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Abstract
This short note revisits an algorithm previously sketched by Mathis
and Mathis, Siam Review 1995, and used to solve a nonlinear hospital
fee optimization problem. An analysis of the problem structure reveals
how the Simplex algorithm, viewed under the correct light, can be the
driving force behind a successful algorithm for a nonlinear problem.

1 A seemingly nonlinear program

In a past Classroom Notes column, [6] Mathis and Mathis introduces an in-
teresting optimization problem. Practical, in this era of budget constraints,
their model describes a facet of hospital revenue and is used by managers
in Texas to help in decision making. Even more interesting, for the theo-
retically minded, is the fact that a trivial algorithm seems to solve, albeit
without a convergence proof, a nonlinear, arguably difficult problem.

We revisit this problem to give a strong mathematical foundation to a
slightly modified algorithm and explain, along the way, why the problem is
much simpler than expected at first glance. The historically inclined will
notice that the results used for this analysis are all thirty years old.

Mathis and Mathis give a complete description of the problem to which
we refer the reader. We just repeat the more important points of the model
formulation.
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e There are d departments in the hospital.
e Department ¢ performs p; procedures.
e Charges are assigned to procedure j in department ¢ by

— m;; > 0 represents Medicare/Medicaid charges.
— 0;; > 0 represents other charges.

— ¢;; > 0 represents total charges (c;; = m;; + 0;5).
e The government-fixed outpatient cost is C; > 0 for department <.

e The decision variable, r;; represents the fraction of increase in the
charge for procedure j, department <.

e The increase is upper and lower bounded by [;; < r;; < u;;.
e The overall charge increase is ¢ X 100 percent.

Their model then produces the following maximization problem

i=d |j=pi J=pi
=1 mij(1+rij)
max F(r) := Z Z 0i;(L+ i) + C; ]~:1 :
=1 | =1 =1 cii(1+7ij)
i=d j=pi 1=d j=pi
subject toz Z CijPij = qz Z Cijy Li; < rij < uyj
=1 j=1 =1 j=1

And their algorithm for solving the maximization is

Algorithm 1 : Mathis & Mathis

Set all 7;; to ¢ and sort the procedure in ascending order of Q;; :=

Ol]
while the sort produces a different ordering do "
Set all 7;; to u;;.
Beginning with the smallest Q;;, assign /;; to r;; until the solution is
nearly feasible. Then adjust the last r;; to make it so.
Compute the new Q);; and sort.
end while

The algorithm is unexpectedly simple, especially contrasted to the prob-
lem it pretends to solve. But it begs a convergence proof. The authors
checked the results against a well-known nonlinear solver to gain confidence



in the procedure but stopped short of a proof. Moreover, one characteristic
of the algorithm is nagging: looking at the feasible region as the polytope
that it is, we see that iterates proceed from vertex to vertex. It should have
struck the reader as odd that a continuous nonlinear program would attain
its optimal solution at a vertex. Because of these surprises, we will reformu-
late the problem to highlight the characteristics that explain the algorithm’s
behavior.

2 A somewhat less nonlinear program

How should one attack a problem like the one above? The objective function
is nonlinear, which eliminates a blind application of the well-known Simplex
method for linear programming (see [1]). Interior-point methods (see [8])
usually assume convex functions, which does not appear to be the case.
Yet a full-features nonlinear solver, possibly based on Sequential Quadratic
Programming (see [9]) seems an overkill. In the hope of recognizing spe-
cial characteristics of the problem and of simplifying the analysis, we now
reformulate and get rid of the noise. First we let the solution space be
R” = RPL @ ... § NP4, where the p;, we recall, indicate the number of
procedures per department, to obtain

@Gﬁpia é;l = [—|—7’11,1—|—7‘l2,...,1‘|‘7'fpi]t,
56%“, T = [mlta$2ta" md]t‘

Note that the decision variable is now non-negative. We will use Z to refer to
the whole vector, z; to refer to the sub-vector corresponding to department
¢, and @; to refer to a component of Z, according to the property of the
solution that we wish to highlight. We make corresponding substitutions to
the other parameters.

