By Item 2
of Lemma 2.4 and the positive semidefiniteness of

Y � V̂RV̂
T
, we have that b0diag (Y) � In and the ele-

ments of the diagonal of Y are in the interval [0, 1]. In
addition, because arrow (Y) � 0, the elements of the first
row and column of Y are also in the interval [0, 1]. Thus,
we conclude that Y ∈ Y and (2.7) and (2.13) have equal
feasible sets and therefore are equivalent problems. Thus,
the first assertion is proved.

Let (R∗,Y∗,Z∗) be an optimal primal-dual solution
for (2.13). Then according to the first-order optimality
condition, we have

0 ∈ −V̂T
Z∗V̂ +NR(R∗), (2.14a)

0 ∈ LQ +Z∗ +NYA(Y∗), (2.14b)

Y∗ � V̂R∗V̂T
, R∗ ∈R, Y∗ ∈ YA: (2.14c)

By the definition of the normal cone, we have

0 ∈ LQ + Z∗ +NYA(Y∗)
w 〈Y − Y∗,LQ + Z∗〉 ≥ 0, ∀Y ∈ YA:

Because the diagonal and the first column and row of
Y ∈ YA except for the first element are unconstrained,
as are all the redundant gangster positions, we see
that

(En2+1 −EA) ◦ (Z∗ + LQ) � 0:

This implies that Z∗ ∈ ZA and proves Item 2.
To prove Item 3, it suffices to show that the triple

(R∗,Y∗,Z∗) also solves (2.11). We note that (2.14a) and
(2.14c) imply that (2.11a) and (2.11c) hold with
(R∗,Y∗,Z∗) in the place of (R, Y, Z). In addition, be-
cause Y∗ ∈ Y ⊆ YA, we see that NYA(Y∗) ⊆NY(Y∗). This
together with (2.14b) shows that (2.11b) holds with
(Y∗,Z∗) in the place of (Y, Z). Thus, we have shown
that (R∗,Y∗,Z∗) also solves (2.11). w

Remark 2.3. Dual variables are sensitivity coefficients
for the optimal value with respect to perturbations in
the constraints. Before scaling, L has zeros in the posi-
tions identified in ZA, as it is formed from the Kro-
necker product of adjacency matrices.

3. rPRSM Algorithm
We now present the details of a modification of the
so-called strictly contractive PRSM or symmetric
ADMM (He et al. 2014, Li and Yuan 2015). Our modi-
fication involves redundant constraints on subpro-
blems and on the update of dual variables.

3.1. Outline and Convergence for rPRSM
The augmented Lagrangian function for (2.7) with
Lagrange multiplier Z is

LA(R,Y,Z) � 〈LQ,Y〉 + Z,Y − V̂RV̂
T

〈 〉
+ β

2

∣∣∣∣∣∣Y − V̂RV̂
T
∣∣∣∣∣∣2
F
, (3.1)

where β is a positive penalty parameter.
Define Z0 :� {Z ∈ S

n2+1 : Zi,i � 0, Z0,i � Zi,0 � 0, i � 1, : : : ,n2}
and let PZ0 be the projection onto the set Z0. Our pro-
posed algorithm reads as follows.

Algorithm 1 (rPRSM for DNN in (2.7))
Initialize: LA augmented Lagrangian in (3.1); γ ∈
(0, 1), under-relaxation parameter; β ∈ (0,∞), penalty
parameter; R, Y subproblem sets from (2.5); Y0; and
Z0 ∈ ZA;

Graham et al.: A Restricted Dual PRSM for a Strengthened DNN Relaxation for QAP
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while tolerances not met do

Rk+1 � argmin
R∈R

LA(R,Yk,Zk)

Zk+1
2 � Zk + γβ · PZ0 Yk − V̂Rk+1V̂T

( )
Yk+1 � argmin

Y∈Y
LA(Rk+1,Y,Zk+1

2)

Zk+1 � Zk+1
2 + γβ · PZ0 Yk+1 − V̂Rk+1V̂T

( )
end while

Remark 3.1. Algorithm 1 can be summarized as fol-
lows: alternate minimization of variables R and Y
interlaced by the dual variable Z update. Before dis-
cussing the convergence of Algorithm 1, we point
out the following. The R-update and the Y-update in
Algorithm 1 are well defined; that is, the subpro-
blems involved have unique solutions. This follows
from the strict convexity of LA with respect to R, Y
and the convexity and compactness of the sets R
and Y. Many of the constraints are redundant in the
SDP part of the problem, for example, the trace on R,
and the b0diag ,o0diag ,arrow on Y. However, these
constraints are not redundant within the subpro-
blems themselves and are inexpensive to include.
For example, the trace constraint enforces compact-
ness in the R-subproblem. They improve the rate of
convergence and the quality of the Y when stopping
the rPRSM algorithm early.

We also note that, in Algorithm 1, we update the
dual variable Z both after the R-update and the Y-
update. This pattern of update in our Algorithm 1 is
closely related to the strictly contractive PRSM (He
et al. 2014, Li and Yuan 2015). Indeed, we show in
Theorem 3.1 that our algorithm can be viewed as a
version of semiproximal strictly contractive PRSM (Gu
et al. 2015, Li and Yuan 2015), applied to (3.2). Hence,
the convergence of our algorithm can be deduced
from the general convergence theory of semiproxi-
mal strictly contractive PRSM.

Theorem 3.1. Let {Rk}, {Yk}, {Zk} be the sequences gen-
erated by Algorithm 1. Then the sequence {(Rk,Yk)} con-
verges to a primal optimal pair (R∗,Y∗) of (2.7), and {Zk}
converges to an optimal dual solution Z∗ ∈ ZA.

Proof. The proof is divided into two steps. In the
first step, we consider the convergence of the semi-
proximal restricted contractive PRSM in Gu et al.
(2015) and Li and Yuan (2015) applied to the fol-
lowing problem (3.2), where PZc

0
is the projection

onto the orthogonal complement of Z0, that is,

PZc
0
� I−PZ0 :

min
R,Y

〈LQ,PZ0(Y) +PZc
0
(V̂RV̂

T)〉

s:t: PZ0(Y) � PZ0 V̂RV̂
T

( )
R ∈R

Y ∈ Y: (3.2)

We show that the sequence generated by the semi-
proximal restricted contractive PRSM in Gu et al.
(2015) and Li and Yuan (2015) converges to a Karush-
Kuhn-Tucker (KKT) point of (2.7). In the second step,
we show that the sequence generated by Algorithm 1
is identical with the sequence generated by the semi-
proximal restricted contractive PRSM applied to (3.2).

