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1. Introduction. To motivate the discussion, consider an undirected graph G13

with vertex set V = {1, . . . , n} and edge set E ⊂ {ij : i ≤ j}. The classical semi-14

definite (PSD) completion problem asks whether given a data vector a indexed by E,15

there exists an n×n positive semi-definite matrix X completing a, meaning Xij = aij16

for all ij ∈ E. Similarly, the Euclidean distance (EDM) completion problem asks17

whether given such a data vector, there exists a Euclidean distance matrix completing18

it. For a survey of these two problems, see for example [2, 21, 22, 24]. The semi-19

definite and Euclidean distance completion problems are often mentioned in the same20

light due to a number of parallel results; see e.g. [20]. Here, we consider a related21

construction: projections of the PSD cone Sn
+ and the EDM cone En onto matrix22

entries indexed by E. These “coordinate shadows”, denoted by P(Sn
+) and P(En),23

respectively, appear naturally: they are precisely the sets of data vectors that render24

the corresponding completion problems feasible. We mention in passing that these25

sets are interesting types of “spectrahedral shadows” — a hot topic of research in26

recent years; see e.g. [3, 10, 14, 15].27

In this short note, our goal is twofold: (1) we will highlight the geometry of the28

two sets P(Sn
+) and P(En), and (2) illustrate how such geometric considerations yield29

a much simplified and transparent analysis of an EDM completion algorithm proposed30

in [17]. To this end, we begin by asking a basic question:31

Under what conditions are the coordinate shadows P(Sn
+) and P(En) closed?32

This question sits in a broader context still of deciding if a linear image of a closed33

convex set is itself closed — a thoroughly studied topic due to its fundamental con-34

nection to constraint qualifications and strong duality in convex optimization; see35

e.g. [8, 9, 27, 30] and references therein. We will show that surprisingly P(En) is al-36

ways closed, whereas P(Sn
+) is closed if and only if the set of vertices attached to37

self-loops L = {i ∈ V : ii ∈ E} is disconnected from its complement Lc (Theo-38

rems 3.1, 3.3). Moreover, whenever there is an edge joining L and Lc, one can with39
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2 COORDINATE SHADOWS

ease exhibit vectors lying in the closure of P(Sn
+), but not in the set P(Sn

+) itself,40

thereby certifying that P(Sn
+) is not closed.41

To illustrate the algorithmic significance of the coordinate shadows P(Sn
+) and

P(En), consider first the feasible region of the PSD completion problem:

{X ∈ Sn
+ : Xij = aij for ij ∈ E}.

For this set to be non-empty, the data vector a ∈ R
E must be a partial PSD matrix,

meaning all of its principal submatrices are positive semi-definite. This, however,
does not alone guarantee the inclusion a ∈ P(Sn

+), unless the restriction of G to L
is chordal and L is disconnected from Lc (Corollary 3.2). On the other hand, the
authors of [17] noticed that even if the feasible set is nonempty, the Slater condition
(i.e. existence of a positive definite completion) will often fail: small perturbations to
any specified principal submatrix of a having deficient rank can yield the semi-definite
completion problem infeasible. In other words, in this case the partial matrix a lies
on the boundary of P(Sn

+) — the focus of this short note. An entirely analogous
situation occurs for EDM completions

{X ∈ En : Xij = aij for ij ∈ E},
with the rank of each principal submatrix of a ∈ R

E replaced by its “embedding42

dimension”. In [17], the authors propose a preprocessing strategy utilizing the cliques43

in the graph G to systematically decrease the size of the EDM completion problem.44

Roughly speaking, the authors use each clique to find a face of the EDM cone contain-45

ing the entire feasible region, and then iteratively intersect such faces. The numerical46

results in [17] were impressive. In the current work, we provide a much simplified and47

transparent geometric argument behind their algorithmic idea, with the boundary of48

P(En) playing a key role. As a result, we put their techniques in a broader setting49

unifying the PSD and EDM cases. Moreover, we show that when G is chordal and all50

cliques are considered, the preprocessing technique discovers the minimal face of En
51

(respectively Sn
+) containing the feasible region; see Theorems 4.5 and 4.9. This in52

part explains the observed success of the method [17]. In particular, this shows that53

in contrast to general semi-definite programming, the minimal face of the PSD cone54

containing the feasible region of the PSD completion problem (one of the simplest55

semi-definite programming problems) admits a purely combinatorial description.56

The outline of the manuscript is as follows. In Section 2 we record basic results on57

convex geometry and PSD and EDM completions. In Section 3, we characterize when58

the coordinate shadows P(Sn
+) and P(En) are closed, while in Section 4 we discuss59

the aforementioned clique facial reduction strategy.60

2. Preliminaries.61

2.1. Basic elements of convex geometry. We begin with some notation,
following closely the classical text [30]. Consider a Euclidean space E with the inner
product 〈·, ·〉. The adjoint of a linear mapping M : E → Y, between two Euclidean
spaces E and Y, is written as M∗, while the range and kernel of M is denoted by
rgeM and kerM, respectively. We denote the closure, boundary, interior, and relative
interior of a set Q in E by clQ, bndQ, intQ, and riQ, respectively. Consider a convex
cone C in E. The linear span and the orthogonal complement of the linear span of C
will be denoted by spanC and C⊥, respectively. For a vector v, we let v⊥ := {v}⊥.
We associate with C the nonnegative polar cone

C∗ = {y ∈ E : 〈y, x〉 ≥ 0 for all x ∈ C}.
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The second polar (C∗)∗ coincides with the original C if, and only if, C is closed. A62

convex subset F ⊆ C is a face of C, denoted F E C, if F contains any line segment63

in C whose relative interior intersects F . The minimal face containing a set S ⊆ C,64

denoted face(S,C), is the intersection of all faces of C containing S. When S is65

itself a convex set, then face(S,C) is the smallest face of C intersecting the relative66

interior of S. A face F of C is an exposed face when there exists a vector v ∈ C∗
67

(the exposing vector) satisfying F = C ∩ v⊥. The cone C is facially exposed when68

all faces of C are exposed. In particular, the cones of positive semi-definite and69

Euclidean distance matrices, which we will focus on shortly, are facially exposed.70

With any face F E C, we associate a face of the polar C∗, called the conjugate face71

F△ := C∗ ∩ F⊥. Equivalently, F△ is the face of C∗ exposed by any point x ∈ riF ,72

that is F△ := C∗ ∩ x⊥. Thus, in particular, conjugate faces are always exposed. Not73

surprisingly then equality (F△)△ = F holds if, and only if, F E C is exposed.74

Fix a point x of a closed, convex cone C. We will use the following two basic
constructions: the cone of feasible directions of C at x is the set

dir(x,C) := {v : x+ ǫv ∈ C for some ǫ > 0} ,

and the tangent cone of C at x is

tcone(x,C) := cl dir(x,C).

