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Abstract

A new semide�nite programming, SDP, relaxation for the general graph partitioning problem,
GP, is derived. The relaxation arises from the dual of the (homogenized) Lagrangian dual of an
appropriate quadratic representation of GP. The quadratic representation includes a representation
of the 0,1 constraints in GP. The special structure of the relaxation is exploited in order to project
onto the minimal face of the cone of positive-semide�nite matrices which contains the feasible
set. This guarantees that the Slater constraint quali�cation holds, which allows for a numerically
stable primal–dual interior-point solution technique. A gangster operator is the key to providing
an e�cient representation of the constraints in the relaxation. An incomplete preconditioned
conjugate gradient method is used for solving the large linear systems which arise when �nding
the Newton direction. Only dual feasibility is enforced, which results in the desired lower bounds,
but avoids the expensive primal feasibility calculations. Numerical results illustrate the e�cacy
of the SDP relaxations. ? 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we present a new semide�nite programming, SDP, relaxation for the
general graph partitioning, GP, problem; i.e. the problem consists in partitioning the
node set of a graph into k disjoint subsets of given, though not necessarily equal, sizes
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so that the sum of the weights of the edges between the disjoint subsets is minimized.
Our relaxation is obtained through the dual of the Lagrangian dual of a quadratic
model of GP. In particular, we add a quadratic representation of the binary constraints
to the quadratic model; and, we exploit the structure of a gangster operator in the SDP
relaxation to enforce zeros. These additional constraints provide strengthened bounds
for this NP-hard problem.
We further exploit the special structure of our SDP relaxation and explicitly �nd the

minimal face of the cone of n×n positive-semide�nite matrices, P, which contains the
feasible set of the relaxation. We then consider the SDP in the span of this minimal
face. This guarantees that the Slater constraint quali�cation (strict feasibility) holds.
This, in turn, allows us to use a numerically stable primal–dual interior-point, p–d i-p,
approach to solve the SDP. The Newton equation which arises in each iteration can be
very large. We solve these large linear systems using an incomplete conjugate gradient
method. At each iteration we obtain a lower bound, since we maintain dual feasibility.
We disregard primal feasibility since that involves a very large linear system.

1.1. Background

GP can best be described as follows.

Given: an undirected graph G = (V;E) having nodes V and edges E and a
weight, aij; for each edge. We consider the problem of partitioning V into k
disjoint subsets V1; : : : ;Vk of given sizes m1¿ · · ·¿mk in such a way that the
sum of weights of edges that connect nodes in di�erent subsets (cut edges) is
minimized.

We use aij for the weight for the edge between node i and node j, where aij = 0 if
there is no edge between node i and node j. The symmetric matrix A={aij}; with 0 on
the diagonal, is the adjacency matrix of the graph. For a given partition of the graph
into k subsets, let X = (xij) be the n × k matrix (n =

∑
i mi is the cardinality of V)

de�ned by

xij =

{
1 if node i is in the jth subset;

0 if node i is not in the jth subset:

Thus the jth column X:j is the indicator set for the jth subset. Such an X can represent
the partition. We let

Fk = {X ∈ R n×k : X represents a partition}:
For each such partition X ,

1
2 traceX

tAX = 1
2 traceAX X

t

gives the total weight of the uncut edges. As a result, the total weight for the cut edges
is

w(Ecut):=1
2 (e

tAe − trace(X tAX ));
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where e is the vector of ones. Note that for any partition matrix X , we have

traceX t Diag(Ae)X = etAe;

where Diag is the diagonal matrix formed from the vector. Therefore, the minimal
weight of cut edges can be obtained by solving the graph partitioning problem in the
trace formulation.

(GP)
w∗(Ecut):= min 1

2 traceX
tLX

s:t: X ∈ Fk ;

where the matrix

L:=Diag(Ae)− A
is called the Laplace matrix of the graph.
The graph partitioning problem is well known to be NP-hard and therefore �nding

an optimal solution is likely very di�cult. Yet this problem has many applications. One
important application is VLSI design; see e.g. [15] for a survey of Integrated Circuit
Layout.
One popular and very successful heuristic for �nding “good” partitions was proposed