Step 1. We apply the semiproximal strictly contrac-
tive PRSM given in Gu et al. (2015) and Li and Yuan

(2015) to (3.2). Let (R̃0
, Ỹ

0
, Z̃

0) :� (R0,Y0,Z0), where R0

and Y0 are chosen to satisfy (2.7) and Z0 ∈ ZA. Con-
sider the following update:

R̃
k+1 � argmin

R∈R
LQ,PZc

0
V̂RV̂

T
( )〈 〉

− Z̃
k
,PZ0 V̂RV̂

T
( )〈 〉

+ β

2

∣∣∣∣∣∣PZ0 Ỹ
k − V̂RV̂

T
( )∣∣∣∣∣∣2

F

+ β

2

∣∣∣∣∣∣PZc
0
(V̂RV̂

T − V̂R̃
k
V̂

T)
∣∣∣∣∣∣2
F
,

Z̃
k+1

2 � Z̃
k + γβPZ0 Ỹ

k − V̂R̃
k+1

V̂
T

( )
,

Ỹ
k+1 ∈ argmin

Y∈Y
〈LQ,PZ0(Y)〉 + Z̃

k+1
2,PZ0(Y)

〈 〉
+ β

2

∣∣∣∣∣∣PZ0 Y− V̂R̃
k+1

V̂
T

( )∣∣∣∣∣∣2
F
,

Z̃
k+1 � Z̃

k+1
2 + γβPZ0 Ỹ

k+1 − V̂R̃
k+1

V̂
T

( )
, (3.3)

where γ ∈ (0, 1) is an under-relaxation parameter.
The R-update in (3.3) is well defined because the
subproblem involved is a strongly convex problem.
By completing the square in the Y-subproblem, we
have that

Ỹ
k+1 ∈ argmin

Y∈Y

∣∣∣∣∣
∣∣∣∣∣PZ0(Y)− PZ0 V̂R̃

k+1
V̂

T
( )

−1
β
LQ+ Z̃

k+1
2

( )( )∣∣∣∣∣
∣∣∣∣∣
2

F

:

We note that PZ0(Ỹk+1) is uniquely determined with

PZ0 Ỹ
k+1( )

� PZ0 V̂R̃
k+1

V̂
T

( )
− 1
β

LQ + Z̃
k+1

2
( )

,
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whereas PZc
0
(Ỹk+1) can be chosen to be

PZc
0
(Ỹk+1) � PZc

0
V̂R̃

k+1
V̂

T
( )

, ∀k ≥ 0: (3.4)

Finally, one can also deduce by induction that Z̃
k ∈

ZA, for all k, because Z0 ∈ ZA. From the general con-
vergence theory of semiproximal strictly contractive
PRSM given in Gu et al. (2015) and Li and Yuan
(2015), we have

R̃
k
, Ỹ

k
, Z̃

k
( )

→ (R∗,Y∗,Z∗) ∈R × Y × ZA,

where the convergence of {R̃k} follows from the

injectivity of the map R �→ V̂RV̂
T
. Thus, the triple

(R∗,Y∗,Z∗) solves the optimality condition for (3.2),
that is,

0 ∈ V̂
T
PZc

0
(LQ)V̂ − V̂

T
PZ0(Z∗)V̂ +NR(R∗), (3.5a)

0 ∈ PZ0(LQ) +PZ0(Z∗) +NY(Y∗), (3.5b)

PZ0(Y∗) � PZ0 V̂R∗V̂T
( )

: (3.5c)

Because we update PZc
0
(Ỹk) by (3.4), we also have

that

PZc
0
(Y∗) � PZc

0
V̂R∗V̂T
( )

: (3.6)

Next we show that the triple (R∗,Y∗,Z∗) is also a KKT
point of Model (2.7). First, it follows from (3.5c) and (3.6)
that

Y∗ � V̂R∗V̂T
:

Second, we can deduce from (3.5a), (3.5b), and Z∗ ∈
ZA that

0 ∈ −V̂T
Z∗V̂ +NR(R∗) and 0 ∈ LQ +Z∗ +NY(Y∗):

Hence, we have shown that the sequence generated
by (3.3) and (3.4) converges to a KKT point of Model
(2.7).

Step 2. We now claim that the sequence
{
(R̃k

, Z̃
k−1

2,

Ỹ
k
, Z̃

k)
}
generated by (3.3) and (3.4), starting from (R̃0

,

Ỹ
0
, Z̃

0) :� (R0,Y0,Z0), is identical to the sequence (Rk,
{

Zk−1
2,Yk,Zk)} given by Algorithm 1. We prove by

induction. First, we clearly have (R̃0
, Ỹ

0
, Z̃

0) � (R0,Y0,

Z0) by the definition. Suppose that (R̃k
, Ỹ

k
, Z̃

k) � (Rk,

Yk,Zk) for some k ≥ 0. Because Z̃
k ∈ ZA and (3.4) holds,

we can rewrite the R-subproblem in (3.3) as follows:

argmin
R∈R

LQ,PZc
0
V̂RV̂

T
( )〈 〉

− Z̃
k
,PZ0 V̂RV̂

T
( )〈 〉

+ β

2

∣∣∣∣∣
∣∣∣∣∣PZ0 Ỹ

k − V̂RV̂
T

( )∣∣∣∣∣
∣∣∣∣∣
2

F

+ β

2

∣∣∣∣∣
∣∣∣∣∣PZc

0
V̂R̃

k
V̂

T − V̂RV̂
T

( )∣∣∣∣∣
∣∣∣∣∣
2

F

�argmin
R∈R

PZc
0
(LQ) −PZ0(Z̃k), V̂RV̂

T
〈 〉

+ β

2

∣∣∣∣∣
∣∣∣∣∣PZ0 Ỹ

k − V̂RV̂
T

( )∣∣∣∣∣
∣∣∣∣∣
2

F

+ β

2

∣∣∣∣∣
∣∣∣∣∣PZc

0
V̂R̃

k
V̂

T − V̂RV̂
T

( )∣∣∣∣∣
∣∣∣∣∣
2

F

�argmin
R∈R

−PZc
0
(Z̃k) −PZ0(Z̃k), V̂RV̂

T
〈 〉

+ β

2

∣∣∣∣∣
∣∣∣∣∣Ỹk − V̂RV̂

T
∣∣∣∣∣
∣∣∣∣∣
2

F

�argmin
R∈R

− Z̃
k
, V̂RV̂

T
〈 〉

+ β

2

∣∣∣∣∣
∣∣∣∣∣Ỹk − V̂RV̂

T
∣∣∣∣∣
∣∣∣∣∣
2

F

,

where the second “�” is because of Z̃
k ∈ ZA and (3.4).

