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Abstract

We consider both facial reduction, FR, and symmetry reduction, SR, techniques for
semidefinite programming, SDP. We show that the two together fit surprisingly well in
an alternating direction method of multipliers, ADMM, approach. In fact, this approach
allows for simply adding on nonnegativity constraints, and solving the doubly nonnegative,
DNN, relaxation of many classes of hard combinatorial problems. We also show that the
singularity degree does not increase after SR, and that the DININ relaxations considered here
have singularity degree one, that is reduced to zero after FR. The combination of FR and
SR leads to a significant improvement in both numerical stability and running time for both
the ADMM and interior point approaches.

We test our method on various DNN relaxations of hard combinatorial problems includ-
ing quadratic assignment problems with sizes of more than n = 500. This translates to a
semidefinite constraint of order 250,000 and 625 x 10® nonnegative constrained variables.

Keywords: Semidefinite programming, group symmetry, facial reduction, quadratic assign-
ment problem, vertex separator problem.
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1 Introduction

We consider two reduction techniques, facial and symmetry reduction, for semidefinite program-
ming, SDP. We see that the exposing vector approach for facial reduction, FR, moves naturally
onto the symmetry reduction, SR. We show that the combination of the two reductions fits
surprisingly well in an alternating direction method of multipliers, ADMM, approach. In fact,
this allows for simply adding on nonnegativity constraints and solving the doubly nonnegative,
DNN,, relaxation of many classes of hard combinatorial problems. The combination of facial
and symmetry reduction leads to a significant improvement in both numerical stability and
running time for both the ADMM and interior point approaches. We test our method on vari-
ous DINN relaxations of hard combinatorial problems including quadratic assignment problems
(QAP) with sizes of more than n = 500. Note that the order of the symmetric matrix variable
in the SDP relaxation of the QAP with n = 500 is 250, 000; this yields approximately 625 x 10%
nonnegatively constrained variables in the semidefinite constrained matrix.

Semidefinite programming can be viewed as an extension of linear programming where the
nonnegative orthant is replaced by the cone of positive semidefinite matrices. Although there are
many algorithms for solving semidefinite programs, they currently do not scale well and often
do not provide high accuracy solutions. An early method for exploiting sparsity and reducing
problem size was based on recognizing a chordal pattern in the matrices forming the SDP,
see e.g., [21,132], and the survey [63]. A more recent technique is that of symmetry reduction,
a methodology, pioneered by Schrijver [51], that exploits symmetries in the data matrices that
allows for the problem size to be reduced, often significantly. More details and surveys for SR are
available in [2]13]

Without loss of generality, we consider the case where the primal problem has a finite optimal
value. Then for linear programming, strong duality holds for both the primal and the dual
problems. But, this is not the case for SDP, where the primal and/or the dual can be unattained,
and one can even have a positive duality gap between the primal and dual optimal values. The
usual constraint qualification to guarantee strong duality is the Slater condition, strict feasibility.
Failure of the Slater condition may lead to theoretical and numerical problems when solving the
SDP. Facial reduction, FR, introduced by Borwein and Wolkowicz [5-7], addresses this issue by
projecting the minimal face of the SDP into a lower dimensional space. The literature for the
theory and applications for FRis large. For a recent survey and theses see [1845,55].

An earlier work [39] combines partial FR and SR for solving sum of square (SOS) programs.
In particular, Lofberg [39] applies a partial FR via monomial basis selection and shows how to
perform a partial SR via identification of sign-symmetries to obtain block-diagonal SOS pro-
grams. Examples in [39] verify the efficiency of the combined approach for SOS programs. For
the connection between FR and monomial basis selection see [18,64].

In our paper, we assume that we know how to do FRand SR separately for the input
SDP instance. Under this assumption, we show that it is possible to implement FR to the
symmetry reduced SDP. The obtained reduced SDP is both facially reduced and symmetry re-
duced. And, it can be solved in a numerically stable manner by interior point methods. Moreover,
the nonnegativity constraints can be added to the original SDP, and the resulting DININ can
be solved efficiently, as the nonnegativities follow through, and are in fact simplified, to the re-
duced SDP program. Thus, in fact we solve the facially and symmetry reduced DNN relaxation
using an alternating direction method of multipliers approach, ADMM. As a consequence, we
are able to solve some huge DINN relaxations for highly symmetric instances of certain hard
combinatorial problems, and we do so in a reasonable amount of time.

We include theoretical results on facial reduction, as well as on the singularity degree of both



SDP and DNN relaxations. We present a view of FRfor DNN from the ground set of the
original hard combinatorial problem. The singularity degree indicates the importance of FR for
splitting type methods. In particular we show that the singularity degree does not increase after
SR, and that our applications all have singularity degree one, that get reduced to zero after FR.

1.1 Outline

In Section [2| we provide the background on using substitutions to first obtain FR and then
symmetry and block diagonal SR. In Section [3| we show how to apply FRto the symmetry
reduced SDP, and we also provide conditions such that the obtained SDP is strictly feasible. In
fact, we show that the nonnegativity constraints are essentially unchanged and that we have strict
feasibility for the reduced DINN relaxation. The results on singularity degree also apppear here,
see Section In Section [4] we show that this reduced DNN relaxation can be solved efficiently
using a ADMM approach. In Section [5] we apply our result to two classes of problems: the
quadratic assignment and graph partition problems. Concluding comments are in Section [6}

2 Background

2.1 Semidefinite programming

The semidefinite program, SDP, in standard form is
pgDP = mln{<ch> ‘ 'A(X) =b, X = 0}7 (21)

where the linear transformation A : S" — R maps real n X n symmetric matrices to R™ ,
and X € S7 is positive semidefinite. In the case of a doubly nonnegative, DNN , relaxation,
nonnegativity constraints, X > 0, are added to (2.1), i.e., we use the DNN cone denoted
DNN = DNN" = § NR*". Without loss of generality, we assume that A is onto. We let
(Pr) Fx ={X > 0|A(X) =1} (2.2)

denote the feasibility problem for this formulation with data A,b,S" of the feasible set of ({2.1).
Note that the linear equality constraint is equivalent to

AX) = ((4i, X)) = (b;) e R™,
for some A; € S"i = 1,...,m. The adjoint transformation A*:R™ — S" is: A*(y) =

Z:‘i1 yz’Ai-

2.1.1 Strict feasibility and facial reduction

The standard constraint qualification to guarantee strong dualityﬂ for the primal SDPis the
Slater constraint qualification (strict feasibility)

X AX)=b, X =0,

where X = 0 denotes positive definiteness, i.e., X e St (X > 0 denotes positive semidefi-
niteness.) For many problems where strict feasibility fails, one can exploit structure and facially
reduce the problem to obtain strict feasibility, see e.g., [5,6] for the theory and [7] for the facial

!Strong duality for the primal means a zero duality gap, pspp = d&pp , and dual attainment.



reduction algorithm. A survey with various views of FR is given in . Facial reduction means
that there exists a full column rank matrix V' € R™*" r < n, and the corresponding adjoint of
the linear transformation V : S — S given in

V*(R)=VRVT ReS",

such that the substitution X = V*(R) results in the equivalent, reqularized, smaller dimensional,
problem

pipp = min{(VICV,R) | (VTA;V,R) =b;, ic TC{1,...,m}, ReS}[|  (23)

Strict feasibility holds for 1) The cone VSQVT is the minimal face of the SDP, i.e., the
smallest face of S} that contains the feasible set, Fx. And

range(V) = range(X), VX € relint(Fx).

If U € R with range(U) = null(V7T), then W := UU? is an exposing vector for the minimal
face, i.e.,
X feasible — WX =0.

Let Fr denote the feasible set for (2.3). We emphasize the following constant rank result for the
FR substitution:

R € Fr, rank(R) =r <= X =V*(R) € Fx, rank(X) =r.

Remark 2.1. For a typical FR algorithms for finding the minimal face, at each iteration the
dimension is strictly reduced, and at least one redundant linear constraint can be discarded, i.e., we
need at most min{m,n — 1} iterations, e.g., [18,54)], Theorem 3.5.4].

Note that FR can also be considered in the original space using rotations. Fach step of
FR involves finding an exposing vector W = UUT to the minimal face. Without loss of generality,
we can assume that the matriz Q = [V U} s orthogonal. Then the FR that reduces the size
of the problem X = V*(R) = VRV can equivalently be considered as a rotation (orthogonal
congruence):

X=[v U] [? 8] v ul", H; 8}:[{/ vl x[v U],

i.€., after this rotation, we can discard zero blocks and reduce the size of the problem. We note
that this can then be compared to the Constrained Set Invariance Conditions approach in ,
where a special projection is used to obtain the reduced problem. In addition, the approach in
performs the projections on the primal-dual problem thus maintaining the original optimal values
of both. In contrast, we emphasize the importance of the primal problem as being the problem of
interest. After FR we have a regularized primal problem with optimal value the same as
that of the original primal problem; and, where we have the important property that the dual of
the dual is the primal.

2FR generally results in the constraints becoming linearly dependent. Therefore, a linearly independent subset

need only be used [55].



2.2 Group invariance and symmetry reduction, SR

We now find a substitution using the adjoint linear transformation B* in below, that ob-
tains the SR to block diagonal form. We first look at the procedure for simplifying an SDP that is
invariant under the action of a symmetry group. This approach was introduced by Schrijver [51];
see also the survey [2]. The appropriate algebra isomorphism follows from the Artin-Wedderburn
theory [65]. A more general framework is given in the thesis [45]. More details can be found in
e.g., [12,22,24,61].