by Kernighan and Lin [14] in 1970. (See also [9] for its application on netlist partition-
ing.) In the early 1970s Donath and Ho�man [7] provided an eigenvalue-based bound
for GP. Several new strengthened eigenvalue-based bounds were presented by Rendl
and Wolkowicz [18]; a computational study showed these bounds to be very good,
see Falkner et al. [8]. In [1], Alizadeh introduced several semide�nite relaxations for
various graph related problems. In particular, he showed that the Donath–Ho�man
bound can be obtained as the dual of a semide�nite relaxation of GP. More recently,
Anstreicher and Wolkowicz [2] show that the Donath–Ho�man bound can actually be
obtained using the Lagrangian dual of an appropriate quadratically constrained problem.
A semide�nite relaxation technique for the equal-partitioning problem, which included
additional polyhedral constraints, has been successfully developed in [12], see also [13].
These last two papers contain excellent detailed descriptions and historical background
of these various bounds; in addition, the detailed relationships between these bounds
is given in [12]. We give some details on comparisons with our bound in Remark 2.1.

1.2. Outline

The main result in this paper is the application of an incomplete conjugate gradient
approach within a p–d i-p method that solves an SDP relaxation for the general (not
necessarily equipartitions) GP problem.
A preliminary (unreduced) SDP relaxation is presented in Section 2. Therein it is

noted that the standard Slater CQ fails. Also, the connection to the Donath–Ho�man
bound is discussed, see Remark 2.1. The geometry of the relaxation is studied in
Section 3. The minimal face of P that contains the feasible set is characterized. This
characterization is used in Section 4 to project the problem onto the span of the minimal
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face. Moreover, redundant constraints are eliminated resulting in our �nal, very e�cient
SDP relaxation, (4.3), (4.4).
We then present numerical results in Section 5 and summarize in Section 6.

2. A preliminary SDP relaxation

We now follow the approach in [17,22] and derive our SDP relaxation using
Lagrangian duality. (This is sometimes called the Shor relaxation, see e.g. [20].) This
results in a relaxation with many redundant constraints and with no strict interior for the
feasible set. We project the feasible set onto a face of the semide�nite cone and then
identify the redundant constraints and obtain the �nal form of the relaxation. The reader
may wish to skip the details and go straight to the �nal SDP relaxation, (4.3), (4.4).
In order to derive a semide�nite programming relaxation, we will formulate GP as a

quadratically constrained quadratic programming problem. The SDP relaxation is then
found from the dual of the Lagrangian dual of this program. We let ◦ denote the
Hadamard (elementwise) product, e is the vector of ones, and �m = (m1; : : : ; mk)t. We
�rst note that we can formulate GP as follows:

w∗(Ecut) =min 1
2 traceX

tLX

s:t: X ◦ X = X (0; 1 constraints);

Xe = e (one set per node);

X te = �m (mi nodes in set i);

X:i ◦ X:j = 0; ∀i 6= j (Hadamard column orthogonality): (2.1)

The last strong orthogonality constraint is redundant. However, redundant constraints
do not have to be redundant in the Lagrangian relaxation.
An equivalent quadratically constrained quadratic problem is

w∗(Ecut) =min 1
2 traceX

tLX

s:t: X ◦ X = X;
||Xe − e||2 = 0;
||X te − �m||2 = 0;
X:i ◦ X:j = 0 ∀i 6= j: (2.2)

Remark 2.1. We emphasize here that our relaxation is for general graph partitioning
where the subsets of nodes do not have to be equal. It is hard to compare our results
with others in the literature since most other tests are done on equipartitioning problems.
For example, our numerical tests showed that our bounds could be better or worse than
the classical Donath–Ho�man bounds.
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However, there is a way to explicitly compare the bounds. A subset of the constraints
in (2.2) are included in the following constraints:

X tX =Diag(m); diag(XX t) = e: (2.3)

If we had included these constraints in our relaxation, then we would have a provably
stronger bound than the Donath–Ho�man bound, since the Lagrangian relaxation with
only these two sets of bounds yields the Donath–Ho�man bound. (This is proved in
[2].) The addition of the missing constraints is the subject of ongoing research.