BeR, & = ool

b; € RPi, b; = Ci[mﬁlamfw ’mfpz]t’

GeER, & = [chych,.. ]

Lewri, I, = [1+ 11’1+lz2"' 1-|-lt ]t

GeRr, @ = 1 ‘|‘“11a1‘|‘“z2"' 1‘|‘“zpl]’
t = (1+q¢) 2= E] 1 cijy

where the coefficients now satisfy ¢; — a; + Ci_lb~i.



After these substitutions the problem is revealed as

d d
(P)  max {Z Y o&'E =t l§m§u},

a Fractional Program. Problems of this form have been extensively studied,
mostly because of their importance in finance (See [11]). There also has
been recent attempts at developing interior-point algorithms specialized to
fractional programs (See [3, 7]).

With our formulation, the first useful characteristic of the problem comes
to light: The objective function is separable by department. It is a sum of
functions, each concerned with different vectors. Analyzing each term yields
the following information:

C; Ly

~t

b; T;
~f o~ 1 1
a; T+ —=

e The product &'Z; must be strictly positive.

e The feasible region is the intersection of a hyperplane with a box.

e
e Each term is either a linear (a@;'%;) or a linear fractional (Ié’ltzf) trans-
£ £

formation (projective transformation).

We wish to attract the reader’s attention to the linearity of the feasible
region and the pseudo-linearity of each term of the objective function. That
a projective transformation is both pseudo-convex and pseudo-concave was
an exercise in Mangasarian’s classic text of the late sixties [5] (Chapter 9,
problem 3). We recall the basic definitions. A function f is pseudo-convex
if

Vi y—-2)>0=fy) > f(2), Yy, 2

and pseudo-concave if

Vi) y—2)<0= fy) < f(z), Vy,z

We will use pseudo-linear to describe a function satisfying both conditions.
Hunting for an optimal solution for this class of functions is as easy as for a
linear function, as the following result helps to understand.

Lemma 2.1 If the directional derivative of a pseudo-linear function van-
ishes in a direction d, the function is constant on the line containing d.

Proof: Say that, at some point z, we have V f(z)!d = 0. Then both inequal-
ities describing pseudo-linearity apply, and we have that f(z 4+ ad) = f(2)



for all a. The function f is constant along the line containing d. a

This implies that a pseudo-linear function has no stationary point un-
less it is constant. This is critical to justify the algorithm’s behavior: A
pseudo-linear function, optimized over a polytope, only has global optima
and attains its extrema at vertices. We will make this more precise in the
next section. But the crucial unstated assumption the algorithm makes is

that the sum a;'Z; + Zﬁigf maintains its convexity properties over the feasible
region. Y

The reader will find a complete characterization of where such sums
remain either quasi-convex or quasi-concave in [10] but the main point, for
our purposes is that the characterization will depend on the values of ¢;, l:l
and a; and that, in the absence of formal restrictions on these values, we
cannot claim that the sum of linear and linear-fractional transformations
remain pseudo-linear. Since this condition is ignored by Mathis and Mathis,
while some convexity assumption is essential to their algorithm, one can
easily construct examples of failure.

We could decide to attack a larger class of problems but the algorithm
might loose it’s amazing simplicity. More simply, we could check the data
to ensure the condition. For the moment, we choose to believe, based on
Mathis and Mathis’ practical experience with hospital management, that the
assumption holds and we proceed to give a solid mathematical foundation
to the algorithm. After we have described the algorithm, we will see how to
handle a larger class of problems with little additional work.

3 Characterization of a global solution

The usual goal of a constrained optimization algorithm is a Karush-Kuhn-
Tucker point (KKT point) since such a point characterizes, under a con-
straint qualification, a necessary condition for optimality (see [5] Chapter 7,
Section 3). This search is easily justified in our case.

Lemma 3.1 An optimal solution of (P) is a KKT point.

Proof: The feasible region is defined by affine functions. This implies the
KKT constraint qualification. a
No more than the recognition of the shape of the feasible region is required
to obtain the constraint qualification. In particular, we need not insist on
the linear independence of the gradients of the active constraints.



We are therefore justified in looking for a KKT point. The next question
is whether there can be any spurious points not optimal for the problem.
We can answer in the negative.