This is equivalent to the R-subproblem in Algorithm 1,

because Z̃
k � Zk and Ỹ

k � Yk by the induction hypothe-

sis. This shows that R̃
k+1 � Rk+1, and it follows that

Z̃
k+1

2 � Zk+1
2. Because Zk+1

2 ∈ ZA, we can rewrite the Y-
subproblem in Algorithm 1 as

argmin
Y∈Y

〈LQ +Zk+1
2,Y〉 + β

2

∣∣∣∣∣
∣∣∣∣∣Y− V̂Rk+1V̂T

∣∣∣∣∣
∣∣∣∣∣
2

F

�argmin
Y∈Y

〈PZ0(LQ +Zk+1
2),Y〉 + β

2

∣∣∣∣∣
∣∣∣∣∣PZ0(Y− V̂Rk+1V̂T)

∣∣∣∣∣
∣∣∣∣∣
2

F

+ β

2

∣∣∣∣∣
∣∣∣∣∣PZc

0
Y− V̂Rk+1V̂T
( )∣∣∣∣∣

∣∣∣∣∣
2

F

�argmin
Y∈Y

〈LQ,PZ0(Y)〉 + Zk+1
2,PZ0 Y( )

〈 〉
+ β

2

∣∣∣∣∣
∣∣∣∣∣PZ0 Y− V̂Rk+1V̂T

( )∣∣∣∣∣
∣∣∣∣∣
2

F

+ β

2

∣∣∣∣∣
∣∣∣∣∣PZc

0
Y− V̂Rk+1V̂T
( )∣∣∣∣∣

∣∣∣∣∣
2

F

,

where the first “�” is because of Zk+1
2 ∈ ZA. Hence,

with R̃
k+1 � Rk+1 and Z̃

k+1
2 � Zk+1

2, we have that the pre-

vious subproblem generates Ỹ
k+1

defined in (3.3) and

(3.4). Thus, we have Ỹ
k+1 � Yk+1, and it follows that

Z̃
k+1 � Zk+1 holds. This completes the proof for

{(Rk ,Yk ,Zk)}k∈N ≡ {(R̃k
, Ỹ

k
, Z̃

k)}k∈N, and the alleged con-
vergence behavior of {(Rk,Yk,Zk)} follows from that of

{(R̃k
, Ỹ

k
, Z̃

k)}. w
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Remark 3.2. There are numerous studies on the con-
vergence rate of splitting methods, in particular on
ADMM and its variants. For example, worst-case
O(1=k) convergence measured by the iteration com-
plexity has been established for ADMM in both the
ergodic and nonergodic senses. Here k is the iteration
count (He and Yuan 2012, 2015; Monteiro and Svaiter
2013). With special structure assumptions, local and
global linear convergence results for ADMM appear
in Han and Yuan (2013), Yang and Han (2016), Han
et al. (2018), Yuan et al. (2020), Liu et al. (2018), Boley
(2013), and Deng and Yin (2016). As in Remark 3.1,
our proposed rPRSM can be viewed as a version of
the semiproximal strictly contractive PRSM in Gu et al.
(2015). Thus, it has a worst-case O(1=k) convergence
rate in both the ergodic and nonergodic sense. Linear
convergence rate results on PRSM and its variants but
with strongly convex and polyhedral constraint set
assumptions appear in Gu et al. (2015), Davis and Yin
(2017), and He et al. (2018).

3.2. Implementation Details
The explicit Z-updates in Algorithm 1 are simple and
easy. We now show that we have explicit expressions
for R-updates and Y-updates as well.

3.2.1. R-Subproblem. In this section, we present the
formula for solving the R-subproblem in Algorithm 1. We
definePR(W) to be the projection ofW onto the compact

setR, whereR :�
{
R ∈ S

(n−1)2+1
+ : tr(R) � n+ 1

}
. By com-

pleting the square at the current iterates Y k, Zk, the R-
subproblem can be explicitly solved by the projection
operatorPR as follows:

Rk+1 � argmin
R∈R

− Zk, V̂RV̂
T

〈 〉
+ β

2

∣∣∣∣∣
∣∣∣∣∣Yk − V̂RV̂

T
∣∣∣∣∣
∣∣∣∣∣
2

F

� argmin
R∈R

β

2

∣∣∣∣∣
∣∣∣∣∣Yk − V̂RV̂

T + 1
β
Zk

∣∣∣∣∣
∣∣∣∣∣
2

F

� argmin
R∈R

β

2

∣∣∣∣∣
∣∣∣∣∣R− V̂

T(Yk + 1
β
Zk)V̂

∣∣∣∣∣
∣∣∣∣∣
2

F

� PR(V̂T(Yk + 1
β
Zk)V̂),

where the third equality follows from the assumption

V̂
T
V̂ � I.

For a given symmetric matrix W ∈ S
(n−1)2+1, we now

show how to perform the projection PR(W). Using the
eigenvalue decompositionW �UΛUT, we have

PR(W) �UDiag(PΔ(diag(Λ)))UT,

where PΔ(diag(Λ)) denotes the projection of diag(Λ)
onto the simplex

Δ � λ ∈ R
(n−1)2+1
+ : λTe � n+ 1

{ }
:

Projections onto simplices can be performed effi-
ciently via some standard root-finding strategies (van
den Berg and Friedlander 2008/2009, Chen and Ye
2011). Therefore, the R-updates reduce to the projec-
tion of the vector of the positive eigenvalues of

V̂
T
Yk + 1

βZ
k

( )
V̂ onto the simplex Δ.

3.2.2. Y-Subproblem. In this section, we present the
formula for solving the Y-subproblem in Algorithm 1.
By completing the square at the current iterates
Rk+1,Zk+1

2, we get

Yk+1 � argmin
Y∈Y

〈LQ,Y〉 + Zk+1
2,Y− V̂Rk+1V̂T

〈 〉
+ β

2

∣∣∣∣∣
∣∣∣∣∣Y− V̂Rk+1V̂T

∣∣∣∣∣
∣∣∣∣∣
2

F

� argmin
Y∈Y

β

2

∣∣∣∣∣
∣∣∣∣∣Y− V̂Rk+1V̂T − 1

β
LQ +Zk+1

2

( )( )∣∣∣∣∣
∣∣∣∣∣
2

F

:

Recall that the Y-subproblem involves the projection
onto the polyhedral set in (2.6):

Y :� {Y ∈ S
n2+1 : GJ̄ (Y) � u0, 0 ≤ Y ≤ 1, b0diag (Y)

� I, o0diag (Y) � I, arrow (Y)
� 0}:

Set T :� V̂Rk+1V̂T − 1
β (LQ +Zk+1

2)
( )

. Then we update

Yk+1 as follows:

(Yk+1)ij �

1 if i � j � 0,
sij if i � j > 0 or

ij � 0 and i+ j > 0
( )

,
0 if ij or ji ∈ J̄=(00),
min 1,max{Tij, 0}{ }

otherwise;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3.7)

where s ∈ R
n2 is determined as in (3.8).