Let G be a nontrivial group of permutation matrices of size n. The commutant, Ag, (or
centralizer ring) of G is defined as the subspace

Ag:={X eR™" | PX = XP, VP € G}. (2.4)

Thus, Ag is the set of matrices that are self-permutation-congruent for all P € G. An equivalent
definition of the commutant is

Ag ={X e R"" | Rg(X) = X},

where

Ro(X) = -

=gl > PXPT, X e RV,

Peg

is called the Reynolds operator (or group average) of G. The operator Rg is the orthogonal pro-
jection onto the commutant. The commutant Ag is a matriz x-algebra, i.e., it is a set of matrices
that is closed under addition, scalar multiplication, matrix multiplication, and taking transposes.
One may obtain a basis for Ag from the orbits of the action of G on ordered pairs of vertices,
where the orbit of (u;, u;) € {0,1}"x{0,1}" under the action of G is the set {(Pu;, Pu;) | P € G},
and u; € R™ is the i-th unit vector. In what follows, we denote

basis for Ag : {Bl, .. .,Bd}, B; € {0, 1}n><n’ V. (2.5)

Let J = J,, (resp. I = I,,) denote the matrix of all ones (resp. the identity matrix) of appropriate
size. The basis (2.5 forms a so-called coherent configuration.

Definition 2.2 (coherent configuration). A set of zero-one n x n matrices { B, ..., Bg} is called
a coherent configuration of rank d if it satisfies the following properties:

1. Y icr Bi =1 for someZ C {1,...,d}, and St B =J;
2. BY € {By,...,Bg} fori=1,...,d;
3. BiB; € span{Bi, ..., By}, Vi,j € {1,....d}.

In what follows we obtain that the Reynolds operator maps the feasible set Fx of (2.1]) into
itself and keeps the objective value the same, i.e.,

XeFx = Rg(X) € Fx and (C,Rg(X)) = <C,X>.

One can restrict optimization of an SDP problem to feasible points in a matrix *-algebra that
contains the data matrices of that problem, see e.g., [14,123]. In particular, the following result
is known.

Theorem 2.3 ( [14], Theorem 4). Let Ag denote a matriz x-algebra that contains the data
matrices of an SDP problem as well as the identity matriz. If the SDP problem has an optimal
solution, then it has an optimal solution in Ag.



Remark 2.4. In , the authors consider complex matriz x-algebras. However in most appli-
cations, including applications in this paper, the data matrices are real symmetric matrices and
Ag has a real basis, see Definition 2.2 Thus, we consider here the special real case. The authors
n also prove that if Ag has a real basis, and the SDP has an optimal solution, then it has
a real optimal solution in Ag. Real matriz x-algebras are also considered in [15,[16,[47].

In addition, Theorem holds for DNN, i.e., we can move any nonnegativity constraints
on X added to the SDP in Theorem to simple nonnegativity constraints on x in ([2.6]), see

e.g., Pg 5].

Therefore, we may restrict the feasible set of the optimization problem to its intersection with
Ag. In particular, we can use the basis matrices and assume that

d

XeFxNAg e | X = ZmiBi —: B*(z) € Fx, for some z € R?| . (2.6)
i=1

From now on we assume that G is such that Ag contains the data matrices of ([2.1)).

Example 2.5 (Hamming Graphs). We now present an example of an algebra that we use later
in our numerics.

The Hamming graph H(d,q) is the Cartesian product of d copies of the complete graph K,
with vertices represented by d-tuples of letters from an alphabet of size q. The Hamming distance
between vertices u and v, denoted by |(u,v)|, is the number of positions in which d-tuples u and

v differ.
The matrices

(Bi)u,v:—{l if|(u’v)|:i, i=0,....d

0 otherwise

form a basis of the Bose-Mesner algebra of the Hamming scheme, see . In particular, Bg = 1
is the identity matriz and By is the adjacency matriz of the Hamming graph H(d,q) of size
q@ x q%. In cases, like for the Bose-Mesner algebra, when one of the basis elements equals the
identity matriz, it is common to set the index of the corresponding basis element to zero. The
basis matrices B; can be simultaneously diagonalized by the real, orthogonal matriz () given by

d

Quo =272(—1)""".
The distinct elements of the matriz QT B;Q equal K;(j) (j =0,...,d) where

Ki(j)::i:( (g — 1)~ < ) j=0,....d,

h=0

are Krawtchouk polynomials. We denote by p; := (j)(q —1)7 the multiplicity of the j-th eigen-

value K;(j). The elements of the character table P € RUTVX(HD) of the Hamming scheme
H(d,q), given in terms of the Krawtchouk polynomials, are

pij = Ki(j),4,5=0,...,d.

In the later sections, we use the following well-known orthogonality relations on the Krawtchouk
polynomial, see e.g.,

Jzi%mu)m(j) (Na-v=(Da-160 rs=0..a (0.1

where 6, s is the Kronecker delta function.



2.2.1 First symmetry reduction using X = B*(x)

We now obtain our first reduced program using the substitution X = B*(x). Note that the
program is reduced in the sense that the feasible set can be smaller though the optimal value
remains the same.

pspp = min{(B(C),z) | (Ao B*)(x) =b, B*(x) > 0}, (substitution X = B*(z)). (2.8)

Here, B is the adjoint of B*. In the case of a DINN relaxation, the structure of the basis in (2.5))
allows us to equate X = B*(x) > 0 with the simpler > 0. This changes the standard doubly
nonnegative cone into a splitting, a cross product of the cones z > 0, B*(x) = 0, see Remarks
and (.1}

A matrix x-algebra M is called basic if M = {@®!_ M | M € C™*™}, where & denotes
the direct sum of matrices. A very important decomposition result for matrix *-algebras is the
following result due to Wedderburn.

Theorem 2.6 ( [65]). Let M be a matriz *-algebra containing the identity matriz. Then there
exists a unitary matrixz QQ such that Q* MQ is a direct sum of basic matriz x-algebras.

The above result is derived for a complex matrix *-algebras. In [42], the authors study
numerical algorithms for block-diagonalization of matrix x-algebras over R. Unfortunately, the
Wedderburn decomposition described in the above theorem does not directly apply for x-algebras
over reals. To demonstrate our approach in the section on numerical results we use known
orthogonal matrices or a simple heuristics to obtain them.

To simplify our presentation, the matrix ) in Theorem is assumed to be real orthogonal.
(The case when @ is complex can be derived analogously.) Then, the matrices in the basis Bj, j =
1...,d, can be mutually block-diagonalized by some orthogonal matrix ). More precisely, there
exists an orthogonal matrix () such that we get the following block-diagonal transformation on

Bj!

Bj = Q" B;Q =: Blkdiag((B}){—,),Vj = 1,...,d. (2.9)

For QTXQ = Z;l:l xjéj, we now define the linear transformation for obtaining the block matrix
diagonal form:

i d Bi(z) i
B*(z) := ijBj = =: Blkdiag((B}(x))i_,), (2.10)

where .
Bi(x) = > x;BF € S
j=1
is the k-th diagonal block of B*(x), and the sum of the ¢ block sizes ny + ...+ n; = n. Thus, for
any feasible X we get .
X = B*(z) = QB*(2)Q" € Fx.
2.2.2 Second symmetry reduction to block diagonal form using X = QB* ()QT

We now derive the second reduced program using the substitution X = Q[;’*(:):)QT. The program
is further reduced since we obtain the block diagonal problem

pspp =min{(B(C),x) | (Ao B*)(z) = b, B*(z) > 0}, (2.11)



where C = QTCQ and A is the linear transformation obtained from A as follows: Aj =
QTAJ-Q,Vj. We denote the corresponding blocks as Aé?,Vj =1,...,d,Vk=1,...,t.
We see that the objective in ([2.11)) satisfies

¢ = B(C) = ((B,.0)) = ((B;,C)) € R

While the i-th row of the linear equality constraint in l’ Az =b, is

bi = (Az);
= ((AoB")(z));
= (4;,B%(z))
Therefore
Ay = (B(A)); = (Bj, A) = (Bj,A), i=1,....,m,j=1,....d. (2.12)

Without loss of generality, we can now define

c:=¢, A:=A.

Moreover, just as for FR, the SR step can result in A not being full row rank (onto). We then

have to choose a nice (well conditioned) submatrix that is full row rank and use the resulting

subsystem of Ax = b. We see below how to do this and simultaneously obtain strict feasibility.
We can now rewrite the SDP  (2.1)) as

pipp =min{c x| Az =0b, Bi(z) =0, k=1,...,t}. (2.13)

For many applications, there are repeated blocks. We then take advantage of this to reduce the
size of the problem and maintain stability.

The program is a symmetry reduced formulation of . We denote its feasible set
and feasible slacks as

Fo={ax|B(x) =0, Az =b, z € R}, S,:={B*(x)>=0]| Az =b, z € R}. (2.14)

We denote the feasibility problem for this formulation with data 5*, A, b, S’ of the feasible set
Fr as Pg,. We bear in mind that B*(x) is a block-diagonal matrix. But it is written as a single
matrix for convenience in order to describe FR for the symmetry reduced program below.

Since By, ..., By are block diagonal, symmetric matrices, the symmetry reduced formulation
is typically much smaller than the original problem, i.e.,

d
reRY d< Zt(nz) < t(n),
i=1

where t(k) = k(k + 1)/2 is the triangular number.

3 Facial reduction for the symmetry reduced program

In this section, we show how to apply FR to the symmetry reduced SDP ([2.13]). The key is using
the exposing vector view of facial reduction, |18]. Formally speaking, if an exposing vector of the
minimal facdﬂ of the SDP ([2.1) is given, then we are able to construct a corresponding exposing

3The smallest face containing the feasible set.



vector of the minimal face of the symmetry reduced program . In fact, we show that all the
exposing vectors of the symmetry reduced program can be obtained from the exposing vectors
of the original program. In general, one can find exposing vectors from the original program by
exploiting the structure. However, this is lost after the SR and results in a more difficult task in
finding an exposing vector.

In addition, we follow the above theme on simply adding on the nonnegativities and extend
many of the results to the DNN program. We include results on the singularity degree to
emphasize the importance of FR for stability and that SR does note increase the singularity
degree.

