
Mathematical Programming 66 (1994) 211-239

A computational study of graph partitioning

Julie Falkner a, Franz Rendl b, Henry Wolkowicz c'*
aMassey University, Department of Mathematics, Private Bag 11222, Palmerston North, New Zealand

bTechnische Universitiit Graz, Institut fiir Mathematik, Kopernikusgasse 24, A-8010 Graz, Austria
cUniversity of Waterloo, Department of Combinatorics and Optimization, Waterloo, Ontario, N2L 3G1, Canada

Received 28 August 1992; revised manuscript received 2 August 1993

Abstract

Let G = (N, E) be an edge-weightedundirected graph. The graph partitioning problem is the problem
of partitioning the node set N into k disjoint subsets of specified sizes so as to minimize the total
weight of the edges connecting nodes in distinct subsets of the partition. We present a numerical study
on the use of eigenvalue-based techniques to find upper and lower bounds for this problem. Results
for bisecting graphs with up to several thousand nodes are given, and for small graphs some trisection
results are presented. We show that the techniques are very robust and consistently produce upper
and lower bounds having a relative gap of typically a few percentage points.

Keywords: Graph bisection; Graph partitioning; Eigenvalue bounds; Quadratic 0, 1 programming; Computational
tests

1. Introduction

Let G = (N, E) be an edge-weighted undirected graph with node s e t N = { 1 n}, edge

set E and weights w o, ij ~ E. W e consider the problem of partitioning the node set N into k

disjoint subsets $1 Sk of specified sizes mm >/m2 >/"'" >/mk, E~= 1 mj = n, so as to minimize

the total weight of the edges connecting nodes in distinct subsets of the partition. This

problem is well known to be NP-hard and therefore finding an optimal solution is likely to

be a difficult task. Yet partitioning problems are important in the context of layout problems

and VLSI design. See e.g. [18] for a recent survey of Integrated Circuit Layout. Several

researchers have developed methods for finding 'good ' partitions, and one of the most

successful heuristics was proposed by Kernighan and Lin [17] in 1970. A recent survey by

* Corresponding author.

0025-5610 © 1994--The Mathematical Programming Society, Inc. All rights reserved
SSD10025-5610 (94) 00006-F

212 J. Falkner et al. / Mathematical Programming 66 (1994) 211-239

Johnson et al. [15] compares several heuristics for the graph bisection problem, which is
the problem of partitioning the nodes into just two sets of equal size. The authors provide
substantial numerical tests on sparse random (unweighted) graphs with up to 1000 nodes.

Less attention seems to have been given to estimating the quality of a partition in terms
of upper and lower bounds on the optimal solution values. In the early 70s Donath and
Hoffman [12] provided an eigenvalue-based upper bound on the weight of the edges not
cut by any partition. They also proposed a parametric improvement strategy for their bound
and provided numerical results on sparse random graphs with up to 100 nodes. Their results
indicate that the gap between lower and upper bounds is fairly large as the number of nodes
increases. Recently Boppana [6] has proposed a bounding technique for the special case
of graph bisection. He does not give any numerical results but shows that on a certain class
of random graphs, his bound is asymptotically tight. Finally, attempts have been made to
use polyhedral combinatorics to solve the bisection problem. In [20] the facial structure of
the equipartition problem is analyzed, but no computational results are provided.

The present paper is a sequel to [21] where several new eigenvalue-based bounds for
the graph partitioning problem are presented. Whereas in [21] the focus was on the theo-
retical framework of the bounds, the purpose of the present paper is to study thoroughly the
performance of these bounds on various classes of graphs. We present computational results
on a variety of randomly generated graphs having various characteristics and also consider
problems coming from real-world applications. Our results show that the eigenvalue
approach is a robust and powerful tool for producing reasonably tight intervals for the
optimal value of graph partitioning problems.

The paper is organized as follows. Section 2 contains basic notation. In Section 3 we
discuss the theoretical background, showing how eigenvalue information can be used to
obtain upper and lower bounds. Section 4 addresses computational considerations, and in
Section 5 the numerical results are presented. The paper concludes with a discussion and
summary in Section 6.

2. Basic notation and problem statement

Let G = (N, E) denote an undirected graph with edge weights w. We denote by A = (a,-j)
the weighted adjacency matrix of G, i.e.

ij E E,

a,j = ~ O °" otherwise.

Since G is undirected, A is symmetric. The j - largest eigenvalue of a symmetric matrix M
will be denoted by Aj(M). The operator d iag(.) is used in two ways. If v is a vector,
diag(v) is the diagonal matrix formed from v. I f M is a (square) matrix, diag(M) is the
vector containing the main diagonal of M. The trace of M is denoted by tr(M). The column
vector consisting of all ones is denoted by u (or ut to indicate its size). The (column) vector
of row sums of a matrix M is denoted by r (M) , thus r (M) = Mu. Similarly, s (M) .'= utMu

J. Falkner et al, /Mathematical Programming 66 (1994) 211-239 2 1 3

denotes the sum of all elements of M. We will also make extensive use of the following
l × (l - 1)-matrix Vt, representing u ±: [y y] Vt= l + x . x , (2.1)

• . -

x .-" l + x

where x = - I / (l + x / l) , y = - l / x / 1 and I>~2 It can be easily verified that V~ul=O and

V ~ V l = t t - l .

An instance of a graph partitioning problem is described by a symmetric matrix A of size
n and an integer vector m = (ml mk) such that mtu = n , defining the specified sizes for

the subsets of the partition. We assume without loss of generality that

ml >~ .. . >/ mk >~ l andthat k < n.

Finally we denote by w (E) the sum of all edge weights of G, i.e. w (E) = ½s(A), and by
w(Ecut) the total weight of the edges cut by an optimal partition. Moreover let

w(Eu,cut) := w (E) - w(E~ut).
The following nonlinear optimization problem solves the graph partitioning problem, see

e.g. [21].

(GP) w(Euncut) = m a x ½tr XtAX

such that

X t X = diag(m), (2.2)

Xuk =un; Xtun =m, (2.3)

X>~0. (2.4)

The constraints guarantee that all entries of the n × k matrix X are either 0 or 1 with precisely
one nonzero entry in each row. The nonzero entries of column j of X represent the nodes
contained in S t.

3. Eigen-~alue-based bounds

3.1. Upper bounds

We note that there exist very efficient heuristics to bound w(guncut) from below. Starting
with the work of Kernighan and Lin in 1970 [17], various strategies have been proposed
to generate and improve good partitions based on e.g. simulated annealing [15] or more
recently genetic algorithms, see e.g. [8, 7]. On the other hand the mathematical analysis of
upper bounds for graph partitioning seems to have attracted much less attention.

Our main goal in this paper is to demonstrate an approach that produces both lower and

214 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

upper bounds of good quality. We begin by describing how the formulation of (GP) can
be used to obtain tractable relaxations of the graph partitioning problem, which lead to tight
upper bounds.

Dropping the constraints (2.3) and (2.4) leads to one of the first relaxations for graph
partitioning. It was proposed by Donath and Hoffman in the 1970s [12].

1 k
W(Euncut) ~ max{ ½trXtAX: X satisfies (2.2) } = 2-y' msAs(A). (3.1)

Any X containing pairwise orthogonal eigenvectors x s corresponding to A s (A) and having
the correct length II xs II 2 = ms constitutes a maximand in (3.1).