To derive the semide�nite relaxation, we can now take the dual of the (homogenized)
Lagrangian dual of this problem. (See [21,22] for the details of this approach applied to
the quadratic assignment problem. We have to square the linear terms or they disappear
in the Lagrangian relaxation.) A direct approach is based on the now well-known lifting
process (e.g. [3,16,19]), i.e. we use the substitution (or linearization)

YX :=
(

1
vec(X )

)
(1 vec(X )t);

where vec(X ) is the vector formed from the columns of X and YX ¡ 0, i.e. is positive
semide�nite. For example, the objective function becomes

min 12 traceX
tLX = traceLAY;

where LA is de�ned below in (2.5). We then remove the rank one restriction and
replace YX by a general symmetric matrix Y .
We get the following semide�nite relaxation:

w∗(Ecut)¿�∗ := min traceLAY

s:t: arrow(Y ) = e0;

traceD1Y = 0;

(RGP) traceD2Y = 0;

GJ (Y ) = 0;

Y00 = 1;

Y ¡ 0; (2.4)

where:

LA:=
[
0 0
0 1

2 I ⊗ L
]
; (2.5)

the arrow operator, acting on the (n2 + 1)× (n2 + 1) matrix Y , is de�ned as
arrow(Y ):=diag(Y )− (0; Y0;1:n2 )t ; (2.6)

where Y0;1:n2 is the vector formed from the last n2 components of the �rst, or 0, row
of Y and diag denotes the vector formed from the diagonal elements or the adjoint
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operator of Diag; the arrow constraint represents the 0,1 constraints by guaranteeing
that the diagonal and 0th row (or column) are identical; e0 is the �rst unit vector; the
gangster operator GJ :Sn2+1 → Sn2+1 shoots “holes” in a matrix, i.e. the ij component
is de�ned as

(GJ (Y ))ij:=
{
Yij if (i; j) or ( j; i) ∈ J;
0 otherwise;

(2.7)

where the set

J :=
{
(i; j): i = (p− 1)n+ q; j = (r − 1)n+ q; for

p¡r; p; r ∈ {1; : : : ; k}
q ∈ {1; : : : ; n}

}
;

the gangster operator constraint represents the (Hadamard) orthogonality of the columns,
X:i ◦X:j=0; ∀i 6= j; and, �nally, the norm constraints are represented by the constraints
with the (kn+ 1)× (kn+ 1) matrices

D1:=
[

n −etk ⊗ etn
−ek ⊗ en (eketk)⊗ In

]

and

D2:=
[

�mt �m − �mt ⊗ etn
− �m⊗ en Ik ⊗ (enetn)

]
:

Since both D1 and D2 are positive semide�nite, the feasible set of problem (RGP)
has no strictly feasible (positive de�nite) points. There can be numerical di�culties
if we apply an interior-point method directly to a problem without interior. However,
one can �nd a very simple structured matrix in the relative interior of the feasible set
in order to project (and regularize) the problem into a smaller dimension. This we do
in Section 3.

3. Geometry

In this section we study the geometrical structure of the feasible set, denoted F,
and of the convex cone P of the SDP relaxation (RGP). (More details on the classical
results on P can be found in e.g. [4,5].)
A set T is a cone (convex) if T + T ⊂T and �T ⊂T; ∀� ∈ R . The cone K ⊂T is

a face of the cone T , denoted K / T , if

x; y ∈ T; x + y ∈ K ⇒ x; y ∈ K: (3.1)

The faces of P have very special structure. Each face, K / P, is characterized by a
unique subspace, S ⊂R n:

K = {X ∈ P: N(X )⊃ S};
where N denotes null space. Moreover, the relative interior

relint(K) = {X ∈ P: N(X ) = S}:
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The complementary (or conjugate) face of K is Kc = K⊥ ∩P and

Kc = {X ∈ P: N(X )⊃ S⊥}: (3.2)

Again,

relint(Kc) = {X ∈ P: N(X ) = S⊥}:
Note that a subset K of a convex set C is called a face if

x; y ∈ C; �x + (1− �)y ∈ K; 06�61 ⇒ x; y ∈ K:
We now characterize the minimal face of P which contains F. It is clear that the

matrices

YX :=
(

1
vec(X )

)
(1 vec(X )t) for X a partition

are in F. From the structure of the faces of P, every matrix in the relative interior
of a face has the same null space (and range space). Therefore, since these points YX
are rank one matrices, we see that they are contained in the set of extreme points of
F. We need only consider the intersection of faces of P which contain all of these
extreme points YX . The following theorem characterizes the minimal face by �nding a
point in its relative interior, namely the barycenter point. This point has a very simple
and elegant structure.