3.1 Rank preserving

We begin with showing the maximum rank preserving properties of SR. Note that

max{rank(X)|X € Fx} = rank(X), VX € relint(Fx)
= rank(X), VX € relint(face(Fx)),

where face(Fx) is the minimal face of S" containing the feasible set.

Theorem 3.1. Let r = max{rank(X)| X € Fx}. Then

r o= max{rank < 7l > PG PTXP) | X € fX} (= max{rank(Rg(X))| X € Fx})
= max{rank(X)|X € Fx N Ag}

= max{rank(B*(z)) | B*(z) € S, }.

Proof. Let X € Fx be the matrix with maximum rank r. Then X is in the relative interior of
the minimal face f JS'! containing Fyx, i.e.,

S, 0

X erelint(f) = [V U] [ 0

} [V U] , for some orthogonal [V U].

The nonsingular congruence PT X P is feasible for each P € G, and also has rank r. Note
that
A, B €S = rank(A+ B) > max{rank(A), rank(B)}.

Therefore, applying the Reynolds operator we have

X, = Z PTXP € relint(f).

Peg

gl

Since Xy € Ag, we have QT XoQ € S, (= QT (Fx N Ag)Q) and it has rank 7, where @ is the
orthogonal matrix given above in ((2.9). )
Conversely, if B*(x) € S, with rank r, then X := QB*(x)Q" is in Fx with rank 7. O

Note that in the proof of Theorem we exploit the following known properties of the
Reynolds operator: rank(Rg(X)) > rank(X), Rg(Fx) = Fx N Ag.

Corollary 3.2. The program (2.1)) is strictly feasible if, and only if, its symmetry reduced
program (2.13)) is strictly feasible.

Remark 3.3. From the proof of Theorem if there is a linear transformation X = L(x) with
a full rank feasible X € range(L), X = L(&), then in general we can conclude that the substitution
X = L(x) results in a smaller SDP with strict feasibility holding at &, i.e.,

X=0,AX)=0bX=L(2) = L(&)=0,(AoL)(&) =b.

10



3.2 Exposing vectors

For many given combinatorial problems, the semidefinite relaxation is not strictly feasible, i.e., it
is degenerate, ill-posed, and we can apply FR . From Section above, we see that
this implies that the symmetry reduced problem is degenerate as well. Although both SR and
FR can be performed separately to obtain two independent problems, there has not been any
study that implements these techniques simultaneously and efficiently, i.e., to obtain a symmetry
reduced problem that also guarantees strict feasibility.

In what follows, we show that the exposing vectors of the symmetry reduced program
can be obtained from the exposing vectors of the original program (2.1). This enables us to
facially reduce the symmetry reduced program (2.13) using the structure from the original
problem.

Let W = UUT, with U € R™*(®»=") full column rank; and let W be a nonzero exposing vector
of a face of S containing the feasible region Fx of (2.1)). Let V € R™™" be such that

range(V) = null(U7).

Then FRmeans that we can use the substitution X = V*(R) = VRVT and obtain the following
equivalent, smaller, formulation of (2.1)):

pspp =min{(VICV,R) | (VT A, V,R) =b;, i€ ZC{l,...,m}, ReS}. (3.1)

If V exposes the minimal face containing Fy, then strict feasibility holds. In fact, R strictly
feasible corresponds to X = V*(R) € relint(Fy).

The following results show how to find an exposing vector that is in the commutant Ag. We
let F < K denote F' is a face of the cone K.

Lemma 3.4. Let W be an exposing vector of rank d of a face F IS, Fx C F. Then there
exists an exposing vector Wg € Ag of F with rank(Wg) > d.

Proof. Let W be the exposing vector of rank d, i.e., W > 0 and
XeFx = (WX)=0.
Since is G-invariant, PX PT € Fx for every P € G, we conclude that
(w,PXPTy = (PTWP X)=0.

Therefore, PTW P = 0 is an exposing vector of rank d. Thus Wg = ﬁ > peg PTWP is an
exposing vector of F.

That the rank is at least d follows from taking the sum of nonsingular congruences of W > 0.
O

Lemma shows that Ag contains exposing vectors. This result is a valuable addition to the
list of objects that exhibit symmetry, see for example: dual solutions and the central path in [31];
solutions on the central path and some search directions of primal-dual interior-point methods,
in [29]; and infeasibility certificates, in [44].

Note that one can obtain an exposing vector Wg € Ag from an exposing vector W by using
the Reynolds operator, as done in Lemma 3.4 However, in some cases Wg can be more easily
derived, as our examples in the later numerical sections show. We now continue and show that
QTWgQ is also an exposing vector.
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Lemma 3.5. Let W € Ag be an exposing vector of a face FIST, Fx C F, Let QQ be the
orthogonal matriz given above in 1) Then W = QTWQ exposes a face of S containing S, .

Proof. Let
d _ d
7 = Zszz = QT (Z szz> QeES,.
i=1 i=1

Then, by construction Z is a block-diagonal matrix, say Z = Blkdiag(Z1, ..., Z;). Now, since W
is an exposing vector of the face of S} containing Fx we have

WX =0,VXeFx = WX=0, VX=)> x;B; =0, for some z with Az =0
i
= WZ=0, VZeS8§,,

where W = QTWQ + 0. Thus, W is an exposing vector of a proper face of S} containing S .
Since Z = Blkdiag(Z,...,Z;) is a block-diagonal matrix and W € Ag, we have that W =
Blkdiag(W1, ..., W;) with W; the corresponding i-th diagonal block of QT W Q. O

Since we may assume W € Ag, the exposing vector QT WQ is a block-diagonal matrix. Now,
let us show that QTWQ exposes the minimal face of S" containing S, face(S;). It suffices to
show that the rank of QTWQ is n — r, see Theorem [3.1

Theorem 3.6. Let W € Ag be an exposing vector of face(Fx ), the minimal face of S} containing

Fx. Then the block-diagonal matriz W = QTWQ exposes face(S;), the minimal face of ST
containing S,.

Proof. The minimality follows from Theorem as rank(W) =rank(W) =n —r. O

Now let W = QTWQ expose the minimal face of S’ containing S, and let
W = Blkdiag(W1,...,W;), W;=U,UF, U; full rank, i =1,... .t

Let V; be a full rank matrix whose columns form a basis for the orthogonal complement to the
columns of U;,i = 1,...,t. Take V = Blkdiag(V1,...,V;). Then, the facially reduced formulation

of (2.13)) is
pep =min{clz | Az =b, B*(x)=VRVL, R>0} (3.2)
=min{c’ 'z | Az = b, [;’,’;(x) = VkRkaT, Ry, =0, Vk=1,... ,t} .
where VkRkaT is the corresponding k-th block of B*(m), and R = Blkdiag(Rl, . .,Rt). Note

that some of the blocks BZ(:}:) are the same and thus can be removed in the computation,
see Theorem

Remark 3.7. We have assumed that an exposing vector of the minimum face of the original
SDP is available. If this is not the case, then we can find a strictly feasible formulation
of , and an exposing vector of the minimum face for the original problem, by using a finite
number (at most min{m,n — 1}) facial reduction steps, e.g., (18,54} 55].

We note here that reduction techniques based on the Constrained Set Invariance Conditions,
such as x-algebra techniques, can obtain strict feasibility by removing zero blocks after the appro-
priate projection, see [45].
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3.2.1 Order of reductions

To obtain the combined symmetry and facially reduced semidefinite program , we first apply
SR to , and then follow this with FR to the form in . A natural question is whether
the order of reduction matters.

Note that the objective (VT CV, R) and the constraints (VT A;V,R) = b;, i € T C {1,...,m},
of the facially reduced program , see also , depend on the choice of V. We now show
that the choice of this V is crucial when reversing the order of reductions FR and SR. For a
naive choice of V, we can lose all symmetries structure for SR in Section For example,
assume the data matrices C, Ay, ..., A,, of the original problem are invariant under a non-trivial
permutation group G, i.e., they are in the commutant Ag, see . However the data matrices
VTCV,VTAV,...,VT A,V of the facially reduced problem may not be invariant under any non-
trivial group of permutation matrices for the given V. Note that we can always replace V < V'S
using any invertible S. Then an arbitrary invertible congruence STVT A;V S will destroy the
symmetry structure in the constraint matrices.

Lemma 3.8. Let V,V,Q be given as in the above paragraph, and in Theorem and 1’
Then

range(V') = range(QV).

Proof.
range(V) = mull(QTWQ) = Q(range(V)) Q(mull(QTWQ))
= range(QV) = null(QTWQQT)
—  range(QV) = null(W).

From Lemma we can set V = QV for FR. The objective and constraints become
(VICV,R) = (VTCV,R), (VTA;V,R) = (VTAV, R)=0b;,Vi.

As C, A; and V are block-diagonal matrices with appropriate sizes, the data matrices VI CV
and VT A;V are block-diagonal as well. Since R is also a block-diagonal matrix, this choice of
V' implicitly exploits symmetry of the original problem data. The reduction in this case is a
special case of a general reduction technique known as a projection-based method, see and
Remark 2.1] above.

We conclude that if FRis implemented first, then for SR to follow it is crucial to find a
suitable matrix V to retain the symmetry structure in the facially reduced problem. Therefore,
it is more convenient to apply symmetry reduction before facial reduction and exploit the simple
relation with the exposing vectors.

3.3 Doubly nonnegative, DNN, program

In this section, the theory above for SDP is extended to doubly nonnegative program. We show
that if an exposing vector W for the minimum face of the DNN program is given, then we
can construct an exposing vector for the minimum face of the symmetry reduced DNN program
(3.4]). This results in a strictly feasible symmetry reduced DNN program (|3.5]).

