An Eigenvalue Majorization Inequality for Positive Semidefinite Block Matrices:
 In Memory of Ky Fan

Minghua Lin * Henry Wolkowicz ${ }^{\dagger}$

original submitted July 26, 2011
revision started Sept. 16, 2011
second revision Dec. 1, 2011
final version Dec. 18, 2011

University of Waterloo
Department of Combinatorics \& Optimization
Waterloo, Ontario N2L 3G1, Canada
Research Report CORR 2011-04
Key words and phrases: Majorization, eigenvalue inequalities AMS subject classifications: 15A42, 06A06

Abstract

Let $H=\left[\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right]$ be a Hermitian matrix. It is known that the vector of diagonal elements of $H, \operatorname{diag}(H)$, is majorized by the vector of the eigenvalues of $H, \lambda(H)$, and that this majorization can be extended to the eigenvalues of diagonal blocks of H. Reverse majorization results for the eigenvalues are our goal. Under the additional assumptions that H is positive semidefinite and the block K is Hermitian, the main result of this paper provides a reverse majorization inequality for the eigenvalues. This results in the following majorization inequalitites when combined with known majorization inequalities on the left:

$$
\operatorname{diag}(H) \prec \lambda(M \oplus N) \prec \lambda(H) \prec \lambda((M+N) \oplus 0)
$$

1 Introduction

An early result concerning eigenvalue majorization is the fundamental result due to I. Schur (see e.g., [1, [5, 6]), which states that the diagonal entries of a Hermitian matrix A are majorized by its

[^0]eigenvalues. i.e., $\operatorname{diag}(A) \prec \lambda(A)$. This result can be extended to block Hermitian matrices. For example, if $H=\left[\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right]$ is Hermitian, then

$$
\operatorname{diag}(H) \prec \lambda(M \oplus N) \prec \lambda(H)^{1}
$$

Reverse majorization results are our goal. Here and throughout, K^{*} denotes the conjugate transpose of $K ; M \oplus N$ denotes the direct sum of M and N, i.e., the block diagonal matrix $\left[\begin{array}{cc}M & 0 \\ 0 & N\end{array}\right]$; and 0 is a zero block matrix of compatible size.

Majorization inequalities are useful and important; see e.g., [6]. The main result of this paper is the following reverse majorization inequality for a Hermitian positive semidefinite 2×2 block matrix. (We delay the proof until Section 2.)

Theorem 1.1. Let $H=\left[\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right]$ be a Hermitian positive semidefinite matrix. If, in addition, the block K is Hermitian, then the following majorization inequality holds:

$$
\begin{equation*}
\lambda(H) \prec \lambda((M+N) \oplus 0) . \tag{1}
\end{equation*}
$$

1.1 Preliminary Results

Let $\mathbb{M}^{m \times n}(\mathbb{C})$ be the space of all complex matrices of size $m \times n$ with $\mathbb{M}^{n}(\mathbb{C})=\mathbb{M}^{n \times n}(\mathbb{C})$. For $A \in \mathbb{M}^{n}(\mathbb{C})$, the vector of eigenvalues of A is denoted by $\lambda(A)=\left(\lambda_{1}(A), \lambda_{2}(A), \ldots, \lambda_{n}(A)\right)$. If A is Hermitian, we arrange the eigenvalues of A in nonincreasing order: $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$.

For two sequences of real numbers arranged in nonincreasing order,

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad y=\left(y_{1}, y_{2}, \ldots, y_{n}\right),
$$

we say that x is majorized by y, denoted by $x \prec y$ (or $y \succ x$), if

$$
\sum_{j=1}^{k} x_{j} \leq \sum_{j=1}^{k} y_{j} \quad(k=1, \ldots, n-1), \quad \text { and } \quad \sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j} .
$$

We make use of the following lemmas in our proof of Theorem 1.1.
Lemma 1.2. If $A, B \in \mathbb{M}^{n}(\mathbb{C})$ are Hermitian, then

$$
\begin{equation*}
2 \lambda(A) \prec \lambda(A+B)+\lambda(A-B) . \tag{2}
\end{equation*}
$$

Proof. The lemma is equivalent to Ky Fan's eigenvalue inequality, i.e., $\lambda(A+B) \prec \lambda(A)+\lambda(B)$, [2]. A proof can be found in [4, Theorem 4.3.27] and [7, Theorem 7.15].