Both of the cones above can conveniently be described in terms of the minimal face
F := face(x,C) as follows (for details, see [27, Lemma 1]):

dir(x,C) = C + spanF and tcone(x,C) = (F△)∗.

A central (and classical) question in convex analysis is when a linear image of a75

closed convex cone is itself closed. In a recent paper [26], the author showed that76

there is a convenient characterization for “nice cones” — those cones C for which77

C∗ + F⊥ is closed for all faces F E C [5, 26]. Reassuringly, most cones which we can78

efficiently optimize over are nice; see the discussion in [26]. For example, the cones of79

positive semi-definite and Euclidean distance matrices are nice. Theorem 2.1 below,80

originating in [26, Theorem 1.1, Corollary 3.1] and [27, Theorem 3], plays a central81

role in our work.82

Theorem 2.1 (Image closedness of nice cones). Let M : E → Y be a linear83

transformation between two Euclidean spaces E and Y, and let C ⊆ Y be a nice,84

closed convex cone. Consider a point x ∈ ri(C ∩ rgeM). Then the following two85

statements are equivalent.86

1. The image M∗C∗ is closed.87

2. The implication

(2.1) v ∈ tcone(x,C) ∩ rgeM =⇒ v ∈ dir(x,C) holds.

Moreover, suppose that implication (2.1) fails and choose an arbitrary vector v ∈
(tcone(x,C) ∩ rgeM) \ dir(x,C). Then for any point

(2.2) a ∈ (face(x,C))
⊥

satisfying 〈a, v〉 < 0,

the point M∗a lies in (clM∗C∗)\M∗C∗, thereby certifying that M∗C∗ is not closed.88
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Remark 2.2. Following notation of Theorem 2.1, it is shown in [26, Theorem
1.1, Corollary 3.1] that for any point x ∈ ri(C ∩ rgeM), we have equality

(tcone(x,C) ∩ rgeM) \ dir(x,C) = (tcone(x,C) ∩ rgeM) \ span face(x,C).

Hence for any point x ∈ ri(C ∩ rgeM) and any vector v ∈ (tcone(x,C) ∩ rgeM) \89

dir(x,C), there indeed exists some point a satisfying (2.2).90

The following sufficient condition for image closedness is now immediate.91

Corollary 2.3 (Sufficient condition for image closedness).92

Let M : E → Y be a linear transformation between two Euclidean spaces E and Y,93

and let C ⊆ Y be a nice, closed convex cone. If for some point x ∈ ri(C ∩ rgeM), the94

inclusion rge(M) ⊆ span face(x,C) holds, then M∗C∗ is closed.95

Proof. Define F := face(x,C) and note rge(M) ⊆ spanF ⊆ dir(x,C). We deduce

tcone(x,C) ∩ rge(M) ⊆ tcone(x,C) ∩ dir(x,C) = dir(x,C).

The result now follows from Theorem 2.1, since implication (2.1) holds.96

2.2. Semi-definite and Euclidean distance matrices. We will focus on two97

particular realizations of the Euclidean space E: the n-dimensional vector space R
n

98

with a fixed basis and the induced dot-product 〈·, ·〉 and the vector space of n × n99

real symmetric matrices Sn with the trace inner product 〈A,B〉 := traceAB. The100

symbols R+ and R++ will stand for the non-negative orthant and its interior in R
n,101

while Sn
+ and Sn

++ will stand for the set of positive semi-definite and positive definite102

matrices in Sn (or PSD and PD for short), respectively. We let e ∈ R
n be the vector103

of all ones and for any vector v ∈ R
n, the symbol Diag v will denote the n×n diagonal104

matrix with v on the diagonal.105

It is well-known that all faces of Sn
+ can be expressed as

F =

{
U

[
A 0
0 0

]
UT : A ∈ Sr

+

}
,

for some orthogonal matrix U and some integer r = 0, 1, . . . , n. Such a face can
equivalently be written as F = {X ∈ Sn

+ : rgeX ⊂ rgeU}, where U is formed from
the first r columns of U . The conjugate face of such a face F is then

F△ =

{
U

[
0 0
0 A

]
UT : A ∈ Sn−r

+

}
.

For any convex set Q ⊂ Sn
+, the set face(Q,Sn

+) coincides with face(X,Sn
+) where106

X is any maximal rank matrix in Q.107

A matrix D ∈ Sn is a Euclidean distance matrix (or EDM for short) if there exist
n points pi (for i = 1, . . . , n) in some Euclidean space Rk satisfying Dij = ‖pi − pj‖2,
for all indices i, j. The smallest integer k for which this realization of D by n points
is possible is the embedding dimension of D and will be denoted by embdimD. We
let En be the set of n× n Euclidean distance matrices. There is a close relationship
between PSD and EDM matrices. Indeed En is a closed convex cone that is linearly
isomorphic to Sn−1

+ . To state this precisely, consider the mapping

K : Sn → Sn

defined by

K(X)ij := Xii +Xjj − 2Xij.
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Then the adjoint K∗ : Sn → Sn is given by

K∗(D) = 2(Diag(De)−D)

and the equations

(2.3) rgeK = SH , rgeK∗ = Sc

hold, where

(2.4) Sc := {X ∈ Sn : Xe = 0}; SH := {D ∈ Sn : diag(D) = 0},

are the centered and hollow matrices , respectively. It is known that K maps Sn
+ onto

En, and moreover the restricted mapping

(2.5) K : Sc → SH is a linear isomorphism carrying Sc ∩ Sn
+ onto En.