Theorem 3.1. Let x = vec(X ). De�ne the barycenter point

Ŷ :=
m1! : : : mk !

n!
∑

partitions X

[
1 xt

x xxt

]
: (3.3)

Then:

1. the barycenter is

Ŷ =




1 m1
n e

t
n : : : mk

n e
t
n

m1
n en (m1n In +

m1(m1−1)
n(n−1) (En − In)) : : : ( m1mkn(n−1) )(En − In)

...
...

. . .
...

mk
n en ( m1mkn(n−1) )(En − In) : : : (mkn In +

mk (mk−1)
n(n−1) (En − In))


 ;

2. the rank of the barycenter

rank(Ŷ ) = (k − 1)(n− 1) + 1;
3. the rows of

T :=



−m1 etn 0 · · · · · · 0
−m2 0 etn 0 · · · 0
· · · · · · · · · · · · · · · · · ·
−mk 0 · · · · · · 0 etn
−en In In · · · · · · In


 (3.4)

form a basis for the null space of Ŷ ;
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4. the columns of

V̂ :=
[

1 0
1
n �m⊗ en Vk ⊗ Vn

]
(3.5)

form a basis for the range space of Ŷ ; where

Vs:=



1 0 : : : : : : 0
0 1 : : : : : : 0
0 0 1 : : : 0
: : : : : : : : : : : : 1
−1 : : : : : : 0 −1



s×(s−1)

:

Proof. There are n! ways to permute the nodes and there are mj! ways to permute the
members of each set. Therefore, there are n!=(m1! : : : mk !) possible partition matrices.
Consider the (n( j − 1) + i)th column of YX(

1
x

)
xn( j−1)+i :

The column is zero unless xn( j−1)+i = 1. The element xn( j−1)+i corresponds to the i; j
element of the partition matrix X , i.e. this element is 1 if node i is in set j: There are
((n−1)!mj)=(m1! : : : mk !) partition matrices, X , to GP with xn( j−1)+i=1. Therefore the
components of the 0th row of Ŷ are given by

Ŷ 0; n( j−1)+i =
(m1! : : : mk !)

n!
∑

xn( j−1)+i=1
1 =

(m1! : : : mk !)
n!

(n− 1)!mj
(m1! : : : mk !)

=
mj
n
:

Now look at the n(q− 1) + p element of
(
1
x

)
xn( j−1)+i. We distinguish four cases:

1. Assume that j = q and i = p. There are again ((n − 1)!mj)=(m1! : : : mk !) partitions
to GP with x(p−1)n+q = 1, i.e. this con�rms the fact that the diagonal elements are
equal to the elements of the 0th row.

2. Assume that the node indices i = p while the set indices j 6= q. Since the same
node cannot be in two di�erent sets, this implies that the diagonal elements of the
o�-diagonal blocks of the matrices YX are all 0.

3. Assume that the node indices i 6= p while the set indices j = q. These are the
o�-diagonal elements of the diagonal blocks. Then there are ((n − 2)!mj(mj −
1))=(m1! : : : mk !) possible partitions. After dividing this by n!=(m1! : : : mk !); and
adding the diagonal parts, we get the blocks (mj=n)In+(mj(mj−1)=n(n−1))(En−In):

4. If both the node indices i 6= p and the set indices j 6= q, then these are the o�-
diagonal elements of the o�-diagonal blocks. There are ((n−2)!mjmq)=(m1! : : : mk !)
possible partitions. After dividing appropriately, we get the expression in for Ŷ
in 1.
Now let us �nd a basis for the range space of Ŷ : We partition

Ŷ =
[
1 zt

z W

]
;
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where z = (1=n) �m⊗ en. Then[
1 0

− 1
n �m⊗ en I

]
Ŷ
[
1 − 1

n �m
t ⊗ etn

0 I

]
=
[
1 0
0 S

]
; (3.6)

where S =W − (1=n2) �m �mt ⊗ En. As a result, we have
rank(Ŷ ) = 1 + rank(S):

Direct veri�cation shows that

S =
1

n2(n− 1)(nDiag( �m)− �m �mt)⊗ (nIn − En):

The null space of (nDiag( �m)− �m �mt) and the null space of (nIn − En) are spanned by
ek and en, respectively. Therefore, their range spaces are spanned by the columns of
Vk and Vn, respectively. Hence, the range space of S is spanned by the columns of
Vk ⊗ Vn. This implies that rank(S) = (k − 1)(n − 1). This proves 2 and 3. Moreover,
we have that the null space of Ŷ is of dimension k + n− 1. Since

rank(T ) = k + n− 1
and

TŶ = 0; T V̂ = 0:

This implies that the rows of T span the null space of Ŷ and the columns of V̂ span
the range space of Ŷ .