Remark 3.3 (Calculating s in (3.7)). Given any column
vector t ∈ R

n2 , we let tci denote the ith column of
Matt, i � 1, : : : ,n. We denote the ith subvector in the
diagonal (except for the (0,0)-th element), first column
and first row of T by the column vectors tdi , t

c
i and tri ,

respectively. Then

s � argmin
s

(||s− td||2+ ||s− tc||2+ ||s− tr ||2)
s:t: Mat(s) ∈D:

(3.8)
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By completing the squares in the objective of (3.8) and
removing the redundant s ≤ 1, we transform (3.8) into
the following equivalent optimization problem:

min
s

∣∣∣∣∣∣s− 1
3
(td + tc + tr)

∣∣∣∣∣∣2
s:t: Mat(s) ∈D:

(3.9)

We reshape 1
3 (td + tc + tr) into an n-by-n matrix T̃a col-

umn by column. Then we can rewrite (3.9) equivalently
as

min
S∈Rn×n ||S− T̃a||2
s:t: S ∈D:

(3.10)

Denote the optimal solution of (3.10) by S∗, then s �
vec(S∗). This relates with Proposition 2.4; in each itera-
tion, we project the arrow positions of Y to the set of
doubly stochasticmatrices.

3.3. Bounding from Approximate Solutions
Primal and dual solutions from our algorithm are
approximate. We would like to obtain useful lower
and upper bounds for the optimal value p∗QAP. This can
often help in stopping the algorithm early and prove
optimality for our current permutation X for the origi-
nal QAP. This follows the approach in Li et al. (2021).

3.3.1. Lower Bound from Relaxation. Exact solutions
of Relaxation (2.7) provide lower bounds to the origi-
nal QAP (1.1). However, the size of Problem (2.7) can
be extremely large, and it could be very expensive to
obtain solutions of high accuracy. In this section, we
present an inexpensive way to obtain a valid lower
bound using the output with moderate accuracy from
our algorithm.

Our approach is based on the following functional:

g(Z) :� min
Y∈Y LQ + Z,Y

〈 〉 − (n + 1)λmax V̂
T
ZV̂

( )
, (3.11)

where λmax(V̂T
ZV̂) denotes the largest eigenvalue of

V̂
T
ZV̂ . In Theorem 3.2, we show that maxZ g(Z) is

indeed the Lagrange dual problem of our main DNN
relaxation (2.7).

Theorem 3.2. Let g be the functional defined in (3.11).
Then the problem

d∗Z :� max
Z

g(Z) (3.12)

is a concave maximization problem. Furthermore, strong
duality holds for the primal (2.7) with dual (3.12), that is,

p∗DNN � d∗Z, and d∗Z is attained:

Proof. The function V̂
T
ZV̂ is linear in Z. Therefore,

the largest eigenvalue function λmax(V̂T
ZV̂) is a

convex function of Z. Thus, the argument of the

minimum in (3.12)

LQ +Z,Y
〈 〉− (n+ 1)λmax(V̂T

ZV̂)
is concave in Z. The concavity of g is now clear.

We derive (3.12) via the Lagrange dual problem of
(2.7):

p∗DNN � min
R∈R,Y∈Ymax

Z
LQ,Y
〈 〉 + Z,Y − V̂RV̂

T
〈 〉{ }

� max
Z

min
R∈R,Y∈Y

LQ,Y
〈 〉 + Z,Y − V̂RV̂

T
〈 〉{ }

,

(3.13a)

� max
Z

min
Y∈Y

LQ,Y
〈 〉 + 〈Z,Y〉{ } +min

R∈R Z, − V̂RV̂
T

〈 〉{ }
� max

Z
min
Y∈Y LQ,Y

〈 〉 + 〈Z,Y〉{ } +min
R∈R V̂

T
ZV̂ , − R

〈 〉{ }
� max

Z
min
Y∈Y

LQ + Z,Y
〈 〉 − (n + 1)λmax V̂

T
ZV̂

( ){ }
� d∗Z, (3.13b)

where
1. (3.13a) follows from Rockafellar (1997, corollary

28.2.2 and theorem 28.4) and the fact that (2.7) has gen-
eralized Slater points (Zhao et al. 1998)3;

2. (3.13b) follows from the definition of R and the
Rayleigh Principle.

We see from Rockafellar (1997, corollary 28.2.2 and
corollary 28.4.1) that the dual optimal value d∗Z is
attained. w

Remark 3.4. Because the Lagrange dual problem in
Theorem 3.2 is an unconstrained maximization prob-
lem, evaluating g defined in (3.11) at the kth iterate Zk

yields a valid lower bound for p∗DNN, that is,
g(Zk) ≤ p∗DNN ≤ p∗QAP. The functional g also strengthens
the bound given in Oliveira et al. (2018, lemma 3.2).
We also see in (3.13b) that Z � 0 provides a positive
contribution to the eigenvalue part of the lower
bound. Moreover, Theorem 2.1 implies that the contri-
bution from JR position, the diagonal, first row, and
column of LQ +Z (except for the (0, 0)th element) is
zero. This motivates scaling LQ to be positive definite.

Let PV :� V̂V̂
T. Then for any r, s ∈ R, the objective in

(2.7) can be replaced by

〈r(PVLQPV + sI),Y〉: (3.14)

We obtain the same solution pair (R∗,Y∗) of (2.7).
Another advantage is that it potentially forces the dual
multiplier Z∗ to be negative definite, and thus the lower
bound is larger. Additional strategies can be used to
strengthen the lower bound g(Zk). Suppose that the
given data matrices A, B are symmetric and integral,
then from (1.1), we know that p∗QAP is an even integer.
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Therefore, applying the ceiling operator to g(Zk) still
gives a valid lower bound to p∗QAP. According to this
prior information, we can strengthen the lower bound
with the even number in the pair {�g(Zk)�, �g(Zk)� + 1}.

3.3.2. Upper Bound from Nearest Permutation Matrix.
Oliveira et al. (2018) present two methods for obtain-
ing upper bounds using a nearest permutation matrix.
In this section, we present a new strategy using a
nearest permutation matrix.

Given X̄ ∈ R
n×n, the nearest permutation matrix X∗

from X̄ is found by solving

X∗ � argmin
X∈Π

1
2
||X− X̄||2F� argmin

X∈Π
−〈X̄,X〉: (3.15)

Any solution to Problem (3.15) yields a feasible solu-
tion to the original QAP, which gives a valid upper
bound tr(AX∗B(X∗)T). As discussed previously, the
permutation matrices are the extreme points of the set
of doubly stochastic matrices D. Hence, we reformu-
late Problem (3.15) as the linear program

max
x∈Rn2

〈vec(X̄),x〉 : (In ⊗ eT)x � e, (eT ⊗ In)x � e, x ≥ 0
{ }

,

(3.16)

and we solve (3.16) using a simplex method type
algorithm.