The Donath-Hoffman bound can be further strengthened by dropping only the nonne-
gativity conditions from (GP), see [21]. In the case where the m s are all equal (to n/k),
the linear term in the bound becomes trivial, i.e. a constant. From now on we will focus on
this special case.

Assumption. ml mk = n/k.

The following bound is derived in [21].

W(Euncut) --.< max{ ½trXtAX: X satisfies (2.2), (2.3)}

/,/ k--1 1

= 2-'-k s__~l hy(V~AVn) +'~ s(A).

This upper bound is attained for

S = ~ UnU ~ + VnZV~,

(3.2)

(3.3)

where Z contains a set of k - 1 orthonormal eigenvectors corresponding to the largest
Aj(VtAVn). By construction, this X satisfies the orthogonality constraint (2.2) and the row
and column sum constraint (2.3), but it need not be integer, since nonnegativity is dropped.

A further improvement can be achieved along the following lines [12, 21]. Let d ~ ~ n
and X be an arbitrary feasible partition, i.e. X satisfies (2.2), (2.3), (2.4). Then it can
readily be seen that

tr Xtdiag(d) - dtuI~ = O ' n

Therefore, see [21], we conclude that

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 215

w(Eu~cut) =max{½trX~A+diag(d) -dt--?I~: X...feasible partition}

<~max{½trXtA+diag(d) -dt@I~:Xsatisfies (2.2), (2.3)}

=2--k +2-k h V t, + d i a g (d) - - - V,
j = l n

n
:=12k s(A) +~-£f(d)

thereby definingf(d). Since adding a multiple of the identity to a matrix shifts the eigen-
values we may also write

k--1
f(d) = ~ hi(Vt(A +diag(d))V,,) _ k - 1 dtu. (3.4)

j = l n

This shows in particular that f(d) =f(d ') , if d ' = d + au. Therefore the restriction o f f to
{ d ~ ~ ~: dtu - 0 } does not change the range off. This observation will be used later on. For
computational purposes it is preferable to have a smaller dimensional set over which to
minimize. From a theoretical viewpoint it seems easier to work with an unconstrained
problem.

The functionfhas several well-known and often used properties, see [9, 21], which we
summarize below.

Proposition 3.1. The function f is
(a) convex,
(b) bounded from below,
(c) continuous,
(d) differentiable if and only/fh~(•) < hk_ 1 (") . In this case

0 k - 1
- - 0 3 t t t =eiVnZZ V,e i - - - ,
04 n

where Z contains an orthonormal set of eigenvectors associated with the hjs.

In [21] it was observed that inf{f(d) : d ~ R n } is attained and therefore the best choice
for d to produce an upper bound on W(Euncut) is to find

min{f(d) : d~Nn}.

This leads to the following bound for partitioning the nodes into subsets of equal size, see
[21]:

W(Euncut) ~ < @ + m i n ~ - , f (d) : d ~ N n } . (3.5)
zK kzK

216 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

Iff is differentiable at a minimizer d, then the resulting maximand Xcan be shown to possess
additional properties.

Theorem 3.1. Let d* be a minimizer o f f (d) and suppose f is differentiable at d*. Let Z
denote the matrix whose columns span the eigenspace associated with rid*). Then the
matrix X formed according to (3.3) using Z satisfies

diag(XX t) = un.

Proof. Since d* is a minimizer o f f a n d f i s differentiable at d*, the first order optimality
conditions imply

O = _ ~ j f (d .) = e J V n Z Z t V t e j k-ln ' Vj.

Now note that from (3.3)

~/~ 1
VnZ = XVk, VkV~ = I k - ~ uku~ and Xuk =un.

Substituting for VnZ we get

k - 1 k 1
- - = - e)XX tej - - .

n n n

Therefore e~XXtej = 1, Vj, or equivalently diag(XX t) = u, completing the proof. []

Corollary 3.1. Under the conditions of the Theorem suppose further that k=2. Then the
resulting matrix X is an optimal solution to the graph bisection problem.

Proof. In this case we have for each i: x/21 +x~2 = 1, xil +x~2 = 1, showing that the entries
of X a r e 0 o r l . []

It is not hard to see that for k > 2 the additional condition diag(XX t) =u does not
necessarily force integer entries in X. The corollary indicates that if the optimal d* is reached
and the resulting h 1 is simple, then the underlying bisection problem is solved. Our numerous
computational experiments on randomly generated graphs do not suggest that this phenom-
enon will occur often. In fact, on all the bisection problems that we considered we noticed
that during the process of minimizingf(d), the di stance between the two largest eigenvalues
tended to 0, therefore the corollary was never applicable. Thus the lesson to be learned from
this result seems to be that one has to be prepared to face nondifferentiability when mini-
mizingf(d).

We note however that graphs having a 'dominating' optimal bisection often possess the
differentiability property of Theorem 3.1, see [6]. Members of this class can be constructed

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 217

as follows: We select a vertex bisection ($1, $2) and choose edges joining $1 and $2 with
probability p and all other edges with probability q >p . It is an immediate consequence of
[6] that if q is sufficiently larger than p, then the conditions of Theorem 3.1 are almost
surely satisfied.

Finding a suitable descent direction in the presence of multiple eigenvalues can be
extremely difficult. We describe later on in more detail how we deal with nondifferentiability

from a computational point of view. Here we point out a certificate that permits us to check
whether a given direction d is indeed a descent direction. For simplicity we consider only
the case of bisection, k = 2, thus

f (d) =)t 1 (Vt(A + diag(d))V,) :=)t l (/ t (d)). (3.6)

Here we introduce ,~ (d) as a shorthand for the 'projected matrix'.

Lemma 3.1. Suppose that d ~ ~ is given and that the largest eigenvalue at d, f (d), has
multiplicity t with corresponding eigenspace spanned by Q, where Q is (n - 1) × t and
QtQ = It. Then d is a descent direction f or f a t d if and only if the matrix

Q tV t diag (d) V, Q < 0, (3.7)

i.e. is negative definite.

Proof. Suppose that d is a descent direction at d. Thus there exists ff such that

f (d + a d) <f (d) , VO<a~<& (3.8)

Now if (3.7) fails, then there exists y with Ilyll = 1 such that

y t o t V t diag (d) V, Qy >~ O.

Let z = Qy. Then Ilzll = 1 and

f (d + a d) >~zt,~(d+ad)z>>.f(d), V0-N<a,

a contradiction. This proves necessity.
To prove sufficiency, let

B =.4 (d) - f (d) I, C = Vnt diag(d) Vn.

Then B is negative semidefinite while C is negative definite on the null space of B, by (3.7).
Therefore, (see e.g.p. 408 in [19]) B + c~C is negative definite for sufficiently small positive
a, therefore d is a descent direction. []

We have just pointed out that under certain circumstances minimizingf(d) may actually
lead to an optimal solution of the bisection problem. It would be perhaps more interesting
to have some information on how bad the resulting bounds can be as compared to w(Euncut).

We are not aware of a general answer to this question. If we are restricting ourselves to
subsets of equal size in graphs with nonnegative edge weights, we can at least show that

218 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

the following choice (3.9) for d yields a bound that is not worse than the trivial bound
w(E), the sum of all weights.