In turn, it is easy to see that Sc ∩ Sn
+ is a face of Sn

+ isomorphic to Sn−1
+ ; see the108

discussion after Lemma 4.7 for more details. These and other related results have109

appeared in a number of publications; see for example [1, 12, 13, 18, 19, 31–34].110

2.3. Semi-definite and Euclidean distance completions. The focus of the111

current work is on the PSD and EDM completion problems, see e.g., [16, Chapter112

49]. Throughout the rest of the manuscript, we fix an undirected graph G = (V,E),113

with a vertex set V = {1, . . . , n} and an edge set E ⊂ {ij : 1 ≤ i ≤ j ≤ n}. Observe114

that we allow self-loops. These loops will play an important role in what follows, and115

hence we define L to be the set of all vertices i satisfying ii ∈ E, that is those vertices116

that are attached to a loop.117

Any vector a ∈ R
E is called a partial matrix. Define now the projection map

P : Sn → R
E by setting

P(A) = (Aij)ij∈E ,

that is P(A) is the vector of all the entries of A indexed by E. The adjoint map
P∗ : RE → Sn is found by setting

(P∗(y))ij =

{
yij , if ij ∈ E
0, otherwise,

for indices i ≤ j. Define also the Laplacian operator L : RE → Sn by setting

L(a) := 1

2
(P ◦ K)∗(a) = Diag(P∗(a)e)− P∗(a).

Consider a partial matrix a ∈ R
E whose components are all strictly positive. Clas-

sically then the Laplacian matrix L(a) is positive semi-definite and moreover the
kernel of L(a) is only determined by the connectivity of the graph G; see for example
[7], [16, Chapter 47]. Consequently all partial matrices with strictly positive weights
define the same minimal face of the positive semi-definite cone. In particular, when
G is connected, we have the equalities

(2.6) kerL(a) = span{e} and face(L(a),Sn
+) = Sc ∩ Sn

+.

A symmetric matrix A ∈ Sn is a completion of a partial matrix a ∈ R
E if it118

satisfies P(A) = a. We say that a completion A ∈ Sn of a partial matrix a ∈ R
E is a119
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PSD completion if A is a PSD matrix. Thus the image P(Sn
+) is the set of all partial120

matrices that are PSD completable. A partial matrix a ∈ R
E is a partial PSD matrix121

if all existing principal submatrices, defined by a, are PSD matrices. Finally we call122

G itself a PSD completable graph if every partial PSD matrix a ∈ R
E is completable123

to a PSD matrix. PD completions , partial PD matrices , and PD completable graphs124

are defined similarly.125

We call a graph chordal if any cycle of four or more nodes has a chord, i.e., an edge126

exists joining any two nodes that are not adjacent in the cycle. Before we proceed, a127

few comments on completability are in order. In [11, Proposition 1], the authors claim128

that G is PSD completable (PD respectively) if and only if the graph induced on L129

by G is PSD completable (PD respectively). In light of this, the authors then reduce130

all of their arguments to this induced subgraph. It is easy to see that the statement131

above does not hold for PSD completability (see the example below), but is indeed132

valid for PD completability. Taking this into account, the correct statement of their133

main result [11, Theorem 7] is as follows.134

Theorem 2.4 (PSD completable matrices & chordal graphs).135

The following are true.136

1. The graph G is PD completable if and only if the graph induced by G on L is137

chordal.138

2. Supposing equality L = V holds, the graph G is PSD completable if and only139

if G is chordal.140

Without the assumption L = V , the second part of the theorem does not hold.
Consider for example the partial PSD matrix

[
0 1
1 ?

]

which is clearly not PSD completable. In Corollary 3.2, we get rid of this assumption141

and observe that PSD completable graphs are precisely the chordal graphs for which142

L is disconnected from Lc.143

With regard to EDMs, we will always assume L = ∅ for the simple reason that144

the diagonal of an EDM is always fixed at zero. With this in mind, we say that a145

completion A ∈ Sn of a partial matrix a ∈ R
E is an EDM completion if A is an EDM.146

Thus the image P(En) (or equivalently L∗(Sn
+)) is the set of all partial matrices that147

are EDM completable. We say that a partial matrix a ∈ R
E is a partial EDM if any148

existing principal submatrix, defined by a, is an EDM. Finally we say that G is an149

EDM completable graph if any partial EDM is completable to an EDM. The following150

theorem is analogous to Theorem 2.4. For a proof, see [4].151

Theorem 2.5 (Euclidean distance completability & chordal graphs).152

The graph G is EDM completable if and only if G is chordal.153

3. Closedness of the projected PSD and EDM cones. We begin this sec-
tion by characterizing when the projection of the PSD cone Sn

+ onto some subentries
is closed. To illustrate, consider the simplest setting n = 2, namely

S2
+ =

{[
x y
y z

]
: x ≥ 0, z ≥ 0, xz ≥ y2

}
.

Abusing notation slightly, one can easily verify:

Pz(S2
+) = R+, Py(S2

+) = R, Px,z(S2
+) = R

2
+.
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Clearly all of these projected sets are closed. Projecting S2
+ onto a single row, on the

other hand, yields a set that is not closed:

Px,y(S2
+) = Pz,y(S2

+) = {(0, 0)} ∪ (R++ × R).