For an approximate optimum Yout, The first approach
in Oliveira et al. (2018) sets vec(X̄) to be the first column
of Yout ignoring the first element and then solves (3.16).
Now letYout �∑r

i�1λivivTi be the spectral decomposition,
with λ1 ≥ λ2 ≥⋯≥ λr > 0. By abuse of notation, we set vi
to be the vectors in R

n2 formed by removing the first ele-
ment from vi. The second approach presented in Oliveira
et al. (2018) is to use vec(X̄) � λ1v1 in solving (3.16),
where (λ1,v1) is themost dominant eigenpair ofYout.

Inspired by the approximation algorithm in Goe-
mans and Williamson (1995), now let ξ be a random
vector in R

r with elements in (0, 1), and in decreasing
order. We use ξ to perturb the eigenvalues λ1, : : : ,λr

and form X̄ for the upper bound problem (3.16) so that

vec(X̄) �∑r
i�1

ξiλivi:

We repeat this max{1,min(3 ∗ �log (n)�, ubest− lbest}
number of times, where ubest and lbest refer to the best
upper and lower bounds achieved during the algorith-
mic routine, respectively. We update the current upper
bound ubest if a smaller upper bound is obtained.

4. Numerical Experiments with rPRSM
We now present numerical results for Algorithm 1
(Graham et al. 2021, rPRSM), with the bounding

strategies discussed in Section 3.3. The parameter set-
tings and stopping criteria are in Section 4.1. We use
symmetric4 data to examine the comparative perform-
ance between rPRSM and Oliveira et al. (2018,
ADMM). We aim to show that our proposed rPRSM
shows improvements on convergence rates and rela-
tive gaps. In Section 4.3, we compare rPRSM with the
three recently proposed relaxation methods (Bravo
Ferreira et al. 2018, C-SDP; Date and Nagi 2019, F2-
RLT2-DA; Yang et al. 2015, SDPNAL+).

4.1. Parameter Settings and Stopping Criteria
1.We scale the data LQ from (3.14) as follows:

L1 ← PVLQPV,
L2 ← L1 +σLI, where σL :�max{0, − �λmin(LQ)�}+ 10n,

L3 ← n2

α
L2, where α :� �||L2||F�:

We set the penalty parameter β � n
3 and the under-

relaxation parameter γ � 0:9 for the dual variable
update. We choose the initial iterates5:

Y0 � 1
n!

∑
X∈Π

(1;vec(X))(1;vec(X))T and Z0 � PZA(0):

We compute the lower and upper bounds every 100
iterations. The tolerance for the projection onto the
set of doubly stochastic matrices in Remark 3.3 is set
to be 10−4.

2. We terminate rPRSM when one of the following
conditions is satisfied.

(a) The maximum number of iterations, maxiter
� 40,000 is reached.

(b) For given tolerance ε, the following bound on
the primal and dual residuals holds for mt sequen-
tial times:

max

∣∣∣∣∣∣Yk − V̂RkV̂
T
∣∣∣∣∣∣
F

||Yk||F , β ||Yk − Yk−1||F
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ < ε:

We set ε � 10−4 and mt � 100.
(c) Let {l1, : : : , lk} and {u1, : : : ,uk} be sequences of

lower and upper bounds from Sections 3.3.1 and
3.3.2, respectively. The lower (respectively, upper)
bounds do not change for ml (respectively, mu)
sequential times. We setml �mu � 100.

(d) The KKT conditions given in (2.12) are satis-
fied to a certain precision. More specifically, for a
predefined tolerance δ > 0, it holds that

max
∣∣∣∣∣∣Rk −PR Rk + V̂

T
ZkV̂

( )∣∣∣∣∣∣
F
, ||Yk −PY(Yk − LQ −Zk)||F,

{
∣∣∣∣∣∣Yk − V̂RkV̂

T
∣∣∣∣∣∣
F

}
< δ:
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We use this stopping criterion for instances with n larger
than 20, andwe set the tolerance δ � 10−5 when it is used.

4.2. Empirical Results
We now compare results from rPRSM andOliveira et al.
(2018, ADMM) on instances from QAPLIB. We divide
the instances into three groups based on sizes:

n ∈ {10, : : : , 20}, {21, : : : , 40}, {41, : : : , 64}:
For ADMM, we use the parameters from Oliveira et al.
(2018), that is, β � n=3,γ � 1:618, and we adopt the same

stopping criteria for both ADMM and rPRSM. All instan-
ces in Tables 1–3 are tested using MATLAB version 2021a
on Dell XPS 8940 with 11th Gen Intel(R) Core(TM)
i5-11400 @ 2.60GHz 2.59GHz, and 32 GBmemory.

The following provides extra details for the headers
in the various tables.

1. true-opt: global optimal value; marked with ∗
when unknown.

2. lbd: lower bound from rPRSM;
3. ubd: upper bound from rPRSM;

Table 1. Lower and Upper Bounds, Relative Gaps, Iteration Numbers, Running Time Obtained from rPRSM and Oliveira
et al. (2018, ADMM) on the QAPLIB Instances of Small Size