Before proving this claim we point out the following extremal property of d from (3.9).
For a symmetric matrix A, it is known that (see [28])

n - k hi(A) <.Nm+ ~ k s ,
i = 1 k

where m = t r (A)/n and s z = tr(A 2)/n - m 2. In order to find a good initial diagonal shift d,

a good heuristic would be to minimize the sum of the k - 1 largest eigenvalues of the
projected matrix A(d) . Note that tr(VtAVn) = trPAP, where P = I - u u t / n . From this we

see that the mean of the eigenvalues, re(d), is constant with respect to d, since d t u = O.
Therefore, we need minimize only the variance s 2(d), which now depends only on the first
term tr(A2(d)) /n . Therefore we need minimize only the Frobenius norm with respect to
d. The solution to this is given by the shift (3.9) below. We leave it to the interested reader

to work out the details.

Theorem 3.2. Let A be the weighted adjacency matrix of a graph with nonnegative edge
weights. Define

d := s(A) u - r(A). (3.9)
n

Then the graph partitioning problem, with k subsets of equal size, has the following bound

_<s(A) + n k-1
w(Euncut)--~--~-- ~'~ ~ h i (V t (A+diag(d))Vn) <<.w(E).

t = l

Moreover, the second inequality holds with equality if and only if the graph has (at least)
k components.

Proof. First note that d t u - - 0 , so the first inequality follows from (3.5). Now since
diag(A) = 0 and A is nonnegative elementwise, we see that the matrix A - diag(r(A)) is

negative semidefinite. Therefore, for all y with Ilyll = 1,

y t(A q- diag (d))y = y t(A - diag(r(A)))y + s(A) <~ s(A).
n n

Choosing y,. = V,2c;, for the appropriate eigenvector xi, yields

h,(V t (A + diag(d)) V~) ~< s(A)
n

and the second inequality follows. To discuss when equality holds, we add a multiple of
the identity to make the resulting matrix nonnegative elementwise. Consider

A' :=A-d iag(r (A)) +mr,

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 219

where a is chosen large enough to ensure A' >_-0, elementwise. The largest eigenvalue of

A' is a. By the Perron-Frobenius Theorem for nonnegative matrices, a is simple if the
directed graph associated with the nonzeros of A' is strongly connected (see e.g. [14] p.
508). Since A' is symmetric this is equivalent to the original graph being connected. Thus
c~ is simple if G is connected, and so (u being an eigenvector for a) ,

a>max{xtA'x :xtx = 1, x_l_u}

= A~(VtA'Vn) = AI(Vt(A + diag(d))Vn) - s(A) + t~,
n

therefore strict inequality holds. More generally, a >)t k- 1 (V tA' 11,) if the graph has fewer

than k components and so strict inequality holds again. Conversely, if the graph has at least
k components, then we can choose the eigenvector consisting of the vector of ones for a
fixed component and zeros elsewhere, showing that the dimension of the eigenspace cor-
responding to a is at least k. To conclude we observe that the eigenvalues of VtA'V,
interlace those of A', therefore the k - 1 largest eigenvalues are all equal to a. []

The bound (3.5) seems to be the best bound currently available for partitioning into sets
of equal size. In our numerical tests presented later we will focus mainly on this case with

k = 2, the bisection problem. We provide substantial numerical results using (3.5) on various
classes of graphs. Before doing so we discuss how the partitioning bounds relate to the
Laplacian eigenvalues.

3.2. Partitioning bounds and Laplacian eigenvalues

It is interesting to note that the eigenvalues appearing in the previous theorem are closely
related to the eigenvalues of the Laplacian matrix of the graph in question. Since the
Laplacian spectrum of graphs is a well-studied area of spectral graph theory, see e.g. [10],
we establish in this short subsection connections between our graph partitioning bounds
and the Laplacian spectrum of graphs. The Laplacian LA of a graph having adjacency matrix
A is defined as

LA := diag(r(A)) - A . (3.10)

The eigenvalues of LA are all nonnegative and are denoted by

~ I (L A) ~ "'" ~l~n(LA) = 0 ,

following our previous notation. (We point out that the numbering of the Laplacian eigen-
values is often done in the reverse order.)

Lemma 3.2. Let d be given by (3.9). Forj = 1 n - 1:

s(A)
A i(v t (a + diag(d)) V,) = -)tn_j(La).

n

220 J. Falkner et al. / Mathematical Programming 66 (1994) 211-239

Proof. We first observe that

s(A)
a~(V~(A+diag(d))V.) = +A~(V~.(--LA)V.).

n

Now let x be some eigenvector of Aj(LA) for j < n. Then x_l_ u because u is eigenvector to

An(LA) = 0. Therefore x = V,y for some y 4: 0. This shows that

Vt(LA) Vny = Aj(LA)y

and therefore

,~j(V tnta Vn) = ,~j(LA)

for j = 1 n - 1 . []

A general graph partitioning problem is described by the adjacency matrix A and the
vector m of specified sizes. Here the mi need not be pairwise equal. Following [21] let

F/~ := (~ m 1 ~mk) t .

Let the matrix W be characterized by

W t W = I k _ l , W tF/~ = 0.

We can now express the graph partitioning bound from [21], Theorem 5.1, in terms of the

smallest Laplacian eigenvalues of La. Let M := diag (m).

Theorem 3.3. Let A and m describe a graph partitioning problem. Then

w(Eeut) > ! k~l "~n-J(Za)l~J (wtMw)"
~ 2 j = 1

Proof, In Theorem 5.1 of [21] it is shown that

w(Ec,t) := w(E) - w(Euncut)

s(A) s (A)s (M z)

2 2n 2

Now observe that

t rW t M W = n --

l k - - I
- - ~ Aj(V t (A + diag(d)) Vn) Aj(W tMW).

2j=~-i

s(M 2)

n

After substituting the expression for the eigenvalues from the previous lemma the terms
containing s(A) cancel, leaving the eigenvalue terms. []

In general it is rather cumbersome to express the eigenvalues of WtMW in closed form.

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 221

In the special case k = 2, the bound resulting from Theorem 3.3 turns out to be a well-
established theorem in spectral graph theory, see [1, 16].

Corol lary 3.2. Suppose k = 2 in Theorem 3.3. Then

ml m2
w(Ecut) >~ A n - I (L A) - -

n

Proof. An independent proof is contained in e.g. [1] or in [16]. Here we simply note that,
since k = 2, we have

2 m I m 2
)t l (W t M W) = tr(W tMW) = - - []

n

In the case k = 3, it is still possible to obtain closed-form representations of the eigenvalues
of WtMW.

Corol lary 3.3. Suppose k = 3 in Theorem 3.3. Let

1
/Z,,z := - (m ,mz+mlm3+mzm3+__~ /m~m~+ 2 2 + m 2 m 2 nm, mzm3) m l m 3

n

Then

w(E~u,) >1 ½X.-~(LA) ~ + ~A.-~(I~A) m .

Proof. Le t /z i = A i(WtMW). We observe that/zl and/z2, (/Zl >/]~2), a r e characterized by

~Z 1 -]-].lb 2 = t r (W t m W) = n
s (M z)

n

s (M z) 2
tz 2 + tz ~ = t r (W t M W W t M W) ___s(M2) 2 n s(M3) +- n --- '-5"~

After a somewhat tedious calculation, it can be verified that /z 1 and/Zz as defined above
satisfy these two equations. []

Further simplifications occur if some of the/a~ i are equal, but we do not pursue this any
further.

3.3. Lower bounds

The upper bounding techniques find approximate solution matrices X which in general
are not feasible because they are not integer. However, in [21] it was observed that X can
also be used to obtain lower bounds on w(Eunout), see also [4, 5].