Note that in addition to positive definiteness, we need X > 0, elementwise positivity, for
strict feasibility to hold for the DNN relaxation. The following extends Prop. 2.3] for the
intersection of faces to include exposing vectors.
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Theorem 3.9. Let Fg S, and let Fy IN", the cone of nonnegative symmetric matrices. Let
Ws € S, Wn € N" be exposing vectors for Fs, Fi, respectively. Then

Ws + Wy is an exposing vector for Fs N Fy for DNN™.

Proof. Note that since N is a polyhedral cone, and both S'', N are self-dual, we get that the
dual cone (nonnegative polar)
(DNN™)* =8 + N".

Note that, by abuse of notation,
(Wg,Fs) =0, (Wny,Fy)=0.

We can now take the sum of the exposing vectors and it is clearly an exposing vector on the
intersection of the faces. Ol

Remark 3.10. 1. Theorem[3.9 holds for arbitrary self-dual cones where one is polyhedral.

2. For our application, we note that the intersection Fg N Fy is characterized by the facial
representation X € VSQVT and X;; = 0 for appropriate indices i,j. FR on the SDP cone
allows one to obtain a new SDP problem of lower dimension, since the SDP cone is self-
reproducible. However, the DNN cone is not self-reproducible, as it is clear there is no
reason that the face is of proper dimension to be represented in a symmetric space. However,
our splitting allows for a representation as the crossproduct of a SDP cone and a N" cone,

see (2.8), the paragraph after (2.8)), and Remark: below.
The DNN program is defined as

(PpaN) ppnN = min{(C, X) | A(X)=b, X € DNN"}. (3.3)
The symmetry reduced formulation of the DNN program (3.3) is
ponny = min{clz | Az =b, 2 >0, Bi(z) =0, k=1,...,t}. (3.4)

Thus the ambient cone of the symmetry reduced program is the cross-product of cones
(R, S, ..., Sh).

Let W € DNN * be an exposing vector of . Then W = Wg + Wy for some Wg € S}
and Wy € N". The exposing vector W € DNN * satisfies (W, X)) = 0 for every feasible X of
([3-3). Since it also holds that (Wg, X) > 0 and (Wx, X) > 0, we have

(Ws, X) = (Wn, X) =0,

for every feasible X of ([3.3)).

We are going to construct an exposing vector for the symmetry reduced program by
using W. Here the exposing vectors (W//\n/l, cel V[/;n/t) for the semidefinite cones (S™,...,S™) can
be derived in the same way as before. Therefore we only have to find an exposing vector for the
nonnegative cone ]Ri. Let x be feasible for 1) Then X = B*(x) is feasible for 1) We
have

(W, X) = (W, B*(x)) = (B(Wn),z) = 0.

Define w := B(Wy). Since Wy is nonnegative and (B(Wy)), = (B;, Wn) for some zero-one
matrix B;, the vector w is nonnegative. Then (w, x) = 0 implies that w is an exposing vector for

the cone Ri of .
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Thus facial reduction for the nonnegative cone Ri simply removes the entries z; associated
to positive entries w; > 0 from the program. Let Z be the vector obtained by removing these
entries from x. Define the new data matrices ¢, A correspondingly. The facial reduction for

the semidefinite cones are handled in the same way as before. This yields the following facially
reduced formulation of (|3.4])

Prrpny =min{c’@ | AT =b, & >0, Bi(Z) = Vi Vi, Ry = 0, Vk =1,...,t}. (3.5)

It remains to show that if W is an exposing vector of the minimal face of the DNN program
containing the feasible region, then the facially and symmetry reduced program is
strictly feasible. We first clarify that the mazimality of the exposing vector W = Wg + Wy in
DNN means that its decomposition satisfies:

(i) rank Wy is maximal;

(i) the number of positive entries in Wiy is maximal, i.e., supp(W},) C supp(Wy) for any other
exposing vector Wy.

Here supp(M) is the support of the matrix M. Note that if Wy, W} € N™ are exposing vectors
for a DNN program, then Wy + W}, € N” is also an exposing vector. So the maximality in (ii)
above is well-defined and unique.

Let W be an exposing vector of the minimal face, then the number of positive entries in
Wy is maximal. Assume, for the sake of contradiction, that is not strictly feasible. Then
there exists an exposing vector w’ € Ri for such that supp(w) C supp(w’). Let W}, =
B*(w') € N". Then supp(Wy) C supp(Wy). Let X € DNN be feasible for ({3.3). Then

=

Rg(X) = B*(xz) € DNN for some z feasible for (3.4), and thus
(W, Rg(X)) = (w',z) = 0.

But supp(X) C supp(Rg(X)), this means that (W}, X) = 0. Thus W}, is an exposing vector
for such that supp(Wx) C supp(W}). This contradicts the maximality of W. Thus the
program is strictly feasible. Note that the fact that we could move the nonnegativity to
the reduced variable x was essential for obtaining the Slater condition.

3.3.1 Facial reduction from the ground set for DNIN

Our applications involve quadratic models of hard combinatorial problems. We now see that the
view of strict feasibility and FR in Theorems 3.1, 3.2] can be easily extended from SDP to
DNN.

We follow the notation in and define the feasible set or ground set of a quadratically
constrained program as:

Q::{xER”|A<[1 mTT]>:0,x20},

r I

where A is a linear transformation. The relaxation, lifting, is then given by

o {[ feomesa(f )0}

Let the gangster set be defined as
gQ = {(27]) LT = Oa Vr € Q}
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with complement G5 . Note that here the gangster sets are equal Gg = QQ, with appropriate
indices. However, for a general DNN, we are not given the ground set and the gangster set is
defined for the lifted problem only.

Theorem 3.11 (Slater). Suppose that conv(Q) is full dimensional and that Go = 0. Then the
Slater condition holds for Q.

Proof. By the assumption, we can choose the finite set of vectors
i

{vij €Q \vi’jv;»’j > 0, for each (,j) € {1,...,n} x {1,...,n}} (3.6)

As in , we choose an affine linear independent set {xz}?ill C @, and add the 1, and form the
matrix but add the v/ defined in ([3.6):

el el
V= [z}, gt [obt b2l v”’”]]
We lift and get the Slater point W :=VVT e O, W = 0, W > 0. O

We now extend this to obtain FR. We use our exposing vector viewpoint rather than the
internal view in Theorem 3.2]. We note that we could not move the nonnegativity constraints
onto R as is done for our applications after SR. Moreover, though the Slater condition holds for
the FR feasible set in , it is not necessarily true that the Mangasarian-Fromouvitz constraint
qualification holds, since some of the linear equality constraints typically become redundant after
FR. We can however discard redundant equality constraints.

Theorem 3.12 (facial reduction). Suppose that the affine hull, aff (conv(Q)) = L and dim(L) =
d. Then there exists A,b with A full row rank and

L ={z eR"| Az = b}.
—pT
AT
point R for the FR, DNN feasible set

Let U = [ ] and V' be full column rank with range(V') = null(U). Then there exists a Slater

Op= {R eS™ R0, VRV )ge >0, (VRV)g, =0, A(VRVT) = 0} , (3.7)

where (VRVT)g is the vector with indices chosen from the set S, and
R+0, (VRVT)ge >0, (VRVT)g, =0, A (VRVT) —0. (3.8)
Proof. The proof is as for Theorem after observing that UU” is an exposing vector, and

restricting the selection in (3.6) to the complement Gg, . O]

3.4 Singularity degree

The singularity degree defined for the semidefinite feasibility problem Pg , and denoted by
sd(Pp), is the minimum number of steps with a nonzero exposing vector, for the FR algorithm
to terminate with the minimal face. For Pspp this means we terminate with a strictly feasible
problem. Singularity degree was introduced for Pgpp in to show that SDP feasibility
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problems always admit a Hélder error boundﬁ see also [54] for lower bound results. Let d =
sd(Pr), L ={X | A(X) = b}, U C S" be compact, ¢ > 0, and dist denote the norm-distance to

a set. Then
dist(X, Fx) < ¢ (distﬂ(X, ST + dist? (X, z)) VX e U.

Remarkably, this result is independent of m,n and the rank of the matrices in Fx. It strongly
indicates the importance of FR for SDP, especially when obtaining approximate solutions with
splitting type methods. This is illustrated by our numerical results, see Table below, where
the LB for ADMDM is dramatically better than that for IPM.

In this section, we show that the singularity degree of a symmetry reduced program is less
than or equal to the singularity degree of the original problem, see Theorem Thus, we
provide a heuristic indication that this error measure does not grow when applying SR. Of
course, after completing FR, the singularity degree is optimal, 0.

At the k-th step, FR finds an exposing vector of the feasible region of the reduced SDP of

(2.1)
{Re S} | Av(R) = br}, with Ay(R) = (VIAV.R)), , eRI T C{1,....m}.  (3.9)

Here V' is a given matrix updated after each FR step. In the first step, V is the identity matrix
and (3.9)) is the feasible region Fx of the original problem (2.1)). An exposing vector is then
obtained by solving the following auxiliary system for y:

0# A} (y) = 0and b’y <0. (3.10)
If y exists, then W = A} (y) € R"*" is an exposing vector of the feasible region. We then:

(i) compute V' € R"™*"+1_ full rank , range(V') = null(W);
(ii) set V = VV' € R Tk+1, (3.11)
(iii) repeat from (3.10)).

At the k-th step, we have computed a vector y and a matrix V'’ that determines the facially
reduced formulation at the next step. Choosing exposing vectors with maximum possible rank
leads to the fewest iterations, see e.g., . For completeness, we now show that the number of
iterations in the facial reduction algorithm only depends on the choice of y and not on the choice
of V'

Lemma 3.13. The total number of facial reduction steps does not depend on the choice of V',V

Proof. If we replace V' € R™ ", with V.S € R"*"* for some invertible matrix S € R™*"* then
the same vector y satisfies the new auxiliary system, as b’y < 0 and

Ws = Aps(y) = Y (S"VIAV Sy = ST A (y)S = STWS = 0.

i=1

Since S is invertible, it holds that rank(Wgs) = rank(W) and we obtain the same reduction at
the k-th step.

