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I. Introduction 

Consider the convex programming problem 

f°( x ) ~ min 
(P) 

s.t. fk(x)<--O, k ~ = { 1 , 2  . . . . .  m} 

where fk  : X ~ R, k E {0} O ~ are convex, not necessarily differentiable, func- 
tions and X is a locally convex linear (Hausdorff) space. 

When the functions [k are differentiable, but not necessarily convex, we get 
the usual Kuhn-Tucker necessary conditions for optimality: 

if the feasible point x is optimal, then the system 

Vf°(x) + Y~ ,XkVfk(x) = 0, 
k~(x) (1.1) 

/~k ~ 0  

is consistent 
where ~(x) denotes the set of binding (active) constraints at x. These conditions 
may fail unless a constraint qualification (regularity condition) holds at x (e.g. 
[20]). Many authors have given a variety of constraint qualifications (e.g. [3, 5]). 

* This research was supported by the National Research Council of Canada and le Gouvernement 
du Quebec and is part of the author's Ph.D. Dissertation done at McGill University, Montreal, Que., 
under the guidance of Professor S. Zlobec. 
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Gould and Tolle [21] and Guignard [22] have presented a necessary and sufficient 
constraint qualification (weakest constraint qualification) at x, i.e. a condition on 
the constraints fk, k ~ ~(x), which holds if and only if the Kuhn-Tucker 
conditions hold for all differentiable functions [0 which achieve a constrained 
minimum at x. (Note that x is then called a regular, or Lagrange regular, point.) 

The convexity assumption we have made is the natural framework for 
studying problem (P). We can now develop an elegant theory which does not 
require differentiability, produces sufficient optimality conditions and still allows 
many applications (see e.g. Rockafellar [27]). Furthermore, convex functions 
have the nice property that, if the directional derivative in the direction d is 0, 
then d is a direction of increase or a direction of constancy. This allows the 
following characterization of optimality which holds without any constraint 
qualification (see Ben-Israel et al. [7]): 

x feasible is optimal for (P) if and only if, 
for every 12 C ~(x), the system 

Vf°(x) ~ AkVfk(x)~ ( N Dk(X)) * 
)k k ~ 0 kE~(x)~I~ kEl-2 (1.2) 

is consistent 
where Dk(X) is the cone of directions of constancy of fk at x and .* denotes the 
nonnegative polar. Following this result, Abrams and Kerzner [2] have shown 
that one need only consider the single set /2 = ~= in (1.2) where ~= is the set of 
constraints which are identically 0 on the entire feasible set (see also [8]). Then, 
Ben-Tal and Ben-Israel [9] extended these results to the nondifferentiable case. 
In Section 5, we use the approach of Gould and Tolle [20] to derive several 
optimality criteria which use the cones of directions of constancy. More 
specifically, we show that, under certain closure conditions, ~= is not the only 
single set that can be used to characterize optimality in (1.2). 

The above optimality criteria has been used to formulate algorithms that solve 
(P) in the absence of any constraint qualification (see e.g. [ l l ,  31, 34]). These 
algorithms use the cones of directions of constancy which have been calculated 
in [30]. However, if x solves (P), but x is not a Kuhn-Tucker point, i.e. the 
Kuhn-Tucker conditions (1.1) do not hold at x, then the program (P) is "un- 
stable", i.e. the "perturbation" function, which is the optimal value of (P) as a 
function of perturbations of its right-hand side, may decrease infinitely steeply in 
some direction. Thus, though we may solve (P), in practice our solution may be 
nowhere near the true solution. It is therefore of interest to know beforehand 
whether or not x is a Kuhn-Tucker point. Now, if a constraint qualification 
holds at x, then x is necessarily a Kuhn-Tucker point for all objective functions 
f0 which achieve a constrained minimum at x. Program (P) is therefore "stable" 
at x for all such fo. In Section 5 we present several different weakest constraint 
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qualifications. Furthermore, in the case of faithfully convex, differentiable 
constraints, we show that a feasible point x is regular, i.e. some constraint 
qualification holds at x, if and only if every feasible point x is regular. We also 
show how to verify, computationally, whether or not x is regular. 

In Section 2, we present several preliminaries which include showing directly 
that the cone of directions of constancy at x, of a continuous, faithfully convex 
function, is a subspace independent of x ~ X. Section 3 introduces the set of 
"badly behaved constraints" at x, denoted ~b(x), i.e. these are the constraints 
which create problems in the Kuhn-Tucker theory. In fact, we will see that, the 
condition ~b(X)= Y plus a certain closure condition, is a weakest constraint 
qualification (see Theorem 6.1). Section 4 gives several relationships between the 
cones of directions of constancy, the tangent cone and the linearizing cone. We 
conclude with several regularization techniques in Section 7. This includes 
regularizing program (P), when the constraints are faithfully convex so that 
Slater's condition holds. At the same time, this regularization reduces the 
number of variables and constraints of (P) (see Theorem 7.2). 

2. Preliminaries 

In this section we present some preliminary definitions and results needed in 
the sequel. 

We consider the convex programming problem 

/°(x) --> min 

(P) s.t. fk(x)-<0, k E ~ = { 1  . . . . .  m} 

where fk : X--'> R are continuous convex functions, defined on the locally convex 
space X for all k E {0} U ~. (Without loss of generality, we assume that none of 
the functions is constant.) Unless otherwise specified, we assume that the 
feasible set 

S={xEX:yk(x)<--O forall  k ~ }  

is not empty. The set of binding constraints, at x E S, is 

~(x )  = {k E ~:  yk(x) = 0}. 

An important subset of ~, independent of x, is the equality set 

~ = = { k E ~ : f k ( x ) = 0  for all xES} .  

(See e.g. Abrams and Kerzner [2].) This is the set of indices k for which the 
constraint fk vanishes on the entire feasible set. We then denote 

~ < ( x )  = ~ ( x )  ~ ~ = .  

Note that unlike ~=, ~<(x) depends on x. 
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by 

Following Ben-Israel et al. [8], we define the relations 

"relat ion" is . . . .  = , " <  . . . .  , -< . . . .  or > " ,  

D"relati°n"(X) = {d E X:  there exists 6 > 0 with f 
f ( x  + ad) "relat ion" f (x )  for  
all 0 < a  < 4 } .  