222 J. Falkner et aL /Mathematical Programming 66 (1994) 211-239

max{tr X t y : Y satisfies (2.3), (2.4) } (3.11)

produces a partition Y that is closest to X in Frobenius norm. Alternatively, the problem

max{tr X t A y : Y satisfies (2.3) (2.4) } (3.12)

amounts to a linearization of the graph partitioning cost function at X. The optimal Y from
this problem is a best partition corresponding to this linearized model. Both these problems
can be solved efficiently as transportation problems. Note that for linear objective functions
the constraint (2.2) can be dropped because the set characterized by (2.3), (2.4) has only
integer extreme points.

The approximate solution matrices X from (3.3) are in general not unique because the
eigenvectors chosen in (3.3) are not unique in the presence of multiple eigenvalues.

We will take a closer look at the transportation problems in the case of the bisection
problem. We use

1
V~ = ~ (- 1 1), Y= (Yl, /~n --Yl),

where Yl is a zero-one column having ½n entries equal to one, Thus

tr X t A y = ½ut~Aun + ½~n(AVnZ)tun - ~n(AVnZ) tyl.

Note that the first two summands on the right hand side are constant and therefore maxi-
mizing tr X t A y with respect to Y is equivalent to minimizing

(AVnZ) ~Yl, where Yl ~ {0, 1 } n) y] Un = ½n.

It is easy to see that the optimal solution to this problem is obtained simply by setting the
elements of Yl corresponding to the ½n largest elements of A V ~ to zero and setting the
remaining terms to one.

Replacing A by the identity matrix/, we immediately see that the optimal solution to
(3.11) is given in a similar way by setting Yl using VnZ. Therefore both problems simply
require finding the median of a real vector of n components to get a bisection. We will see
that the partitions obtained in this way compare very well with solutions obtained from
other much more involved heuristics. Ifk > 2 then one has to solve a transportation problem.

4. Computational considerations

In this section we discuss implementation details for the bound (3.5) for the bisection
problem. Since we need to minimize a convex, but possibly nonsmooth function, it seems
natural to apply an iterative procedure. Several software packages designed for this type of
problem exist, and we have chosen to use the Bundle Trust (BT) method. In each iteration
we have to calculate

A, (Vt~(A + diag(d)) V#).

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 223

We use a block Lanczos Algorithm for this purpose. Finally, once the upper bound is
computed we have eigenvector information which can be used to generate good partitions.

4.1. Use of Lanczos algorithm

To find the largest eigenvalue of V t (A + diag (d)) V n using a Lanczos routine from [24],

we must frequently perform the matrix-vector multiplication

(V t (A+d iag (d))V ,)p , p ~ n .

Therefore this step must be implemented carefully. We will not multiply out the triple matrix
product in this term, since this amounts to O(n 3) double precision operations, which are

too costly for problems with several hundred nodes. Also the possible sparsity of A will
most likely be lost after the multiplication. Using the special form of Vn we are able to carry

out the multiplication in O(I EI + n) double precision operations, which is asymptotically
optimal. (I EI denotes the number of edges of the graph.)

Lemma 4.1. (V t (A + diag(d)) Vn) p can be calculated in O(I EI + n) arithmetic opera-
tions.

Proof. We multiply from right to left and use the representation of Vn from (2.1). So we
first form

n - - 1

w:=Vnp by s :=~_ ,p i and wl=ys , Wi+l=xs+pi, i = 1 n - 1
i = 1

in 2n - 2 additions and 2 multiplications. Then we form

v := (A + diag (d)) (Vn p) = (A + diag (d)) w

in O(IEI + n) operations using sparse matrix multiplication. We get the final result
z := V t (A + d i a g (d)) V n p = V tv by

t : = ~ vi, z i=yv l+x t+v~+l , i = 1 , n - 1
i = 2

in another 2n - 1 additions and 2 multiplications, completing the proof. (For the definition
of the numbers x and y see (2.1).) []

The block Lanczos algorithm does not work with individual vectors but instead with
orthonormal blocks of vectors. The block size should be at least as large as the multiplicity
of the largest eigenvalue. We have already observed that in the course of the minimization
the eigenvalues tend to cluster. This has to be taken into account when setting up the
parameters for the Lanczos code. In our calculations we have set the maximum allowed

224 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

blocksize to seven (somewhat arbitrarily). The number of decimal digits of accuracy

required in the eigenvalues was set to five. Finally we limited the maximum number of
matrix multiplications to compute the eigenvalues for a given d to in. Whenever the routine

failed to find the largest eigenvalue with the prescribed accuracy, we increased the blocksize
by one and called the routine again. If the maximum allowed blocksize (of 7) was reached,
we stopped the block Lanczos procedure, and stopped trying to find further improvements

of the upper bound.

4.2. Use o f BT method

As in [21], the BT-method proposed in [22] and [23] is used to carry out the minimi-

zation. This method is iterative and uses information from the current and possibly previous
iterations to select a new trial point d.

We have to provide an initial choice for d to start the BT-iterations. Our experiments

showed that for graphs which are not too sparse, the simple choice d = 0 provides an
acceptable starting point. For extremely sparse graphs we found that the choice d = 0 often
gives an upper bound much higher than the sum of all the edge weights. In this case
initializing d according to Theorem 3.2 seems to make more sense. We observed however
that this choice of d can lead to numerical problems if the graph consists of several com-

ponents, because in this case the largest eigenvalue has multiplicity larger than one imme-
diately. To overcome these difficulties we use a scaling factor between 0 and 1 and the value
of d given by Theorem 3.2 is multiplied by this scaling factor. The following is a parameter
setup for the BT-Code which led to a satisfactory performance of the eigenvalue optimi-

zation:
• RESET = 10 (maximum bundle size)

• EPS =0.1 (stopping condition for norm of e subgradients)
• MAXIT = 30 (maximum number of iterations allowed)
• MAXCOM = MAXIT + 10 (maximum number of function evaluations allowed)
• F (initial guess on best upper bound). Here we use a convex combination of the value

of the initial upper and lower bound. A good choice turned out to be the mean of the
two values, or a combination where the upper bound was slightly favoured.

4.3. Finding a feasible solution

At the end of the sequence of BT-iterations, the algebraic multiplicity of the largest
eigenvalue is normally greater than one. Thus we have an infinite variety of eigenvectors
available for use in the generation of lower bounds, as described in Section 3.

The eigenvectors found by the Lanczos algorithm form an orthonormal basis of the
eigenspace. We approximate the search of the entire eigenspace by considering pairs of
eigenvectors from the basis. For each pair zl and wl say, we first calculate z =AVnzl and

w =AVnw~, see also the section on lower bounds. We then consider a unit vector spanned
by z and w:

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 225

v(7) = (cosT)z+ (sinT)w. (4.1)

The values of 7 which are of interest are those where the resulting partition (obtained by
sorting) changes. Heuristically, we can assume that about half of the components are positive
and about half are negative, and then consider the values of 7 where the trajectory crosses
the x-axis, i.e.

v i (3 , i)=O = 7i--arctan[---7-1 f o r i = l n. (4.2)
\ Wi]

For each 7i, we obtain a feasible solution by sorting the corresponding linear combination.
If the cost of this new partition is better than that of the best partition previously found, the
new solution is stored. As n gets larger, it may become too time consuming to look at all n

partitions, generated by rounding v(Yi) for all i. We have chosen to move in steps of 5 for
larger problems (n ~> 1000), i.e. we consider only the partitions generated by v(3'5i), i = 1,
...~ I n .

