
Pseudo-Linear ProgrammingSerge Kruk � Henry Wolkowicz yFebruary 26, 1998University of WaterlooDepartment of Combinatorics and OptimizationWaterloo, Ontario N2L 3G1, CanadaKey words: Nonlinear Programming, Simplex Method, Pseudo-convexity,Fractional Programming. AbstractThis short note revisits an algorithm previously sketched by Mathisand Mathis, Siam Review 1995, and used to solve a nonlinear hospitalfee optimization problem. An analysis of the problem structure revealshow the Simplex algorithm, viewed under the correct light, can be thedriving force behind a successful algorithm for a nonlinear problem.1 A seemingly nonlinear programIn a past Classroom Notes column, [6] Mathis and Mathis introduces an in-teresting optimization problem. Practical, in this era of budget constraints,their model describes a facet of hospital revenue and is used by managersin Texas to help in decision making. Even more interesting, for the theo-retically minded, is the fact that a trivial algorithm seems to solve, albeitwithout a convergence proof, a nonlinear, arguably di�cult problem.We revisit this problem to give a strong mathematical foundation to aslightly modi�ed algorithm and explain, along the way, why the problem ismuch simpler than expected at �rst glance. The historically inclined willnotice that the results used for this analysis are all thirty years old.Mathis and Mathis give a complete description of the problem to whichwe refer the reader. We just repeat the more important points of the modelformulation.�Email sgkruk@acm.orgyEmail henry@orion.uwaterloo.ca. 1

� There are d departments in the hospital.� Department i performs pi procedures.� Charges are assigned to procedure j in department i by{ mij � 0 represents Medicare/Medicaid charges.{ oij � 0 represents other charges.{ cij > 0 represents total charges (cij = mij + oij).� The government-�xed outpatient cost is Ci > 0 for department i.� The decision variable, rij represents the fraction of increase in thecharge for procedure j, department i.� The increase is upper and lower bounded by lij � rij � uij .� The overall charge increase is q � 100 percent.Their model then produces the following maximization problemmaxF (r) := i=dXi=1 24j=piXj=1 oij(1 + rij) + CiPj=pij=1 mij(1 + rij)Pj=pij=1 cij(1 + rij) 35subject to i=dXi=1 j=piXj=1 cijrij = q i=dXi=1 j=piXj=1 cij ; lij � rij � uijAnd their algorithm for solving the maximization isAlgorithm 1 : Mathis & MathisSet all rij to q and sort the procedure in ascending order of Qij := oijqij .while the sort produces a di�erent ordering doSet all rij to uij .Beginning with the smallest Qij , assign lij to rij until the solution isnearly feasible. Then adjust the last rij to make it so.Compute the new Qij and sort.end whileThe algorithm is unexpectedly simple, especially contrasted to the prob-lem it pretends to solve. But it begs a convergence proof. The authorschecked the results against a well-known nonlinear solver to gain con�dence2