Lemma 1.3. Let $A \in \mathbb{M}^{m \times n}(\mathbb{C})$ with $m \geq n$, then we have

$$
\begin{equation*}
\lambda\left(A A^{*}\right)=\lambda\left(A^{*} A \oplus 0\right) . \tag{3}
\end{equation*}
$$

[^1]
2 Proof of Main Result; Corollaries

Before we prove Theorem 1.1. we show by an example that the requirement K being Hermitian is necessary.
Example 2.1. Let $M=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$, $N=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $K=\left[\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right]$. Then

$$
\begin{aligned}
\lambda((M+N) \oplus 0) & =(4+\sqrt{2}, 4-\sqrt{2}, 0,0), \\
\lambda\left(\left[\begin{array}{cc}
M & K \\
K^{*} & N
\end{array}\right]\right) & =(4+\sqrt{5}, 4-\sqrt{5}, 0,0) .
\end{aligned}
$$

Therefore $\left.\lambda\left(\left[\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right]\right) \nprec \lambda(M+N) \oplus 0\right)$.
Proof of Theorem 1.1. Since $H:=\left[\begin{array}{cc}M & K \\ K & N\end{array}\right]$ is positive semidefinite, we may write $H=P^{*} P$, where $P=\left[\begin{array}{ll}X & Y\end{array}\right]$, for some $X, Y \in \mathbb{M}^{2 n \times n}(\mathbb{C})$. Therefore, we have $M=X^{*} X, N=Y^{*} Y$ and $K=X^{*} Y=Y^{*} X$. Note that by Lemma 1.3, we have $\lambda\left(\left[\begin{array}{cc}M & K \\ K & N\end{array}\right]\right)=\lambda\left(P P^{*}\right)$. The conclusion (1) is then equivalent to showing

$$
\begin{equation*}
\left\{X^{*} Y=Y^{*} X\right\} \Longrightarrow\left\{\lambda\left(\left(X^{*} X+Y^{*} Y\right) \oplus 0\right) \succ \lambda\left(X X^{*}+Y Y^{*}\right)\right\} \tag{4}
\end{equation*}
$$

First, note that

$$
\begin{aligned}
(X+i Y)^{*}(X+i Y) & =X^{*} X+Y^{*} Y+i\left(X^{*} Y-Y^{*} X\right) \\
& =X^{*} X+Y^{*} Y \\
(X-i Y)^{*}(X-i Y) & =X^{*} X+Y^{*} Y-i\left(X^{*} Y-Y^{*} X\right) \\
& =X^{*} X+Y^{*} Y \\
(X+i Y)(X+i Y)^{*} & =X X^{*}+Y Y^{*}-i\left(X Y^{*}-Y X^{*}\right) \\
(X-i Y)(X-i Y)^{*} & =X X^{*}+Y Y^{*}+i\left(X Y^{*}-Y X^{*}\right) .
\end{aligned}
$$

Therefore we see that

$$
\begin{gathered}
\lambda\left(\left(X^{*} X+Y^{*} Y\right) \oplus 0\right)=\frac{1}{2}\left\{\lambda\left((X+i Y)^{*}(X+i Y) \oplus 0\right)+\lambda\left((X-i Y)^{*}(X-i Y) \oplus 0\right)\right\} \\
=\frac{1}{2}\left\{\left(\lambda\left((X+i Y)(X+i Y)^{*}\right)+\lambda\left((X-i Y)(X-i Y)^{*}\right)\right)\right\} \\
\succ \lambda\left(X X^{*}+Y Y^{*}\right),
\end{gathered}
$$

where the second equality is by Lemma 1.3 and the majorization follows from applying Lemma 1.2 with $A=\left(X X^{*}+Y Y^{*}\right), B=i\left(X Y^{*}-Y X^{*}\right)$.