When all values of Yi have been considered, we apply the Kernighan-Lin [17] heuristic
to the best solution found. Given any feasible bisection, the Kernighan-Lin heuristic
attempts to improve it by performing a series of interchanges between the two sets of the
partition. The algorithm begins by choosing the two nodes which, if interchanged, will give
the maximum gain g~ say. These two nodes are then removed from consideration and the

maximum additional gain achieved by interchanging two further nodes is found. This
process is continued until there are no more nodes to consider. The algorithm then chooses
k to maximize the partial sum G = E/k= lgi. If G > 0 then an improvement in cost of value G

can be achieved by interchanging the corresponding 2k nodes. The resulting partition is
then treated as an initial partition, and the whole procedure is repeated until G = 0.

In our experiments, the initial partitions are already of reasonably good quality, so
intuitively it is unlikely that a swap of a very large number of nodes will lead to an
improvement. Therefore we have modified the Kernighan-Lin heuristic to explore only
swap sets of size at most 30. This has led to a considerable speedup of the heuristic, with
virtually no loss in the quality of the partitions found.

In summary we perform the following steps to find a feasible solution.

Lower bound routine:

Let two unit vectors zl and wl be given, orthogonal to each other.
Step 1: Go around the circle formed from Zl and wl as described above and consider the

bisections given by (4.1) and (4.2).

Step 2" Apply the Kernighan-Lin heuristic modified to a limited swap depth to the best
bisection found in Step 1 and output this bisection.

5.1. In t roduc t ion

gap:

In this section we present computational experience, concentrating in particular on the
relative gap between the upper and lower bounds. This gives an estimate of the distance of
the feasible solution from optimality. We define the gap as

20

18

16

14

12

10

upper bound - lower bound

lower bound

The numerical results described below are structured as follows. First we describe our
approach in full detail on the graph from Fig. 5.1. Then we present a series of results on

randomly generated graphs G ~ ffn,p. This is the standard graph model where graphs on n
nodes are generated, having edge probabilityp. We consider both weighted and unweighted
problems. We also use test graphs from this class, studied previously for partitioning

heuristics, see [15].
Next we investigate graphs having some underlying geometric structure. These graphs

come closer to real-world applications of graph partitioning in circuit design. We also show
that our approach works well on graphs consisting of several components. To explore the

potential of our method we also look at larger graphs having several thousand nodes. We

226 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

5. Numerical results

0
0 5 10 15 20

Fig. 5.1. Geometric graph with bisection.

J. Falkner et al. /Mathematical Programming 66 (1994) 211-239 227

also present some results on trisecting random graphs. Finally we present results on data
from real-world problems. An informal description of our method is as follows.

Phase 1: (Preprocessing).
Use an initial choice for d to produce a starting upper bound and a lower bound on the

optimal bisection. The upper bound is given by (3.6). To find a 'good' starting bisection
we calculate initially the two largest eigenvalues and use the corresponding eigenvectors
for the lower bound routine described in Section 4.3.

Phase 2: (Optimizing the upper bound).
Use the BT-Code to improve the upper bound.

Phase 3: (Optimizing the lower bound).
After exiting from the BT-code, we calculate the 3 largest eigenvalues and corresponding
eigenvectors. These eigenvalues differ in general only marginally. We use each of the three
combinations of pairs of eigenvectors to call the lower bounding routine, and output the
best partition found.

5.2. A detailed example

The geometric graph from Fig. 5.1 will be used to feature in full detail various aspects
of our approach to obtaining lower and upper bounds on the bisection problem. The nodes
of the graph correspond to grid points on a 20 × 20 grid. There are n = 150 nodes altogether,

700

690

680
I
I

6701

660

650

640

i i

- h : - 4 z : ; ~; : ; o ~ - - , o - - o - - , - o - - - o

630 ' ' 1L5 ~ 2~5 0 5 10 20 30

Fig. 5.2. Improvement of upper bound.

228 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

10

9.5

8.5

i ~ i i r

\,

".. ~\
! " ° _ ~

I [I I I

7"50 5 10 15 20 25 30

Fig. 5.3. Largest eigenvalues during iterations.

and two nodes i andj are joined by an edge of weight w;j = 1 whenever their distance is at
most Vt'8. This gives a total of w(E) =647 edges. Fig. 5.1 also shows a bisection where

only 27 edges are cut, leaving 620 edges uncut, i.e.

w(Euncut) ~> 620.

The nodes of the partitions $1 and $2 are indicated by 'o ' and 'x ' . In addition, the edges cut

by this particular bisection are drawn as dotted lines.
In order to estimate the quality of this bisection we calculate the upper bound on w(Eoncut),

given in Section 3,1. This bound is determined iteratively (Phase 2 above). In Fig. 5.2 we

show how this upper bound improves during the iterations. We use two initial choices for
the diagonal perturbation d. In variant 1 we set d = 0 initially, whereas in variant 2 we use
the choice of d from Theorem 3.2, guaranteeing that the initial upper bound does not exceed
w(E). We note that in both cases the bound decreases quickly to a value of

w(Euncut) ~ 637.4,

which can be considered a good approximation to the true minimum, since in both variants

we stop with a subgradient of norm less than 0.1. It is also interesting to see that the bad
starting choice of d in variant 1 is improved in only a few iterations to a value below the
starting bound of variant 2. Variant 2 however uses only 20 iterations to reach the conver-
gence criterion of the BT code, (norm of subgradient ~<0.1) while variant 1 takes 30
iterations. Fig. 5.2 also indicates that most of the improvement is obtained in the first few

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239

151

0.5

7

-0.5

-1

-1.5 ~
0 50 100 150

Fig. 5.4. Sorted eigenvector components.

229

iterations. In Fig. 5.3 we exhibit the largest eigenvalues during the iterations for variant 1.
We note that after about 15 iterations the two largest eigenvalues stay very close to each
other, while it takes another 15 iterations to have the third largest eigenvalue come close
enough to satisfy the stopping criterion. Fig. 5.3 demonstrates in more detail that after an

initial improvement phase, most of the iterations are needed to reach the preset convergence
condition, while the upper bound improves only marginally. For practical purposes this

means that when the upper bound stops changing significantly, there is little point in
continuing to iterate. We noticed this phenomenon on virtually all the test problems we
considered. We conclude this subsection by discussing how we found the bisection of Fig.
5.1 (phase 3 above). We recall Subsection 3.3 where we describe how we use the available
eigenvector information to generate bisections. The main point to remember is that, given
some appropriate eigenvector, a simple rounding argument leads to a bisection. Of course
this rounding process is motivated by the hope that our relaxation is not too far from a 0-1
solution. To put it differently, the rounding process should lead to reasonably good bisec-

tions, provided most of the components of the vector to be rounded are either close to 0 or
close to 1. In Fig. 5.4 we display the sorted eigenvector components from the beginning
and the end of the iterations for variant 1. Ideally half of the components should be 0 and
the other half be 1. It is interesting to see that, at the end of the optimization process, the
number of components either close to 0 or close to 1 has gone up dramatically, as compared
to the initial distribution of the eigenvector components. Rounding the final eigenvector has

230 J. Falkner et al. / Mathematical Programming 66 (1994) 211-239

led (without local improvement) to the bisection indicated in Fig. 5.1. Even though we are
unable to prove that this bisection is optimal, we know that

620 ~< w(Euncut) ~< 637.