These are the cones of directions of constancy,  descent,  
increase respectively. For  simplicity of notation, we let 

o~relation"(X) = of~elation"(X ) 

and 

D"relati°n"t'X'ta t l = (~ D"rkelati°n"(X) for  f2 C ~. 
k~D 

nonincrease and 

Remark 2.1. Following Rockafellar [28], we say that a convex function f is 
faithfully convex if: f is affine on a line segment only if it is affine on the whole 
line containing that segment. For  a function f in the class of continuous 
faithfully convex  functions,  the cone DT(x) is a subspace independent  of x. If 
X = R", then Rockafellar  has shown that f is faithfully convex if and only if it is 
of the form 

f (x )  = h(Ax  + b) + a .x  + a 

where A ~ R m×", b E R m, a E R n, a E R and the function h : Rm "," R is strictly 

convex.  It is easy to see that D~(x)=  N([A/aq)  where 2((.) denotes null space, 
and is a subspace independent  of x. 

In the following lemma we collect some properties of the above mentioned 
directions. We also show directly that the cone of directions of constancy of a 
continuous faithfully convex funct ion on X, is a subspace independent  of x E X. 

Lemma 2.1. Suppose that f :  X --> R is convex and continuous and x E S. 

Then: 

(a) D~(x) is a convex cone, D~(x) is a convex blunt open cone and 

x = D?(x) U D7(x) u D~(x). 

(b) conv D~(x )C  D~(x), where conv denotes convex hull, and D~=(x) is 
convex (see [13] or the proof of  Lemma 4.1(b) below). 

(c) D~(x)(x) = D~<(x)(x) CI D~3=(x). 
D < ~ <  z x (d) D~,~(x) n ~ (x)tX) # O. (Note that D~,<(x)(x) is open.) 

(e) I f  f is both faithfully convex and continuous, then DT(x) = D 7 is u closed 
subspace of  X,  independent of  x. 
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Proof. For (a)-(d), see e.g. [7, 8, 13]. 

(e) First, let us show that DT(x ) is a subspace. Suppose that dl, d2 E DF(x) 
and let d = dj + d2. If a E R, then 

f (x  + a d ) = f ( l ( x  + 2ad , )+~(x  + 2ad2)) 

<- r2f(x + 2ad0 + f (x  + 2ad2) since f is convex 

= f(x) since d~, d2 ~ DT(x) and f is faithfully convex. 

Therefore f is bounded above on the whole line x + ad, a E R, which implies 
that f is constant on this line (see e.g. Rockafellar [27, p. 69]). Thus, d E D2(x). 
This shows that DF(x ) is closed under addition. That DT(x) is closed under 
scalar multiplication is clear, from the definition of a faithfully convex function. 
This shows that DT(x) is a subspace. That it is closed follows from the 
continuity of f. 

We have left to show that DT(x) = DT, i.e. it is independent of x. Suppose that 
x, y ~ X and d E DF(x). We will show that d ~ DT(y). 

Case (i): Suppose that f (y)  <--[(x). We will first show that 

f (y  + ad) <- f(x) for all a E R. 

Let  a E R  and 1 > tk > 0  with tk~O as k-->oo. Consider the directions z k=  
ad + tk(x - y) and let yk = l/tk. Then 

f(y) <- f(x) 

= f (x  + ykad) since d E DT(x) 

= f (y  + ykZk). 

By convexity of f and since Yk > 1, we conclude that 

f (y  + z k) - / ( x )  

and thus, by continuity of f, we see that 

f (y  + ad) = lim f (y  + z k) <- f(x). 
k...~= 

This shows that f is bounded on the line y + ad, a ~ R, and therefore, f is 
constant on this line, i.e. d E DF(y). 

Case (ii): Suppose that f(x) < f ( y ) .  By a similar argument to case (i), we see 
that 

f (y  + ad) = lira f (y  + ad + tk(x - y ) )  ~f(y) 
k--~ 

for all a C R, i.e. d ~ Dr(y).  
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We have assumed that our functions are convex, but not necessarily differen- 
tiable. Nonsmooth, or nondifferentiable, functions occur quite often in convex 
analysis. Applications for these functions arise in approximation theory (e.g. 
Dem'yanov and Malozemov [16]) duality theory (e.g. Rockafellar [27]) and 
semi-infinite programming (e.g. Ben-Tal et al. [10]). (See also Clarke [15] and 
Pshenichnyi [24].) For convex functions, it is possible to develop a complete 
calculus without assuming differentiability (e.g. Rockafellar [27], Pshenichnyi • 
[24] and Holmes [23]). We now recall some concepts dealing with directional 
derivatives and subgradients of a convex function f, defined on the locally 
convex space X. 

The directional derivative of [ at x, in the direction d, is defined as 

Vf(x;  d) = lim [(x + td) - f (x )  
t~o t 

Convex functions have the useful property that the directional derivatives exist 
universally (e.g. [27, Theorem 23.1]). 

A vector ~b @ X' is said to be a subgradient of a convex function f, at the point 
x, if 

f ( z )  >- f ( x )  + ~ .  (z - x) for all z ~ X. 

(Note that X'  is the topological dual of X, equipped with the oJ*-topology.) The 
set of all subgradients of f at x is then called the subdifferential of f at x and is 
denoted by Of(x). 

If the directional derivative of f at x is a continuous linear functional, i.e. if 
Vf(x; .) = ~b E X', then 

~b. d = lira f ( x  + td) - [ ( x )  
t ~  t 

and ~b is called the gradient of f at x and denoted Vf(x). Note that in this case 

,~f(x) = {V/ (x )} .  

We collect some useful properties in the following lemma. For more details 
and proofs, see e.g. [23, 27]. 

L e m m a  2.2. Suppose that f :  X-> R is convex. Then 
(a) Vf(x;-) is a finite, sublinear functional on X for  all x E X. 
If, in addition, [ is continuous at x, then: 

(b) Vf(x; d) = max{~b • d: ~b ~ Of(x)}; and 
(c) Of(x) is a non-empty, compact convex subset of  X ' .  
The next lemma presents some of the relations that exist between the 

subgradients and the directions introduced above. For the proofs see Ben-Tal 
and Ben-Israel [9]. 
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Lemma 2.3. Suppose that f :  X--> R is convex. Then 
(a) D~(x) = {d E X:  V/(x;  d) <0}. 

I f  V/(x)  exists, then: 
(b) D~(x) = {d E X:  V/(x) • d < 0}; and 

(c) conv D?(x)  = DT(x) C {d E X :  V/(x)  • d = 0}. 

We now collect some useful results on polar sets. These  results can be found 

in e.g. Girsanov [19] and Holmes  [23] (see also Borwein [12]). 
Recall that for  M C X, the polar  of  M is 

M *  = {~b E X ' :  ~b • x -> 0 for  all x ~ M}. 

