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ABSTRACT 

We consider the special class of semidefinite linear programs 

(IVP) maximize trace CX subject to L '< A(X) ~_ U, 

where C,X, L, U are symmetric matrices, A is an (onto) linear operator,  and 
-< denotes the L5wner (positive semidefinite) part ial  order. We present ex- 
plicit representations for the general primal and dual optimal solutions. This 
extends the results for s tandard linear programming that  appeared in Ben-Israel 
and Charnes [3]. This work is further motivated by the explicit solutions for a 
different class of semidefinite problems presented recently in Yang and Vanderbei 
[15]. 

I. INTRODUCTION 

We s t u d y  the  semidef ini te  l inear  p r o g r a m m i n g  p rob lem wi th  in terval  
cons t ra in t s  

maximize  t race  CX 
( IVP)  sub jec t  to  L ~_ A(X) -~ U, 

where  C, X are  symmet r i c  n × n matr ices ;  L, U are  symmet r i c  m x m 
matr ices ;  A is a l inear  ope ra to r  from the  space of n × n symmet r i c  mat r ices  
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onto the space of m × m symmetric matrices; and ~ denotes the Lhwner 
partial order, i.e. X ~ Y if and only if Y - X is positive semidefinite. We 
consider the space of symmetric matrices as a vector space with the trace 
inner  product (C, X }  = trace C X .  The corresponding norm is the Frobenius 
matrix  norm ]]X[[ = t ~ e X  2. 

There has recently been a resurgence of interest in problems with semi- 
definite constraints. This is partly due to new applications to integer pro- 
gramming and min-max eigenvalue problems as well as to successful new 
solution techniques using interior point methods; see e.g., [1, 6, 7, 10, 11, 
13]. It is interesting and surprising that  many of the results from linear 
programming follow through to these nonlinear problems. 

In the case that  the partial order is the coordinatewise ordering, (IVP) 
reduces to the ordinary interval linear programs studied in [3, 12]. An 
explicit solution and an algorithm for general linear programming problems 
based on these solutions is provided therein. In this note, we show that  
the results from [3] can be extended to the class (IVP) of semidefinite 
programming problems. This paper is further motivated by the explicit 
solutions, provided recently in [15], of the following class of semidefinite 
programs: 

maximize trace C X  
(1.1) 

subject to M X M  t = B ,  X ~ O, 

where C is a given symmetric matrix, M is a full row rank matrix, and the 
dual of the program (1.1) is strictly feasible. 

Note that  the results in this paper still hold in the more general setting 
when X is a vector in a given vector space 1} and A is a linear oper- 
ator from 12 onto the space of m × m matrices. Therefore these prob- 
lems fall into the class of programs with finite dimensional range studied 
in [5]. 

Our main result is the explicit representation of the general solution of 
(IVP) presented as Theorem 2.2. Section 3 discusses two Matlab programs 
that  find these explicit solutions. 

2. THEORETICAL RESULTS 

We let A-  denote a generalized inverse of A, i.e., a linear operator that  
satisfies 

A A - A  = A; (2.1) 

see e.g., [4]. Then the general solution of the linear equation A ( X )  = Y is 
X E A -  (Y) + Af(A), where Af(A) is the null space of A. 
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LEMMA 2.1. Suppose that (IVP) is feasible. Then (IVP) has a bounded 
solution if and only if 

C 2_ N'(A), 

where _1_ denotes orthogonal. 

(2.2) 

Pro@ If (2.2) fails, then it is clear that  the objective function of (IVP) 
can be made arbitrarily large. Conversely, if (2.2) holds, then the objective 
value t r aceCX = t raceCPn(A-)(X) ,  where Pn(A-) = A - A  denotes the 
projection on the range of A - .  Moreover, feasibility of X implies that  
IIA(X)II < max{llLll [lUll}. Therefore, 

t r aceCX < IICII IlXll < IICll IIA-II IIA(X)II 

< IICII IIA-II max{llLII, NUll}, 

where the operator norm [[A-[I is induced by the vector (Frobenius) norm, 
i.e., IIA-IL = maxllyIl=l  IIA-(Y)ll .  " 

(SIVP) 

where 

Thus, under the boundedness assumption, (IVP) has the following sim- 
plification 

maximize trace CA-  (Y) = t raceCY 

subject to L - < Y < U ,  

c = (A- )*C (2.3) 

and (A-)* is the adjoint of A- ,  i.e., for the appropriate inner products, 
(Z, A - ( Y ) )  = ((A-)*(Z),Y} VZ, Y. Note that  the definition of C means 
that  it is symmetric and it is a least squares solution of A*(Z) = C. The 
condition for boundedness in Lemma 2.1 implies that  this least squares 
solution C is, in fact, a solution. 