In this case, the graph G has two vertices and two edges, and in particular, there is an154

edge joining L with Lc. The following theorem shows that this connectivity property155

is the only obstacle to P(Sn
+) being closed.156

Theorem 3.1 (Closedness of the projected PSD cone). The projected set P(Sn
+)

is closed if, and only if, the vertices in L are disconnected from those in the complement
Lc. Moreover, if the latter condition fails, then for any edge i∗j∗ ∈ E joining a vertex
in L with a vertex in Lc, any partial matrix a ∈ R

E satisfying

ai∗j∗ 6= 0 and aij = 0 for all ij ∈ E ∩ (L× L),

lies in
(
clP(Sn

+)
)
\ P(Sn

+).157

Proof. First, whenever L = ∅ one can easily verify the equation P(Sn
+) = R

E .
Hence the theorem holds trivially in this case. Without loss of generality, we now
permute the vertices V so that we have L = {1, . . . , r} for some integer r ≥ 1. We
will proceed by applying Theorem 2.1 with M := P∗ and C := (Sn

+)
∗ = Sn

+. To this
end, observe the equality

Sn
+ ∩ rgeP∗ =

{[
A 0
0 0

]
: A ∈ Sr

+ and Aij = 0 when ij /∈ E

}
.

Thus we obtain the inclusion

X :=

[
Ir 0
0 0

]
∈ ri(Sn

+ ∩ rgeP∗).

Observe

face(X,Sn
+) =

{[
A 0
0 0

]
: A ∈ Sr

+

}
.

From [27, Lemma 3], we have the description

tcone(X,Sn
+) =

{[
A B
BT C

]
: C ∈ Sn−r

+

}
,

while on the other hand

dir(X,Sn
+) =

{[
A B
BT C

]
: C ∈ Sn−r

+ and rgeBT ⊆ rgeC

}
.

Thus if the intersection E∩
(
{1, . . . , r}×{r+1, . . . , n}

)
is empty, then for any matrix

[
A B
BT C

]
∈ tcone(X,Sn

+) ∩ rgeP∗,

we have B = 0, and consequently this matrix lies in dir(X,Sn
+). Using Theorem 2.1,

we deduce that the image P(Sn
+) is closed. Conversely, for any edge i∗j∗ ∈ E ∩(

{1, . . . , r} × {r + 1, . . . , n}
)
, we can define the matrix

V := ei∗e
T
j∗ + ej∗e

T
i∗ ∈

{
tcone(X,Sn

+) \ dir(X,Sn
+)

}
∩ rgeP∗,
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where ei∗ and ej∗ denote the i∗’th and j∗’th unit vectors in R
n. Theorem 2.1 im-158

mediately implies that the image P(Sn
+) is not closed. Moreover, in this case, define159

A ∈ Sn to be any matrix satisfying Ai∗j∗ < 0 and Aij = 0 whenever ij ∈ {1, . . . , r}×160

{1, . . . , r}. Then A lies in (face(X,Sn
+))

⊥ and the inequality, 〈A, V 〉 = 2Ai∗j∗ < 0,161

holds. Again appealing to Theorem 2.1, we deduce P(A) ∈ (clP(Sn
+)) \P(Sn

+), as we162

had to show. Replacing V by −V shows that the same conclusion holds in the case163

Ai∗j∗ > 0. This completes the proof.164

As a corollary, we obtain a characterization of PSD completable graphs — an165

immediate refinement of Theorem 2.4 and a correction of [11, Proposition 1].166

Corollary 3.2 (PSD completability, chordal graphs, and connectivity).167

The graph G is PSD completable if and only if the graph induced by G on L is chordal168

and L is disconnected from Lc.169

Proof. Permuting the vertices, we may assume L = {1, . . . , r}. Suppose first that170

G is PSD completable. Then the projection P(Sn
+) coincides with the set of all partial171

PSD matrices, which is clearly a closed set. Theorem 3.1 then immediately implies172

that L is disconnected from Lc. Now denote by GL = (L,EL) the graph induced by173

G on L, and suppose that GL is not chordal. Then by Theorem 2.4 there exists a174

partial matrix a ∈ R
EL that is not PSD completable to a matrix in Sr

+. Extending a175

to R
E by setting it to be zero elsewhere, we obtain a partial PSD matrix that is not176

PSD completable, a contradiction. Thus the graph induced by G on L is chordal.177

To see the converse, suppose that the graph induced by G on L is chordal and178

L is disconnected from Lc. Then given a partial PSD matrix a ∈ R
E , consider its179

restriction to the graph induced on L, denoted by aL. By Theorem 2.4, there exists a180

PSD completion AL ∈ Sr
+ of aL. Since the diagonal elements indexed by Lc are free,181

we can set them to a sufficiently large value and obtain a PSD completion ALc ∈ Sn−r
+182

of aLc . Consequently, the matrix

[
AL 0
0 ALc

]
is a PSD completion of a. We conclude183

that G is PSD completable.184

In contrast to Theorem 3.1, we now show that the projected image of the EDM185

cone En is always closed.186

Theorem 3.3 (Closedness of the projected EDM cone).187

The projected image P(En) is always closed.188

Proof. First, we claim that we can assume without loss of generality that the189

graph G is connected. To see this, let Gi = (Vi, Ei) for i = 1, . . . , l be the connected190

components of G. Then one can easily verify that P(En) coincides with the Cartesian191

product PE1
(E |V1|)× . . .×PEl

(E |Vl|). Thus if each image PEi
(E |Vi|) is closed, then so192

is the product P(En). We may therefore assume that G is connected.193

The proof proceeds by applying Corollary 2.3. To this end, in the notation of194

that corollary, we set C := Sn
+ and M = L = 1

2K∗ ◦ P∗. Clearly then we have the195

equality M∗C∗ = P(En).196

Define now the partial matrix x ∈ R
E with xij = 1 for all ij ∈ E, and set

X := L(x). We now claim that the inclusion

(3.1) X ∈ ri
(
Sn
+ ∩ rgeL

)
holds.