M *  is then a closed convex  cone in X ' .  However ,  if M C X ' ,  then we define its 

polar to be 

M* = {x E X :  ~b . x >-O f o r a l l ~ b E M } .  

M *  is now a to-closed convex  cone in X. 

Lemma 2.4. Suppose that K and L are subsets of  X and C is a subset of  X ' .  

Then: 
(a) K C L implies L* C K*.  

(b) K *  = ( c o n v  K)*,  C* = (conv C)*, K** = cone K and C** = cone C, where 
cone K denotes the convex cone generated by K. 

If, in addition, K and L are closed convex cones, then 
(c) (K  n L)* = K* + L* with 

( K  N L)* = K* + L* if int(K) n L #  0. 

We now present  some well-known definitions of  cones used in mathemat ical  
programming (see e.g. Gould and Tolle [20] and Abadie [1]). However ,  the 

definitions are stated here in terms of subgradients.  
By F°(x), we denote the cone of all continuous convex  object ive functions [0 

with the proper ty  that  x minimizes [0 over  S. 

For  every  subset  O of ~ (x ) ,  the linearizing cone at x ~ S, with respec t  to ~ ,  is 

C~(x) = {d E X :  4~ • d <-0 for  all ~b E 9fk(x) and all k E 0}. 

By L e m m a  2.2(b), we see that 

Ca(x) = {d E X :  v fk (x ;  d) <-0 for all k E O}. 

The cone of  subgradients at x is 

Ba(x)  = {qb ~ X':  da = ~,  Akqb k for  some Ak --> 0 and ~b k E 0fk(x)}. 
kEO 

This cone is convex  and is also closed, when 0 ~ conv U ken 0/*(X), i.e. when it 
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is compactly generated. We now set 

Bz(x) ={0}. 

The linearizing cone and the cone of subgradient have the following dual 
property. 

Lemma 2.5. Suppose that 1~ C ~. Then 

B~(x)  = - C * ( x ) .  

Proof. Follows from the definition and Lemma 2.4 (b) and (c). 

A further useful dual property obtained using polars is the following. 

Lemma 2.6. (see [9]). Suppose that f : X-~  R is a continuous convex function and 
D~(x) ~ ~ (equivalently 0 ~ Of(x)). Then 

(D~(x))* = -cone  Of(x). 

Gould and Tolle [21] used Farkas' lemma to prove lemma 2.5, for differentiable 
functions on R". Note that in the differentiable case, Bn (x) is finitely generated and 
thus closed. 

For x ~ M, where M is an arbitrary set in X, the cone of tangents to M at x is 
defined by 

T(M, x) = {d E X: d = lim Ak(X k -- x) where x g E M, Ak > 0 and 
X k "-> X}. 

This cone is closed and it is convex if M is. In fact, when M is convex, it is 
exactly the c o n e ( M -  x), the support cone of M at x. For further properties, see 
e.g. Guignard [22] and Holmes [23]. 

The cone of tangents is used in optimization theory to describe the geometry 
of the feasible set. For example, one gets the following characterization of 
optimality. 

Theorem 2.1. (see [23, p. 30]). x E S is optimal for (P) if and only if 

Of°(x) M T*(S, x) ~ ~.  

Note that this characterization is in terms of the feasible set, rather than the 
constraints. 

3. The "badly behaved" constraints 

For x ~ S, let 

~b(x) ~ {k ~ ~=: (Dr(x) M C~x)(X)) -~ D ~ ( x )  ~ fJ}. 
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We call ~b(x) the set of "badly behaved" constraints at x ~ S for program (P). 
The set ~b(x) is the set of constraints that creates problems in the Kuhn-  

Tucker theory. These are the constraints in ~=, whose analytic properties (given 
by the directional derivatives) do not fully describe the geometry of the feasible 
set (given by the feasible directions). It will be shown in Section 6 that 

~b(x)  =,tJ and B~{x~(X) is closed 

is a necessary and sufficient condition for the Kuhn-Tucker  theory to hold at x, 
independent of f0, i.e. it is a weakest constraint qualification. 

Once ~= is found, then, for any given index k0E ~=,  we see that koE ~b(x)  if 
and only if the system 

{ vfk°(x; d) = 0, 
vfk(x;d)<--O for a l l k E ~ ( x ) ~ k 0 ,  

d ~  O;o(x) U D~=(x) 

is consistent. (Note that when D~o(X) is closed, then D ~ ( x ) C D ~ o ( x ) .  This 
simplifies the above system and thus, the corresponding definition for the "badly 
behaved" set.) 

The set ~b(x) is not equal to ~= in general. In fact, if 

Ek(X) = D ; ( x )  (3.1) 

where 
Ek(X) a= {d ~ X:  Vfk(x;  d) = 0}, 

then fk is "never badly behaved" at x, i.e. k ~  3~b(x) independent of the other 
constraints. This class of functions which are "never badly behaved" at x 
includes all continuous linear functionals on X. Furthermore, if X = R  n, 
V/(x) # 0 and f is a strictly convex function of one variable, considered as a 
function on R" (i.e. if the restriction of f to R ~ is strictly convex), then f is a 
nonlinear function which is "never  badly behaved" at x. (See Ben-Israel et al. [7] 
for definitions and properties of functions whose restrictions are strictly 
convex.) 

The class of functions which are "never badly behaved" at x also includes the 
"distance" functions defined below. We will see, in Section 7, that every 
program (P) can be "regularized" by the addition of one such "distance" 
function. 

Lemma 3.1. Suppose that X is a normed space, K is a convex cone in X, x E S 
and k E ~. I[, for  y E X, 

fk(y)  = dist(y - x, K) (3.2) 

=a inf II (Y - x) - zll, 
zEK 
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then fk is a convex function on X which 
Furthermore, 

0 if d ~ K ,  
Vfk(x; d) = positive otherwise. 

is "never badly behaved" at x. 

(3.3) 

Proof. That fk is convex follows from convexity of K and the properties of a 
norm. 

Now let d E X. Then 

Vf~(x; d) = lira fk(x + t d ) -  fk(x)  
t~o t 

= lira dist(td, K)  
t~0 t 

= dist(d, K) since K is a cone. 

This yields (3.3) and further implies that (3.1) holds. Therefore fk is "never  badly 
behaved" at x. 

Example 3.1. Consider the program (P) with the single constraint in one variable, 
f l (x)  <- O, where 

fl(x) = {02 if x > 0 ,  
otherwise. 

Then 

J'{1} if x = 0 ,  ~b(x)  [ otherwise. 

