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Abstract

LetH =

[

M K

K∗ N

]

be a Hermitian matrix. It is known that the vector of diagonal elements of

H , diag(H), is majorized by the vector of the eigenvalues ofH , λ(H), and that this majorization
can be extended to the eigenvalues of diagonal blocks of H . Reverse majorization results for
the eigenvalues are our goal. Under the additional assumptions that H is positive semidefinite
and the block K is Hermitian, the main result of this paper provides a reverse majorization
inequality for the eigenvalues. This results in the following majorization inequalitites when
combined with known majorization inequalities on the left:

diag (H) ≺ λ (M ⊕N) ≺ λ (H) ≺ λ((M +N)⊕ 0).

1 Introduction

An early result concerning eigenvalue majorization is the fundamental result due to I. Schur (see
e.g., [1, 5, 6]), which states that the diagonal entries of a Hermitian matrix A are majorized by its
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eigenvalues. i.e., diag(A) ≺ λ(A). This result can be extended to block Hermitian matrices. For

example, if H =

[

M K

K∗ N

]

is Hermitian, then

diag(H) ≺ λ(M ⊕N) ≺ λ(H) 1.

Reverse majorization results are our goal. Here and throughout,K∗ denotes the conjugate transpose

of K; M ⊕N denotes the direct sum of M and N , i.e., the block diagonal matrix

[

M 0
0 N

]

; and 0

is a zero block matrix of compatible size.
Majorization inequalities are useful and important; see e.g., [6]. The main result of this paper

is the following reverse majorization inequality for a Hermitian positive semidefinite 2 × 2 block
matrix. (We delay the proof until Section 2.)

Theorem 1.1. Let H =

[

M K

K∗ N

]

be a Hermitian positive semidefinite matrix. If, in addition,

the block K is Hermitian, then the following majorization inequality holds:

λ (H) ≺ λ((M +N)⊕ 0). (1)

1.1 Preliminary Results

Let Mm×n(C) be the space of all complex matrices of size m × n with Mn(C) = Mn×n(C). For
A ∈ Mn(C), the vector of eigenvalues of A is denoted by λ(A) = (λ1(A), λ2(A), . . . , λn(A)). If A is
Hermitian, we arrange the eigenvalues of A in nonincreasing order: λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

For two sequences of real numbers arranged in nonincreasing order,

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

we say that x is majorized by y, denoted by x ≺ y (or y ≻ x), if

k
∑

j=1

xj ≤
k

∑

j=1

yj (k = 1, . . . , n − 1), and
n
∑

j=1

xj =
n
∑

j=1

yj.

We make use of the following lemmas in our proof of Theorem 1.1.

Lemma 1.2. If A,B ∈ Mn(C) are Hermitian, then

2λ(A) ≺ λ(A+B) + λ(A−B). (2)

Proof. The lemma is equivalent to Ky Fan’s eigenvalue inequality, i.e., λ(A + B) ≺ λ(A) + λ(B),
[2]. A proof can be found in [4, Theorem 4.3.27] and [7, Theorem 7.15].

Lemma 1.3. Let A ∈ Mm×n(C) with m ≥ n, then we have

λ(AA∗) = λ(A∗A⊕ 0). (3)

1To see the second inequality, let M = U∗D1U , N = V ∗D2V , where D1, D2 are diagonal matrices, be the spectral

decomposition of M,N , respectively. Then λ(H) = λ

([

D1 UKV ∗

V K∗U∗ D2

])

≻ λ(D1 ⊕D2) = λ(M ⊕N).
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2 Proof of Main Result; Corollaries

Before we prove Theorem 1.1, we show by an example that the requirement K being Hermitian is
necessary.

Example 2.1. Let M =

[

1 0
0 4

]

, N =

[

2 1
1 1

]

and K =

[

1 0
2 2

]

. Then

λ((M +N)⊕ 0) = (4 +
√
2, 4−

√
2, 0, 0),

λ

([

M K

K∗ N

])

= (4 +
√
5, 4−

√
5, 0, 0).

Therefore λ

([

M K

K∗ N

])

⊀ λ(M +N)⊕ 0).

Proof of Theorem 1.1. Since H :=

[

M K

K N

]

is positive semidefinite, we may writeH = P ∗P ,

where P =
[

X Y
]

, for some X,Y ∈ M2n×n(C). Therefore, we have M = X∗X, N = Y ∗Y and

K = X∗Y = Y ∗X. Note that by Lemma 1.3, we have λ

([

M K

K N

])

= λ(PP ∗). The conclusion

(1) is then equivalent to showing

{X∗Y = Y ∗X} =⇒ {λ ((X∗X + Y ∗Y )⊕ 0) ≻ λ(XX∗ + Y Y ∗)} . (4)

First, note that
(X + iY )∗(X + iY ) = X∗X + Y ∗Y + i(X∗Y − Y ∗X)

= X∗X + Y ∗Y

(X − iY )∗(X − iY ) = X∗X + Y ∗Y − i(X∗Y − Y ∗X)
= X∗X + Y ∗Y

(X + iY )(X + iY )∗ = XX∗ + Y Y ∗ − i(XY ∗ − Y X∗)
(X − iY )(X − iY )∗ = XX∗ + Y Y ∗ + i(XY ∗ − Y X∗).

Therefore we see that

λ ((X∗X + Y ∗Y )⊕ 0) = 1

2
{λ ((X + iY )∗(X + iY )⊕ 0) + λ ((X − iY )∗(X − iY )⊕ 0)}
= 1

2
{(λ ((X + iY )(X + iY )∗) + λ ((X − iY )(X − iY )∗))}

≻ λ(XX∗ + Y Y ∗),

where the second equality is by Lemma 1.3 and the majorization follows from applying Lemma 1.2
with A = (XX∗ + Y Y ∗), B = i(XY ∗ − Y X∗). 2

As we can see from the above proof, a special case of Theorem 1.1 can be stated as follows.

Corollary 2.2. Let X,Y ∈ Mn(C) with X∗Y Hermitian. Then we have

λ(XX∗ + Y Y ∗) ≺ λ(X∗X + Y ∗Y ). (5)

Corollary 2.3. Let k ≥ 1 be an integer. If A,B ∈ Mn(C) are Hermitian, then we have

λ(A2 + (AB)k(BA)k) ≻ λ(A2 + (BA)k(AB)k). (6)

3



Proof. Let X = A and Y = (BA)k. Then XY = A(BA)k is Hermitian. The result now follows
from Corollary 2.2.

Corollary 2.4. Let k ≥ 1 be an integer, p ∈ [0,∞); and let A,B ∈ Mn(C) be Hermitian. Then we
have

1. trace[(A2 + (AB)k(BA)k)p] ≥ trace[(A2 + (BA)k(AB)k)p], for p ≥ 1;

2. trace[(A2 + (AB)k(BA)k)p] ≤ trace[(A2 + (BA)k(AB)k)p], for 0 ≤ p ≤ 1.

Proof. Since f(x) = xp is a convex function for p ≥ 1 and concave for 0 ≤ p ≤ 1, Corollary 2.4
follows from Corollary 2.3 and a general property of majorization (See [5, p. 56]).

Remark 2.5. The case where k = 1 in Corollary 2.4 was proved in [3].
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