Therefore the error is not more than about 2.7%, or 17 edges.
All the computations described above were done on a 486-PC and took a total of no more

than a few minutes of computation time.

5.3. Random graphs with uniform edge probabilities

Firstly 27 random graphs with edge weights in the range 1 to 10 were generated. Each
edge was generated independent of other edges according to the edge probability p con-
trolling the density of the graph. The graphs had between 50 and 500 nodes and densities
ranging from 10% to 100%. Table 5.1 contains the results. The mean percentage difference
between lower and upper bounds was 3.8, with standard deviation 1.45.

Secondly, 22 further random graphs were generated; these were as above except that the
edge weights were now in the range 1 to 100. Similar results were obtained for these

problems: the mean percentage difference was 3.6, with standard deviation 1.42. Thirdly,

19 unweighted random graphs were generated. These also had between 50 and 500 nodes,
and the densities ranged from 10% to 75%. The mean percentage difference was 3.8, with

standard deviation 1.69.
These results are encouraging. The techniques outlined in this paper can obtain, for

random graphs, feasible solutions which are within a few percentage points of optimality.

It can be seen however that generally the sparser the graph, the greater the percentage
gap. This is further illustrated by considering the performance of the algorithm on very
sparse graphs. We solved fourteen problems with a density of 2% and between 200 and
1500 nodes. Here the mean percentage gap was 7.6 with standard deviation 0.80. A group
of fourteen problems with a density of 0.5% and between 200 and 1500 nodes was also
solved. This time the mean percentage gap was 5.8 with standard deviation 2.18. There was
a noticeable increase in the gap with problem size, which explains the larger standard
deviation observed in this case.

Experiments were also performed with random graphs provided by David Johnson;
Johnson et al. [15] use these graphs to test their simulated annealing algorithm, which
provides good partitions but not upper bounds. The results of our experiments are presented
in Table 5.2, together with the cost of the best partitions provided in [15].

For these graphs the mean percentage gap was 6.0 with standard deviation 1.40. These
results are consistent with the experience reported above: the larger gaps occur because
these graphs are much more sparse than those in Table 5.1.

It can be seen that, with one exception, the Johnson partitions are at least as good as the
best partitions obtained by our method: on average they are 0.6% better. It is however
important to note that Johnson et al. report the best solutions ever found after performing,

for each graph, 20 runs of simulated annealing, 2000 runs of Kernighan-Lin, and 2000 runs

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239

Table 5.1
Weighted random graphs (weights in range 0 to 10)

231

n I E I Density (%) Upper bd Lower bd % gap

50 136 10 542 516 5.0
50 301 25 1057 1000 5.7
50 630 50 1902 1857 2.4
50 925 75 2486 2418 2.8
50 1225 100 3265 3219 1.4

100 511 10 1881 1792 5.0
100 1249 25 3741 3582 4.4
100 2465 50 6882 6659 3.4
100 3691 75 9716 9481 2.5
100 4950 100 12503 12260 2.0

150 1105 10 3703 3517 5.3
150 2775 25 8215 7930 3.6
150 5603 50 15130 14754 2.6
150 8426 75 21698 21238 2.2
150 11175 100 27784 27389 1.4

200 2015 10 6626 6229 6.4
200 4975 25 14327 13692 4.6
200 9942 50 26455 25698 3.0

300 4489 10 14049 13257 6.0
300 11126 25 31807 30274 5.1
300 22672 50 58876 57306 2.7

400 7880 10 24124 22839 5.6
400 20111 25 54859 52975 3.6
400 39916 50 103661 100522 3.1

500 12465 10 37214 35383 5.2
500 31107 25 83884 81127 3.4
500 62338 50 160126 155422 3.0

o f a local op t imiza t ion algori thm. In contrast, we pe r fo rmed jus t one run of our a lgor i thm

on each graph, and each run required only a few calls to the Kern ighan -L in algori thm.

5.4. Geometr ic graphs

Thirty geomet r ic graphs were considered. Al l of these graphs were ei ther connected, or

had at mos t one isolated node. These graphs were generated as fol lows, see also Fig. 5.1.

W e use a square grid o f g iven size and select each gridpoint with a predefined probabi l i ty

to represent a ver tex o f the graph. Then we int roduce edges (o f weight 1) be tween selected

gridpoints wheneve r their (Euc l idean) dis tance is be low a predefined threshold value.

The results are presented in Table 5.3. W e present the results for only 20 o f the 30 graphs

generated, the results for the miss ing 10 graphs being similar in quali ty to the results

presented. The mean percentage di f ference was only 1.3, with standard devia t ion 0.44. It is

232 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

Table 5.2
Johnson et al. random graphs

n [E I Density (%) Upper bd Lower bd % gap Johnson

124 149 2 141 136 3.7 136
124 318 4 271 254 6.7 255
124 620 8 467 442 5.6 442
124 1271 17 853 822 3.8 822

250 331 1 316 301 5.0 302
250 612 2 531 495 7.3 498
250 1283 4 981 925 6.1 926
250 2421 8 1675 1588 5.5 1593

500 625 0.5 600 573 4.7 573
500 1223 1 1071 1001 7.0 1004
500 2355 2 1844 1713 7.6 1727
500 5120 4 3564 3358 6.1 3376

1000 1272 0.25 1228 1172 4.8 1170
1000 2496 0.5 2193 2030 8.0 2045
1000 5064 1 3958 3676 7.7 3697
1000 10107 2 7109 6700 6.1 6718

Table 5.3
Geometric graphs

n [E[Upper bd Lower bd % gap

182 493 489 483 1.2
228 825 816 805 1.4
354 1394 1383 1360 1.7
408 1109 1105 1094 1.0
502 1519 1515 1501 0.9
518 5171 5094 4957 2.8
694 3340 3327 3275 1.6
760 3631 3617 3561 1.6
788 3066 3060 3028 1.1
798 2388 2385 2357 1.2
948 6278 6249 6154 1.5
960 3611 3605 3576 0.8

1088 5688 5673 5600 1.3
1110 5655 5643 5577 1.2
1362 5598 5595 5541 1.0
1378 9482 9455 9335 1.3
1426 10134 10103 9958 1.5
1466 14039 13982 13741 1.8
1878 9868 9859 9789 0.7
1936 10600 10587 10480 1.0

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 233

very encouraging to see that such good feasible solutions can be obtained for graphs which

resemble real-world graphs.

We also considered the eight geometric graphs from Johnson [15]. They again performed

20 runs of annealing and thousands of runs of Kernighan-Lin and local optimization, and

also found it necessary to develop a special hybrid algorithm to handle graphs with several

components. Our results on these problems are presented in Table 5.4. Due to the sparsity

of these graphs, we used a scaling factor for d of 0.98 in these experiments. It can be seen

that the percentage gaps are small and that, with one exception, the feasible solutions

obtained are as good as or better than the Johnson partitions. We also observe that the

bisections which we found by the eigenvalue approach were obtained by [8] . They found

their best solutions after 2000 runs of their genetic algorithm, while we look at no more

than about n different cuts, and use at most 4 calls to the Kernighan-Lin improvement

routine.