However,  if 

{0 2 f l ( x  ) = + x i f  x >- O, 
otherwise, 

then ~b(x) = 0 for all x, i.e. f l  is not "badly behaved" at x, though 1 E ~=. 

Example 3.2. Now consider the three functions 

(X-- 1) if X---- 1, 
f l(x)  = 0 otherwise, 

and 

x if x->0,  
f2(x) = 0 otherwise 

0 2 + x  if x > O ,  
f3fx) = 

otherwise. 
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1 

Fig. 1. Functions in Example 3.2. 

If the program (P) has just the two constraints f~ and f2, then 

~b(x)  = { ~2 } if x =0 ,  
otherwise. 

If, however,  the program (P) has all three constraints, then 

~b(X) = ,0" for all x E S. (3.4) 

As mentioned above, we shall see that, when B~<x)(x) is closed, (3.4) implies that 
the Kuhn-Tucker  theory holds, independent of the choice of the objective 
function f0. 

4. A basic lemma 

The following lemma presents several relationships between the tangent cone, 
the linearizing cone and the cones of directions. 

Lemma 4.1. Suppose that x ~ S and the set 0 satisfies ~b(x)  C ~ C ~=. f f  

conv D~(x) is closed or J2 = ~=, 

then: 

(a) T(S, x) = D~(x)(X)2 
(b) conv Dfi(x) n Cv(x)(X) = Do(x) N C~(x)(x) = D~=(x) n C~(x)(X). 
(c) T(S, x) = c o n v  Da(x) n C~(~)(x). 

(d) conV{UkE~<~x ) Ofk(x)} N (D~(x))* = O. 

Proof. (Since the point x E S is fixed throughout, we will omit it in this proof 
when the meaning is clear. For example C~ denotes C~x)(x).) 

(a) The result follows from the fact that 

D~(x)(x) = cone(S - x) 
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while 
T(S, x) = cone(S ± x). 

(b) (i) First, let us show that 

conv D~ n C~ c conv D~ N C~. (4.1) 

By hypothesis  and the fact that conv D~= C Ce= and Ce = C~= n C~<, it is 

sufficient to show that 

conv D~= n C~< c conv D~= n C~<. 

But this follows since 

d E D~= n D~< c conv D~- n i n t  Ce< ¢ ~ ,  

by Lemma 2.1(d). 
(ii) Next ,  let us show that 

Dfi n C~ C D~= n C~. (4.2) 

Suppose that 

d E (D~ n C~) ~- (D~- n C~). 

We will find a set I C 3 ~= and feasible directions d~ E DE, which are directions of 

decrease for fk, k E L This will contradict  the definition of ~=. 
By the assumption, we can find a nonempty set I C ~= ~ O such that 

d E C~ = N (-Ofk)*, d E D~-~ 
kE~ 

but 

d ~ D f U D ~ =  for e a c h k E L  

Recall that when k0 E ~=,  then fk0 is "badly  beh av ed "  at x if the system 

V/k°(x; d) = 0, 

Vfk(x; d ) - - 0 ,  k E ~ ( x ) " k o ,  

d ~  D~ 0 U D~3 = 

is consistent.  Therefore ,  since 

iC~=-- .OCp=-- .~b ,  

we see that 

7fk(x;d)<O for  a l l k E L  

i.e. 
d E D~ n D~=~x. (4.3) 
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By Lemma 2.1(d), there exists 

d E D~= n D~<. (4.4) 

Let  

d~ __a Ad + (1 - A)d. (4.5) 

Then, by (4.3) 

dx E D{ for all 0 -< A < 1. (4.6) 

Furthermore, Lemma 2.1(b) implies that 

d~ E D~=~ for all 0 < A < 1. (4.7) 

Now, by continuity and (4.4), there exists 0 </3 < 1 such that 

d~ E D~< for all/3 -< A < 1. (4.8) 

From (4.6), (4.7) and (4.8), we conclude that 

d ~ E D ~ A D ~  for a l l / 3 - - - A < l ,  

contradiction. Thus we have shown that 

D~ A C~ C D~= N C~. 

The inclusion (4.2) follows, since both C~ and D~= are closed. 
(iii) By a similar argument, in particular employing Lemma 2. l(b) again, we see 

that 

conv D a n  C~ C D~ n C~. (4.9) 

(The same argument shows that D$= is convex, see [13].) 
The desired result now follows from (4.1), (4.2), (4.9) and 

D~= n C~ c D~ n C~ C conv D a n  C~. 

(c) By (a), (b), and (4.1) it is sufficient to show that 

D~ = c o n v  D~= n C~. 

That 

D~ C conv Dg= n C~ (4.10) 

is clear from the definitions and Lemma 2. l(c). To prove the converse, we first 
show that 

conv D~= n C~ c D) .  (4.11) 

Suppose that we are given 

d E conv D~= n C~ 
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and the neighbourhood of the origin, n. We need to show that 

D~ n (n + d) # ~ .  (4.12) 

Let  d and dx be defined as in (4.4) and (4.5) respectively. Then 

dx • ~b = Ad- ~b + (1 - A)d.  ~b < 0, 

for all 0 <  )t ~< 1 and all ~b ~ Ukz~,<cgf. Therefore 

d~ E D~< N conv D~= C D~ for all 0 < )t _< 1. 

Furthermore, d~ ~ n  + d  for sufficiently small )t. This proves (4.12) and thus 
(4.11). The desired result now follows since D~ is closed. 

(d) Let  

C ~ cony 0f k . (4.13) 
k 

Suppose that the intersection is not empty. Then ~< ¢ B and there exists 

~b E C n (DO)* 

where ~b= ~k~e,< Ak~b k for some )tk --> 0, ~ )tk = 1 and ~b k ~ Ofk. By Lemma 2.4(a) 
and (b), 

DO C {~b}* and - C *  C -{~b}*. 

Therefore 

D0 O - C *  C {~b} ± (the annihilator of ~b). 

Let  d be as in (4.4). Then 

d E D~= n D~< c Do N - C *  C {~b} ±, 

i . e . d .  ~b = 0. But 

d- 4' = d.  k ~  a~d'k < 0, 

since d E D~<, )tk - 0 and ~ A~ = 1. Contradiction. 
The above lemma will be used to prove the optimality criteria and the 

necessary and sufficient constraint qualifications in the following sections. 

5. Optimality criteria 

In this section we present the optimality criteria, for the convex program (P), 
of the type: 

x E S is optimal if and only if the system 
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I 0 E 0f(x) + ~] ;~kaf~(x)- G, 
kE~(x) 

[a~---O 

is consistent, 
where G is some nonempty cone in X'. But, first we prove the following lemma. 