in the procedure but stopped short of a proof. Moreover, one characteristicof the algorithm is nagging: looking at the feasible region as the polytopethat it is, we see that iterates proceed from vertex to vertex. It should havestruck the reader as odd that a continuous nonlinear program would attainits optimal solution at a vertex. Because of these surprises, we will reformu-late the problem to highlight the characteristics that explain the algorithm'sbehavior.2 A somewhat less nonlinear programHow should one attack a problem like the one above? The objective functionis nonlinear, which eliminates a blind application of the well-known Simplexmethod for linear programming (see [1]). Interior-point methods (see [8])usually assume convex functions, which does not appear to be the case.Yet a full-features nonlinear solver, possibly based on Sequential QuadraticProgramming (see [9]) seems an overkill. In the hope of recognizing spe-cial characteristics of the problem and of simplifying the analysis, we nowreformulate and get rid of the noise. First we let the solution space be<n := <p1 � : : : � <pd, where the pi, we recall, indicate the number ofprocedures per department, to obtainexi 2 <pi ; exi := [1 + rti1; 1 + rti2; : : : ; 1 + rtipi]t;ex 2 <n; ex := [fx1t;fx2t; : : : ;fxdt]t:Note that the decision variable is now non-negative. We will use ex to refer tothe whole vector, exi to refer to the sub-vector corresponding to departmenti, and xi to refer to a component of ex, according to the property of thesolution that we wish to highlight. We make corresponding substitutions tothe other parameters.eai 2 <pi ; eai := [oti1; oti2; : : : ; otipi]t;ebi 2 <pi ; ebi := Ci[mti1; mti2; : : : ; mtipi]t;eci 2 <pi; eci := [cti1; cti2; : : : ; ctipi]t;eli 2 <pi; eli := [1 + lti1; 1 + lti2; : : : ; 1 + ltipi]t;eui 2 <pi ; eui := [1 + uti1; 1 + uti2; : : : ; 1 + utipi]t;t := (1 + q)Pi=di=1Pj=pij=1 cij ;where the coe�cients now satisfy eci = eai + C�1i ebi.3

After these substitutions the problem is revealed as(P) max � dXi=1 "eait exi + ebit exiecit exi# ���� dXi=1 ecit exi = t; l � x � u�;a Fractional Program. Problems of this form have been extensively studied,mostly because of their importance in �nance (See [11]). There also hasbeen recent attempts at developing interior-point algorithms specialized tofractional programs (See [3, 7]).With our formulation, the �rst useful characteristic of the problem comesto light: The objective function is separable by department. It is a sum offunctions, each concerned with di�erent vectors. Analyzing each term yieldsthe following information:� The product ecit exi must be strictly positive.� The feasible region is the intersection of a hyperplane with a box.� Each term is either a linear (eait exi) or a linear fractional (ebit exiecit exi) trans-formation (projective transformation).We wish to attract the reader's attention to the linearity of the feasibleregion and the pseudo-linearity of each term of the objective function. Thata projective transformation is both pseudo-convex and pseudo-concave wasan exercise in Mangasarian's classic text of the late sixties [5] (Chapter 9,problem 3). We recall the basic de�nitions. A function f is pseudo-convexif rf(z)t(y � z) � 0) f(y) � f(z); 8y; z;and pseudo-concave ifrf(z)t(y � z) � 0) f(y) � f(z); 8y; z:We will use pseudo-linear to describe a function satisfying both conditions.Hunting for an optimal solution for this class of functions is as easy as for alinear function, as the following result helps to understand.Lemma 2.1 If the directional derivative of a pseudo-linear function van-ishes in a direction d, the function is constant on the line containing d.Proof: Say that, at some point z, we haverf(z)td = 0. Then both inequal-ities describing pseudo-linearity apply, and we have that f(z + �d) = f(z)4

for all �. The function f is constant along the line containing d. 2This implies that a pseudo-linear function has no stationary point un-less it is constant. This is critical to justify the algorithm's behavior: Apseudo-linear function, optimized over a polytope, only has global optimaand attains its extrema at vertices. We will make this more precise in thenext section. But the crucial unstated assumption the algorithm makes isthat the sum eait exi+ ebit exiecit exi maintains its convexity properties over the feasibleregion.The reader will �nd a complete characterization of where such sumsremain either quasi-convex or quasi-concave in [10] but the main point, forour purposes is that the characterization will depend on the values of eci; ebiand eai and that, in the absence of formal restrictions on these values, wecannot claim that the sum of linear and linear-fractional transformationsremain pseudo-linear. Since this condition is ignored by Mathis and Mathis,while some convexity assumption is essential to their algorithm, one caneasily construct examples of failure.We could decide to attack a larger class of problems but the algorithmmight loose it's amazing simplicity. More simply, we could check the datato ensure the condition. For the moment, we choose to believe, based onMathis and Mathis' practical experience with hospital management, that theassumption holds and we proceed to give a solid mathematical foundationto the algorithm. After we have described the algorithm, we will see how tohandle a larger class of problems with little additional work.3 Characterization of a global solutionThe usual goal of a constrained optimization algorithm is a Karush-Kuhn-Tucker point (KKT point) since such a point characterizes, under a con-straint quali�cation, a necessary condition for optimality (see [5] Chapter 7,Section 3). This search is easily justi�ed in our case.Lemma 3.1 An optimal solution of (P) is a KKT point.Proof: The feasible region is de�ned by a�ne functions. This implies theKKT constraint quali�cation. 2No more than the recognition of the shape of the feasible region is requiredto obtain the constraint quali�cation. In particular, we need not insist onthe linear independence of the gradients of the active constraints.5