The graphs in Table 5.3 were all connected or almost-connected. We also experimented

with a few disconnected geometric graphs. These graphs had up to 38 components. The

results are presented in Table 5.5. It is not surprising that few if any edges are cut in these

bisections. It is encouraging to see that our algorithm can find both good upper bounds and

good feasible solutions for these problems. A scaling factor of 0.99 for d was used here and

in one case (680 nodes) this led to a final upper bound which was greater than the number

Table 5.4
Johnson et al. geometric graphs

n] E I Upper bd Lower bd % gap Johnson

500 1282 1281 1280 0.1 1278
500 2355 2347 2329 0.8 2329
500 4549 4493 4370 2.8 4371
500 8793 8629 8381 3,0 8381

1000 2394 2394 2393 0,0 2391
1000 4696 4690 4657 0.7 4657
1000 9339 9296 9117 2.0 9117
1000 18015 17775 17278 2.9 17278

Table 5.5
Disconnected geometric graphs

n L E [Upper bound Lower bound % gap

220 460 459 458 0.2
244 389 389 387 0.5
328 482 482 482 0.0
500 949 949 946 0.3
680 1247 1249 1245 0.3
724 2580 2575 2555 0.8

234 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

of edges in the graph. A scaling factor of 1.0 would have been necessary to avoid this trivial

result.

5. 5. Solving larger problems

The performance of the algorithm on some larger random graphs was also studied. In
order to solve these problems in a reasonable time, a few changes were made. The initial
call to the Kernighan-Lin heuristic in Phase l was removed. Also, whereas previously the
Kernighan-Lin routine was called in Phase 3 once for each pair of eigenvectors considered,
now it was called only if the feasible solution for that pair was better than any previous
feasible solution. For the three largest problems, the maximum number of iterations

(MAXIT) was reduced from 30 to 20.
After these changes were made, the results presented in Table 5.6 were obtained. The

mean percentage difference was 4.6 with standard deviation 0.50, so the speed-up measures
did not have a serious effect on the quality of the lower bounds obtained.

5.6. Data from applications

Up to now we have only presented artificial problems, which we (or others) generated

randomly. In this subsection we apply our general procedure to problems coming from
engineering applications. These problems often have an underlying geometric structure

which makes them similar to the geometric graphs considered above. Our primary interest
consists in deriving upper bounds on the partitions for these problems. To the best of our
knowledge, no one has seriously tried to get nontrivial upper bounds for these problems.
As a byproduct of our approach, we also generate bisections.

The first set of data was provided to us by H. Simon [25, 26, 3] and comes from a larger
set of structural design problems. A short description provided in [25] for some of the data

in Table 5.7 follows:

venkat: 2d unstructured grids for airfoils.

Table 5.6
Larger random graphs

n [El Density (%) Upper bound Lower bound % gap

600 17780 l0 51864 49066 5.7
800 32205 10 91586 87557 4.6

1000 49819 10 139034 132846 4.7
1200 71888 10 198504 190246 4.3
1400 97806 10 267312 256875 4.1
1600 127867 10 347738 332833 4.5
1800 161891 10 437957 417864 4.8
2000 200364 10 537617 516139 4.2

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 235

Table 5.7
Real-world data

Name n I E[Upper bound Lower bound % gap

venkat2 460 1303 1297 1268 2.3
cornell 1 496 1200 1196 1180 1.4
venkat2d 843 1226 1224 1210 1.2
spiral 1200 3191 3190 3182 0.3
pare 1240 3355 3352 3334 0.5
pow9 1723 2394 2392 2385 0.3
ac 2851 15093 15078 14889 1.3
kall0 3000 15950 15894 15670 1.4
kalll 4363 26570 26480 26275 0.8
barth4 6019 17473 17466 17359 0.6
kall2 6880 46750 46503 45809 1.5
barth4dual 11451 16880 16878 16821 0.3
shuttle .eddy 10429 46585 46580 46448 0.3
kall3 10556 76109 75853 74954 1.2
barth5 15606 45878 45872 45731 0.3

chipl-2 300 1070 358.16 350.04 2.3
priml-2 832 4707 1107.8 1092.21 1.4
prim2-2 3014 21010 3684.2 3631.99 1.4
bio-2 6417 20868 6466.71 6452.31 0.2
ind2-2 12142 73914 14891.9 14782.06 0.7

parc, spiral: problem used by J. Gilbert, Xerox PARC, for mesh generation, partition.

ac: connectivity matrix for HSCT (high speed civil transport), from Olaf Storaasli,

NASA, Langley.

barth: grids for airfoils, dual is the dual of the Delauney triangulation, comm is the

communication graph used in [27].

shuttle: connectivity for some large finite element problems, collected by Dawson Deuer-

meyer, CRAY Res., in [11].

The second group of data was provided to us by S. Areibi and A. Vannelli [2, 13]. This

data represents hypergraph partitioning problems, where hyperedges are represented by

cliques, which underestimate cuts in the original hypergraph. These problems come from

netlist partitioning problems which arise from chip layout.

The results are not significantly different from our previous experiments on random

geometric problems. W e note that some of these graphs are extremely sparse and we manage

to find bisections cutting very few edges using the eigenvector information. The relative

gap between lower and upper bounds seems to be much smaller than on completely unstruc-

tured random problems.

5. 7. Graph trisection

We next considered trisecting random graphs; these graphs had up to 300 nodes and

weights in the range 0 to 10. Some changes to the implementation were required. It was no

236 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

Table 5.8
Trisecting random graphs

n I EI Density (%) Upper bound Lower bound % gap

90 415 10 1325 1178 12.5
90 982 25 2592 2345 10.5
90 1985 50 4377 4010 9.2

120 734 10 2330 2061 13.l
120 1760 25 4448 4039 10.1
120 3535 50 7532 6945 8.5
150 1105 10 3262 2898 12.6
150 2775 25 6716 6053 11.0
150 5603 50 11619 10776 7.6
180 1578 10 4558 4068 12.1
180 4086 25 9709 8833 9.9
180 8121 50 16588 15465 7.3

210 2136 10 6067 5365 13.1
210 5460 25 12624 11444 10.3
210 10980 50 22087 20598 7.2
240 2897 10 8046 7202 11.7
240 7•59 25 16319 14865 9.8
240 14489 50 28715 26781 7.2
270 3527 10 9466 8388 12.9
270 9004 25 20179 18327 I0.1
270 18196 50 35805 33494 6.9
300 4489 I0 11834 10573 11.9
300 11126 25 24589 22630 8.7
300 22672 50 43712 41034 6.5

longer possible to solve the transportation problem with a simple sort, and so instead a

rounding heuristic was applied to get a feasible solution. Also, the Kernighan-Lin heuristic

in its original form applies only to bisection. Thus it was repeatedly applied to pairs of

subsets from the feasible partition. Table 5.8 presents some results. The mean percentage

gap was 10.0%, with standard deviation 2.17%.

Even though the performance of our approach for graph trisection does not match the

results for bisection we consider these results as quite encouraging. We are not aware of

any comparable computational results published in the literature where both upper and

lower bounds are investigated. Also we obtained our results by more or less straightforward

modifications of our bisection code. It is likely that further improvement could be obtained

by using more sophisticated heuristics to generate good trisections from the eigenvector

information.

6. Discussion and summary

We have applied an eigenvalue approach for finding partitions to various classes of

randomly generated graphs. In view of the computational experience presented in the

previous section, we offer the following observations.

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 237

• The upper bound can be computed efficiently.