Lemma 3.2 Under the pseudo-linearity assumption, any point satisfying
the KKT conditions is a solution of (P).

Proof: Since the constraints are affine, they are convex. Under the as-
sumption of pseudo-concavity of the objective function, by a Theorem of
Mangasarian ([5], theorem 10.1.1.), the KKT conditions are sufficient for
optimality. a

This has been known for over thirty years. Everyone remembers that
convexity of all the functions implies sufficiency of the KKT conditions but
Mangasarian showed that pseudo-convexity of the objective function and
convexity of the level sets of the constraints (known as quasi-convexity, an
even weaker condition) is all one really needs for sufficiency of the KKT
conditions to hold.

We now know that the KKT conditions are both necessary and suffi-
cient for optimality of our problem. The last ingredient, surprising in the
framework of nonlinear optimization if usual in the context of linear pro-
gramming, is that we can restrict our search for KKT points to the vertices
of the polytope.

Lemma 3.3 Under the pseudo-linearity assumption, if (P) is feasible, it
has an optimal solution at a vertez.

Proof: Assume that z* is optimal for (P) and that z* lies on an edge
described by the interval [2* — ayd, 2" + a.d] for some nonzero direction d
and aj, as > 0. By optimality, f must be non-decreasing from z*, that is

V(@) (z* — ayd — «*) > 0 and V(%) (2" + aad — 2*) > 0,
which implies
~Vf(z*)'d > 0 and V f(z*)*d > 0.
This implies that V f(z*)'d = 0 and by Lemma 2.1, f is constant along d

and therefore the vertices adjacent to #* are also optimal. a

We therefore have a complete characterization of optimal solutions and
a finite subset of points of the feasible region that we need to investigate.
The reader, well-versed in linear programming, will have realized that all



the conditions required for a successful application of the Simplex method
are accounted for. A blind application of a Simplex code for linear programs
will fail, of course. But viewed under the correct light, which, in this case
is an active set approach, the Simplex method is easy to transpose to our
problem, as we now proceed to do.

4 A pseudo-linear Simplex algorithm

4.1 Variable declarations

We intend to describe in detail our implementation of the Simplex method
for pseudo-linear program (P). We will also provide a MATLAB implemen-
tation! for the interested reader. The algorithm will be described in consec-
utive sections, starting with the declarations in Algorithm 2.

Algorithm 2 : Pseudo-linear Simplex method. Declarations.

plSimplex(d, p, ¢, m, a,lb, ub, t)

integer d {Number of departments}
integer p[1..d] {Number of procedures per department}
integer nb := )., p[¢] {total number of procedures}
real ¢[1..nb] {Total charges }
real m[1..nb] {Medicare charges }
real a[l..nb] {Other charges}
real [p[1..nb] {Lower bound on x}
real uy[1..nb] {Upper bound on x}
real ¢ {Total charge increase}
integer k {Index of inactive constraint}
integer [ {Index of dropped constraint}
real y[1..nb] {Multiplier upper bound constraints}
real A[1..nb] {Multiplier lower bound constraints}

4.2 Finding an initial feasible vertex.

The first problem faced with any Simplex-type approach is the initial vertex.
In our case, with only a box constraint intersecting a hyperplane, a basic
feasible solution is within easy reach. The first step described in Algorithm
1 will work: set all variables to their upper (or lower) bound and decrease
(or increase) them, one by one until the equality is satisfied.

"http:/ /orion.math.uwaterloo.ca/ hwolkowi/henry /software /linpr.d



Algorithm 3 : Pseudo-linear Simplex method. Phase I.
if ('l >tV ctup, < t) then

return ; {Program is infeasible}
else
z =l {Try variable at lower bound}
for i = 1..nb do
z[i] = up[i]; {Move component to upper bound}
if (c'z > t) then
z[t] = wt] — ((ctz — t)/c[d)); {Adjust to feasibility}
k=1 {Record inactive constraint}
end if
end for
end if

Algorithm 3 will detect infeasibility or provide a feasible vertex and
record which constraint is not an element of the active set. Note this con-
straint might not actually be slack. In case of such a degenerate vertez, the
constraint could be saturated. We will return to this in Section 4.4. Some
heuristics for choosing the ordering of the variables, based on the vectors m
and ¢ might prove effective but is not required.