We are therefore justi�ed in looking for a KKT point. The next questionis whether there can be any spurious points not optimal for the problem.We can answer in the negative.Lemma 3.2 Under the pseudo-linearity assumption, any point satisfyingthe KKT conditions is a solution of (P).Proof: Since the constraints are a�ne, they are convex. Under the as-sumption of pseudo-concavity of the objective function, by a Theorem ofMangasarian ([5], theorem 10.1.1.), the KKT conditions are su�cient foroptimality. 2This has been known for over thirty years. Everyone remembers thatconvexity of all the functions implies su�ciency of the KKT conditions butMangasarian showed that pseudo-convexity of the objective function andconvexity of the level sets of the constraints (known as quasi-convexity, aneven weaker condition) is all one really needs for su�ciency of the KKTconditions to hold.We now know that the KKT conditions are both necessary and su�-cient for optimality of our problem. The last ingredient, surprising in theframework of nonlinear optimization if usual in the context of linear pro-gramming, is that we can restrict our search for KKT points to the verticesof the polytope.Lemma 3.3 Under the pseudo-linearity assumption, if (P) is feasible, ithas an optimal solution at a vertex.Proof: Assume that x� is optimal for (P) and that x� lies on an edgedescribed by the interval [x� � �1d; x� + �2d] for some nonzero direction dand �1; �2 > 0. By optimality, f must be non-decreasing from x�, that isrf(x�)t(x� � �1d� x�) � 0 and rf(x�)t(x� + �2d� x�) � 0;which implies �rf(x�)td � 0 and rf(x�)td � 0:This implies that rf(x�)td = 0 and by Lemma 2.1, f is constant along dand therefore the vertices adjacent to x� are also optimal. 2We therefore have a complete characterization of optimal solutions anda �nite subset of points of the feasible region that we need to investigate.The reader, well-versed in linear programming, will have realized that all6

the conditions required for a successful application of the Simplex methodare accounted for. A blind application of a Simplex code for linear programswill fail, of course. But viewed under the correct light, which, in this caseis an active set approach, the Simplex method is easy to transpose to ourproblem, as we now proceed to do.4 A pseudo-linear Simplex algorithm4.1 Variable declarationsWe intend to describe in detail our implementation of the Simplex methodfor pseudo-linear program (P). We will also provide a Matlab implemen-tation1 for the interested reader. The algorithm will be described in consec-utive sections, starting with the declarations in Algorithm 2.Algorithm 2 : Pseudo-linear Simplex method. Declarations.plSimplex(d; p; c;m; a; lb; ub; t)integer d fNumber of departmentsginteger p[1::d] fNumber of procedures per departmentginteger nb :=Pdi=1 p[i] ftotal number of proceduresgreal c[1::nb] fTotal charges greal m[1::nb] fMedicare charges greal a[1::nb] fOther chargesgreal lb[1::nb] fLower bound on xgreal ub[1::nb] fUpper bound on xgreal t fTotal charge increaseginteger k fIndex of inactive constraintginteger l fIndex of dropped constraintgreal
[1::nb] fMultiplier upper bound constraintsgreal �[1::nb] fMultiplier lower bound constraintsg4.2 Finding an initial feasible vertex.The �rst problem faced with any Simplex-type approach is the initial vertex.In our case, with only a box constraint intersecting a hyperplane, a basicfeasible solution is within easy reach. The �rst step described in Algorithm1 will work: set all variables to their upper (or lower) bound and decrease(or increase) them, one by one until the equality is satis�ed.1http://orion.math.uwaterloo.ca/ hwolkowi/henry/software/linpr.d7