To see this, observe that X lies in the intersection Sn
+ ∩ rgeL, since X is a positively

weighed Laplacian. Now let Y ∈ Sn
+ ∩ rgeL be arbitrary, then Y = L(y) for some

partial matrix y ∈ R
E . Consider the matrices

X ± ǫ(X − Y ) = L(x± ǫ(x− y)).
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If ǫ > 0 is small, then x± ǫ(x− y) has all positive components, and so X ± ǫ(X − Y )197

is a positively weighed Laplacian, hence positive semidefinite. This proves (3.1). Now198

define F = face(X,Sn
+). We claim that equation spanF = Sc holds. To see this,199

recall that the nullspace of X is one-dimensional, being generated by e. Consequently200

F has dimension n(n−1)
2 . On the other hand F is clearly contained in Sc, a linear201

subspace of dimension n(n−1)
2 . We deduce spanF = Sc, as claimed. The closure now202

follows from Corollary 2.3.203

4. Boundaries of projected sets & facial reduction. To motivate the dis-
cussion, consider the conic system

(4.1) F := {X ∈ C : M(X) = b},

where C is a closed convex cone in an Euclidean space E and M : E → R
m is a linear204

operator onto R
m. Classically we say that the Slater condition holds for this problem205

whenever there exists X in the interior of C satisfying the system M(X) = b. Since206

M is surjective, and hence an open mapping, this amounts to requiring b to lie in the207

interior of the image M(C). Thus, recognizing that b lies on the boundary of M(C)208

certifies that the Slater condition has failed. On the other hand, much more is true, as209

the following theorem shows: if a vector v exposes face(b,M(C)), then M∗v exposes210

face(F,C).211

Theorem 4.1 (Facial reduction). Consider a linear operator M : E → Y, between
two Euclidean spaces E and Y, and let C ⊂ E be a closed convex cone. Define the
feasible set

F := {X ∈ C : M(X) = b}

for some point b ∈ Y. Then for any vector v exposing face(b,M(C)), the vector M∗v212

exposes face(F,C).213

Proof. For notational convenience, define N := face(b,M(C)). Then we have

N = v⊥ ∩M(C), b ∈ riN, v ∈ N△ = b⊥ ∩ (M(C))∗.

Observe now

〈M∗v,X〉 = 〈v,M(X)〉 ≥ 0, for any X ∈ C,

and hence the inclusion M∗v ∈ C∗ holds. Thus C ∩ (M∗v)⊥ is indeed an exposed
face of C. Moreover for any X ∈ F , we have 〈M∗v,X〉 = 〈v, b〉 = 0, and therefore F
is contained in C ∩ (M∗v)⊥. It is standard now to verify the equality

M(C ∩ (M∗v)⊥) = M(C) ∩ v⊥ = N.

Combining this with [30, Theorem 6.6], we deduce

ri(N) = M(ri(C ∩ (M∗v)⊥)).

Thus b can be written as M(X) for some X ∈ ri(C ∩ (M∗v)⊥). We deduce that the214

intersection F ∩ ri(C ∩ (M∗v)⊥) is nonempty. Appealing to [25, Proposition 2.2(ii)],215

we conclude that C ∩ (M∗v)⊥ is the minimal face of C containing F .216

In light of this theorem, we may hope to then restrict the system (4.1) to the217

linear span of face(F,C), i.e., replace C by face(F,C). The obvious advantage of this218
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is a reduction in dimension, and a Slater condition now holding in this linear span.219

(We note that face(F,C) is equivalently defined as the smallest face of C that contains220

some feasible X̄ ∈ ri(F ); and if C = Sn
+, then such an X̄ is a maximum rank PSD221

matrix in the affine subspace M(X) = b.)222

This is essentially the philosophy of the facial reduction algorithm of Borwein223

and Wolkowicz [5, 6]. The difficulty in implementing this strategy is that M(C) is224

usually not a well-understood set: systematically recognizing points on its boundary225

is hopeless and exposing vectors are out of reach. The authors of [5, 6] propose to226

rectify this problem by solving a sequence of auxiliary semidefinite programs. Another227

approach is through Ramana’s extended dual [29] or the close variants [23, 28, 35].228

All these strategies either increase the size of the problem or require one to solve a229

(potentially long) sequence of auxiliary problems.230

For those problems with highly structured constraints one can hope to do better.
The idea is extremely simple: fix a subset I ⊂ {1, . . . ,m} and let MI(X) and bI ,
respectively, denote restrictions of M(X) and b to coordinates indexed by I. Consider
then the relaxation:

FI := {X ∈ C : MI(X) = bI}.

If the index set I is chosen so that the image MI(C) is “simple”, then we may find231

the minimal face face(FI , C), as discussed above. Intersecting such faces for varying232

index sets I may yield a drastic dimensional decrease. Moreover, observe that this233

preprocessing step is entirely parallelizable.234

Interpreting this technique in the context of matrix completion problems, we
recover the Krislock-Wolkowicz algorithm [17]. Namely note that when M is simply
the projection P and we set C = Sn

+ or C = En, we obtain the PSD and EDM
completion problems,

F := {X ∈ C : P(X) = a} = {X ∈ C : Xij = aij for all ij ∈ E},

where a ∈ R
E is a partial matrix. It is then natural to consider indices I ⊂ E235

describing clique edges in the graph since then the images PI(C) are the smaller236

dimensional PSD and EDM cones, respectively — sets that are well understood. This237

algorithmic strategy becomes increasingly effective when the rank (for the PSD case)238

or the embedding dimension (for the EDM case) of the specified principal minors are239

all small. Moreover, we show that under a chordality assumption, the minimal face of240

C containing the feasible region is guaranteed to be discovered if all the cliques were241

to be considered; see Theorems 4.5 and 4.9. This, in part, explains why the EDM242

completion algorithm of [17] works so well. Understanding the geometry of PI(C) for243

a wider class of index sets I would yield an even better preprocessing strategy. We244

defer to [17] for extensive numerical results and implementation issues showing that245

the discussed algorithmic idea is extremely effective for EDM completions.246

In what follows, by the term “clique χ in G” we will mean a collection of k pairwise247

connected vertices of G. The symbol |χ| will indicate the cardinality of χ (i.e. the248

number of vertices) while E(χ) will denote the edge set in the subgraph induced by249