The bounding technique relies essentially on the ability to calculate the largest eigenvalue
of the symmetric matrix V~A 'Vn . We use a representation of Vn that takes full advantage
of the possible sparsity of the adjacency matrix A, without ever multiplying out the triple

matrix product. In practice the computational effort to calculate the upper bound grows like

O (n l E I) ,

because we allow ½ n matrix multiplications, each of O ([E [+ n) operations, for one eigen-
value calculation, and the number of function evaluations in the BT-Code was normally
limited to (at most) 40, independent of the size of the problem. The computational overhead
of the BT-Code is negligible, compared to the function evaluations. Most of the computa-
tions were done on a 486 PC (66 Mhz). On the smaller problems, the eigenvalue compu-
tations dominated the total computational effort, while on larger problems (n at least 2000),
the routines to generate feasible solutions took most of the time. To give an idea of actual
times, the calculation of the largest eigenvalue for a problem with n = 10 000 and

]El = 5 0 0 0 0 takes about 20 minutes (in each iteration). Graphs with n = 1000 and

I EI -- 10 000 have a total running time of no more than about 10 minutes (on a PC). Since
we exploit the sparsity of a problem instance, we are able to limit the space requirements

of the algorithm to be linear in the number of nodes and edges of the graph.
• The upper bound leads to good partitions.
An additional advantage of our approach is that we are able to generate, at low compu-

tational cost, partitions that are often only a few percentage points from optimality. In
particular it turns out that 'eigenvector rounding' often leads to bisections of high quality.
Therefore we were able to apply the Kernighan-Lin heuristic with a limited swap depth
without losing the potential of the general heuristic.

• The approach is robust and efficient.
We tested our bounding procedure on a variety of graphs and consistently obtained lower

and upper bounds having a relative gap of less than 10%. It is particularly interesting to see
the good performance on real-world problems, on graphs consisting of several connected
components, and on graphs having some underlying geometric structure,

Acknowledgements

We thank Helga Schramm and Jochem Zowe for permission to use their BT-Code. We

thank Horst Simon from NASA Ames Research Center and also Shawki Areibi and Tony
Vannelli from University of Waterloo for giving us their data from engineering applications.
The work of the first author was supported by an International Research Fellowship from
NSERC of Canada. She also thanks the Christian Doppler Labor 'Diskrete Optimierung'
for financial support of a visit to the University of Technology, Graz, where some of this
research was carried out. The second and third authors thank the Austrian Ministry of

238 J. Falkner et al. /Mathematical Programming 66 (1994) 211-239

Science and NSERC of Canada for the continuing financial support, which has allowed
them to pursue an ongoing cooperation in the study of matrix methods in combinatorial
optimization.

References

[1] N. Alon and V.D. Milman, "A 1, isoperimetric inequalities for graphs and superconcentrators," JCT 38
(1985) 73-88.

[2] S. Areibi and A. VanneIli, Personal communication, technical report, University of Waterloo, Waterloo,
Ontario, Canada, 1993.

[3] S.T. Barnard and H.D. Simon, " A fast multilevel implementation of recursive spectral bisection for parti-
tioning unstructured problems," technical report RNR-092-033, NASA Ames Research Center, Moffett
Field, CA 94035, November 1992 (to appear in Concurrency: Practice and Experience).

[4] E.R. B ames, ' 'An algorithm for partitioning the nodes of a graph," SIAM Journal on Algebraic and Discrete
Mathematics 3 (1982) 541-550.

[5] E.R. Barnes, A. Vannelli and J.Q. Walker, " A new heuristic for partitioning the nodes of a graph," SIAM
Journal on Discrete Mathematics, 1 (1988) 299-305.

[6] R.B, Boppana, "Eigenvalues and graph bisection: An average case analysis," in: Proceedings of the 28th
Annual Symposium on CompuwrScience (IEEE, London, 1987) pp. 280-285.

[7] T.N. Bui and C. Jones, " A heuristic for reducing fill-in in sparse matrix factorization," in: Proceedings of
the 6th SIAM Conference on Parallel Processing, 1993.

[8] T.N. Bui and B.R. Moon, "Hyperplane synthesis for genetic algorithms," in: Proceedings of the 5th
International Conference on Genetic Algorithms, 1993.

[9] J. Cullum, W.E. Donath and P. Wolfe, "The minimization of certain nondifferentiable sums of eigenvalues
of symmetric matrices," Mathematical Programming Study 3 (1975) 35-55.

[10] D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs - Theory and Applications (Academic Press,
New York, NY, 1979).

[11] D. Deuermeyer, "Large-scale solutions in structural analysis," CRAY Channels 12(1) (1990) 15-17.
[12] W.E. Donath and A.J. Hoffman, ' 'Lower bounds for the partitioning of graphs," IBM Journal of Research

and Development 17 (1973) 420-425.
[13] S.W. Hadley, B.L. Mark and A. Vannelli, "An efficient eigenvector approach for finding netlist partitions,"

IEEE Transactions on Computer-Aided Design 11 (1992) 885-892.
[14] R. Horn and C. Johnson, Matrix Analysis (Cambridge University Press, New York, 1985).
[15] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, "Optimization by simulated annealing: an

experimental evaluation; part 1, graph partitioning," Operations Research 37 (1989) 865-892.
[16] M. Juvan and B. Mohar, "Optimal linear labelings and eigenvalues of graphs," Discrete Applied Mathe-

matics 36 (1992) 153-168.
] 17] B.W. Kernighan and S. Lin, "An efficient heuristic procedure for partitioning graphs," The Bell System

Technical Journal 49 (1970) 291-307.
[18] T. Lenganer, Combinatorial algorithms for integrated circuit layout (John Wiley and Sons, Chicester,

1990).
[19] D.G. Luenberger, Linear and Nonlinear Programming, second edition (Addison-Wesley, Reading, Mas-

sachusetts, 1984).
[20] M.R. Rao M. Conforti and A. Sassano, "The equipartition polytope i and ii," Mathematical Programming

49 (1990) 49-90.
[21] F. Rendl and H. Wolkowicz, A projection technique for partitioning the nodes of a graph. Technical Report

CORR 90-20, University of Waterloo, Waterloo, Canada, 1990.
[22] H. Schramm and J. Zowe, " A combination of the bundle approach and the trust region concept," in: J.

Guddat et al., editor, Advances in Mathematical Optimization (Akademie Verlag Berlin, 1988).
[23] H. Schramm and J. Zowe, "A version of the bundle idea for minimizing a nonsmooth function: Conceptual

idea, convergence analysis, numerical results," SIAM Journal on Optimization 2 (1992) 121-152.
[24] D.S. Scott, Block lanczos software for symmetric eigenvalue problems, technical report 84-08, Oak Ridge

National laboratory, 1979.

J. Falkner et al. / Mathematical Programming 66 (1994) 211-239 239

[25] H. Simon, Personal communication, technical report, NASA Ames Research Center, Moffett Field, CA,
1993.

[26] H.D. Simon, "Partitioning of unstructured problems for parallel processing," Computing Systems in Engi-
neering 2(2/3) (1991) 135-148.

[27] V. Venkatakrishnan, H. Simon and T. Barth, "A rnimd implementation of a parallel Euler solver for
unstructured grids," The Journal of Supercomputing 6(2) (1992) 117-127.

[28] H. Wolkowicz and G.P.H. Styan, "More bounds for eigenvalues using traces," Linear Algebra and its
Applications 31 (1980) 1-17.