We now present the optimality conditions for this simplified program 
(SIVP). We first need some definitions. K is a (convex) cone if K + K C 
K, and t K  C K Vt >_ O. The cone T C K is a face of the cone K,  denoted 
T <l K,  if 

x, y E K  x + y E T  ~ x, y E T .  

The feasible set of (SIVP) is 

J:= { Y : L -i Y ~ U }, 
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and we call (SIVP) feasible if 5 r ¢ 0. The  minimal cones of (SIVP) are 

U f = N{faces of 7 ) containing U - ~} ,  

L f = A{faces of 7) containing 5 r - L}, 

where P denotes the cone of positive semidefinite matrices in the appro- 
pr iate  space. The  polar cone of a set C is 

c + = {¢ :  <¢, c> > o Vc ~ c } .  

From the commuta t iv i ty  of the trace, it can be shown tha t  7) is self- 
polar, i.e. 

7) = 7)+. (2.4) 

The  faces of  7) can be completely characterized in terms of  the null spaces 
of the matrices,  i.e., the matr ix  P is in the minimal face containing the 
matr ix  Q if and only if Af(Q) D H ( P ) ;  see e.g., [2]. Moreover, the faces 
are exposed, i.e., they  are equal to the intersection of a hyperplane with 7). 
This can be used to show tha t  the minimal cones are equal, i.e. if • _ 0 
and t r a c e O ( U -  Y) = 0 VY c 5 r ,  then L c 5 r and 0 = t r a c e O ( U  - L) = 
trace ~ ( U  - Y + Y - L) = trace 6p(y _ L) VY E 9 r. Thus  every hyperplane 
containing the minimal cone U f also contains L f.  The converse follows 
similarly. We denote the minimal cone by 

7)f = L f = U f .  

We now state  the opt imal i ty  conditions (see [14]). 

THEOREM 2.1. Suppose that 

L - ~ U .  

Then an optimal solution exists for (SIVP).  Moreover, Y solves (SIVP) i f  
and only if  the following system is consistent: 

C = $2  - S1 

U - L = Z1 + Z2 

t race S 1 Z  1 = t race $2Z2 = 0 

with 

Y = L + Z1 = U - Z 2  and S1,S2 E (7)f)+, 

(dual feasibility), 

(primal feasibility), 

(complementary slackness), 

Z1,Z2 ~ 7). 

(2.5) 
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Proof. That  (SIVP) is feasible and bounded is clear. Now, we can 
rewrite the two sided constraint of (SIVP) as two constraints. Then the 
Lagrangian becomes 

trace [CY - S I ( L  - Y )  - S2 (Y  - U)], 

with dual variables (Lagrange multipliers) S1 E ( u f )  +, S2 E (Ll)+;  see 
[14]. Differentiating yields the dual feasibility equation. The primal feasi- 
bility equation comes from adding the slack variables Z1, Z2 and eliminat- 
ing Y. The characterization of optimality using complementary slackness 
follows from Theorem 4.1 in [14]. • 

REMAaK 2.1. The dual of (SIVP) is 

minimize trace ( - L S 1  + US2) 

(DSIVP) subject to -S1 + $2 = C, 
$1,82 e (P : )+ .  

The dual variables do not change for (IVP), since A is onto. Under the 
boundedness assumption, the dual problem for (IVP) is the same as for 
(SIVP) after multiplying the equality constraint by the adjoint A*. Note 
that  C is then replaced by 6'. 