G on χ. For a partial matrix a ∈ R
E , the symbol aχ will mean the restriction of a250

to E(χ), whereas Pχ will be the projection of Sn onto E(χ). The symbol Sχ will251

indicate the set of |χ| × |χ| symmetric matrices whose rows and columns are indexed252

by χ. Similar notation will be reserved for Sχ
+. If χ is contained in L, then we may253

equivalently think of aχ as a vector lying in R
E(χ) or as a matrix lying in Sχ. Thus254
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the adjoint P∗
χ assigns to a partial matrix aχ ∈ Sχ an n × n matrix whose principal255

submatrix indexed by χ coincides with aχ and whose all other entries are zero.256

Theorem 4.2 (Clique facial reduction for PSD completions). Let χ ⊆ L be any
k-clique in the graph G. Let a ∈ R

E be a partial PSD matrix and define

Fχ := {X ∈ Sn
+ : Xij = aij for all ij ∈ E(χ)}

Then for any matrix vχ exposing face(aχ,Sχ
+), the matrix

P∗
χvχ exposes face(Fχ,Sn

+).

257

Proof. Simply apply Theorem 4.1 with C = Sn
+, M = Pχ, and b = aχ.258

Theorem 4.2 is transparent and easy. Consequently it is natural to ask whether259

the minimal face of Sn
+ containing the feasible region of a PSD completion problem260

can be found using solely faces arising from cliques, that is those faces described261

in Theorem 4.2. The answer is no in general: the following example exhibits a PSD262

completion problem that fails the Slater condition but for which all specified principal263

submatrices are definite, and hence all faces arising from Theorem 4.2 are trivial.264

Example 4.3 (Slater condition & nonchordal graphs).
Let G = (V,E) be a cycle on four vertices with each vertex attached to a loop, that
is V = {1, 2, 3, 4} and E = {12, 23, 34, 14}∪{11, 22, 33, 44}. Define the following PSD
completion problems C(ǫ), parametrized by ǫ ≥ 0:

C(ǫ) :




1 + ǫ 1 ? −1
1 1 + ǫ 1 ?
? 1 1 + ǫ 1
−1 ? 1 1 + ǫ


 .

Let a(ǫ) ∈ R
E denote the corresponding partial matrices. According to [11, Lemma

6] there is a unique positive semidefinite matrix A satisfying Aij = 1, ∀|i − j| ≤ 1,
namely the matrix of all 1’s. Hence the PSD completion problem C(0) is infeasible,
that is a(0) lies outside of P(S4

+). On the other hand, for all sufficiently large ǫ, the
partial matrices a(ǫ) do lie in P(S4

+) due to the diagonal dominance. Taking into
account that P(S4

+) is closed (by Theorem 3.1), we deduce that there exists ǫ̂ > 0,
so that a(ǫ̂) lies on the boundary of P(S4

+), that is the Slater condition fails for the
completion problem C(ǫ̂). On the other hand for all ǫ > 0, the partial matrices a(ǫ)
are clearly positive definite, and hence a(ǫ̂) is a partial PD matrix. In fact, we can
prove ǫ̂ =

√
2− 1, by solving the semi-definite program:

(4.2)

min ǫ

s.t.




1 + ǫ 1 α −1
1 1 + ǫ 1 β
α 1 1 + ǫ 1
−1 β 1 1 + ǫ


 � 0

Doing so, we deduce that ǫ̂ =
√
2 − 1, α̂ = β̂ = 0 is optimal. Formally, we can verify

this by finding the dual of (4.2) and checking feasibility and complementary slackness
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for the primal-dual optimal pair X̂ and Ẑ

X̂ =




√
2 1 0 −1

1
√
2 1 0

0 1
√
2 1

−1 0 1
√
2


 , Ẑ =

1

4




1 − 1√
2

0 1√
2

− 1√
2

1 − 1√
2

0

0 − 1√
2

1 − 1√
2

1√
2

0 − 1√
2

1


 .

265

Despite this pathological example, we now show that at least for chordal graphs,266

the minimal face of the PSD completion problem can be found solely from faces267

corresponding to cliques in the graph. We begin with the following simple lemma.268

Lemma 4.4 (Maximal rank completions). Suppose without loss of generality
L = {1, . . . , r} and let GL := (L,EL) be the graph induced on L by G. Let a ∈ R

E

be a partial matrix and aEL
the restriction of a to EL. Suppose that XL ∈ Sr

+ is a
maximum rank PSD completion of aEL

, and

X =

[
A B
BT C

]

is an arbitrary PSD completion of a. Then

Xµ :=

[
XL B
BT C + µI

]

is a maximal rank PSD completion of a ∈ R
E for all sufficiently large µ.269

Proof. We construct the maximal rank PSD completion from the arbitrary PSD
completion X by moving from A to XL and from C to C + µI while staying in the
same minimal face for the completions. To this end, define the sets

F =
{
X ∈ Sn

+ : Xij = aij , for all ij ∈ E
}
,

FL =
{
X ∈ Sr

+ : Xij = aij , for all ij ∈ EL

}
,

F̂ = {X ∈ Sn
+ : Xij = aij , for all ij ∈ EL}.

Then XL is a maximum rank PSD matrix in FL. Observe that the rank of any PSD

matrix

[
P Q
QT R

]
is bounded by rankP +rankR. Consequently the rank of any PSD

matrix in F and also in F̂ is bounded by rankXL + (n− r), and the matrix

X̄ =

[
XL 0
0 I

]

has maximal rank in F̂ , i.e.,

(4.3) X̄ ∈ ri(F̂ ).

Let U be a matrix of eigenvectors of XL, with eigenvectors corresponding to 0 eigen-
values coming first. Then

UTXLU =

[
0 0
0 Λ

]
,

where 0 ≺ Λ ∈ Sk
+ is a diagonal matrix with all positive diagonal elements.270
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Define

Q =

[
U 0
0 I

]
.