Lemma 5.1. Suppose that x E 5; and G C X'.  Then the statement: 
"x is optimal for (P) if and only if the system 

I o E ~f°(x) + Y~ Ak~fk(x)- G, 
k~(x) 

l Xk --> 0 (5.1) 

is consistent", 
holds, for any fixed objective function fo, if and only if G satisfies 

T*( S, x) = - B~(x)(x ) + G. (5.2) 

Proof. Sufficiency: Suppose that G satisfies (5.2). By Theorem 2.1, we know that 
x is optimal if and only if Of(x) N T*(S, x) ~ ~. By (5.2) this implies that x is 
optimal if and only if ~f°(x)n(-B~(x)(x)+G)~O, i.e. if and only if (5.1) is 
consistent. 

Necessity: We need to show that (5.2) holds. Suppose that ¢ E T*(5;, x) and f0 
is defined by the linear functional ~b(-) on X. Then ~b E Of(x) n T*(5;, x) and we 
can conclude that x is optimal for (P), i.e. ¢b = f ° e  F°(x). Therefore, by the 
conditions (5.1) we see that ¢ E -B~(x)(X)+ G. Thus 

T*(S, x) C -B~(x)(x) + G. 

Conversely, let ¢ E-B~(x)(X)+ G. Then we can find hg-> 0 and e k e  c~fk(x) 
such that 

¢ +  ~ X k 6 k e a .  
k~g~(x) 

Again we let f0 be the linear functional ¢. Then ¢ = f o e  F°(x) by (5.1). Since 
Of(x) = {¢}, Theorem 2.1 implies that ~b E T*(5;, x). Thus 

-B~(x)(x) + G C T*(5;, x). 

When B~(x)(X) is closed, we see that (5.2) becomes, by Lemma 2.5, 

T*(S, x) = * C~(x)(X) + G. 

This condition was studied by Gould and Tolle [20] in the case when X = R n and 
the functions fk are differentiable but not necessarily convex. (Note that by 
Lemma 2.5 and Lemma 4.1(d), we get that B~(x)(X) is closed when the constraints 
fk, k E ~=, are differentiable.) 

By specifying G in (5.2) we get necessary and sufficient conditions for 
optimality. One obvious candidate for G is T*(S, x)~-C*(x)(X)U {0}. By Lemma 
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4.1(a), another  candidate is (D~(x~(x))*. More useful candidates for  G are given 

in the next  theorem. 

T h e o r e m  5.1. Suppose that x E S, the set [2 satisfies ~b(x) C ~ C ~= and both 

conv D~(x) and -B~<x)(X)+(D~(x))* are closed. (5.3) 

Then, x is optimal for (P) if and only if the system 

I O E Of(x) + ~ Ak0fk(x)-- (Da(x))*, 
k~'(x) 

L Ak --> 0 (5.4) 

is consistent. 

P r o o f .  The result follows f rom L e m m a s  2.4(c), 2.5, 4.1(c) and 5.1. 

We have assumed that the two sets conv D~ and -B~(x)(X)+ (DT~(x))* are 

closed. (This can be considered as a kind of constraint  qualification.) The sets 
are closed, for example ,  when the constraints are faithfully convex  and differen- 

tiable. For then both cones in the sum are polyhedral.  The following two 
examples  show that the closure assumptions  are necessary.  

E x a m p l e  5.1. Consider the program 

f°(x) --> min 

s.t. fk(x)<--O, k E ~ = { 1 , 2 , 3 }  

where x = (xi) ~ R 3, f l (x)  = xl, f2(x) = - x l ,  f3(x) = (dist (x, K))  2 (see (3.2)) and K 

is the self-polar, " i ce -c ream"  cone 

K &{x ER3:xi+x2>--O, 2xlx2>--x2}. 

Note  that now 

inflltd - z[[ 2 
Vf3(0; d) = lim z~k 

t~o t 
= 0  for  a l l d ~ R 3 .  

Let  g = 0. Then g E S, ~= = ~ while ~b(g)  = {3}. Fur thermore ,  

and (D~(0)(0))* = K. Let  us show that  

C%,(0) + (D~b~o)(0))* is not closed. 
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k i =  E K and l ; =  E C*(0)(0), i = 1 , 2  . . . . .  

Then  

k i + I i ~ ~- C*(o)(0) + (D~b(o)(0))*. 

Example  5.2. Cons ide r  the p rog ram 

f°(x)  ~ min 

s.t. [k(x)<--O, k E ~ = { 1 , 2 }  

where  x = (xi) E R 2, 

/ l ( x  ) = [ ( x l  2 + x  2 - 1 )  2 i f x  2 + x  2 - 1 _ > 0 ,  
t 0 o therwise ,  

/2(x) = dist(x - 2, K ) ,  K = {x E R2: xl --- 0, x2 --> 0} and  ~ = (1,0) t. T h e n  S = {~}, 

~ =  = ~ while ~ b ( $ )  = {1}. Le t  O = {1}. Then  

D~($ )  = {d E R2: d, < O} U {0} 

is not  c losed.  F u r t h e r m o r e  

T*(S,  2) = R z and C*~)(~) = K. 

T h e r e f o r e  

(D~(£))*  - B ~ ) ( £ )  C (D~(£))*  + C*~)(£) = {x E R2:x2 - 0} +C T*(S ,  x). 

This implies  that  (5.2) fails and tha t  we canno t  choose  g2 = {1} in T h e o r e m  5.1. 
The  case  O = ~ =  in the a b o v e  t h e o r e m  is except iona l .  In  this case  we no 

longer need  the hypo thes i s  (5.1). In fact ,  

(DT~(x))* - B~¢x)(X) = T*(S ,  x)  

a lways  holds.  

T he o rem 5.2. Let  x ~ S. Then x is opt imal  fo r  (P)  if and  only if the system 

t O E af°(x) + k~,x) Akaff(X) -- (D~=(x))*,  

(5.5) 
[Ak >-0 

is consistent.  
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Proof. First note that 

- B~x)(X) C C*~x)(X) 

C T*(S, x) 

Now 

by Lemmas 2.5 and 2.4(a), 

by Lemmas 4.1(c) and 2.4(a). 

T*(S,x) = (D)~x)(x))* by Lemma 4.1(a) 

= (D~=(x) n D~<¢x)(X))* by Lemma 2.1(c) 

= (D~=(x))* 

+ ~ (D~(x))* by Lemmas 2.1(b), (d) and 2.4(c) 
k~<(x) 

= (D~= (x))* - B~<¢x)(x) by Lemma 2.6 

= (D~=(x))*- B~¢~)(x) by (5.6). 