40ur definition of singularity degree does not coincide with the definition from when Pr = {0}. In this
case our definition gives sd(Pr) > 1, while Sturm defines sd(Pr) = 0.
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As null(Wg) = S~ null(W), we have S~V € null(Wg). Thus we can take Vi = S™IV'T €
null(Wg) for any invertible matrix 7' € R":+)*"(+1) and then

VS« (VSVi=VSS™'W'T =VV'T.

This means we can repeat our argument to show the reduction at each subsequent step is the
same. L]

For the symmetry reduced program ([2.13), the facial reduction algorithm at the k-step

considers the feasible region in variables (z, Ry, ..., R;) determined by
Ar = b
blkdiag (B*(w)) - (f/llef/lT, . %Rt\z"f) (3.12)
Rk S Sj_k,

for some V = Bllidiag(f/l, o, V;) with V; € R see also (3.2). Here blkdiag = Blkdiag*.
In the first step, V is the identity matrix and we obtain the feasible region F, of the symmetry

reduced program ([2.13]).
The auxiliary system for () is to find (y, Why,..., W;) such that

ATy = B(Blkdiag(Wi,..., W)

— — N N 3.13

0 # (VI'WiW,...,.VIW, V) e (S},...,87) and b7y < 0. (3:13)
Then Blkdiag(f/lT/valﬁ, ceey f/tTI/IN/tf/t) is an exposing vector of the symmetry reduced problem.
Let f/i’ be the matrix whose independent columns span null(f/iTWif/i). We replace the matrix V;
by VZVZ/ . Then we repeat the algorithm until the auxiliary system has no solution. Our
main result in this section is that the singularity degrees of the symmetry reduced SDP  ([2.13))
is no greater than the singularity degree of the original SDP .

Theorem 3.14. sd(Pr,) < sd(Pr).

Proof. We show that if we apply the facial reduction algorithm to the original SDP , then
the solution of the auxiliary system can be used to construct a solution to the auxiliary
system of the symmetry reduced problem (2.13)).
Let y be a solution to the auxiliary system (3.10) in the k-th facial reduction step. Let
W = Aj,(y) € Ag and W = QTWQ. Further, let Wj € Sij be the j-th block of W (j = 1,...,1).
If £ =1 in the FRalgorithm, then the matrices V' and V are identity matrices. As W = 0,
we have W; = 0 (j =1,...,t). It also holds that b7y < 0 and

B(Blkdiag(Wi, ..., W) = BQTA*(y)Q) = B(A*(y)) = ATy.

Thus (y, Wl, A Wt) satisfies the auxiliary system (3.13)). Also, we have that rank (A*(y)) =
ZE.ZI rank Wj. Let Vand V = Blkdiag(ffl, ce f/t) be matrices whose independent columns span
null(W) and null(W), respectively. It follows from Lemma that range(V) = range(QV).
From Lemma it follows that we can take V = QV in the next step.

Let k> 1and V = QV where V and V are derived in the previous iterate of the FR algorithm.
Then, we have that

Ay (y) = VIA )V =V (QT A ()Q) V =VIWV
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is block diagonal. As Aj(y) = 0, we have that each block f/jTW]‘N/] (j = 1,...,t) is positive

semidefinite. It also holds that b7y < 0 and B(W) = ATy. Thus (y, Wi, .. Wt) satisfies the
auxiliary system 1} Further, we have that rank (A} (y)) = > i1 rank(V W, V).

Let V'’ and ‘7’ (j =1,...,t) be matrices whose independent columns span null (Aj,(y)) and

null(VkTWka) (] =1,. ) respectively. As Aj (y) = VIWV is block diagonal we can simply
take V' = V’. Thus after updatlng VvV and V « VV’, we have V = QV in the next step.
We can repeat the same argument until the facial reduction algorithm terminates. O

Corollary 3.15. Suppose that sd(Pr) = 1. Then equality holds in Theorem i.e.,
sd(Pr,) = sd(Pr).
Proof. This follows directly from the rank preserving result Theorem Ol

The following Theorem follows from [60, Theorem 3.2 in that the linear manifold is
represented by a concrete constraint and applied to finding an exposing vector. (Note that this
includes the hard combinatorial problems we work with below.)

Theorem 3.16. Consider the quadratic model as given in Theorem [3.13, and suppose that the
matriz A is part of the given data of the problem. Then the singularity degree is one.

Proof. The proof uses A to construct the exposing vector. Therefore, one step of the FR algorithm
is sufficient.
More precisely, the linear constraint in the ground set is lifted into the SDP as

ari=o = [T ] =0 = L)L) GF][] o

Therefore we have a constraint trace DY = 0 with D > 0. This provides the appropriate exposing
vector to find the minimal face. Ol

Remark 3.17. The definition of singularity degree can be extended to DINN, and to a general
cone optimization problem, to be the minimum number of steps in the FR 1@ Algor. BJ. Here
this means we continue to find the minimum number of steps with nonzero exposing vectors. An
interesting question is to find the relationship between the singular values of the SDP and the
DNN. It appears that the DINN is at most one more than for SDP.

3.5 Simplifications

After FR | some of the constraints become redundant in the facially reduced program (3.1])). We
show here that the same constraints are also redundant in the facially and symmetry reduced
program (3.2). Proofs of the following Lemma and Corollary are clear.

Lemma 3.18. For any subset Z C [m| :={1,...,m}, we define the spectrahedron
FI)={XeS"|(A,X)=b VieI, X=VRV RecS"}.

If the constraints in [m|\Z are redundant, e.g., F([m]) = F(Z), then F([m]) N Ag = F(Z) N Ag.
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Corollary 3.19. Let T C {1,...,m}. Suppose that the constraints (Ax, VRVT) = by, k ¢ T, are
redundant in (3.1)), i.e., the facially reduced formulation (3.1]) is equivalent to

min {(VTCV,R) | (VTAV,R) = b;, ViecT}. (3.14)
€st

Then the constraints .
Z AkJCUj = bk, k ¢ I,
j=1
are redundant in (3.2), i.e., the facially and symmetry reduced program (3.2)) is equivalent to

d

mip {ch ‘ ZAi’jxj = bi,V’i S I, é*(.%') = VRVT} (3.15)
r€R,REST, =

As in the facially reduced formulation 1' to obtain a formulation in only variable R,
we can replace z in terms of R using the constraint B*(z) = VRVT. For the facially and
symmetry reduced program , this substitution is particularly important as the constraint
B*(z) = VRVT can offset the benefits of SR. This substitution can be done easily for by
rewriting the constraints as

bi = (A, X) = (QTAiQ,QTXQ) = (QTA4,Q,B*(x)) = (QT A:Q,VRVT).

The objective can be similarly changed. This method, however, does not work for DN relaxations.
This difficulty can be resolved as follows.

Theorem 3.20. Consider the facially and symmetry reduced DNN relazation (3.2) with non-
negativity constraints,

min{c’z | Az =b, B*(z)=VRVY, R>0, z >0}. (3.16)

Equate x with 3 )
z « f(R) = Diag(w) 'B(VRVT),

with
w= ((B;,B;))i €RY, V =QV and Q from Theorem

Then s equivalent to
min{c’ f(R) | Af(R) =b, R*>0, f(R)>0}. (3.17)

Proof. If (x, R) is feasible for m, then B*(x) = VRVT. As w > 0 and BB* = Diag(w), we
have x = f(R) and thus R is feasible for (]3_17D

Let R be feasible for . Assume that there are no repeating blocks in the decomposi-
tion. Since VRVT is a block-diagonal matrix in the basic algebra QT AgQ, we have VRVT =
QVRVTQT e Ag. Tt follows from Theorem that there exists a unique z such that VRVT =
B*(x). Then we must have z = f(R) and thus (z, R) is feasible for . If there are repeating
blocks, then we can remove the repeating ones and the result follows with similar arguments. [

For the Hamming scheme, we have an explicit expression for the orthogonal matrix ) used
in Theorem [3.20], see Example and Section In general, we do not know the corresponding
orthogonal matrix explicitly. In Section we use the heuristics from [15] to compute a block
diagonalization of Ag. In this case, the equivalence in Theorem may not be true, and
may be weaker than (3.16]). However our computational results indicate that all the bounds
remain the same, see Table below.
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4 The alternating direction method of multipliers, ADMM

It is well known that interior-point methods do not scale well for SDP. Moreover, they have
great difficulty with handling additional cutting planes such as nonnegativity constraints. In
particular, solving the doubly nonnegative relaxation, DININ, using interior-point methods is
extremely difficult. The alternating direction method of multipliers is a first-order method for
convex problems developed in the 1970s, and rediscovered recently. This method decomposes an
optimization problem into subproblems that may be easier to solve. In particular, it is extremely
successful for splittings with two cones. This feature makes the ADMM well suited for our
large-scaled DININ problems. For state of the art in theory and applications of the ADMM, we
refer the interested readers to [8].

Oliveira, Wolkowicz and Xu [43] propose a version of the ADMDM for solving an SDP relaxation
for the Quadratic Assignment Problem (QAP ). Their computational experiments show that the
proposed variant of the ADMM exhibits remarkable robustness, efficiency, and even provides
improved bounds.

4.1 Augmented Lagrangian

We modify the approach from [43] for solving our SR and FR reduced DNN relaxation ([3.2]).
We have a greatly simplified structure as we applied SR to the SDP relaxation, and we were then
able to move the nonnegativity constraints to a simple vector x > 0 contraint. We in particular
obtain a more efficient approach for solving the x-subproblem.