Let X be as in the statement of the lemma; then clearly X ∈ F̂ and we deduce using271

(4.3) that272

X̄ ± ǫ(X̄ −X) ∈ Sn
+ ⇔ QT X̄Q± ǫQT (X̄ −X)Q ∈ Sn

+,(4.4)

for some small ǫ > 0. We now have

QT X̄Q =

[
UTXLU 0

0 I

]
=



0 0 0
0 Λ 0
0 0 I


 ,

QTXQ =

[
UTAU UTB
BTU C

]
=



V11 V12 V13

V T
12 V22 V23

V T
13 V T

23 V33


 ,

where V11 ∈ Sr−k, V22 ∈ Sk, V33 ∈ Sn−r. From (4.4) we deduce V11 = 0, V12 =
0, V13 = 0. Therefore

QTXµQ =

[
UTXLU UTB
BTU µI + C

]
=



0 0 0
0 Λ V23

0 V T
23 µI + C


 .

By the Schur complement condition for positive semidefiniteness we have that for273

sufficiently large µ the matrix Xµ is PSD, and rankXµ = rankXL +(n− r); hence it274

is a maximal rank PSD matrix in F.275

Theorem 4.5 (Finding the minimal face on chordal graphs). Suppose that the
graph induced by G on L is chordal. Consider a partial PSD matrix a ∈ R

E and the
region

F = {X ∈ Sn
+ : Xij = aij for all ij ∈ E}.

Then the equality

face(F,Sn
+) =

⋂

χ∈Θ

face(Fχ,Sn
+) holds,

where Θ denotes the set of all cliques in the restriction of G to L, and for each χ ∈ Θ
we define the relaxation

Fχ := {X ∈ Sn
+ : Xij = aij for all ij ∈ E(χ)}.

276

Proof. For brevity, set

H =
⋂

χ∈Θ

face(Fχ,Sn
+).

We first prove the theorem under the assumption that L is disconnected from Lc. To
this end, for each clique χ ∈ Θ, let vχ ∈ Sχ

+ denote the exposing vector of face(aχ,
Sχ
+). Then by Theorem 4.2, we have

face(Fχ,Sn
+) = Sn

+ ∩ (P∗
χvχ)

⊥.
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It is straightforward to see that P∗
χvχ is simply the n × n matrix whose principal

submatrix indexed by χ coincides with vχ and whose all other entries are zero. Let-
ting Y [χ] denote the principal submatrix indexed by χ of any matrix Y ∈ Sn

+, we
successively deduce

P(H) = P
(
{Y � 0 : Y [χ] ∈ v⊥χ ∀χ ∈ Θ}

)

= P(Sn
+) ∩ {b ∈ R

E : bχ ∈ v⊥χ ∀χ ∈ Θ}.
On the other hand, since the restriction of G to L is chordal and L is disconnected from
Lc, Corollary 3.2 implies thatG is PSD completable. Hence we have the representation
P(Sn

+) = {b ∈ R
E : bχ ∈ Sχ

+ ∀χ ∈ Θ}. Combining this with the equations above, we
obtain

P(H) = {b ∈ R
E : bχ ∈ Sχ

+ ∩ v⊥χ ∀χ ∈ Θ}
= {b ∈ R

E : bχ ∈ face(aχ,Sχ
+) ∀χ ∈ Θ}

=
⋂

χ∈Θ

{b ∈ R
E : bχ ∈ face(aχ,Sχ

+)},

Clearly a lies in the relative interior of each set {b ∈ R
E : bχ ∈ face(aχ,Sχ

+)}. Using
[30, Theorems 6.5,6.6], we deduce

a ∈ riP(H) = P(riH).

Thus the intersection F ∩ riH is nonempty. Taking into account that F is contained277

in H, and appealing to [25, Proposition 2.2(ii)], we conclude that H is the minimal278

face of Sn
+ containing F , as claimed.279

We now prove the theorem in full generality, that is when there may exist an edge
joining L and Lc. To this end, let ĜL = (V,EL) be the graph obtained from G by

deleting all edges adjacent to Lc. Clearly, L and Lc are disconnected in ĜL. Applying
the special case of the theorem that we have just proved, we deduce that in terms of
the set

F̂ = {X ∈ Sn
+ : Xij = aij for all ij ∈ EL},

we have

face(F̂ ,Sn
+) = H.

The Xµ matrix of Lemma 4.4 is a maximum rank PSD matrix in F, and also in F̂ .280

Since F ⊆ F̂ , we deduce face(F,Sn
+) = face(F̂ ,Sn

+), and this completes the proof.281

Example 4.6 (Finding the minimal face on chordal graphs). Let Ω consist of all
matrices X ∈ S4

+ solving the PSD completion problem



1 1 ? ?
1 1 1 ?
? 1 1 −1
? ? −1 2


 .

There are three nontrivial cliques in the graph. Observe that the minimal face of S2
+

containing the matrix
[
1 1
1 1

]
=

[
− 1

2
1
2

1
2

1
2

] [
0 0
0 4

] [
− 1

2
1
2

1
2

1
2

]
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is exposed by

[
− 1

2
1
2

1
2

1
2

] [
4 0
0 0

] [
− 1

2
1
2

1
2

1
2

]
=

[
1 −1

−1 1

]
.

Classically, an intersection of two faces is exposed by the sum of the exposing vectors.
Using Theorem 4.5, we deduce that the minimal face of S4

+ containing Ω is the one
exposed by the sum




1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


+




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 =




1 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 0 0


 .

Diagonalizing this matrix, we obtain

face(Ω,S4
+) =




0 1
0 1
0 1
3 0


S2

+




0 1
0 1
0 1
3 0




T

.