Remark 3.1. The structure of the polytope of partitions has been well studied. The
feasible set F is a relaxation of the polytope obtained by lifting the partition matrices
into the higher-dimensional matrix space. Therefore the dimension of the minimal face
and the structure of the null space can be studied from the known results of the
polytope of partitions. 4

4. The �nal semide�nite relaxation

From Theorem 3.1 we conclude that Y ¡ 0 is in the minimal face if and only if
Y = V̂ ZV̂

t
; for some Z ¡ 0: We can now substitute V̂ ZV̂

t
for Y in the SDP relaxation

(RGP). We get the following reduced SDP relaxation:

min trace V̂
t
LAV̂Z

s:t: arrow(V̂ ZV̂
t
) = 0;

GJ (V̂ ZV̂
t
) = 0;

(V̂ ZV̂
t
)00 = 1;

Z ¡ 0:

(4.1)

The following useful properties can be derived from the fact that TV̂ = 0.

4 Thanks to Levent Tuncel for pointing this out.
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Lemma 4.1. Let Z be an arbitrary (n− 1)(k − 1) + 1× (n− 1)(k − 1) + 1 symmetric
matrix with

Z =




Z00 Z01 : : : Z0(k−1)
Z10 Z11 : : : Z1(k−1)
...

...
. . .

...
Z(k−1)0 Z(k−1)1 : : : Z(k−1)(k−1)


 ;

where Z00 is a scalar; Zi0 for i = 1; : : : ; k − 1 are (n − 1) × 1 vector and Zij for i; j =
1; : : : ; n− 1 are (n− 1)× (n− 1) blocks of Z: Let Y = V̂ ZV̂ t and partition Y as

Y =



Y00 Y01 : : : Y0k
Y10 Y11 : : : Y1k
...

...
. . .

...
Yk0 Yk1 : : : Ykk


 ;

where Y00 is a scalar; Yi0 for i=1; : : : ; k are n×1 vectors and Yij for i; j=1; : : : ; k are
n× n blocks of Y: Then
(a)

Y00 = Z00;

Y0ien = miZ00 for i = 1; : : : ; k

and
k∑
i=1
Y0i = Z00etn:

(b)

miY0j = etnYij for i; j = 1; : : : ; k:

(c)
k∑
i=1
Yij = enZ0j for j = 1; : : : ; k:

and
k∑
i=1
diag(Yij) = Z0j for j = 1; : : : ; k:

Proof. From the equation between Y and Z , we see that Y00 = Z00. In addition, since
TV̂ = 0, we have

TY = TV̂ZV̂
t
= 0:

The remaining results follow from direct veri�cation.

From Lemma 4.1, we conclude that the arrow operator is redundant if both the
gangster constraint holds and (V̂ ZV̂

t
)00 = 1. Now we will show that when we project

the gangster operator onto its range, then there are no other redundant constraints. We
do this by showing that the null space of the adjoint operator is 0.
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Lemma 4.2. Suppose that W ∈ Sn2+1: Then

V̂
t
G(W )V̂ = 0 ⇒ G(W ) = 0:

Proof. Let Y = G(W ). Y can be written as

Y =



0 0 : : : 0
0 Y11 : : : Y1k
...

...
. . .

...
0 Yk1 : : : Ykk


 ;

where Yij for i; j ∈ {1; : : : ; k} are n× n matrices. Therefore from

V̂
t
Y V̂ = 0

we let

Z = (V ⊗ V )t


Y11 : : : Y1k
...

. . .
...

Yk1 : : : Ykk


 (V ⊗ V );

then Z = 0. Note that

V ⊗ V =



V : : : 0
...

. . .
...

0 : : : V
−V : : : −V


 :

Therefore if we write the above matrix Z as

Z11 : : : Z1k−1
...

. . .
...