Let V = Blkdiag(Vi,...,V;) and R = Blkc}iag(}?l,;.;,f{t). The augmented Lagrangian
of (3.2) corresponding to the linear constraints B*(z) = VRV is given by:

L(x,R,Z) = (C,B*(z)) + (Z,B*(x) — VRVT) + §||l§*(x) — VRVT|?,

where, see , C=QTCQisa block-diagonal matrix as C' € Ag, Z is also in block-diagonal
form, and 8 > 0 is the penalty parameter.

The alternating direction method of multipliers, ADMM, uses the augmented Lagrangian,
L(z, R, Z), and essentially solves the max-min problem

max min L(z,R,Z),
Z xeP,R-0

where P is a simple polyhedral set of constraints on x, e.g., linear constraints Ax = b and
nonnegativity constraints, see below. The advantage of the method is the simplifications
obtained for the constraints by taking advantage of the splitting in the variables. We then find
the following updates (o, Ry, Z4):

Ty = argminﬁ(:ﬁ, R, Z);
zeP

R, = argmin L(z4, R, Z),
R0

Zy = Z+B(B (x1) = VR VT).

Here, v € (0, 1+2\/§) is the step size for updating the dual variable Z. In the following sections

we explain in details how to solve each subproblem.
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4.2 On solving the R-subproblem

The R-subproblem can be explicitly solved. We complete the square and get the equivalent
problem . B o }
R, = min||B*(z) - VRVT + 17|
R-0 s o
= min||R - VT (B*(z) + $2)V|?
min | (B*(z) + 32)V| (4.1)

= oy min [|[Ry — (VI(B*(2) + 12)V), |12
Ry >0

Here, we normalize each block Vj, such that V;I'Vj, = I, and thus (VZ(B*(z) + %Z)f/)k is the
k-th block of VT (B*(x) + %Z )V corresponding to Ry. So we only need to solve k small problems
whose optimal solutions are

- . 1
Ry = Ps, (VT(B*(x) + BZ)V> . k=1,....t,
k

where Ps, (M) is the projection onto the cone of positive semidefinite matrices.

4.3 On solving the z-subproblem

For the z-subproblem, we have

-2
- U C+7Z7
Ty = arg Héi]rjl B*(z) - VRVT + i

(4.2)

For many combinatorial optimization problems, some of the constraints Ax = b in become
redundant after FR of their semidefinite programming relaxations, see Corollary Thus, the
set P often collapses to a simple set. This often leads to an analytic solution for the z-subproblem,;
e.g., this happens for the quadratic assignment, graph partitioning, vertex separator, and shortest
path problems.
For some interesting applications, the z-subproblem is equivalent to the following special case
of the weighted, relaxed, quadratic knapsack problem:
min,, %HT*(ZL‘) —Y|?
(4.3)
st. zeP:={z|wlz=c x>0},

where Y is a given matrix and 7*(z) = Y7, z;7; for some given symmetric matrices T;. The
problem (4.3)) is a projection onto the weighted simplex. We consider the following assumption
on a linear transformation 7 : S® — RY and its adjoint.

Assumption 4.1. The linear transformation T : S™ — R? in (4.3)) satisfies
T(T*(z)) = Diag(w)x, Vx € R?, for some w > 0.

Lemma 4.2. Suppose that the linear transformation T satisfies Assumption and that (4.3))
is feasible. Then the projection problem (4.3)) can be solved efficiently (explicitly) using Algo-

rithm [{.3

Proof. The Lagrangian function of the problem is
1
§|]T*(x) ~ Y|P 1wz —¢) = Nz,

22



where 7 € R and A € Ri are the Lagrangian multipliers. The KKT optimality conditions for the
problem are given by

T(T*(z)=TY)—1w—-X =0,

z >0,
A >0,
Mg =0,
wle =ec.

Note that Diag(w) is the matrix representation of 7o7*. This means that (T3, T;) = 0, Vi # j,

and we can simplify the first conditionﬁ This yields
T; = wZ_I(T(Y)), + 7+ wi_l)\i.

Define the data vector y := 7(Y). The complementary slackness ATz = 0 implies that if z; > 0,
then \; = 0 and z; = w;lyi + 7. If x; = 0, then w;lyi +7 = —w;l)\i < 0. Thus the zero and
positive entries of the optimal solution x correspond to the smaller than —7 and the larger than
—7 entries of (w; 'y;)L_,, respectively.

Let us assume, without loss of generality, that (w; 1y@-)§-’:1,x are sorted in non-increasing
order:

> .2 T2 2T > Ty = ... =g = 0.

T2 = ¢ implies that

k k k
wlz = Zwl(% +7) = Zyi—i—TZwi =c,
! i=1 i=1

i=1

The condition w

and thus N
c— i1 Yi
—r
D i Wi
Therefore, one can solve the problem by simple inspection once k is known. The following

algorithm finds an optimal solution z to the problem (4.3]). The correctness of the algorithm is
then similar to the projection onto the (unweighted) simplex problem, see |10, 11]. O

T =

Algorithm 4.3 (Finding an optimal solution for )
Input: w e R y € RY
Sort {yi/w;} such that yi/wy > ... > yg/wg
Set k = maxycgen{k [ wy yp + (05 wi) e = i wi) > 0}
Set 7= (Li_ywi) (e = XLy v1)
Set x; = max{wi_lyi + 7,0} fori=1,...q
Output: v € R

In our examples, see Sections and the x-subproblem (4.2)) satisfies Assumption
Moreover, we have the following lemma. We remind the reader that J denotes the matrix of all
ones.

®Note that this is always satisfied for basis matrices from a coherent configuration.
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Lemma 4.4. The x-subproblem (4.2)) satisfies Assumption if
P={xeR?|(J,B*(x)) =c,x >0}
Proof. 1t holds that

q
(B(B*(2))), = (Bi, y_ Bjw;) = (Bi, Biw;) = trace(Q" Bf QQ" B,Q)x; = wjw;, (4.4)
=1

where w; = trace(B] B;). Furthermore, (J,B*(z)) = wlz with w = (w;) € R%. Thus we set
T = B and note that 7 (7 *(z)) = Diag(w)z. O

5 Numerical results

We now demonstrate the efficiency of our new approach on two classes of problems: the quadratic
assignment problem, QAP, and several types of graph partitioning problem, GP.

Our tests were on: Dell PowerEdge M630 computer; two Intel Xeon E5-2637v3 4-core 3.5
GHz (Haswell) CPU; 64GB memory; linux. The interior point solver was Mosek, see [1]. We had
to use a different computer to accommodate some of the larger problems when using an interior
point approach, see description of Table

The stopping conditions and tolerances are outlined at the start of Section [5.1.3] in Defini-
tion Our results include huge problems of sizes up to n = 512 for the QAP, yielding of the
order n?> SDP constraints and n* nonnegativity constraintsﬁ

5.1 The quadratic assignment problem, QAP
5.1.1 Background for the QAP

The Quadratic Assignment Problem was introduced in 1957 by Koopmans and Beckmann as a
model for location problems that take into account the linear cost of placing a new facility on a
certain site, plus the quadratic cost arising from the product of the flow between facilities and
distances between sites. The QAP contains the traveling salesman problem as a special case and
is therefore NP-hard in the strong sense. It is generally considered to be one of the hardest of
the NP-hard problems.

Let A,B € S", and let II,, be the set of n x n permutation matrices. The QAP (with the
linear term with appropriate C' in brackets) can be stated as follows:

min trace(AXTBX) (+trace(X1(C)).

Xell,
The QAP is extremely difficult to solve to optimality, e.g., problems with n > 30 are still
considered hard. It is well known that SDP relaxations provide strong bounds, see e.g., [15,/68].
However even for sizes n > 15, it is difficult to solve the resulting SDP relaxation by interior point

methods if one cannot exploit special structure such as symmetry. Solving the DNN relaxation
is significantly more difficult.

5The link to the codes for the QAP can be found on the webpage www.huhao.org. The codes for the other
problems require finding symmetries in the graph; and therefore these codes and details can be obtained upon
request directly from the authors.
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Here, we first consider the DININ relaxation for the QAP from Povh and Rendl , ie.,

min trace(A® B)Y
st. (Jp2,Y) =n?
(I @ (Jn — In) + (Jp — 1) @ I, Y) = 0
(In®@ Ei,Y)=1,Yi=1,....,n
(B @1,,Y)=1,Yi=1,...,n
Y =0,Y >0, (Y <DNN)

where and E;; = uiu;fp, where u; € R™ is i-th unit vector. The authors in || show that
Ag = Aaut(a) ® Aaut(B)s
where aut(A) :={P € 1l,, : AP = PA} is the automorphism group of A.

Remark 5.1. The DNN relazation 18 known to be theoretically equivalent, yielding the
same optimal value, to the DNN relazation denoted (QAPgs) in Zhao et al. [@/ The third and
fourth lines of constraints in arise from the row and column sum constraints and give rise
to FR. The second block of linear constraints in are generally called the gangster con-
straints, see Lemma[5.] Recall that svec is the linear transformation that vectorizes symmetric
matrices, [@/ We define gsvec to do this vectorization of symmetric matrices while ignoring the
elements set to zero by the gangster constraints, thus defining the dimension of the image space.

Then we can eliminate the gangster constraints completely and replace the DINN constraints to
get the equivalent problem to ([5.1)):

min gsvec(A ® B)Ty

s.t. gsvec(Jy2) 'y = n?
gsvec(l, @ E;))Ty=1, Vi=1,...,n (5.2)
gsvec(Ey @ L)y =1, Yi=1,...,n
gsvec*(y) = 0, y > 0.

This form is now similar to our final SR reduced form before FR, see (2.13)); and this emphasizes
that the DINN can be represented in a split form.

In the following Lemma we derive the null space of the feasible solutions of (|5.1)), see
also . In what follows we use e, or e when the meaning is clear, to denote the vector of all
ones of order n.

Lemma 5.2. Let U := - (nI —.J) € R™*", and let Y be in the relative interior of the feasible

n
set of (5.1). Then

5

null(Y) = range ([U ® ep, e, @ UJ) .