The result now follows from Lemma 5.1. 

(5.6) 

The above result is equivalent to the characterization of optimality given in 
[2,7, 8,9], the difference being ~<(x) replaces the set ~(x)  in (5.5). It is of 
interest to note that Theorem 5.1 shows that, under certain closure conditions, 
~= can be replaced in (5.5) by any set O which satisfies ~b(x) C O  C ~=. 
However,  it appears that ~= is the only set that does not require any additional 
closure conditions. The closure conditions, however, are always satisfied in the 
faithfully convex, differentiable case. 

6. Weakest constraint qualifications. 

A point x ~ S is called a Kuhn-Tucker point for (P) if the Kuhn-Tucker  
conditions are satisfied at x, i.e. if the system 

t o ~ af°(x) + ~, ,~afk(x), 
kE~(x) 

(6.1) 
(~k---0 

is consistent. It is well-known that if x ~ S is a Kuhn-Tucker  point, then x 
solves program (P). However,  the converse does not hold in general. 

We call x E S a regular point (Lagrange regular point), if the Kuhn-Tucker  
conditions (6.1) hold for every f0 E F°(x), i.e. if we can choose G = {0} in (5.2). A 
constraint qualification is then a condition on the set of constraints which 
guarantees that x is a regular point. A weakest constraint qualification (WCQ) is 
a constraint qualification that holds if and only if x is a regular point. In other 
words, it is a condition, on the constraints, which holds at x if and only if the 
Kuhn-Tucker  conditions characterize optimality at x for any given f0. Gould and 
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Tolle [20, 21] have shown that in their setting, i.e. in the differentiable case on 
R n , 

T*(S, x)= C*~x)(x) is a WCQ. (6.2) 

Since in our setting B~xl(x) is not closed in general, we no longer have (6.2). 
However,  by Lemma 5.1, we do have that 

T*(S, x)= -B~(x)(X) is a WCQ. 

By Lemma 2.5, this is equivalent to, 

B~(x)(x) is closed and T*(S,x) = C*~x)(x) is a WCQ. (6.3) 

In this section we present several different WCQ's. We also show (see 
Corollary 6.1) how, in the differentiable faithfully convex case, one can verify 
computationally whether or not x is a regular point. 

Theorem 6.1. Suppose that x E S. Then T.F.A.E.: 

(a) x is a regular point. 
(b) T(S, x)= C~(x)(x) and B~(x)(X) is closed. 
(c) ~b(x)= ,g and B~(~)(x) is closed. 
(d) C~x)(X)C D~=(x) and B~(x~(X) is closed. 

Proof. That (a) is equivalent to (b) follows directly from (6.3) and Lemma 2.4(b). 
Now, suppose that ~b(x) = ~. Then, Lemma 4.1(c) implies that 

T(S, x) = C~x)(X). 

Conversely, suppose that ~b(x) ~ ~J. Recall that k E ~b(x) if k E ~= and there 
exists 

d @ (Dr(x) A C~(~)(x)) "- D~=(x). 

But, this implies that 

d ~  D~=(x) M C~x)(X) = T(S, x) by Lemma 4.1(b) and (c). 

Therefore, 

T(S, x) ~ C~x)(X). 

This proves (b) is equivalent to (c). 
Finally, that (b) is equivalent to (d) follows from Lemma 4.1(b) and (c). 

Remark 6.1. Suppose that we can find $ E S and 12 C ~ such that fk(2) < 0, for 
all k ~ ~ ~ O, and fk is "never badly behaved" at x for all k E O and some 
x ~ S , i . e .  

Ek(x) = D~(x) for all k E O. 
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Then, since ~b(x) C ~=, this implies that ~b(x) = ~,  i.e. if B~x)(x) is closed then 
x E S is a regular point. In particular, in the differentiable case, we see that, 
when checking if Slater's condition holds, we need not worry about the func- 
tions which are "never badly behaved".  In particular, we can ignore all linear 
functionals. 

Remark 6.2. Suppose that S contains two distinct points. Then Slater's condition 
is a WCQ with respect to the Fritz John optimality conditions. 

Proof. The Fritz John optimality conditions state that: x ~ S is optimal if and 
only if the system 

[ o~ ~ ,~k~/k(X), 
kc~(x)U{O} 

Ak --> O, X Ak = 1 (6.4) 
kE~(x)U{0} 

is consistent. Necessity always holds. We need to show that, if S contains two 
distinct points (note that when S = {x}, then x is optimal for any f0 chosen, the 
Fritz John optimality conditions hold, but Slater's condition fails), then the Fritz 
John conditions are sufficient for optimality, independent of the objective 
function r ,  if and only if Slater's condition holds. So, suppose that x E S and 
the system (6.4) is consistent. Now, consider the system 

kElP(x) 

(6.5) 
,~k ~ ~fk(x), ,~k >- O, ~ Ak = 1. 

kE~(x) 

Since the Kuhn-Tucker  conditions are always sufficient for optimality and since 
(6.5) is independent of f0, we see that the Fritz John conditions (6.4) are 
sufficient for optimality if and only if the system (6.5) is inconsistent. But (6.5) is 
inconsistent if and only if the system 

{ ~b ~ • d < 0  for all k E ~(x) ,  
qbk E afk(x), d E X 

is consistent (Motzkin's Theorem of the Alternative [33]) if and only if Slater's 
condition holds. 

Now, suppose that g ~  S and Vf~(g) exists for all k E ~ = .  Consider the 
convex program with the linear constraints 

g k ( x )  = Vfk( .~)  • X <--- O, k E ~=. (6.6) 

Let  ~= denote the equality set for these constraints, i.e. 

= = {k0 ~ ~=: gk°(x) = 0 for all x ~ {x ~ X:  gk(x) <_ 0 for all k E ~=}}. 

(6.7) 
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(Note that since the gk are linear, we get that 

D~= = fq (vfk(~)±.) 
k E ~  = 

Recall that when f f  is faithfully convex,  then D~ is a subspace independent  of x. 
In this case, we get the following WCQ which can be verified computationally.  

Corollary 6.1. Let  ~ E S. Suppose that the constraints if ,  k @ ~($) ,  are differen- 
tiable and fk, k @ ~=, are faithfully convex. Then T.F.A.E.: 

(a) $ is a regular point. 
(b) Every x E S is a regular point. 
(c) D~:  = D~=, where Y~ = is given in (6.7). 