4.3 Iterating to the optimal vertex.

Now the crux of the algorithm. We compute the Lagrange multiplier esti-
mates by trying to solve for dual feasibility. In fact we will solve for every-
thing but nonnegativity of the multipliers. Let the Lagrange multipliers be
denoted by

Xi € ®%, Upper bound multipliers of department p;
—t —~t —~t
A= [)\1 ,)\2 ,...,)\d]t
¥; € ®Y,  Lower bound multipliers of department p;
yi=Mm5 T T
neR, Multiplier of hyperplane constraint,

and the Lagrangean be




Stationarity of the Lagrangean, together with complementarity yields the
following system, which the algorithm will have to solve

~ ~t
bi(&G'E) -G &) -~ .
( (;tﬂ); ) Rt gi4us = 0, 1<i<d (1)

a; +

N(F—w) = 0, 1<i<d (2)
V=% + L) = 0, 1<i<d. (3)

The system (1,2,3) turns out to be extremely simple to solve, partly because
the objective is separable, partly because of the box constraints: a variable
cannot be both at its upper and at its lower bound. (If it is, we can take
the variable out of the problem altogether.) So that half of the multipliers
A and ¥ must be zero and we know which ones.

Our active set consists of every constraint except exactly one, usually
corresponding to a slack primal variable, a component z; that is neither
at its lower or upper bound. Although this constraint could be saturated
(what we will call the degenerate case), we can force its two corresponding
multipliers to zero. If the constraint is truly slack, then we have no choice.
In either case, this leads to one pair Ay = v = 0 and we can solve first for
i, and then for every other multiplier by simple substitution.

We then consider the sign of the multipliers. If all of them are nonneg-
ative, we have a KKT point and, therefore, an optimal solution. If not,
we need to move to another vertex. The classical way to do this (see [4]),
somewhat different from Mathis and Mathis’ approach, is to choose the
largest multiplier of the wrong sign (either A; or 7;), drop the corresponding
constraint (z; < u; or #; > [;) and move to the adjacent vertex.

To find the direction in which to move, or equivalently, which constraint
to pick up, since we are moving from vertex to vertex, we need to solve an
even simpler system. We need a direction d, satisfying d; = 0 for all active
constraints. (All the currently active except the dropped constraint.) Yet
we need to remain feasible, which translates into Ele &'d; = 0. Since we
have one component corresponding to the constraint not in the active set
(1) and one component corresponding to the dropped constraint (z;), the
condition reduces to

crep + e = 0.

And the step length is just enough to get to the next vertex.
This algorithm will increase the objective function at each step where
we take a nonzero step. This can be formalized in the following.



Algorithm 4 : Pseudo-Linear Simplex method. Phase II.
Given ¢ and A = v = 0, solve system (1,2,3) for A, v, p
Say A[ly] = min{A};v[l,] = min{y};  {Find most negative multipliers}
if (A[lx] < 0 A A[IA] < y[ly]) {We should drop an upper bound} then
if ((z[k] — uplk])c[k]/clly] > lp[lx] — 2[l5]) then
2] = ]l <[k el 2lK] = b k= by
£k = l8] )] ) ekl = bl
else if (y[ly] < 0) {We should drop a lower bound} then
if (1] — 2[k])c[k]/clly] > olls] — wL,]) then
20k = ofb] el ally] b)) el 2lb] = i
olly] = 2[L,] — clkI(H] — 2[k])/ell,]; k] = k] b = L
end if
else
return z; {We are optimal}

end if

Lemma 4.1 The objective function f increases at each non-degenerate step
of the algorithm.

Proof: Say that k is the index of z corresponding to the constraints not
in the active set and that [ is the index of z corresponding to the dropped
constraint (because either zj = I or z; = ug). The algorithm solves the
system (1,2,3), from which we have that

Vi) - A+y+pe=0, M= =0,

and either of
A=0, or =0,

whether we are dropping an upper or a lower bound constraint. Moreover,
to compute a direction in which to move, the algorithm ensures that

crdy + edp = 0.

