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Abstract. In this article, several matrix norm inequalities are proved
by making use of the Hiroshima 2003 result on majorization relations.

1. Introduction

In 2003, Hiroshima [7] proved a very beautiful result on majorization

relations (Theorem 1.1 below) which has useful applications in quantum

physics; see, e.g., [6, 9] and references therein. However, this result seems

not widely known in the field of matrix analysis. Indeed, independent of

the Hiroshima paper, the authors of the current paper derived the following

special case of Theorem 1.1:

H =

[

A X

X B

]

≥ 0 =⇒ ‖H‖ ≤ ‖A+B‖(1.1)

for any unitarily invariant norm; see [13]. (Here H ≥ 0 denotes positive

semidefinite.)

We remark that a sharper observation that entails (1.1) is the following

H =

[

A X

X B

]

≥ 0 =⇒ H =
1

2

(

U(A +B)U∗ + V (A+B)V ∗

)

for some isometries U, V ; see [3] and its extensions in [4].

In this paper we look at several classes of matrix norm inequalities. This

includes commuting type inequalities and inequalities involving contractive

matrices.

Before introducing Hiroshima’s result, we fix our notation. The set of

m×n complex matrices is denoted byMm×n withMn := Mn×n. The identity

matrix in Mn is In, or I for short if the dimension is clear from the context.

Let A ∈ Mm×n. then AT , A∗ denotes the transpose, conjugate transpose of

A, respectively. The absolute value of A is given by |A| = (A∗A)1/2, i.e., the

positive square root of A∗A. We denote the j-th largest singular value of

A by σj(A). Thus σj(A) = λj(|A|) =
√

λj(A ∗ A), where λj denotes the
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j-largest eigenvalue. If A ∈ Mn, then the trace of A is denoted by trA. For

two Hermitian matrices A,B ∈ Mn, we write A ≥ B to mean A − B is

positive (semidefinite), so A ≥ 0 means A is positive. A norm ‖ · ‖ on Mn is

called unitarily invariant if ‖UAV ‖ = ‖A‖ for any A ∈ Mn and any unitary

matrices U, V ∈ Mn.

The tensor product Mm ⊗ Mn is canonically identified with Mm(Mn).

Here Mm(Mn) is the space of m × m block matrices with entries in Mn.

Let Aj ∈ Mm, Bj ∈ Mn, j = 1, . . . , p, and consider the tensor product

H =
∑p

j=1
Aj ⊗ Bj . As H ∈ Mm(Mn), we can write H = [Hi,j] with

Hi,j ∈ Mn. The partial trace of H is defined as (see, e.g., [14, p. 31]).

tr1H =

p
∑

j=1

(trAj)Bj.

It is readily verified that tr1H =
∑m

j=1
Hj,j. The partial transpose (map)

H 7→ Hτ is defined on Mm ⊗Mn as Hτ =
∑p

j=1
AT

j ⊗ Bj. If H and Hτ are

both positive, then we say H is positive partial transpose.

Hiroshima’s result, in our notation, can be stated as follows.

Theorem 1.1. [7, Theorem 1] Let H = [Hi,j] ∈ Mm(Mn). If Im ⊗ tr1H ≥
H ≥ 0, then

(1.2) ‖H‖ ≤ ‖tr1H‖ =

∥

∥

∥

∥

∥

m
∑

j=1

Hj,j

∥

∥

∥

∥

∥

,

for any unitarily invariant norm. In particular, if H is positive partial trans-

pose, then (1.2) holds.

We remark that the observation

H is positive partial transpose =⇒ Im ⊗ tr1H ≥ H

is due to Horodecki et al.[8].

In this paper, we make use of Theorem 1.1 to prove some new results

on matrix norm inequalities. It is expected that Hiroshima’s theorem will

become a practical tool in the field of matrix analysis.

2. Norm inequalities of “commuting” type

Our first result is the following norm inequality of commuting type. It is

an immediate consequence of Hiroshima’s result.
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Proposition 2.1. Let X1, . . . , Xk ∈ Mm×n such that X∗

i Xj is Hermitian

for all 1 ≤ i, j ≤ k. Then
∥

∥

∥

∥

∥

k
∑

j=1

XjX
∗

j

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

k
∑

j=1

X∗

jXj

∥

∥

∥

∥

∥

(2.1)

for any unitarily invariant norm.

Proof. Denote H = [Hi,j] :=







X∗

1

...

X∗

k







[

X1 · · · Xk

]

. Then H ∈ Mk(Mn) is

positive and Hi,j = Hj,i; therefore H equals its partial transpose. Thus by

Theorem 1.1, we have

‖H‖ ≤
∥

∥

∥

∥

∥

k
∑

j=1

Hjj

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

k
∑

j=1

X∗

jXj

∥

∥

∥

∥

∥

.