Algorithm 3 : Pseudo-linear Simplex method. Phase I.if (ctlb > t _ ctub < t) thenreturn ;; fProgram is infeasiblegelsex = lb; fTry variable at lower boundgfor i = 1::nb dox[i] = ub[i]; fMove component to upper boundgif (ctx > t) thenx[i] = ub[i]� ((ctx� t)=c[i]); fAdjust to feasibilitygk = i; fRecord inactive constraintgend ifend forend ifAlgorithm 3 will detect infeasibility or provide a feasible vertex andrecord which constraint is not an element of the active set. Note this con-straint might not actually be slack. In case of such a degenerate vertex, theconstraint could be saturated. We will return to this in Section 4.4. Someheuristics for choosing the ordering of the variables, based on the vectors mand c might prove e�ective but is not required.4.3 Iterating to the optimal vertex.Now the crux of the algorithm. We compute the Lagrange multiplier esti-mates by trying to solve for dual feasibility. In fact we will solve for every-thing but nonnegativity of the multipliers. Let the Lagrange multipliers bedenoted by e�i 2 <pi+ ; Upper bound multipliers of department pi� := [f�1t;f�2t; : : : ;f�dt]te
i 2 <pi+ ; Lower bound multipliers of department pi
 := [e
1t; e
2t; : : : ; e
dt]t� 2 <; Multiplier of hyperplane constraint;and the Lagrangean beL := dXi=1 "eait exi + ebit exiecit exi#+ dXi=1 e�it(eui� exi)+ dXi=1 e
it(exi�eli)+�(dXi=1(ecit exi�t)):8

Stationarity of the Lagrangean, together with complementarity yields thefollowing system, which the algorithm will have to solveeai + ebi(ecit exi)� eci(ebit exi)(ecit exi)2 � e�i + e
i + �eci = 0; 1 � i � d (1)e�it(exi � eui) = 0; 1 � i � d (2)e
it(�exi + eli) = 0; 1 � i � d: (3)The system (1,2,3) turns out to be extremely simple to solve, partly becausethe objective is separable, partly because of the box constraints: a variablecannot be both at its upper and at its lower bound. (If it is, we can takethe variable out of the problem altogether.) So that half of the multipliers� and
 must be zero and we know which ones.Our active set consists of every constraint except exactly one, usuallycorresponding to a slack primal variable, a component xk that is neitherat its lower or upper bound. Although this constraint could be saturated(what we will call the degenerate case), we can force its two correspondingmultipliers to zero. If the constraint is truly slack, then we have no choice.In either case, this leads to one pair �k =
k = 0 and we can solve �rst for�, and then for every other multiplier by simple substitution.We then consider the sign of the multipliers. If all of them are nonneg-ative, we have a KKT point and, therefore, an optimal solution. If not,we need to move to another vertex. The classical way to do this (see [4]),somewhat di�erent from Mathis and Mathis' approach, is to choose thelargest multiplier of the wrong sign (either �l or
l), drop the correspondingconstraint (xl � ul or xl � ll) and move to the adjacent vertex.To �nd the direction in which to move, or equivalently, which constraintto pick up, since we are moving from vertex to vertex, we need to solve aneven simpler system. We need a direction d, satisfying dj = 0 for all activeconstraints. (All the currently active except the dropped constraint.) Yetwe need to remain feasible, which translates into Pdi=1 ecitdi = 0. Since wehave one component corresponding to the constraint not in the active set(xk) and one component corresponding to the dropped constraint (xl), thecondition reduces to ckxk + clxl = 0:And the step length is just enough to get to the next vertex.This algorithm will increase the objective function at each step wherewe take a nonzero step. This can be formalized in the following.9