282

We now turn to an analogous development for the EDM completion problem. To283

this end, recall from (2.5) that the the mapping K : Sn → Sn restricts to an isomor-284

phism K : Sc → SH carrying Sc ∩Sn
+ onto En. Moreover, it turns out that the Moore-285

Penrose pseudoinverse K† restricts to the inverse of this isomorphism K† : SH → Sc.286

As a result, it is convenient to study the faces of En using the faces of Sc ∩ Sn
+. This287

is elucidated by the following standard result.288

Lemma 4.7 (Faces under isomorphism). Consider a linear isomorphism M : E →289

Y between linear spaces E and Y, and let C ⊂ E be a closed convex cone. Then the290

following are true291

1. F E C ⇐⇒ MF EMC.292

2. (MC)∗ = (M−1)∗C∗.293

3. For any face F E C, we have (MF )△ = (M−1)∗F△.294

In turn, it is easy to see that Sc ∩ Sn
+ is a face of Sn

+ isomorphic to Sn−1
+ . More

specifically for any n× n orthogonal matrix
[

1√
n
e U

]
, we have the representation

Sc ∩ Sn
+ = USn−1

+ U

Consequently, with respect to the ambient space Sc, the cone Sc ∩Sn
+ is self-dual and

for any face F E Sn−1
+ we have

UFUT
E Sc ∩ Sn

+ and (UFUT )△ = UF△UT .

As a result of these observations, we make the following important convention: the295

ambient spaces of Sc ∩Sn
+ and of En will always be taken as Sc and SH , respectively.296

Thus the facial conjugacy operations of these two cones will always be taken with297

respect to these ambient spaces and not with respect to the entire Sn.298

Given a clique χ in G, we let Eχ denote the set of |χ| × |χ| Euclidean distance299

matrices indexed by χ. In what follows, given a partial matrix a ∈ R
E , the restriction300
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aχ can then be though of either as a vector in R
E(χ) or as a hollow matrix in Sχ. We301

will also use the symbol Kχ : Sχ → Sχ to indicate the mapping K acting on Sχ.302

Theorem 4.8 (Clique facial reduction for EDM completions). Let χ be any
k-clique in the graph G. Let a ∈ R

E be a partial Euclidean distance matrix and define

Fχ := {X ∈ Sn
+ ∩ Sc : [K(X)]ij = aij for all ij ∈ E(χ)}

Then for any matrix vχ exposing face
(
K†(aχ),Sχ

+ ∩ Sc

)
, the matrix

P∗
χvχ exposes face(F,Sn

+ ∩ Sc).

303

Proof. The proof proceeds by applying Theorem 4.1 with

C := Sn
+ ∩ Sc, M := Pχ ◦ K, b := aχ.

To this end, first observe M(C) = (Pχ ◦K)(Sn
+∩Sc) = Eχ. By Lemma 4.7, the matrix

K†∗
χ (vχ) exposes face(aχ, Eχ). Thus the minimal face of Sn

+ ∩ Sc containing F is the
one exposed by the matrix

(Pχ ◦ K)∗(K†∗
χ (vχ)) = K∗P ∗

χK†∗
χ (vχ) = P ∗

χK∗
χK†∗

χ (vχ) = P ∗
χvχ.

The result follows.304

Theorem 4.9 (Clique facial reduction for EDM is sufficient). Suppose that G
is chordal, and consider a partial Euclidean distance matrix a ∈ R

E and the region

F := {X ∈ Sc ∩ Sn
+ : [K(X)]ij = aij for all ij ∈ E}.

Let Θ denote the set of all cliques in G, and for each χ ∈ Θ define

Fχ := {X ∈ Sc ∩ Sn
+ : [K(X)]ij = aij for all ij ∈ E(χ)}.

Then the equality

face(F,Sc ∩ Sn
+) =

⋂

χ∈Θ

face(Fχ,Sc ∩ Sn
+) holds.

305

Proof. The proof follows entirely along the same lines as the first part of the proof306

of Theorem 4.5. We omit the details for the sake of brevity.307



C, convex cone, 2308

C∗, polar cone, 2309

C⊥, orthogonal complement, 2310

E, edge set, 5311

F E C, face, 3312

F△, conjugate face, 3313

G, graph, 5314

L, self-loops, 5315

V , vertex set, 5316

En, Euclidean distance matrices, 4317

K†(En(χ, a)), 16318

M∗, adjoint, 2319

P , projection, 5320

P†, Moore-Penrose pseudoinverse, 5321

Pχ, 11322

SH , hollow matrices, 4323

Sc, centered matrices, 4324

bnd, boundary, 2325

cl, closure, 2326

dir(x,C), feasible directions cone, 3327

embdim, embedding dimension, 4328

face(S,C), minimal face, 3329

int, interior, 2330

ker, kernel, 2331

span, linear span, 2332

rge, range, 2333

ri, relative interior, 2334

tcone(x,C), tangent cone, 3335

aχ, 11336

e, the vector of all ones, 4337

adjoint, M∗, 2338

ambient spaces, 15339

boundary, bnd, 2340

centered, 5341

centered matrices, Sc, 4342

closure, cl, 2343

completion, 5344

cone of feasible directions, 3345

conjugate face, 3346

convex cone, C, 2347

dot-product, 4348

EDM completion, 6349

EDM, Euclidean distance matrices, 4350

embedding dimension, 4351

embedding dimension, embdim, 4352

Euclidean distance matrices, En, 4353

Euclidean distance matrices, EDM, 4354

Euclidean space, 2355

exposed face, 3356

face of C, 3357

facially exposed, 3358

feasible directions cone, dir(x,C), 3359

graph360

G, 5361

chordal, 6362

edge set, E, 5363

self-loops, L, 5364

vertex set, V , 5365

hollow matrices, 5366

hollow matrices, SH , 4367

inner product, 2368

interior, int, 2369

kernel, ker, 2370

Laplacian operator, 5371

linear span, span, 2372

minimal face, 3373

Moore-Penrose pseudoinverse, P†, 5374

orthogonal complement, C⊥, 2375

partial EDM, 6376

partial matrix, 5377

partial PD matrices, 6378

partial PSD matrix, 6379

PD, 4380

PD completable graphs, 6381

PD completions, 6382

polar cone, C∗, 2383

projection, P , 5384

PSD, 4385

range, rge, 2386

relative interior, ri, 2387

tangent cone, 3388

tangent cone, tcone(x,C), 3389

trace inner product, 4390

391
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