Zk−11 : : : Zk−1k−1


 :

Then we have for i; j ∈ {1; : : : ; n− 1}
Zij = V t(Yij − Ykj − Yik + Ykk)V = 0: (4.2)

Note that Ykk = Yii = 0 for i = 1; : : : k − 1. We have V tYikV = 0 for i = 1; : : : k − 1.
Therefore,

Zij = V t(Yij)V = 0

for i; j ∈ {1; : : : ; k − 1}. Since Yij can be either a diagonal matrix or zeros matrix, we
let

Yij =



a1 : : : 0
...

. . .
...

0 : : : an


 :
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Then

Zij =



a1 : : : 0
...

. . .
...

0 : : : an−1


+ anE = 0:

Thus we have Yij = 0 for i; j ∈ {1; : : : ; k − 1}. Therefore, Y = 0:

Therefore, by eliminating the redundant constraints we can get a very simple pro-
jected relaxation. We let �J =J ∪{(0; 0)} and we add G �J to the right-hand side in order
to emphasize the restriction to the range of this operator.

(PRGP)
min trace (V̂

t
LAV̂ )Z

s:t: G �J (V̂ ZV̂
t
) = G �J (E00);

Z ¡ 0:

(4.3)

Its dual problem is

(DPRGP)
max W00
s:t: V̂

t
G �J (W )V̂ 4 V̂

t
LAV̂ :

(4.4)

The dimension of the range of the gangster operator G �J (·) is the cardinality of the set
�J : When solving this pair of dual problems we can restrict the operator to this space.
From the above lemma, this guarantees that the operator is onto. The dual has to be
adjusted accordingly.
For p–d i-p methods, it is useful to have positive-de�nite feasible points for both

the primal and dual feasible sets.

Theorem 4.1. The ((k − 1)(n− 1) + 1)× ((k − 1)(n− 1) + 1) matrix

where

�mtk−1 = (m1; : : : ; mk−1);

is a positive-de�nite feasible point for the primal feasible set (4:3).

Proof. Note that Ẑ is positive de�nite since both nDiag( �mk−1)− �mk−1 �mtk−1 and nIn−1−
En−1 are positive de�nite.
The rest of the proof follows from showing

V̂ ẐV̂
t
= Ŷ ;
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where Ŷ is the barycenter, see Theorem 3.1 part 1. We see that

V̂ X̂ V̂
t
=
[

1 0
1
n �m⊗ en Vk ⊗ Vn

]
X̂
[
1 1

n �m
t ⊗ etn

0 V tk ⊗ V tn

]

=
(

1
1
n �m⊗ en

)
(1; 1n �m

t ⊗ etn)

+


0 0

0
1

n2(n−1)(Vk(nDiag( �mk−1)− �mk−1 �mtk−1)V
t
k)⊗ (Vn(nIn−1 − En−1)V tn)




=
(

1
1
n �m⊗ en

)
(1; 1n �m

t ⊗ etn)

+


 0 0

0
1

n2(n− 1)(nDiag( �m)− �m �mt)⊗ (nIn − En)




=Ŷ

follows from

Vk(nDiag( �mk−1)− �mk−1 �mtk−1)V
t
k = nDiag( �m)− �m �mt

and

Vn(nIn−1 − En−1)V tn = nIn − En:

Theorem 4.2. The matrix

Ŵ =
[
� 0
0 (Ek − Ik)⊗ In

]

is a strictly feasible point for the dual feasible set (4:4); if � is a su�ciently negative
real scalar.

Proof. Note that G �J (Ŵ ) = Ŵ : We can write V̂
t
(Ŵ − LA)V̂ as

V̂
t
[
0 0
0 I ⊗ L

]
V̂ + V̂

t
[−� 0
0 (Ik − Ek)⊗ In

]
V̂ :

Note that

LAe = (Diag(Ae)− A)e = Ae − Ae = 0:
We have for the �rst term

V̂
t
[
0 0
0 I ⊗ L

]
V̂ =

[
1 �mt ⊗ et=n
0 V tk ⊗ V tn

] [
0 0
0 I ⊗ L

] [
1 0

�m⊗ e=n Vk ⊗ Vn

]

=
[
0 + ( �mt �m)⊗ (etLe)=n2 ( �mtVk)⊗ (etLVn)=n
(V tk �m)⊗ (V tnLe)=n (V tkVk)⊗ (V tnLVn)

]

=
[
0 0
0 (Ik−1 + Ek−1)⊗ (V tnLVn)

]
:
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Since (Ik−1 + Ek−1) is positive de�nite and V tnLAVn is positive semide�nite, we get
(Ik−1 + Ek−1)⊗ (V tnLAVn) is positive semide�nite, i.e. V̂

t
LAV̂ is positive semide�nite.