Algorithm 4 : Pseudo-Linear Simplex method. Phase II.Given x and �k =
k = 0, solve system (1,2,3) for �;
; �Say �[l�] = minf�g;
[l
] = minf
g; fFind most negative multipliersgif (�[l�] < 0 ^ �[l�]<
[l
]) fWe should drop an upper boundg thenif ((x[k]� ub[k])c[k]=c[l�] > lb[l�]� x[l�]) thenx[l�] = x[l�]� c[k](ub[k]� x[k])=c[l�]; x[k] = ub[k]; k = l�;elsex[k] = x[k]� c[l�](lb[l�]� x[l�])=c[k]; x[l�] = lb[l�];end ifelse if (
[l
]< 0) fWe should drop a lower boundg thenif ((lb[k]� x[k])c[k]=c[l
] > x[l
]� ub[l
]) thenx[k] = x[k]� c[l
](ub[l
]� x[l
])=c[k]; x[l
] = ub[l
];elsex[l
] = x[l
]� c[k](lb[k]� x[k])=c[l
]; x[k] = lb[k]; k = l
;end ifelsereturn x; fWe are optimalgend ifLemma 4.1 The objective function f increases at each non-degenerate stepof the algorithm.Proof: Say that k is the index of x corresponding to the constraints notin the active set and that l is the index of x corresponding to the droppedconstraint (because either xk = lk or xk = uk). The algorithm solves thesystem (1,2,3), from which we have thatrf(x)� �+
 + �c = 0; �k =
k = 0;and either of �l = 0; or
l = 0;whether we are dropping an upper or a lower bound constraint. Moreover,to compute a direction in which to move, the algorithm ensures thatckdk + cldl = 0:Moving in the direction d (for a small step), we can estimate the change inthe objective function by�f = f(x+ d)� f(x) 10

= rf(x)td+ o(jjdjj)= (��
 � �c)td+ o(jjdjj)= (�l �
l)dl + (�k �
k)dk � �(ckdk + cldl) + o(jjdjj)= (�l �
l)dl + o(jjdjj):Now we must distinguish two cases.1. We dropped an upper bound. Then �l < 0,
l = 0 and xl decreasedso that dl is negative. Then the last line above reads �f = �ldl > 0.2. We dropped a lower bound. Then �l = 0,
l < 0 and xl increased sothat dl is positive. Then the last line above reads �f = �
ldl > 0.In both cases, the objective function increases in the direction away fromthe dropped constraint and since the directional derivative cannot vanishon the edge we are following (by Lemma 2.1), it must be that the objectivefunction increases monotonically from the current vertex to the next onealong the edge. 24.4 DegeneracyFor this discussion to be complete, we need to discuss degeneracy, an un-common, yet possible situation. Recall that we de�ned a degenerate vertexas a vertex where a constraint not in the active set is nevertheless saturated.As as example, consider the simple three-dimensional case where all verticesare degenerate and the objective function is linear. This is clearly a specialcase of (P).maxnx1 + 2x2 + 3x3 j 2:4x1 + 2:4x2+ 2:4x3 = 12; 1 � xi � 3o:Phase I of the algorithmwill, as coded, produces [3; 1; 1]t as the initial vertexand considers the constraint 1 � x2 as outside of the active set (k = 2) evenif x2 = 1. The iterations will beIter � x k l �
0 -2/2.4 [3,1,1] 2 3 [-1,0,0] [0,0,-1]1 -3/2.4 [3,1,1] 3 1 [-2,0,0] [0,1,0]2 -3/2.4 [1,1,3] 3 [0,0,0] [2,1,0]and the vector [1; 1; 3]t is optimal since all multipliers are nonnegative. The�rst iteration is usually known as a degenerate pivot. We did not move in11