Proof. Let X € II. Then Xe, = XTe, = e,, and thus

(U @ en)vec(X) =UTe, =0,
(en @U)Tvec(X) = UTe, = 0.

Thus range ([U ® e, e, @ U]) C null(Y), where

1

Y = o Z vec(X )vee(X)T = %(J@J) +

" Xell,

m(m — D) & (nl —J)
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is the barycenter of the feasible set of (5.1)).
It remains to show that

dim (range ([U ® e, e, ®U])) =2(n—1).
To see this, we choose the square submatrix of size 2n — 1 associated to
rows: {kn|k=1,...,n—1}U{n(n—1)+1,...,n* —=1}; cols: {1,...,n—1}U{n+1,...,2n}.

It has the form

1
— (n] — 2(n—1).
\/ﬁ(n J)eS

This square submatrix clearly has rank 2(n — 1), and thus the statement follows. O

Let us now derive an exposing vector of the SDP relaxation ([5.1)) ignoring the nonnegativity,
as we have shown we can add the nonnegativity on after the reductions.

Lemma 5.3. Consider (b.1) without the nonnegativity constraints. Then
W =1, ®nJn + Jp ® (nl, — 2J,) € Ag C 8™, (5.3)
and is an exposing vector of rank 2(n — 1) in Ag.

Proof. Let U be defined as in Lemma [5.2l Using the properties of the Kronecker product, we
have

0=XW= [U®e, U] [URey 6n®U]T
= UUHeJ+Je UUT
= mI-N)@J+J® (nl-J)
= I®nJ+J®(nl—-2J),

as UUT = nI — J. From Lemma we have W is an exposing vector of rank 2(n — 1). Let P
be any permutation matrix of order n. Then PT(UUT)P = UUT by construction. We now have
(P, ® P)TW (P, ® Py) = W, for any Pi, P, € II; and thus W € Ag. O

(5.4)

In the rest of this section we show how to do FR for the symmetry reduced program of (5.1]).
We continue to add on nonnegativity constraints to SDP relaxations as discussed above. The
facially reduced formulation of (5.1]) is also presented in [59]. We state it here for later use.

Lemma 5.4 ( [59]). The facially reduced program of the doubly nonnegative, DNN (5.1]) is
given by
min (VI (A® B)V),R)
s.t. (VIJV,R) =n?
G(VRVT) =0 (5.5)
VRVT >0
2
Rc Sin—l) —4-17
where, by abuse of notation, G : 8™ — 8" is a linear operator defined by G(Y) := (J — (I ®

(J=I)+(J—=1)®1))oY [} and the columns of V € R™*(=D**+1 form 4 basis of the null space
of W, see Lemma[5.5

"We use G as the group and as a linear operator, usually referred to as the gangster operator, since the meaning
is clear from the context. Here o denotes the Hadamard product.
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Note that the constraints (I ® Ey;,Y) =1 and (E; ® I,Y) = 1 have become redundant after
FRin .

We now discuss the symmetry reduced program. The symmetry reduced formulation of
is studied in [16]. We assume that the the automorphism group of the matrix A is non-trivial.
To simplify the presentation, we assume

d
A = Z aiAi,
i=0
where {Ay, ..., Aq} is the basis of the commutant of the automorphism group of A. For instance
the matrices A; (i = 0,1,...,d) may form a basis of the Bose-Mesner algebra of the Hamming

scheme, see Example Further, we assume from now on that Ag is a diagonal matrix, which
is the case for the Bose-Mesner algebra of the Hamming scheme. Here, we do not assume any
structure in B. However the theory applies also when B has some symmetry structure and/or
Ap is not dlagonal see our numerical tests for the mlnlmum cut problem in Section [5.2] below.
If the SDP has an optimal solution Y & S_’,f , then it has an optimal solutlon of the
form YV = Z?:o Al ® Y;, for some matrix variables Yy, ..., Yy € R ™ see Section We write

these matrix variables in a more compact way as y = (vec(Yp), ..., vec(Yy)), if necessary. Denote
by Bji(y) € S* the k-th block of the block-diagonal matrix

d

B(y) = (QeN'Y(Qel) =) (QTAQ) oY, (5.6)

i=0
where @ is the orthogonal matrix block-diagonalizing A; (i =0, ...,d).
Lemma 5.5. The symmetry reduced program of the DINN relaxation s given by
min Z;'i:o a; trace(A; A;) trace(BY;)
s.t. Z?:o trace(J A;) trace(JY;) = n?
offDiag(Yp) =0

diag(¥;) =0,i=1,...,d (5.7)
diag(Yp) = Len

Y;>0,j=0,....d

Bi(y) € ST k=1,....t,

where BZ(y) is the k-th block from 1) and offDiag(Yy) = 0 is the linear constraints that the
off-diagonal elements are zero.

Proof. See e.g., |1559]. O

It remains to famally reduce the symmetry reduced program . Note that W & Ag can
be written as W = Z¢ o Ai ® W, for some matrices Wy, ..., Wy € R"X”. Theorem [3.6| shows
that the block-diagonal matrix

d

Wi=@QeN'WQel) =1 (Q"AQ oW, (5.8)

1=0

is an exposing vector of the symmetry reduced program 1D Further, we denote by Wk
(k=1,...,t) the k-th block of W. Let us illustrate this with Example
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Example 5.6. Consider Example where A; (i =0,...,d) form a basis of the Bose-Mesner
algebra of the Hamming scheme. Then, the exposing vector W € Sf defined in Lemma E can

be written as W = Z?:o A; @ W;, where
Wo=(n—-2)J+nl and W; =nl, —2J fori=1,...,d. (5.9)

Let Wk € 8™ be the k-th block of W, see l) Then there are d + 1 distinct blocks given by
Wk = Z?:o pipW; € 8™ for k=0,...,d, where p;}, are elements in the character table P of the
Hamming scheme, see FExample . Using the fact that Pe = (n,0,... ,O)T and p1 = 1, for
every k =0,...,d, we have

Wozrﬂl—nj (dek:anorkzzl,...,d, (5.10)
and the matrices Vi, whose columns form a basis of the null space of Wk € 8", are given by

Vo =en and Vi = [ Infl ] e R fork=1,....d. (5.11)

n—1
Similar results can be derived when one uses different groups. Now we are ready to present

an SDP relaxation for the QAP that is both facially and symmetry reduced.

Proposition 5.7. The facially reduced program of the symmetry reduced DN N relazation (5.7))
s given by
min 2% | a; trace(A; 4;) trace( BY;)

s.t. Z?:o trace(J 4;) trace(JY;) = n?
offDiag(Yp) =0
diag(Y;) = 0,i=1,....d (5.12)
Y;>0,j=0,....d
Br(y) = VeRVT k= 1.t
RoeStk=1,... ¢

Here, the columns of Vi, € R™*™ form a basis of the null space of the Wk e S".

Proof. Applying Theoremto the block-diagonal matrix (QRI)TW (Q®1) = Z‘-i: (QTA;Q)®
W;, the matrices Wk are the exposing vectors of the symmetry reduced program , and thus
WkBZ(y) = 0 for every k = 1,...,t. This means that there exists a full column rank matrix
Vi € R™*": guch that lg’;;(y) = VkRkaT, where Ry € Si;“ for every k = 1,...,t. Finally,
we apply Corollary to remove redundant constraints, see also Lemma [5.4] This yields the
formulation . O

Note that in the case that the basis elements A; (i = 0, ..., d) belong to the Hamming scheme,
see Example it follows that ¢t = d + 1 in the above Proposition [5.7
5.1.2 On solving QAP with ADMM

Now we discuss how to use ADMDM to solve the DNN relaxation ([5.12)), for the particular case
when A; (i =0,1,...,d) form a basis of the Bose-Mesner algebra of the Hamming scheme. We
proceed as in Section [ and exploit properties of the known algebra, see Example Clearly,
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for any other algebra we can proceed in a similar way. We assume without loss of generality that
all the matrices V] in this section have orthonormal columns.

First, we derive the equivalent reformulation of the DINN relaxation , by exploiting
the following.

(1) Since we remove the repeating blocks of positive semidefinite constraints, to apply ADMM we
have to reformulate the DNN in such a way that Assumption [4.1] is satisfied. Let us first
derive an expression for the objective function as follows.

trace((A® B)Y) = trace (Q® )" (XLgaidi ® B)(Q® D(Q® 1) (] A © Y)(Q® 1))

= trace (( S (QTa;AQ) ® B)( Z?:o(QTAjQ) ® YJ))
= Yot trace (X aipieB) (X 0—o pikY5))
= (s 1 g PikY3),

where Cj, = 1/,LL;.C(Z?:Oaipi,k)B. Recall that p = () € R with py = (Z)(q -
1)k. Then, we multiply the coupling constraints B;(y) = V;R;V;T by the square root of
its multiplicities. Thus, for the Bose-Mesner algebra, we end up with |, /uj(Z?:o pi;Yi —
BT

ViR;Vi) = 0.

(2) In many applications, it is not necessary to compute high-precision solutions, and the
ADMM can be terminated at any iteration. Then, one can use the dual variable Z; from
the current iteration to compute a valid lower bound, see Lemma[5.9] By adding redundant
constraints, this lower bound is improved significantly when the ADMM is terminated with
low-precision. Therefore we add the following redundant constraints

1 .
Yo=—1, trace(R;)= /l;po; for j =0,...,d. (5.13)
n
To see the redundancy of the last d+ 1 constraints above, we use the fact that the columns
of V; are orthonormal, and that diag(Y;) = 0,7 =1,...,d, to derive

d
trace(R;) = trace(VjRjV}T) = trace ‘/'“’j(z Pi;Yi) = \/1Po ;-
=0

This technique can also be found in [26}35L43,47].