As we can see from the above proof, a special case of Theorem 1.1 can be stated as follows.
Corollary 2.2. Let $X, Y \in \mathbb{M}^{n}(\mathbb{C})$ with $X^{*} Y$ Hermitian. Then we have

$$
\begin{equation*}
\lambda\left(X X^{*}+Y Y^{*}\right) \prec \lambda\left(X^{*} X+Y^{*} Y\right) . \tag{5}
\end{equation*}
$$

Corollary 2.3. Let $k \geq 1$ be an integer. If $A, B \in \mathbb{M}^{n}(\mathbb{C})$ are Hermitian, then we have

$$
\begin{equation*}
\lambda\left(A^{2}+(A B)^{k}(B A)^{k}\right) \succ \lambda\left(A^{2}+(B A)^{k}(A B)^{k}\right) \tag{6}
\end{equation*}
$$

Proof. Let $X=A$ and $Y=(B A)^{k}$. Then $X Y=A(B A)^{k}$ is Hermitian. The result now follows from Corollary 2.2

Corollary 2.4. Let $k \geq 1$ be an integer, $p \in[0, \infty)$; and let $A, B \in \mathbb{M}^{n}(\mathbb{C})$ be Hermitian. Then we have

1. $\operatorname{trace}\left[\left(A^{2}+(A B)^{k}(B A)^{k}\right)^{p}\right] \geq \operatorname{trace}\left[\left(A^{2}+(B A)^{k}(A B)^{k}\right)^{p}\right]$, for $p \geq 1$;
2. $\operatorname{trace}\left[\left(A^{2}+(A B)^{k}(B A)^{k}\right)^{p}\right] \leq \operatorname{trace}\left[\left(A^{2}+(B A)^{k}(A B)^{k}\right)^{p}\right]$, for $0 \leq p \leq 1$.

Proof. Since $f(x)=x^{p}$ is a convex function for $p \geq 1$ and concave for $0 \leq p \leq 1$, Corollary [2.4] follows from Corollary 2.3 and a general property of majorization (See [5, p. 56]).

Remark 2.5. The case where $k=1$ in Corollary 2.4 was proved in [3].

3 Acknowledgement

The authors would like to thank the anonymous referees for valuable suggestions that improved the presentation.

References

[1] R. Bhatia. Matrix analysis. Springer-Verlag, New York, 1997.
[2] K. Fan. On a theorem of Weyl concerning eigenvalues of linear transformations. I. Proc. Nat. Acad. Sci. U. S. A., 35:652-655, 1949.
[3] S. Furuichi and M. Lin. A matrix trace inequality and its application. Linear Algebra Appl., 433(7):1324-1328, 2010.
[4] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.
[5] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic Press, New York, NY, 1979.
[6] A.W. Marshall, I. Olkin, and B.C. Arnold. Inequalities: theory of majorization and its applications. Springer Series in Statistics. Springer, New York, second edition, 2011.
[7] F. Zhang. Matrix theory. Universitext. Springer-Verlag, New York, 1999. Basic results and techniques.

[^0]: *Department of Combinatorics and Optimization, University of Waterloo, Ontario N2L 3G1, Canada. Email: mlin87@ymail.com
 ${ }^{\dagger}$ Research supported by The Natural Sciences and Engineering Research Council of Canada. Email: hwolkowicz@uwaterloo.ca
 ${ }^{0}$ URL for paper: orion.math.uwaterloo.ca/ ${ }^{\sim}$ hwolkowi/henry/reports/ABSTRACTS.html

[^1]: ${ }^{1}$ To see the second inequality, let $M=U^{*} D_{1} U, N=V^{*} D_{2} V$, where D_{1}, D_{2} are diagonal matrices, be the spectral decomposition of M, N, respectively. Then $\lambda(H)=\lambda\left(\left[\begin{array}{cc}D_{1} & U K V^{*} \\ V K^{*} U^{*} & D_{2}\end{array}\right]\right) \succ \lambda\left(D_{1} \oplus D_{2}\right)=\lambda(M \oplus N)$.