Problem data Numerical results Timing

No. name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time timeA

1 chr12a 9552 9548 9552 0.04 0.04 0.02 11500 24800 18.47 33.31
2 chr12b 9742 9742 9742 0 0 0.08 10300 26700 18.28 35.02
3 chr12c 11156 11156 11156 0 0 0 1600 19400 2.88 25.95
4 chr15a 9896 9896 9896 0 0 0.28 6700 30900 21.70 92.49
5 chr15b 7990 7990 7990 0 0 0.03 3500 20300 11.37 60.45
6 chr15c 9504 9504 9504 0 0 0.08 1800 20000 6.40 59.06
7 chr18a 11098 11098 11098 0 0 0 2000 20600 15.53 143.21
8 chr18b 1534 1534 1846 18.46 0 59.83 5558 12600 48.56 102.17
9 chr20a 2192 2192 2192 0 0 0.18 3700 33700 50.76 447.00
10 chr20b 2298 2298 2298 0 0 0 1200 26200 18.23 377.53
11 chr20c 14142 14136 14142 0.04 0.04 0.15 30900 33700 416.98 445.15
12 els19 17212548 17208748 17212548 0.02 0.02 0.35 30800 40000 341.05 424.29
13 esc16a 68 64 68 6.02 6.02 47.34 398 597 1.97 2.74
14 esc16b 292 290 294 1.37 0.69 6.66 399 399 2.07 1.78
15 esc16c 160 154 176 13.29 3.81 31.61 386 896 2.01 4.07
16 esc16d 16 14 16 12.90 12.90 87.50 282 659 1.45 3.05
17 esc16e 28 28 32 13.11 0 65.85 299 556 1.54 2.57
18 esc16f 0 0 0 0 0 0 1 1 0.01 0.01
19 esc16g 26 26 40 41.79 0 78.57 300 695 1.51 3.05
20 esc16h 996 978 1054 7.48 1.82 31.76 1362 609 6.73 2.71
21 esc16i 14 12 14 14.81 14.81 88.89 1016 2044 4.75 9.05
22 esc16j 8 8 8 0 0 82.76 200 787 1.01 3.49
23 had12 1652 1652 1652 0 0 0 300 11600 0.58 16.05
24 had14 2724 2724 2724 0 0 0 400 20300 1.27 50.57
25 had16 3720 3720 3720 0 0 0 600 18100 3.16 74.82
26 had18 5358 5358 5358 0 0 0.02 1300 34700 11.04 273.82
27 had20 6922 6922 6922 0 0 0.13 2300 40000 34.57 571.06
28 nug12 578 568 728 24.67 1.74 27.86 1416 2884 2.91 4.21
29 nug14 1014 1012 1022 0.98 0.20 1.08 2832 19600 9.19 50.62
30 nug15 1150 1142 1280 11.39 0.70 16.33 2161 5812 8.83 19.83
31 nug16a 1610 1600 1610 0.62 0.62 0.62 6217 19300 33.68 90.71
32 nug16b 1240 1220 1250 2.43 1.63 25.41 3454 2347 17.86 10.70
33 nug17 1732 1708 1756 2.77 1.39 2.77 6194 6401 43.55 40.80
34 nug18 1930 1894 2022 6.54 1.88 12.84 9555 3988 83.53 32.61
35 nug20 2570 2508 2702 7.45 2.44 16.90 7065 2386 109.85 35.72
36 rou12 235528 235528 235528 0 0 0 3700 34200 7.05 51.43
37 rou15 354210 350216 360702 2.95 1.13 4.89 2531 3946 10.61 14.38
38 rou20 725522 695180 781532 11.70 4.27 14.93 7024 1538 109.60 22.93
39 scr12 31410 31410 31410 0 0 19.38 400 4268 0.81 5.89
40 scr15 51140 51140 51140 0 0 2.67 700 5489 3.00 18.05
41 scr20 110030 106804 132826 21.72 2.98 33.40 11599 9705 173.01 136.32
42 tai10a 135028 135028 135028 0 0 0.01 1200 21400 1.48 15.90
43 tai12a 224416 224416 224416 0 0 0 300 4300 0.48 5.63
44 tai15a 388214 377100 403890 6.86 2.90 9.03 2644 2245 11.24 8.13
45 tai17a 491812 476526 534328 11.44 3.16 16.25 2940 1399 21.47 9.40
46 tai20a 703482 671676 762166 12.62 4.63 19.03 3733 999 58.64 15.10
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4. rel.gap: relative gap from rPRSM:

relative gap

:� 2
best feasible upper bound−best lower bound

best feasible upper bound+best lower bound+ 1
;

(4.1)

5. rel.opt.gap: relative optimality gap from rPRSM
using the known true optimal value and the lower bound;

6. rel.gapA: relative gap from (Oliveira et al. 2018,
ADMM) with tolerance ε � 10−5;

7. iter: number of iterations by rPRSM with tolerance
ε � 10−5;

8. iterA: number of iterations from (Oliveira et al.
2018, ADMM) with tolerance ε � 10−5;

9. time: solver rPRSM time;
10. timeA: solver (Oliveira et al. 2018, ADMM) time.

4.2.1. Small Size. Comparing columns iter and iterA

in Table 1, we see that 37 instances were treated with
fewer iterations using rPRSM; that is, rPRSM converges

Table 2. Lower and Upper Bounds, Relative Gaps, Iteration Numbers, Running Time Obtained from rPRSM and Oliveira
et al. (2018, ADMM) on the QAPLIB Instances of Medium Size

Problem data Numerical results Timing

No. name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time timeA

47 chr22a 6156 6156 6156 0 0 0.02 11500 40000 257.32 869.69
48 chr22b 6194 6190 6194 0.06 0.06 0.11 13500 39300 333.04 922.56
49 chr25a 3796 3796 3796 0 0 0 6200 35600 251.42 1350.42
50 esc32a 130 104 158 41.06 22.13 106.07 17700 18200 2607.52 2493.35
51 esc32b 168 132 216 48.14 23.92 96.69 1000 4000 150.17 551.33
52 esc32c 642 616 644 4.44 4.13 27.43 2500 1700 377.82 238.25
53 esc32d 200 192 220 13.56 4.07 54.37 670 1400 99.38 194.64
54 esc32e 2 2 24 162.96 0 141.18 700 3000 104.63 420.31
55 esc32g 6 6 22 110.34 0 26.67 500 900 75.42 126.24
56 esc32h 438 426 452 5.92 2.77 33.46 6500 11300 975.33 1568.05
57 kra30a 88900 86838 95760 9.77 2.35 16.50 9898 3700 1041.70 390.89
58 kra30b 91420 87858 101640 14.55 3.97 27.87 5480 4900 575.28 501.67
59 kra32 88700 85776 94350 9.52 3.35 35.29 4959 4100 738.47 576.96
60 nug21 2438 2382 2644 10.42 2.32 12.36 6439 5600 129.38 106.93
61 nug22 3596 3530 3678 4.11 1.85 12.76 7279 7400 182.73 176.07
62 nug24 3488 3402 3770 10.26 2.50 16.25 4543 4300 167.09 149.64
63 nug25 3744 3626 3984 9.41 3.20 15.37 10400 7500 518.30 309.37
64 nug27 5234 5130 5496 6.89 2.01 17.08 10039 8400 699.69 507.98
65 nug28 5166 5026 5644 11.58 2.75 18.55 8387 7200 687.17 521.18
66 nug30 6124 5950 6610 10.51 2.88 19.83 11321 8800 1190.14 903.52
67 ste36a 9526 9260 9980 7.48 2.83 42.28 19500 27300 5473.12 7479.83
68 ste36b 15852 15668 15932 1.67 1.17 82.03 29000 40000 7936.73 10967.49
69 ste36c 8239110 8134808 8394142 3.14 1.27 36.15 36499 40000 9880.20 11183.03
70 tai25a 1167256 1096656 1264590 14.22 6.24 20.56 2264 800 101.26 34.42
71 tai30a 1818146 1706872 1984536 15.04 6.31 15.21 4550 1400 474.63 142.48
72 tai35a* 2422002 2216646 2605986 16.15 8.85 22.34 3161 1500 732.88 358.34
73 tai40a* 3139370 2843310 3455540 19.44 9.90 23.43 5577 2200 2631.93 1053.03
74 tho30 149936 143576 166336 14.69 4.33 24.33 8321 7400 895.77 773.30
75 tho40* 240516 226522 256442 12.39 5.99 26.25 15535 12200 7281.85 5700.18