Proof. Consider the convex program with the linear constraints 

gk(x) = vfk(Y) • X --< 0, k E ~ ( $ )  (6.8) 

and suppose that k0 is in the equality set for these constraints,  i.e. vfk($)  • d --< 0 
for all k E ~ ($ )  implies that vfk0($) • d = 0. Therefore  

D~(~)($) fq O~0($) = ~ .  

This implies that ko E ~=.  Fur thermore ,  since ~= C ~ ( :0 ,  we get that 

~ = C ~  = 

and ~ = is the equality set for the constraints (6.8) as well as for the constraints 

(6.6). We now conclude that 

D]= = span{d ~ X:  vfk($)  • d - 0 for all k E ~($)} 

= span C~(~)($) (6.9) 

and 
D~= C D~=. (6.10) 

But since D~= is a closed subspace,  we get, f rom Theorem 6.1, that ~ is a regular 

point if and only if 

span C~(~)(~) C D~=. 

That  (a) is equivalent to (c) now follows f rom (6.9) and (6.10). 
Now let us show that (a) is equivalent to (b). Let  x E S. Then,  for  k ~ 9 a= we 

see that 
v fk(x ;  d) = Vfk(x) • d 

k 
= lim f (x + td) - fk(x) 

t~o t 

= lira fk(~ + g+ td) _ f k (~  + d) where aT = x - Y 
t~o t 
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= lim f f ( g  + td) - f k (g )  since k ~ ~= implies that d ~ D~= 
t;0 t 

= Vff($) • d. 

This implies that the directional derivatives vfk(x)  • d and thus also the gradients 
vfk(x)  are independent of x ~ S for all k ~ ~=. Thus D~= is independent of 
x E S. The result now follows since we have already shown that (a) is equivalent 
to (c). 

The above result shows that x is a regular point if and only if the gradients of 
the binding constraints supply sufficient information about the feasible direc- 
tions. More precisely, since fk,  k E 8 ~, is convex,  we can always determine the 
directions of decrease using the gradient, with the formula 

D ~ ( x )  = {d E X :  Vf f (x ) .  d <0}. 

The above theorem states that we need also be able to determine the directions 
of constancy D~=(x) using the gradients. 

Example 6.1. Suppose S C R 5 is defined by the constraints 

/ l (x)  = e x' + x~ -1  -< 0, 

/ 2 ( x )  = x~ + x 2 + e -x3 - 1 ~ 0, 

f 3 ( x ) =  xl + x2a+ x~ - 1 ~ 0 ,  

f4(x)  = e -x2 - 1 <- O, 

f ( x )  = ( x l -  1)2+ x~ -1  <-0, 

f6(x) = xl + e  -x, - 1  -< 0, 

/7(x) x2 + e -x~ - 1  -< 0. 

Let  us check whether  every  x ~ S is regular, while finding ~= and D~=. (The 
algorithm for finding ~= was given in [2] and later modified for faithfully convex 
constraints in [31].) 

In i t ia l i za t ion .  Let  $ = (0, 0, 1, ~ / 2 ,  ½N/2) be the chosen feasible point. Then P0 = 

Ao = I5×5, ~0 = ~(~)  = {1, 3, 4, 5} and ~ = .g. The corresponding gradients are 

Vf~(.~) = (1, O, O, O, 0), 

V f3(2) = (1, 0, 0, ~/2, ~/2), 

v / ' (~ )  = (0, - 1, 0, o, 0), 

v/~(~) = ( -2 ,  0, 0, 0, o). 

(We simultaneously find ~=  and D~=, where ~= is the equality set for  the 
linear constraints 

Vfk(X) • x -< 0, k ~ ~o = {1, 3, 4, 5}.) (6.11) 
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A 
~ 7  = { 1 , 5 } ,  

Step 0: Since Vf*(2)Ao = Vfk(2) # 0 for all k E ~o, we solve the system 

I o/r°  i h I 0 -}-h 3 ~ - h  4 0 "1- h 5 0 = 

L~J '~ o ,  , ~  ~°oJ ~°4°o 
AI+A3+M+A5 = 1 and Ak-->0. 

solution is Al=~, A 3 = M = 0  and As=~. Therefore ,  Jo={1,5},  ~ i={3 ,4} ,  

A I =  
~o~ 

0 
1 

0 

with Y~(A0 = O~Jo  D~oPo and Pl = PoA1 = A1. 

(For the constraints (6.11), we see that 

0 0 0 

A1 = 1 0 
0 1 
0 0 

with ~(A1) = OkeSo V(ff(2))" 

and P1 = AI.) 

Step 

J, = {4}, N2 = {3} ~ = {1, 4, 5}, 

[io j Az  = 1 

0 

with ~(A2) = D~40p~ and P2 = P1A2 = AI .  

(For the constraints (6.11), we see 
consistent. Thus 

1: Since V / 4 ( x ) P I  = 0 while ~Tf3( .~)P 1 # 0 we get that 

that the corresponding system is in- 

= = {1,  5}; D ~ =  = 

o o o 

1 o ). 
0 1 
0 0 
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Step 2: Since ~2 = {3} and lTf3(x)P2 # 0 we stop. 

Conclusion. 
~= = ~2 : { 1 , 4 , 5 }  

and 

] ~ =  ----" ~(P2) = d3 E Rs: d3, d4, d5 E R . 

d4 
d~ 

Thus D~= # D)= which implies that the points x E S are not regular. 

Remark 6.3. As mentioned in the introduction, constraint qualifications are 
important  when dealing with stability. In fact  [18, Theorem 1] a solution ~ of (P) 
is a Kuhn-Tucker  point if and only if the optimal value/.~ = f (£)  is stable with 
respect  to perturbations of the right-hand sides of the constraints. More pre- 
cisely, if 

/~(E) = inf{f°(x): [k(x) <- Ek for all k ~ ~} 

denotes the perturbation function, where E = (Ek)E R m is the perturbation vec- 

tor, and if there exists a Kuhn-Tucker  vector  A = (A~) ~ R m which satisfies both 
(6.1) and the complementary slackness condition Adk(~)----0 for all k E ~,  then 

