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Abstract

Let H = I]\({ g be a Hermitian matrix. It is known that the vector of diagonal elements of
H, diag(H), is majorized by the vector of the eigenvalues of H, A\(H ), and that this majorization
can be extended to the eigenvalues of diagonal blocks of H. Reverse majorization results for
the eigenvalues are our goal. Under the additional assumptions that H is positive semidefinite
and the block K is Hermitian, the main result of this paper provides a reverse majorization
inequality for the eigenvalues. This results in the following majorization inequalitites when

combined with known majorization inequalities on the left:

diag (H) < A (M @ N) < A(H) < \(M + N) @ 0).

1 Introduction

An early result concerning eigenvalue majorization is the fundamental result due to I. Schur (see
e.g., [1L 5, [6]), which states that the diagonal entries of a Hermitian matrix A are majorized by its
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eigenvalues. i.e., diag(A) < A(A). This result can be extended to block Hermitian matrices. For

example, if H = [?({ ﬁ

} is Hermitian, then
diag(H) < A(M @ N) < A\(H) !
Reverse majorization results are our goal. Here and throughout, K* denotes the conjugate transpose

of K; M @ N denotes the direct sum of M and N, i.e., the block diagonal matrix []\04 ](\)J ;and 0

is a zero block matrix of compatible size.

Majorization inequalities are useful and important; see e.g., [6]. The main result of this paper
is the following reverse majorization inequality for a Hermitian positive semidefinite 2 x 2 block
matrix. (We delay the proof until Section [2)

Theorem 1.1. Let H = K N} be a Hermitian positive semidefinite matriz. If, in addition,

the block K is Hermitian, then the following majorization inequality holds:
AH) < A(M+N)@0). (1)

1.1 Preliminary Results

Let M™*™(C) be the space of all complex matrices of size m x n with M"(C) = M”X”((C) For

A € M"™(C), the vector of eigenvalues of A is denoted by A(A) = (A1(A4), A2(A4),. ( ). If Ais

Hermitian, we arrange the eigenvalues of A in nonincreasing order: Aj(A) > )\Q(A) > >\ (A).
For two sequences of real numbers arranged in nonincreasing order,

$:(3§‘1,$2,...,$n), y:(yl,y2,---,yn)7

we say that z is majorized by y, denoted by x <y (or y > x), if

k k n
ij§2yj (k=1,...,n—1), and Zx] Zyj.
=1 j=1 j=1

We make use of the following lemmas in our proof of Theorem [l

Lemma 1.2. If A, B € M"(C) are Hermitian, then
2M(A) < A(A+B)+ XA —-B). (2)

Proof. The lemma is equivalent to Ky Fan’s eigenvalue inequality, i.e., A(A + B) < A(A) + \(B),
[2]. A proof can be found in [4, Theorem 4.3.27] and [7, Theorem 7.15]. O

Lemma 1.3. Let A € M"™*"(C) with m > n, then we have

AAAY) = MA*A @ 0). (3)

ITo see the second inequality, let M = U*D1U, N = V*D,V, where D1, Dy are diagonal matrices, be the spectral

decomposition of M, N, respectively. Then \(H) = A ({VI?’}U* UII()'V ]) = AND1 @& D2) = AX(M @ N).
2



2 Proof of Main Result; Corollaries

Before we prove Theorem [T we show by an example that the requirement K being Hermitian is
necessary.
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]andK:[2 9

] . Then

Example 2.1. Let M = [(1) Z], N = [

MM+N)®0) = (4++2,4—+2,0,0),

A([?g JKVD = (4+5,4—+5,0,0).

Therefore X\ <[;\{{ ][\{7]> AXNM+N)@0).

. M
Proof of Theorem [I.1l Since H := [K N

where P = [X Y], for some X,Y € M?"*"*(C). Therefore, we have M = X*X, N = Y*Y and

M K . .
% N}) = A(PP*). The conclusion

] is positive semidefinite, we may write H = P* P,

K = X*Y = Y*X. Note that by Lemma [[.3, we have A <[

(@) is then equivalent to showing
{XY =YX} = {(AMN((X'X+YY)D0) =~ A\(XX"+YY")}. (4)
First, note that
(X +iY)"(X +1Y) =X*X+Y*Y +i(X'Y —-Y*X)
=X*X+Y'Y
(X —iY)"(X —1Y) =X*X+Y*Y —i(X'Y - Y*X)
=X*X+Y'Y
(X +iY) (X +iY)" =XX*+YYV* —i(XY*"-YX")
(X —iY)(X —dY)" =XX*"+YY*"+i(XY*-YX").

Therefore we see that
MX*X+YY)@0) =5 ((X+iY)" (X 4+iY)®0) + A (X —iY)" (X —iY) @ 0)}
A UX +Y) (X +43Y)) + A (X —iY)(X —iY)"))}
= AMXX*+YY™),

where the second equality is by Lemma [[.3] and the majorization follows from applying Lemma
with A = (XX*+YY*), B=i{(XY*-YX"). O
As we can see from the above proof, a special case of Theorem [I[.1] can be stated as follows.

Corollary 2.2. Let X,Y € M"(C) with X*Y Hermitian. Then we have
AMXX*+YY") < MX*X +YY). (5)
Corollary 2.3. Let k > 1 be an integer. If A, B € M"(C) are Hermitian, then we have

MA2 + (AB)F(BAK) = A(A% + (BA)*(AB)K). (6)



Proof. Let X = A and Y = (BA)*. Then XY = A(BA)* is Hermitian. The result now follows
from Corollary O

Corollary 2.4. Let k > 1 be an integer, p € [0,00); and let A, B € M"(C) be Hermitian. Then we
have

1. trace[(A2% 4 (AB)*(BA)F)P] > trace[(A? + (BA)*(AB)¥)?], for p > 1;
2. trace[(A% + (AB)F(BA)*)P] < trace[(A% 4 (BA)*(AB)¥)?], for 0 <p < 1.

Proof. Since f(z) = zP is a convex function for p > 1 and concave for 0 < p < 1, Corollary 2.4]
follows from Corollary 2.3l and a general property of majorization (See [5], p. 56]). O

Remark 2.5. The case where k =1 in Corollary 23] was proved in [3].
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