On the other hand,

‖H‖ =

∥

∥

∥

∥

∥

∥

∥







X∗

1

...

X∗

k







[

X1 · · · Xk

]

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

[

X1 · · · Xk

]







X∗

1

...

X∗

k







∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

k
∑

j=1

XjX
∗

j

∥

∥

∥

∥

∥

.

The desired result follows. �

The special case of Proposition 2.1 when k = 2 has been observed in [13,

Corollary 2.2].

The inequality (2.1) is elegant as an inequality of commuting type. To

the authors’ best knowledge, another example of commuting type norm

inequality is the following, and there are no others.

Proposition 2.2. [2, p. 254] Let X, Y ∈ Mm×n such that X∗Y is Hermitian.

Then

‖X∗Y + Y ∗X‖ ≤ ‖XY ∗ + Y X∗‖(2.2)

for any unitarily invariant norm.

The usefulness of inequality (2.2) has been demonstrated in matrix anal-

ysis, see e.g., [2, p. 263], [10] and [15, p. 67]. We now present an application

of Proposition 2.1 following the spirit of [2, p. 263].
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Theorem 2.3. Let A,B,X ∈ Mn. Then

(2.3)
‖(AA∗ +XB∗BX∗)⊕ (B∗B +X∗AA∗X)‖

≤ ‖(A∗A+ A∗XX∗A)⊕ (BB∗ +BX∗XB∗)‖
for any unitarily invariant norm.

Proof. We first prove the case where A,B are Hermitian. Consider

T =

[

A 0
0 B

]

, S =

[

0 X

X∗ 0

]

.

TakeX1 = T ,X2 = ST , asX∗

1X2 = TST is Hermitian. Then by Proposition

2.1 for k = 2, we have (see also [4, Corollary 2.5])

‖T 2 + ST 2S‖ ≤ ‖T 2 + TS2T‖,

i.e.,

(2.4)
‖(A2 +XB2X∗)⊕ (B2 +X∗A2X)‖

≤ ‖(A2 + AXX∗A)⊕ (B2 +BX∗XB)‖.

For the general case, consider the polar decompositions A = |A|U , B =

|B|V . Then (2.4) yields

(2.5)
‖(|A|2 + Y |B|2Y ∗)⊕ (|B|2 + Y ∗|A|2Y )‖

≤ ‖(|A|2 + |A|Y Y ∗|A|)⊕ (|B|2 + |B|Y ∗Y |B|)‖.
for any Y ∈ Mn.

As |A| = AU∗ = UA∗, |B| = BV ∗ = V B∗, we have |A|2 = AA∗ =

UA∗AU∗, |B|2 = BB∗ = V B∗BV ∗. Substituting these into (2.5) and setting

Y = XV ∗ gives (2.3). �

Remark 2.4. In particular, for the Schatten-p norm, (2.3) leads to

‖AA∗ +XB∗BX∗‖pp + ‖B∗B +X∗AA∗X‖pp
≤ ‖A∗A + A∗XX∗A‖pp + ‖BB∗ +BX∗XB∗)‖pp.

For the trace norm, (2.3) becomes an equality, and so we have the following

determinantal inequality

det(AA∗ +XB∗BX∗) det(B∗B +X∗AA∗X)

≥ det(A∗A+ A∗XX∗A) det(BB∗ +BX∗XB∗).

3. Norm inequalities involving contractions

In this and the subsequent section, we are mainly concerned with the

application of Theorem 1.1 when H ∈ M2(Mn). We restate it here as a

lemma.
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Lemma 3.1. Let H =

[

A X

X∗ B

]

∈ M2(Mn) be positive. Furthermore, if H

is positive partial transpose, i.e.,

[

A X∗

X B

]

is positive, then

‖H‖ ≤ ‖A+B‖

for any unitarily invariant norm.

The Hua matrix, e.g., [17], is given by

H :=

[

(I − A∗A)−1 (I − B∗A)−1

(I − A∗B)−1 (I − B∗B)−1

]

,

where A,B ∈ Mm×n are strictly contractive. Recall thatX ∈ Mm×n is called

strictly contractive if I −X∗X is positive and nonsingular.

A fundamental fact for the Hua matrix is that it is positive. This fol-

lows from the Schur complement and an elegant matrix identity, which also

carries the name of Hua (e.g., [17]):

(I−B∗B)−(I−B∗A)(I−A∗A)−1(I−A∗B) = −(A−B)∗(I−AA∗)−1(A−B)

with A,B strictly contractive.

But it is only recently observed that H is positive partial transpose; see

[1, 17]. An interesting application of this observation can be found in [12].