/ .~(aE)-/x(0)-->-a(A • e) for  all a ->0, (6.11) 

i.e. the marginal improvement  of the optimal value with respect  to perturbations 
in the direction e is bounded below by - A . e .  Conversely,  if the marginal 
improvement  is bounded below in all directions e, then ~ is a Kuhn-Tucker  
point. It is interesting to note that in order to verify stability one need only check 
the perturbation direction ~ = ( E k )  with ek = 1 for all k ~ ~. Moreover ,  if Slater's 
condition is not satisfied and ek < 0  for all k ~ ,  then / z (e )=  +on and (6.11) 
still holds. Gauvin [17] has shown that Slater's condition is equivalent 

to having a bounded set of Kuhn-Tucke r  vectors.  This is often taken as 
the definition of stability since we can then allow an arbitrary perturbation 
vector  e and still maintain feasibility. This type of stability is related to stability 
of perturbations of the feasible set as studied by Robinson [25, 26] and Tuy [29]. 
In particular, Tuy ' s  notion of stability, given for the abstract program with cone 
constraints (see also [13, 14]), guarantees the existence of a Kuhn-Tucker  vector  
by requiring that all perturbations in a neighbourhood of the origin be stable. By 
restricting the perturbations to a subspace containing the range of the feasible 
set, he is able to weaken the stability (regularity) condition. For example (see [9]) 
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perturbations in the subspace 

Y={¢=(Ek) :ek=0  for a l l k E ~ = }  (6.12) 

maintain feasibility and stability. However, ~= non-empty does not guarantee 
instability in the sense of (6.11) since a Kuhn-Tucker vector may still exist. In 
fact, when N= ¢ ,g, ~b(y)  = B and B~(~)(g) is closed, then • is a regular point in 
our sense though not in the sense of Tuy. Moreover, under the closure con- 
ditions (5.3), we can replace N= by ~b(y) in (6.12) and still have stable 
perturbations (see [32] for details). Note that it makes sense to speak of these 
perturbations as being stable though only the positive ones may maintain 
feasibility. For example, Zoutendijk [35] suggests that: if Slater's condition fails 
one should find ~(E) with ek >0  for all k ~ ~. This makes sense if ~ is a 
Kuhn-Tucker point. Otherwise, the marginal improvement of #(~) will be -~ .  

7. Regularization 

Gould and Tolle have posed the question: "Can the program (P) be regularized 
by the addition of a finite number of constraints?" Augunwamba [4] has 
considered the nonconvex, differentiable case and has shown that one can 
always regularize with the addition of an infinite number of constraints. He has 
also given necessary and sufficient conditions to insure the number of con- 
straints added may be finite. In this section, we show that one can always 
regularize (P) at x, by the addition of one (possibly nondifferentiable) constraint. 
Furthermore, in the case of faithfully convex constraints, we can regularize (P) 
by the addition (or substitution) of a finite number of linear constraints. 

Theorem 7.1. Suppose that g E S, X is a Hilbert space, ~b(y,) C 12 C ~=, Be(x)(g) 
is closed and either conv D~(g) is closed or ~ = ~ =. Consider program (P) with 

the additional constraint 

f"+~(x) ~- dist((x - g), cony D~(g)). 

Then Y, is a regular point. 

Proof. By Lemma 3.1, fm+l is not "badly behaved" at g and therefore, ~b(g) is 
not increased by the addition of [m+l. NOW, by Theorem 6.1, we need only show 
that 

But 
C,,+t(x) = {d E X: Vf"+~(g; d) -< 0} =conv D~(X) 

The inclusion (7.1) now follows from Lemma 4.1(b). 

(7.1) 

by (3.3). 
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Note that the feasible set remains unchanged after the addition of f~+l. For, 
let S denote the feasible set after the addition. Then 

x ~ S c ~ x ~ S  and x - ' 2 E c o n v D ~ ( ' 2 )  

¢ ~ x E S  s i n c e O C ~ =  and D ~ ( ~ ) C c o n v D ~ ( ~ ) .  

We have, therefore,  regularized the point '2, by the addition of a " redundant"  
constraint. 

Example 7.1. Consider program (P) with the constraints 

fk(x)<--O, k E  ~ ={1,2}, 

where f l  and [2 are given in Example 5.2. Let  ~ = 0. Then '2 is not a regular 
point, since ~b('2) = {2} ~ ~f. Now 

D~b(~)('2) = {X e R: x -< 0}. 

Therefore  adding the redundant  constraint 

f3(x) = dist((x - "2), cony D~b(~)('2)) _< 0 

or equivalently adding 

/3(x) = x --- 0 

regularizes the point '2. 
When the constraints fk, k E ~=, are faithfully convex,  then we know that D~= 

is a closed subspace independent  of x. Suppose that B : Y ~ X  is a linear 

operator  such that D~= = ~ ( B ) ,  where Y is a lcs. In this case, adding the 
redundant  constraint 

fm+~(x) = dist((x - '2), D~=) 

is equivalent to adding the linear constraint 

x = $ + By for some y ~ Y. 

Moreover ,  we get the following result. 

Theorem 7.2. Let  ,2 E S and [k, k ~ ~=, be faithfully convex. Suppose that 
B : Y ~ X is a linear operator satis[ying 

D)= = ~ ( B ) ,  

where Y is a lcs. Consider the program, in the variable y E Y, 

[0('2 + By) ~ rain 
(Pr) 

s.t. fk( '2+By)<_O, k E ~ ' ~  =. 

Then Slater' s condition is satisfied [or (P,), and y = 0 is a feasible point of  (Pr). 
Moreover, i[ y* solves (P,), then "2 + By* solves (P). 
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Proof. The result follows f rom Theorem 6.1 and the fact  that ~= = ~ if and only 

if Slater 's condition holds. 

The above  result also follows f rom the characterizat ion of optimality given in 

[2, 8]. Note  that after the substitution, (P,) has fewer  constraints and, as shown 
in the following example,  fewer  variables. 

Example 7.2. Consider the feasible set S defined by the constraints in Example  
6.1. We found that  ~ = = { 1, 4, 5}, 

D ~ =  ~ 0 

1 
kO 0 

and that every  x ~ S is not regular. By the above  theorem,  Sr, the feasible set of 
the regularized program (Pr), is defined by the four constraints in three vari- 

ables: 
/2(x) = e -yl - 1  _< 0, 

f 3 ( x  ) = y2 + y2 __ 1 --< 0, 

f 6 ( x )  = e -y2 - 1 <-- O, 

f7 (x )  = e -y3 -- 1--<0. 

Note  that every  x ~ Sr is now a regular point and Slater 's  condition is satisfied. 
The above theorem was used in [31] to formulate  the Method of Reduction,  

which first finds a feasible point and then solves program (P) in the case of 

faithfully convex constraints.  Stability of the algorithm can be checked using the 
WCQ's  of the previous section. These and other related results will be presented 

in a further  study. 
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