Moving in the direction d (for a small step), we can estimate the change in
the objective function by

Af = fla+d) - f(=)
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= Vf(e)'d+o(ld|])

= (A—7—pe)d+o(]|d]])

= (M —)di+ (M — vr)dr — plerdr + adi) + o(||d]])
= (M —m)di + o(l[d]]).

Now we must distinguish two cases.

1. We dropped an upper bound. Then A; < 0, v; = 0 and z; decreased
so that d; is negative. Then the last line above reads Af = \;d; > 0.

2. We dropped a lower bound. Then A; = 0, v; < 0 and z; increased so
that d; is positive. Then the last line above reads Af = —y;d; > 0.

In both cases, the objective function increases in the direction away from
the dropped constraint and since the directional derivative cannot vanish
on the edge we are following (by Lemma 2.1), it must be that the objective
function increases monotonically from the current vertex to the next one
along the edge. a

4.4 Degeneracy

For this discussion to be complete, we need to discuss degeneracy, an un-
common, yet possible situation. Recall that we defined a degenerate vertex
as a vertex where a constraint not in the active set is nevertheless saturated.
As as example, consider the simple three-dimensional case where all vertices
are degenerate and the objective function is linear. This is clearly a special
case of (P).

max{azl t 2y + 3us | 2.421 + 2.42s + 2425 = 12,1 < 2; < 3}.

Phase I of the algorithm will, as coded, produces [3, 1, 1]* as the initial vertex
and considers the constraint 1 < 2, as outside of the active set (k = 2) even
if 9 = 1. The iterations will be

Iter w z k|l A vy
0 |-2/24|[3,1,1] |2 |3 ] [-1,0,0] | [0,0,-1]
1 |-3/2.4]13,1,1]|3|1|][-2,0,0]]| [0,1,0]
2 |-3/2.4|[1,1,3] | 3 [0,0,0] | [2,1,0]

and the vector [1, 1, 3]* is optimal since all multipliers are nonnegative. The
first iteration is usually known as a degenerate pivot. We did not move in
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the primal space. The algorithm tried to increase both 5, corresponding
to the inactive constraint, and 23, corresponding to the dropped constraint
(1 < 3) but that is not possible while ensuring feasibility. The consequence
was that we picked up a new new constraint (1 < z1). The next iteration
works.

An alternative to this would have been to recognize a degenerate vertex
and react accordingly. In general, the simplex method for linear program-
ming can be made to handle degenerate vertices by rules governing the choice
of inclusion of components into the basis. Such rules can be shown to work
but generally degrade performance. Because of the special structure of our
feasible region, we can simplify the degeneracy handling by ensuring that
if our inactive component z;, is actually at its upper (resp. lower) bound,
we choose to drop a lower (resp. upper) bound constraint (corresponding,
possibly, to the next most negative multiplier). In this way, we guarantee
improvement of the objective function. One way to implement this is to
replace the third line in Algorithm 4 by

if (A[lL] < 0N z[k] < ulk]).

This chooses to drop a lower bound constraint if our slack variable is at
its upper bound and therefore allows us to move. Like most degeneracy
avoiding routine, this slows down the algorithm.

5 Conclusion

The algorithm we present here is not very different from Mathis and Mathis’.
It differs in the choice of constraints to drop and pick up. Or, in the usual
language of the Simplex method, it differs in the choice of entering and leav-
ing variables. But different pivoting rules hardly make a different algorithm
though they can drastically alter performance. (The steepest-descent edge
is a case in point. [2])

The main differences in our description of the algorithm lie in the ap-
proach used to derive it, and the fact that we have explained it’s behavior
and proved it’s correctness.

What we have done is to look at an instance of the hospital management
problem described by Mathis and Mathis and identify as pseudo-linear the
class of problems into which it fell. We then recalled the characterization
these problems and their optimal solutions, allowing us to recognize that
the Simplex method, viewed under the proper light of an active set method,

12



would provably solve all instances of the problem. All of this from work done
thirty and forty years ago.

The one-sentence conclusion, perfect for a pedagogical column: The Sim-

plex method is much more than its tableau representation and the class of
problems to which it applies is much larger than linear programs.
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