REMARK 2.2. In the case that  Slater's condition 

there exists ' t  such that  L -~ Y -~ U (2.6) 

holds, we have 7 ) f  = 7 ). Since 7) is self-polar, the above optimality condi- 
tions simplify in the sense that both 

(U:)  + = ( c f )  + = 7). (2.7) 

However, even though (SIVP) has the trivial identity constraint, the stan- 
dard duality results given by (2.7) can fail if Slater's condition does not 
hold. For example, suppose that  

C =  and U - L =  . (2.8) 

Then U - L is a point on a ray which is a minimal face of 7 ~. Therefore, 
complementary slackness implies that  one of $1 and $2 (say $2) must be 
on the orthogonal ray, i.e., the ray through the matrix 
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But then dual feasibility implies that  $1 must have a negative element on 
the diagonal, a contradiction to finding multipliers in 7). (We continue this 
example in Section 3.) 

REMARK 2.3. The decomposition of C into positive and negative parts  
is unique if the two parts are orthogonal and positive semidefinite, i.e., 

$ 1 S 2 = 0 ,  S,,$2E7). 

This is called the Moreau decomposition [9]. Therefore, uniqueness of the 
optimal dual solution implies that  we have obtained a Moreau decompo- 
sition. Note tha t  if 7 ) /  = P,  then complementary slackness implies the 
stronger condition S i Z i  = O, i = 1, 2. 

We now find an explicit solution to the optimali ty conditions (2.5). Let 

E = U - L, (2.9) 

and let Q be the nonsingular matrix formed from the scaled eigenvectors 
of E so that  

where Ik denotes the k x k identity matrix. Let P be the k x k orthogonal 
matr ix  tha t  diagonalizes the upper left k x k block of C' after congruence 
by the inverse of Q, i.e. 

[:] [P O]Q - t - C Q  -~  = D,  (2.11) 

with 

p p t  = I ,  

We let 

k x k  

[0 - [0 :] P =  , D =  , 

G = - P Q - t - C Q - 1 - P  t, -G = G - --D. (2.12) 

Note that  trace D G = 0. We now construct two n × n symmetric  positive 
semidefinite matrices with arbi trary upper left h × h blocks. The remaining 
elements of these two matrices are zero, except for the diagonal elements, 
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which depend on the signs of the diagonal elements of D. Choose T so that  

T is arbitrary, symmetric with 0 _~ Thxh ~_ I. (2.13) 

Define 

and 

T( i , j )  if i , j  <_ h, _ 
D l ( i , j )  = 1 if i = j > h and D(i , i )  > O, 

0 otherwise, 
(2.14) 

D2 = E -  D1. (2.15) 

We now present the explicit representations of the primal and dual op- 
timal solutions. We use the various matrices defined above. 

THEOREM 2.2. Suppose that (IVP) is feasible and has a finite solution 
value, i.e., that (2.2) holds. Let It be an arbitrary symmetric n × n matrix 
with the top left k x k block identically O. Set 

Z1 = Q-I-ptDI-pQ-t,  Z2 = Q-I-ptD2-pQ-t, (2.16) 

and 

s1 = - e t ~ t ( D 2 ~  + R)~Q, S2 = Q t ~ t ( D l ~  + (~  - R))~Q. (2.17) 

Then, for all such arbitrary R and arbitrary T defined as part of D1, the 
matrices $1, $2 are optimal for the dual program of (SIVP) as well as for 
the dual program of (IVP). The general solution for the simplified problem 
(SlVP) is 

Y = L + Z 1  (= U -  Z2). 

The general solution for (IVP) is 

X E A - ( L  + Z~) + Af(A) [= A - ( U -  Z2) + Af(A)]. (2.18) 

Proof. We use the matrices defined above to reduce (IVP) to an or- 
dinary linear programming problem. The key step is the reduction to a 
problem for which the principal parts (corresponding to the minimal faces) 
of the Lagrange multipliers and slack variables all commute and so are 
mutually diagonalizable. 

From the definition of E, tile constraint for (SIVP) can be further sim- 
plified to 0 ~_ T ~ E, with Y = L + T. We then make the substitution 
of variables V = QTQ t and replace the objective function matrix with 
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Q - t ~ Q - 1 .  We get the equivalent problem 

maximize trace ( Q-t-~ Q-  1) V 
subject to 0 _ ~ V ~ E .  