the primal space. The algorithm tried to increase both x2, correspondingto the inactive constraint, and x3, corresponding to the dropped constraint(1 � x3) but that is not possible while ensuring feasibility. The consequencewas that we picked up a new new constraint (1 � x1). The next iterationworks.An alternative to this would have been to recognize a degenerate vertexand react accordingly. In general, the simplex method for linear program-ming can be made to handle degenerate vertices by rules governing the choiceof inclusion of components into the basis. Such rules can be shown to workbut generally degrade performance. Because of the special structure of ourfeasible region, we can simplify the degeneracy handling by ensuring thatif our inactive component xk is actually at its upper (resp. lower) bound,we choose to drop a lower (resp. upper) bound constraint (corresponding,possibly, to the next most negative multiplier). In this way, we guaranteeimprovement of the objective function. One way to implement this is toreplace the third line in Algorithm 4 byif (�[l�] < 0 ^ x[k] < u[k]):This chooses to drop a lower bound constraint if our slack variable is atits upper bound and therefore allows us to move. Like most degeneracyavoiding routine, this slows down the algorithm.5 ConclusionThe algorithmwe present here is not very di�erent fromMathis and Mathis'.It di�ers in the choice of constraints to drop and pick up. Or, in the usuallanguage of the Simplex method, it di�ers in the choice of entering and leav-ing variables. But di�erent pivoting rules hardly make a di�erent algorithmthough they can drastically alter performance. (The steepest-descent edgeis a case in point. [2])The main di�erences in our description of the algorithm lie in the ap-proach used to derive it, and the fact that we have explained it's behaviorand proved it's correctness.What we have done is to look at an instance of the hospital managementproblem described by Mathis and Mathis and identify as pseudo-linear theclass of problems into which it fell. We then recalled the characterizationthese problems and their optimal solutions, allowing us to recognize thatthe Simplex method, viewed under the proper light of an active set method,12

would provably solve all instances of the problem. All of this from work donethirty and forty years ago.The one-sentence conclusion, perfect for a pedagogical column: The Sim-plex method is much more than its tableau representation and the class ofproblems to which it applies is much larger than linear programs.References[1] G. DANTZIG. Linear Programming and Extensions. Princeton Uni-versity Press, Princeton, New Jersey, 1963.[2] John J. Forrest and Donald Goldfarb. Steepest-edge simplex algorithmsfor linear programming. Math. Programming, 57(3, Ser. A):341{374,1992.[3] Roland W. Freund, Florian Jarre, and Siegfried Schaible. On self-concordant barrier functions for conic hulls and fractional program-ming. Math. Programming, 74(3, Ser. A):237{246, 1996.[4] P.E. GILL, W. MURRAY, and M.H. WRIGHT. Practical Optimiza-tion. Academic Press, New York, London, Toronto, Sydney and SanFrancisco, 1981.[5] O.L. MANGASARIAN. Nonlinear Programming. McGraw-Hill, NewYork, NY, 1969.[6] Frank H. Mathis and Lenora Jane Mathis. A nonlinear programmingalgorithm for hospital management. SIAM Rev., 37(2):230{234, 1995.[7] A. Nemirovski. The long-step method of analytic centers for fractionalproblems. Math. Programming, 77(2, Ser. B):191{224, 1997. Semide�-nite programming.[8] Y. E. NESTEROV and A. S. NEMIROVSKY. Interior Point Poly-nomial Algorithms in Convex Programming : Theory and Algorithms.SIAM Publications. SIAM, Philadelphia, USA, 1994.[9] M.J.D. POWELL and Y. YUAN. A recursive quadratic programmingalgorithmthat uses di�erentiable penalty functions.Math. Prog., 7:265{278, 1986.[10] S. Schaible. A note on the sum of a linear and a linear-fractional func-tion. Naval Research Logistics Quarterly, 24:691{693, 1977.13

[11] S. Schaible. Fractional programming. In Handbook of global optimiza-tion, volume 2 of Nonconvex Optim. Appl., pages 495{608. KluwerAcad. Publ., Dordrecht, 1995.

14