The next lemma plays an important role in our analysis.

Lemma 3.2. [16, Theorem 1] Let H =

[

A X

X∗ B

]

∈ Mm+n be positive with

A ∈ Mm, B ∈ Mn. Then

2σj(X) ≤ σj(H), j = 1, . . . ,min{m,n}.

It should be mentioned that Lemma 3.2 has several variants. We refer

to [16] and references therein for equivalent forms.

Fan’s dominance theorem (e.g., [2, p. 93]) reveals an important relation

between singular value inequalities and norm inequalities. More precisely,

let A,B ∈ Mn. Then the following statements are equivalent:

(i)
∑k

j=1
σj(A) ≥

∑k
j=1

σj(B), for k = 1, . . . , n;

(ii) ‖A‖ ≥ ‖B‖ for any unitarily invariant norm ‖ · ‖.
Thus Lemma 3.2 is strong enough to entail

H =

[

A X

X∗ B

]

≥ 0 =⇒ 2‖X‖ ≤ ‖H‖(3.1)

for any unitarily invariant norm.

The main result of this section states a relation between the norm of

diagonal blocks of H and the norm of its off diagonal block.



6 M. LIN AND H. WOLKOWICZ

Theorem 3.3. Let A,B ∈ Mm×n be strictly contractive. Then

2‖(I −A∗B)−1‖ ≤ ‖(I −A∗A)−1 + (I − B∗B)−1‖(3.2)

for any unitarily invariant norm.

Proof. As H is positive partial transpose, (3.2) follows immediately from

Lemma 3.1 and (3.1). �

From the proof of Theorem 3.3, we find that in proving certain norm

inequalities, it suffices to show the corresponding (block) matrix is positive

partial transpose.

One may suspect that Theorem 3.3 is a special case of a much more

general result. In particular, it is tempted to ask whether it is true
[

A X

X B

]

≥ 0 =⇒ 2‖X‖ ≤ ‖A+B‖?(3.3)

The answer is no, as the following example shows.

Example 3.4. Take

A =

[

1 1
1 1

]

, B =

[

1 −1
−1 1

]

, X =

[

1 −1
1 −1

]

.

It is easy to check in this case

[

A X

X∗ B

]

is positive. A simple calculation

gives σ1(X) = 2, σ2(X) = 0 and σ1(A + B) = σ2(A + B) = 2. Thus in

this case, by Fan’s dominance theorem, 2‖X‖ ≥ ‖A + B‖ holds for every

unitarily invariant norm.

Remark 3.5. In spite of the failure of (3.3), we have the following:

Assume

[

A X

X∗ B

]

∈ M2(Mn) is positive. Then

‖X +X∗‖ ≤ ‖A+B‖(3.4)

for any unitarily invariant norm. Indeed,
[

A X

X∗ B

]

≥ 0 =⇒
[

A+B X +X∗

X +X∗ A+B

]

≥ 0

=⇒
k
∏

j=1

σj(X +X∗) ≤
k
∏

j=1

σj(A+B), k = 1, . . . , n,

which is stronger than (3.4).
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4. Miscellaneous

Proposition 4.1. Let A,B ∈ Mn be positive and U ∈ Mn be unitary. Then

‖A+ UB‖ ≤ ‖A+B + UBU∗‖(4.1)

for any unitarily invariant norm.

Proof. First, we observe that

H :=

[

A +B + UBU∗ A+ UB

A +BU∗ A+B + UBU∗

]

=

[

A A

A A

]

+

[

UBU∗ UB

BU∗ B

]

+

[

B 0
0 UBU∗

]

≥ 0.

Second,

Hτ =

[

A +B + UBU∗ A+BU∗

A+ UB A+B + UBU∗

]

=

[

A A

A A

]

+

[

B BU∗

UB UBU∗

]

+

[

UBU∗ 0
0 B

]

≥ 0.

Thus, H is positive partial transpose. The desired result then follows by

Lemma 3.1 and (3.1). �

On the other hand, Lee [11] proved the following.

Proposition 4.2. Let A,B ∈ Mn. Then

‖A+B‖ ≤
√
2‖|A|+ |B|‖

for any unitarily invariant norm. Equivalently, if A,B ≥ 0, then for any

unitary matrix U ∈ Mn,

‖A+ UB‖ ≤
√
2‖A +B‖.(4.2)

There is no obvious relation between (4.1) and (4.2). However, when

A ≥ 0 and B = I, we have a stronger inequality

‖A+ U‖ ≤ ‖A+ I‖,

which is due to Fan and Hoffman [5, Theorem 1’].

Acknowledgements. The authors wish to thank the referee for their in-

sightful comments which greatly improved the presentation.
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