Table 3. Lower and Upper Bounds, Relative Gaps, Iteration Numbers, Running Time Obtained from rPRSM and Oliveira
et al. (2018, ADMM) on the QAPLIB Instances of Large Size

Problem data Numerical results Timing

No. name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time timeA

76 esc64a 116 98 244 85.13 16.74 75.71 400 1200 3049.78 9161.95
77 sko42* 15812 15336 16244 5.75 3.06 17.24 5511 10700 3083.39 6086.78
78 sko49* 23386 22654 24162 6.44 3.18 16.59 9484 16900 13453.32 24638.60
79 sko56* 34458 33390 36468 8.81 3.15 16.60 5792 15100 18663.36 48683.65
80 sko64* 48498 47022 50322 6.78 3.09 15.54 10021 21100 73824.91 152841.35
81 tai50a* 4938796 4390980 5517228 22.73 11.74 25.79 2331 3300 3792.80 5345.89
82 tai60a 7205962 6326344 7895180 22.06 13.00 26.03 3799 5100 18807.38 25109.36
83 tai64c* 1855928 1811354 1887500 4.12 2.43 38.79 800 2400 6139.92 18157.72
84 wil50 48816 48126 50834 5.47 1.42 9.38 5384 11000 9165.35 18236.57
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faster in general than ADMM for the small-size
QAPLIB instances. In particular, 45 of 46 instances are
solved with relative gaps just as good as the ones
obtained by ADMM, and these instances are marked
with bold in Table 1. We have found provably optimal
solutions for instances

chr12b chr12c chr15a chr15b chr15c chr18a
chr20a chr20b esc16f esc16j had12 had14
had16 had18 had20 rou12 scr12 scr15
tai10a tai12a:

We also observe from columns iter and iterA in Table 1
that rPRSM gives reduction in number of iterations in
many instances; 37 of 46 instances use fewer or equal
number of iterations using rPRSM compared with
ADMM. For rPRSM alone, we observe that most of the
instances show good bounds with a reasonable amount
of time.Most of the instances are solvedwithin aminute
using themachine described previously.

4.2.2. Medium Size. Table 2 contains results on 29
QAPLIB instances with sizes n ∈ {22, : : : , 40}. Columns
rel.gap and rel.gapA in Table 2 show that rPRSM pro-
duces competitive relative gaps compared with
ADMM. In particular, 27 instances are solved with rel-
ative gaps just as good as the ones obtained by
ADMM, and these instances are marked with bold in
Table 2. We have found provably optimal solutions
for instances chr22a and chr25a. For rPRSM alone, we
observe that most of the instances show good bounds
with reasonable amount of time.

4.2.3. Large Size. Table 3 contains results on nine
QAPLIB instances with sizes n ∈ {41, : : : , 64}. We observe
that rPRSM outputs better relative gaps than ADMM on
eight instances, and this is because of the random pertur-
bation approach presented in Section 3.3.2.We also obtain
reduction on the number of iterations. It indicates that our
strategies taken on R and Z updates in rPRSM help the
iterates converge faster thanADMM.

4.3. Comparisons with Other Methods
We now compare our results with three recent papers
on relaxations for QAP.6

4.3.1. Comparison with C-SDP. Briefly, C-SDP (Bravo
Ferreira et al. 2018) is a semidefinite relaxation-based
algorithm that applies to relatively sparse data, and in
particular, are presented for the chr and esc families in
QAPLIB. Figure 1 illustrates the relative gaps arising
from rPRSM and C-SDP. The numerics used in Figure 1
can be found in Bravo Ferreira et al. (2018, tables 3 and 4).

The horizontal axis indicates the instance name
on QAPLIB, whereas the vertical axis indicates the rel-
ative gap.7 Figure 1 illustrates that rPRSM yields
much stronger relative gaps than C-SDP.

4.3.2. Comparison with F2-RLT2-DA. Date and Nagi
(2019) propose F2-RLT2-DA, a linearization technique-
based parallel algorithm (GPU-based) for obtaining
lower bounds via Lagrangian relaxation. Figure 2(a)
illustrates the comparisons on lower bound gap8 using
rPRSM and F2-RLT2-DA. It shows that both rPRSM
and F2-RLT2-DA output competitive lower bounds to
the best-known feasible values for QAP. Figure 2(b)
illustrates the comparisons on the running time9 in
seconds using rPRSM and F2-RLT2-DA.We observe that
the running time of F2-RLT2-DA is much longer than the
running time of rPRSM; F2-RLT2-DA requires at least 10
times longer than rPRSM. Furthermore, fromFigure 2we
observe that, although the two methods give similar
lower bounds to QAP, rPRSM is less time-consuming
even considering the differences in the hardware.10

4.3.3. Comparison with SDPNAL1. SDPNAL+ (Yang
et al. 2015) is one of the state-of-the-art software pack-
ages for large-scale SDPs with bound constraints. As
suggested by the user guide, an SDP relaxation for
QAP can be formulated as

min
Y

{〈C,Y〉 : A(Y) � b, Y ≥ 0, Y� 0}, (4.2)

where the affine constraints A(Y) � b and the lifted
variable Y differ from ours and are given in Povh and
Rendl (2009).

Figure 1. Relative Gap for rPRSM and C-SDP
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We now develop a process that takes the output
from SDPNAL+ to obtain valid lower bounds. Define
Y :� {Y�0 : trY � n}. Let
ĝ(y,W,Z) :

�min
Y∈Y 〈C,Y〉 + 〈y,b−A(Y)〉 − 〈Z,Y〉 − 〈W,Y〉{ }

be the dual functional for (4.2). The dual of (4.2) is

d∗ � max
y,W≥0,Z�0

ĝ(y,W,Z):

Let (ȳ,W̄ , Z̄) be the dual solution that we obtain at
the termination of SDPNAL+. Define S̄ � C−A∗(ȳ)
− Z̄ − W̄ . We compute the valid lower bound as fol-
lows:

d∗ ≥ 〈b, ȳ〉 +min
Y∈Y

{〈S̄,Y〉} � 〈b, ȳ〉 + nλmin(S̄):

Additionally, as noted in Remark 3.4, we take the lower
bound with the even number in the pair {�ĝ(ȳ,W̄ ,
Z̄)�, �ĝ(ȳ,W̄ , Z̄)� + 1}. Table 4 contains the numerical
results. The header rel.opt.gap (rel.opt.gapN, respec-
tively) refers to the value rel.opt.gap used in Tables 1–3
for rPRSM (SDPNAL+, respectively). The headers time
and timeN refer to the running time for the two algo-
rithms. The header ubdtime refers to the time that
rPRSM consumes in computing the upper bounds using
the strategy in Section 3.3.2. In Table 4, we present com-
parative performance that have different relative gaps
among the 84 instances fromTables 1–3.