The simple structure of E identifies the minimal faces, i.e., the feasible 
variables V have to be positive semidefinite with nonzeros corresponding 
only to the nonzero block Ik of E. Moreover (assume for simplicity that  
k -- n; otherwise, consider the principal leading blocks), if we use the 
primal feasibility optimality conditions in (2.5) to substitute for Z1 in the 
complementary slackness condition, then we see that  $I Z2 is symmetric and 
so $1, Z2 commute and are mutually, orthogonally diagonalizable. That  
$1, Z1 commute follows from S1Z1 = 0. This shows that  the Lagrange 
multipliers and slack variables can be mutually diagonalized and we can 
reduce the problem to an ordinary linear program. This we now do. 

We diagonalize the upper left block of the new objective function using 
orthogonal P.  Simultaneously we substitute the variables W = -fiV-fi t so as 
not to change the value of the objective function or E. This last equivalent 
problem is 

maximize trace GW 
subject to 0 _~ W _~ E. (2.19) 

Since W is zero except possibly in the top left k × k block, the objective 
function is equivalent to the diagonal objective trace DW. Therefore this 
is a simple ordinary interval linear program on the diagonal elements of W. 
The zero elements of D in D allow an arbitrary positive semidefinite block 
in the optimal solution. Otherwise, the remainder of the solution must be 
diagonal, where the sign of D(i, i) determines whether the diagonal element 
is 0 or 1. (This follows from the fact that  the eigenvalues of a symmetric 
matrix majorize the diagonal elements; see e.g., [8]) Thus, for arbitrary T 
defined in (2.13), the matrices D1 provide the general solution of (2.19). 
We can now reverse the reduction steps (using the congruences by Q and 
P)  to get the general solutions for our general semidefinite programs (IVP). 

We have obtained the general solution without explicitly using the op- 
timality conditions in Theorem 2.1. However, direct substitution shows 
that  the Lagrange multipliers and slacks defined in the theorem satisfy the 
optimality conditions (2.5). • 

3. CONCLUSION 

We have provided explicit expressions for the general solutions of (IVP). 
This is accomplished by reduction to the simpler problem (SIVP), where 
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the objective function matrix C can be found by solving a system of linear 
equations. The generalized inverse A-  need never be evaluated explicitly. 
This result can be combined with the simple constraint in (1.1) to provide 
explicit solutions to interval constraints of the type L ~_ M A ( X ) M  t ~ U, 
where A is still an onto operator while M is a general matrix of appropriate 
dimensions. 

It is interesting and surprising that  so many results from ordinary lin- 
ear programming, such as the above explicit solutions, follow through to 
the nonlinear semidefinite partial order. The standard linear programming 
duality results follow through if a constraint qualification holds; in the ab- 
sence of a CQ, they still hold if the minimal cones are taken into account: 
see [14]. The efficiency of interior point methods follows. (See the various 
references mentioned above.) It seems possible that  the finite pivot algo- 
rithm for general ordinary linear programs, based on the explicit solutions 
for interval linear programs (see [12]), can be extended as well. 

Rather than present actual examples to illustrate our theory, we have 
written two Matlab programs which find the explicit solutions of (SIVP). 
The first program initializes a random problem of type (SIVP). The user 
can guarantee nonuniqueness of the primal and/or  dual optimal solutions. 
The second program finds the optimal primal and dual solutions and verifies 
the optimality conditions. These programs are available using anonymous 
ftp at the site o r i on ,  uwa te r loo ,  ca, in the directory p u b / h e n r y / m a t l a b /  
semidef .  They are called i n i t s e m i ,  m and algorsemi.m,  respectively. The 
programs were tested on thousands of random problems. We have not 
included the operator A, since the reduction to (SIVP) can be done by 
solving the linear system of equations for C. Examples of linear operators 
A can be found in the various references on semidefinite programming. 

For the example in Remark 2.2, we set L = 0. The Matlab program 
finds that  Y = U is primal optimal. A pair of dual optimal matrices is 

S, [ -0 .1929  0 .1552] '  $2 [5.8071 8.1552J" 

Then Z1 = Y, Z2 = 0. Note that  complementary slackness (trace $1 Z1 = 0) 
holds but does not imply S1Z1 = 0, since $1 is not positive semidefinite. 
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