Now for the second term, note that etV = 0, and we have

V̂
t
Ŵ V̂ =

[
1 �mt ⊗ et=n
0 V tk ⊗ V tn

] [−� 0
0 ((Ik − Ek)⊗ In

] [
1 0

�m⊗ e=n Vk ⊗ Vn

]

=
[ −�+ �mt(Ik − Ek) �m=n ( �mt(Ik − Ek)Vk)⊗ (etVn)=n
(V tk(Ik − Ek) �m)⊗ (V tne)=n (V tk(Ik − Ek)Vk)⊗ (V tnVn)

]

=
[−�+ �mt(Ik − Ek) �m=n 0

0 (Ik−1 + Ek−1)⊗ (In−1 + En−1)
]
:

Since both Ik−1 + Ek−1 and In−1 + En−1 are positive de�nite, we can see that when
−� is large enough V̂ tŴ V̂ is negative de�nite.

5. Numerical tests

The algorithm (a p–d i-p approach) we use to solve the SDP relaxation is very
similar to the one in [21,22] for the quadratic assignment problem. Therefore, we only
give a brief outline here. An incomplete conjugate gradient method is used to solve
the large Newton equations that arise. After solving the relaxation, we obtain not only
a lower bound for the graph partitioning problem but also an appropriate solution �Y
for the SDP relaxation. By re-shaping the diagonal of �Y , we can get an n× k matrix
�Z which satis�es all the feasible constraints except the 0–1 constraint for the original
graph partitioning problem. By solving a network subproblem with �Z as its adjacency
matrix, we can �nd an upper bound for the graph partitioning problem. With this
upper bound as an initial solution, we use Adaptive Simulated Annealing technique
(or VFSR, see e.g. [10]) to generate a better upper bound. To measure how close our
upper bound is to the optimal solution, we use the measure

gap:=
upper bound − lower bound

lower bound
:

Our numerical results are based on random unweighted and weighted graphs. We
include two instances (labelled #a, #b) for each case. First, eight unweighted graphs
were randomly generated. Each edge was generated independent of other edges with
probability 0:5. These graphs have vertices of 36; 60; 84 and 108, respectively. The
number of partitions k are 2; 3; 4. The size for each partition is randomly generated.
Next, another eight weighted graphs were randomly generated. Each edge was generated
independent of other edges. The weights are integer numbers between 0 and 10. These
graphs have vertices of 36; 60; 84 and 108, respectively. The number of partitions k are
2; 3; 4. The size for each partition is randomly generated. In Tables 1–6 the column
under LB is the lower bound, the column under INIT is the initial upper bound and
the column under BEST is the upper bound generated by the VFSR. The last column
under GAP is for the gap.
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Table 1
Bisection for unweighted graphs

BEST INIT LB GAP

a36 114 116 106 0.076
b36 71 72 66 0.076
a60 217 229 203 0.069
b60 352 370 336 0.048
a84 423 427 406 0.042
b84 420 428 401 0.047
a108 747 767 708 0.055
b108 753 769 713 0.056

Table 2
3-partition for unweighted graphs

BEST INIT LB GAP

a36 122 122 111 0.099
b36 103 108 97 0.062
a60 321 332 297 0.081
b60 475 499 431 0.102
a84 647 654 609 0.062
b84 646 646 606 0.066
a108 1120 1120 1030 0.087
b108 1113 1113 1038 0.072

Table 3
4-partition for unweighted graphs

BEST INIT LB GAP

a36 176 192 162 0.086
b36 157 162 143 0.098
a60 492 522 451 0.091
b60 480 517 432 0.111
a84 1017 1032 912 0.115
b84 1051 1051 916 0.147
a108 1703 1703 1537 0.108
b108 1680 1680 1548 0.085

Table 4
Bi-partition for weighted graphs

BEST INIT LB GAP

wa36 919 938 897 0.025
wb36 815 815 785 0.038
wa60 4095 4095 4027 0.017
wb60 2250 2254 2196 0.025
wa84 4755 4773 4642 0.024
wb84 1604 1619 1573 0.020
wa108 8259 8329 8125 0.017
wb108 7430 7448 7264 0.023
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Table 5
3-partition for weighted graphs