The running time for rPRSM appears different from
Tables 1–3 because we measure the running time
based on the wall-clock time. We observe that the
lower bound and the running time from the two dif-
ferent methods are competitive. SDPNAL+ is a MAT-
LAB software package, but some subroutines are
implemented in C language via Mex files to improve
its efficiency, whereas rPRSM is implemented using
MATLAB only. We emphasize that the running time
for rPRSM includes strategies for computing upper
and lower bounds from Section 3.3. This means that

we sometimes obtain a zero-duality gap and a proof
of optimality for the original QAP.

5. Conclusion
In this paper we introduce a strengthened splitting
method for solving the facially reduced DNN

Figure 2. Numerical Comparison for rPRSM and F2-RLT2-DA
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Table 4. Relative Optimality Gaps, Running Time of rPRSM
vs. SDPNAL+ on 84 Instances from QAPLIB

Problem data Numerical results Timing

No. name rel.opt.gap rel.opt.gapN time ubdtime timeN

1 chr12a 0.042 0 20.78 4.55 4.69
11 chr20c 0.042 0.028 423.35 20.22 84.11
12 els19 0.022 0.028 351.37 21.31 53.89
29 nug14 0.197 0.395 9.33 1.69 19.86
35 nug20 2.441 2.521 105.52 4.89 81.09
37 rou15 1.134 1.145 10.92 1.52 14.24
38 rou20 4.271 4.279 106.77 5.03 31.72
40 scr15 0 0.004 3.35 0.46 4.37
41 scr20 2.976 3.002 171.94 8.23 82.14
44 tai15a 2.904 2.910 11.31 1.58 14.63
45 tai17a 3.157 3.163 21.53 1.89 23.58
46 tai20a 4.626 4.632 56.66 2.63 37.94
48 chr22b 0.065 0.032 301.09 7.22 167.14
57 kra30a 2.347 2.381 978.50 13.17 380.87
58 kra30b 3.974 4.001 542.78 7.27 326.17
59 kra32 3.352 3.373 678.02 7.75 716.33
61 nug22 1.852 1.909 165.43 6.36 134.08
67 ste36a 2.832 2.875 5046.15 43.98 1312.15
68 ste36b 1.167 1.308 7522.91 65.56 2119.24
69 ste36c 1.274 1.325 9594.39 83.49 2025.44
70 tai25a 6.237 6.243 95.80 2.32 71.38
71 tai30a 6.313 6.319 448.89 6.09 277.67
72 tai35a* 8.854 8.858 698.77 6.43 840.71
73 tai40a* 9.897 9.901 2532.16 18.95 1541.78
74 tho30 4.334 4.353 840.09 11.06 371.06
75 tho40* 5.993 6.008 6764.66 52.79 2298.18
77 sko42* 3.056 3.069 3213.49 23.33 2304.08
78 sko49* 3.180 3.189 13921.23 89.83 5881.42
79 sko56* 3.148 3.208 18727.49 129.02 10055.00
80 sko64* 3.090 3.312 74783.02 533.01 10119.32
81 tai50a* 11.743 11.748 3902.22 25.75 6006.06
82 tai60a* 13.000 13.058 19124.50 131.87 10275.26
83 tai64c 2.431 2.462 6152.15 37.03 6826.23
84 wil50* 1.424 1.432 9093.90 57.92 9342.94
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relaxation for the QAP. That is, given constraints
that are difficult to engage simultaneously, we dis-
tribute the constraints into two simpler subproblems
to solve them efficiently. In addition, we provide a
straightforward derivation of facial reduction and
the gangster constraints via a direct lifting. In our
strengthened model and algorithm, we also incorpo-
rate redundant constraints to the model that are not
redundant in the subproblems arising from the split-
ting; more specifically, the trace constraint in the R-
subproblem and the projection onto the set of dou-
bly stochastic matrices in the Y-subproblem. We also
exploit the set of dual optimal multipliers and pro-
vide customized dual updates in the algorithm,
which leads a new strategy for strengthening the
lower bounds.

Endnotes
1 There are several ways of constructing such a matrix V̂ . One way
is presented in Proposition 2.2.
2 See http://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-
instances-and-solutions/ (accessed March 5, 2022).
3 The Lagrangian is linear in R, Y and linear in Z. Moreover, both
constraint sets R,Y are convex and compact. Therefore, the result
also follows from the classical Von Neumann-Fan minmax theorem.
4 We exclude instances that have asymmetric data matrices.
5 The formula for Y0 is introduced in Zhao et al. (1998, theorem 3.1).
6 For more comparisons, see Oliveira et al. (2018, tables 4.1 and 4.2)
that includes a complete list of lower bounds using the bundle
method in Rendl and Sotirov (2007).
7 We selected the best result given in Bravo Ferreira et al. (2018,
tables 3 and 4) for different parameters. We point out that Bravo
Ferreira et al. (2018) used a different formula for the gap computa-
tion. In this paper, we recomputed the relative gaps using (4.1) for a
proper comparison. Bravo Ferreira et al. (2018) used a similar
approach for upper bounds as in our paper, that is, the projection
onto permutation matrices using von Neumann (1953) and Birkoff
(1946).
8 We compute the lower bound gap by 100 ∗ (p∗ − l)=p∗%, where p∗ is
the best-known feasible value to QAP and l is the lower bound.
9 The running time for F2-RLT2-DA is obtained using the average
time per iteration presented in Date and Nagi (2019) multiplied by
2,000 because F2-RLT2-DA runs the algorithm for 2,000 iterations.
The running time for rPRSM is drawn from Tables 1–3.
10 F2-RLT2-DA was coded in C++ and CUDA C programming lan-
guages and deployed on the Blue Waters Supercomputing facility
at the University of Illinois at Urbana-Champaign. Each processing
element consists of an AMD Interlagos model 6276 CPU with eight
cores, 2.3-GHz clock speed, and 32-GB memory connected to an
NVIDIA GK110 “Kepler” K20X GPU with 2,688 processor cores
and 6-GB memory.
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