BEST INIT LB GAP

wa36 1336 1336 1302 0.026
wb36 521 521 506 0.030
wa60 4243 4246 4178 0.016
wb60 4366 4391 4293 0.017
wa84 11012 11012 10561 0.043
wb84 6445 6445 6261 0.029
wa108 12013 12013 11755 0.022
wb108 10786 10786 10511 0.026

Table 6
4-partition for weighted graphs

BEST INIT LB GAP

wa36 1912 1931 1853 0.032
wb36 1708 1750 1650 0.035
wa60 5423 5427 5200 0.043
wb60 4922 4945 4751 0.036
wa84 10643 10643 10195 0.044
wb84 9632 9632 9246 0.042
wa108 17820 17820 17299 0.030
wb108 15946 15946 15461 0.031

From the tables for weighted graphs (Tables 4–6), we observe that the gaps are less
than 0:05. However, for unweighted graph (Tables 1–3), the gaps are mostly between
0:05 and 0:10. The initial upper bounds derived from the SDP solution are very good
as we can see that the upper bound can hardly be improved by VFSR.
The results signi�cantly improve those in [8] and so illustrate that our bound is

better than both the D–H bound and the projected D–H bound. Moreover, the results
are comparable to the results in [11,12], where we must emphasize that the results
in [11,12] are for the very restrictive equipartition case and their bounds are obtained
using additional polyhedral bounds (cuts) which can be added to our relaxation to
further improve our bounds.

6. Conclusion

We have derived a semide�nite programming relaxation for the general (not re-
stricted to equipartioning) graph partitioning problem. This relaxation includes many
new equality constraints (such as the gangster operator) that make it stronger than pre-
vious relaxations which were based on equalities arising from a quadratic formulation
of GP. We have not included inequality constraints, though these should strengthen the
relaxation once they are included, as was seen in the relaxation used in [12].
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Due to the additional constraints, our SDP relaxation is larger than the one presented
in [1] or the ones used in [12]. This is because we had to use the lifting

YX :=1
vec(X ) (1 vec(X )t);

rather than the smaller lifting YX :=XX t ; which can be done in the equipartition case
with fewer constraints.
We have applied a primal–dual interior-point method to solve the relaxation. We

have used an incomplete conjugate gradient method to solve the large linear system
resulting from the search direction equations. In addition, we have exploited the fact
that we are looking at �nding a lower bound, i.e. we do not have to close the duality
gap but in fact, we just keep improving our lower bound at each iteration. This fact was
a key in the lower bounds for the QAP in [22]. Since then it has also been exploited
in [6] where problems of much larger size have been tackled. Therefore, this approach
shows much promise for the future.

Appendix A. Notation

SDP semide�nite programming problem
GP graph partitioning problem
Pn or P the cone of positive semide�nite matrices in Sn
Slater CQ the Slater constraint quali�cation; strict feasibility
p–d i-p primal–dual interior-point method
G = (V;E) graph with node set V and edge set E
�m (m1; : : : ; mk)t

cut edge an edge connecting nodes in di�erent subsets of a partition
A= (aij) adjacency matrix of the graph
X = (xij) partition matrix
Fk set of partition matrices
w(Ecut) total weight of cut edges of the partition
w∗(Ecut) minimal total weight of cut edges over all partitions
Diag the diagonal matrix formed from the vector
diag the vector formed from the diagonal elements
L Laplace matrix of the graph
B ◦ C the Hadamard product of B and C
YX partition matrix lifted into higher dimensional matrix space
e the vector of ones in the appropriate dimension
A⊗ B the Kronecker product of A and B
vec(X ) the vector formed from the columns of the matrix A
Y0;1:n2 the n2 vector from the �rst row of Y
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arrow the arrow operator diag (Y )− (0; (Y0;1:n2 )t
GJ the gangster operator GJ shoots “holes” in a matrix
�J �J = J ∪ {(0; 0)}
K / C K is a face of C
relint relative interior
R(B) range space of B
N(B) null space of B
Q 4 R R− Q is positive semide�nite
diag (A) the vector formed from the diagonal of the matrix A
Diag(v) the diagonal matrix formed from the vector v
En the matrix of ones in Sn
Eij the ij unit matrix in Sn
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