We would like to emphasize that the techniques above are not restricted to the Bose-Mesner
algebra of the Hamming scheme. Let us present our reformulated DININ relaxation for ADMM .
Define

Pi= (Yo Ya) | Sy ()0 — 1ig trace(Y;) = n?,

(5.14)
Yo =31, diag(¥;) =0,Y; 20, i =1,....d},

and ~ ~ - . -
R :={(Ro,..., Ra) | trace(R;) = \/iijpo,j, Ri € S}, i=0,....d}. (5.15)

We obtain the following DINN relaxation for our ADMM .

. : d A d
P = min Zj=0<cj’ \//TjZi:O p%]}/;)
s.t. (YO,...,Yd)eP

(5.16)

(Ro,...,Rd) cER
\/lLTj(Z?:opi,jY; — Vjﬁijf/jT) =0,7=0,...,d.
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The augmented Lagrangian is
O d - d . O
LV R, Z) = Y ((Co /I S i) + (Z, VI g pigYs = Vit V)
d o
5V piaYs = VR VTIE).
The Y-subproblem, the R-subproblem and the dual update are represented below.
1. The Y-subproblem:
. oS Ci+2;
min Y5 (|G il pigYs = VEGViR VI + S5
st Yp=1I
diag(Y;) =0, i=1,...,d (5.17)
S o (9(g — 1)iq% trace(JY;) = n?
Y; >0,i=0,...,d
2. The R-subproblems, for j =0,...,d:

. 5 > d Zi \T
min || R; — V}T<Zi=opi,jyé + W%J)VJHQ

~ " (5.18)
s.t. Rj € S+].
3. Update the dual variable:
~ ~ d ~ ~ ~
Z; = Zi+ 8y (O _pigYi— ViRVI), i=0,....d. (5.19)
i=0

Clearly, the R-subproblems can be solved in the same way as 1’ To see that the Y-
subproblem can also be solved efficiently, let us show that it is a problem of the form , and
thus satisfies Assumption

Let )\j = (p07j, e ,pd,j)T,

vee(Yp) vec(y/oVoRo Vg — 20
y=1 and g = :
vec(Yy) vec(y/taVaRaV{ — LEZd)
Define the linear transformation 7* : R@+1n* _y R(d+1)n? by
Vio(AS @ I,2)
T (y) = : Y.
1//,Ld()\g & Inz)

Lemma 5.8. The Y -subproblem (5.17) is equivalent to the following projection to the weighted
simplex problem
min |7 (y) — ||
s.t. y;=0,1€l
2
wTy = n? (5.20)

y >0,

where w = ¢4 (u ® e,2) € R(d+1)”2, and I contains the indices of y associated to the off-diagonal
entries of Yy. Furthermore, the problem (5.20)) satisfies Assumption .
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Proof. One can verify that (5.17) and (5.20) are equivalent. Furthermore, it holds that
T
v Ho (>\0T ®In2) vV ,u()()‘(j)1 ®In2)
T(T*(y) = : : y
,/ud()\g@)[,p) ‘/,U,d(/\g®fn2)
d T
— (SlomO @ 1) O 91,2) )
= (g mAAT) @ L2 ).
Applying the orthogonality relation of the Krawtchouk polynomial (2.7, the (r, s)-th entry of

S o i MAT i S0 piprpsg = 444 (q=1)%6rs = qlpsdrs forrs =0, d. Thus T(T*(y)) =
Diag(w)y and Assumption [4.1|is satisfied. O

To efficiently solve the Y-subproblem for the QAP , we use Algorithm [£.3] Finally we de-
scribe how to obtain a valid lower bound when the ADMM model is solved approximately. The
important problem of getting valid lower bounds from inaccurate solvers is recently discussed
in [19].

Lemma 5.9. Let P be the feasible set defined in (5.14), and consider the problem in (5.16)).
For any Z = (Zy, ..., Z3), the objective value

Z) = min d Ci+ Z;, S Y =S o i VIZ.V;
9(2) ) (Zo,---,Yd)EPZJ0< J 71/ M > im0 PigYi) Z],0N]p07j max j 43 i) (5.21)
>~ P,

i.e., it provides a lower bound to the optimal value p* of (/5.16]).
Proof. The dual of 1| with respect to the constraints , /,uj(Zf:O DijYi — V,RJY%T) =0is

. : d A d > d R

d* = S i > 5—olChis G im0 Pig Yi) + (2, G (i PigYi — ViR V).
O Rov Ra)ER

(5.22)

The inner minimization problem can be written as

: d A& 5 d : d 5 5 B T
L O+ 7. S Y A (VR VTY).
(Yo,.r.?gil)ep 23:0< §+ 45, \/IT]ZZ:()P JYi) + (1:20,?}%2)672 Z],0< J \/lTJ( gV ) (5.23)

It follows from the Rayleigh Principle, that the optimal value of the second minimization problem
is — Z}i:o ,u,jpo,j)\maX(VjTZjVj). Using strong duality, we have g(Z) < d* = p*. O

5.1.3 Numerical results for the QAP

In this section we provide numerical results on solving the facially and symmetry reduced
DNN relaxation ([5.12). We first present our general stopping conditions and tolerances in Def-
inition [5.10)

Definition 5.10 (tolerances, stopping conditions). Given a tolerance parameter, €, we terminate
the ADMM when one of the following conditions is satisfied.

e The primal and dual residuals are smaller than €, i.e.,

d d
pres = Z I Zpi,jY; - V,R]f/jTH < e and dres == ||Z° — Z"|| < e.
j=0 =0
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o Let pi be the ADMM objective value, and dy := g(Z) the dual objective value at some
dual feasible point at the k-th iteration, see (b.21)). If the duality gap is not improving
significantly, i.e.,

gap — D100k — d100k

1+ p1ook + d100k
for 20 consecutive integers k, then we conclude that there is stagnation in the objective
value. We measure the gap only every 100-th iteration due to the expense of computing the
dual objective value dy.)

<1074,

In our QAP experiments, we use € = 1072 if n < 128, and € = 107® when n = 256, 512.
The objective value from the ADMM is denoted by OBJ, and the valid lower bound obtained
from the dual feasible solution is denoted by LB, see Lemma [5.9] The running times in all
tables are reported in seconds. We also list the maximum of the primal and dual residuals, i.e.,
res := max{pres, dres}. If a result is not available, we put - in the corresponding entry.

1. The first set of test instances are from Mittelmann and Peng [41], where the authors
compute SDP bounds for the QAP with A being the Hamming distance matrix. Choices
of the matrix Bﬁ differ for different types of instances. In particular, in the Harper instance
Harper_n where n = 2¢ we set B;; = |i — j| for all 4,5 = 1,...,2% Further engl_n and
end9_n with n = 2%, d = 4,...,9 refer to the engineering problems, and VQ_n instances
have random matrices B. For details see [41]. In rand_256 and rand_-512 instances, A is
the Hamming distance matrix of appropriate size and B is a random matrix.

Table (.1 reads as follows. In the first column we list the instance names where the sizes
of the QAP matrices are indicated after the underscore. Upper bounds are given in the
column two. For instances with up to 128 nodes we list the upper bounds computed in [41],
and for the remaining instances we use our heuristics. Since data matrices for the Harper
instances are integer, we round up lower bounds to the closest integer. In the column
three (resp. four) we list SDP -based lower bounds (resp. computation times in seconds)
from [41]. The bounds from [41] are obtained by solving an SDP relaxation having several
matrix variables on order n. The bounds in [41] were computed on a 2.67GHz Intel Core 2
computer with 4GB memory. In the columns five to seven, we present the results obtained
by using our ADMM algorithm.

Table [5.1] shows that we significantly improve bounds for all engl_n and eng9.n instances.
Moreover, we are able to compute bounds for huge QAP instances with n = 256 and
n = 512 in a reasonable amount of time. Note that for each instance from Table [5.1] of size
n = 2% the DNN relaxation boils down to d + 1 positive semidefinite blocks of order n.
Clearly, there are no interior point algorithms that are able to solve such huge problems.

8We thank Hans Mittelman for providing us generators for the mentioned instances.
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MP [41] ADMM

problem UB LB time OBJ LB time res.
Harper_16 2752 2742 1 2743 2742 1.92 4.50e-05
Harper_32 27360 27328 3 27331 27327 9.70 1.67e-04
Harper_64 262260 262160 56 262196 261168 36.12 1.12e-05
Harper_128 2479944 2446944 1491 2446800 2437880 186.12  3.86e-05
Harper_256 22370940 - - 22369996 22205236 432.10  9.58e-06
Harper_512 201329908 - - 201327683 200198783 1903.66  9.49e-06
engl_16 1.58049 1.5452 1 1.5741 1.5740 2.28 3.87e-05
engl_32 1.58528 1.24196 4 1.5669 1.5637 14.63 5.32e-06
engl_64 1.58297 0.926658 56 1.5444 1.5401 38.35 4.69e-06
engl_128 1.56962 0.881738 1688 1.4983 1.4870 389.04  2.37e-06
engl_256 1.57995 - - 1.4820 1.3222 971.48  9.95e-06
engl 512 1.53431 - - 1.4553 1.3343 9220.13  9.66e-06
eng9_16 1.02017 0.930857 1 1.0014 1.0013 3.58 2.11e-06
eng9_32 1.40941 1.03724 3 1.3507 1.3490 12.67 3.80e-05
eng9_64 1.43201 0.887776 68 1.3534 1.3489 74.89 6.60e-05
eng9_128 1.43198 0.846574 2084 1.3331 1.3254 700.27  8.46e-06
eng9_256 1.45132 - - 1.3152 1.2610 1752.72  9.74e-06
eng9.512 1.45914 - - 1.3074 1.1168 23191.96  9.96e-06
VQ_32 297.29 294.49 3 296.3241 296.1351 11.82 1.27e-05
VQ_64 353.5 352.4 45 352.7621 351.4358 43.17 4.22e-04
VQ-128 399.09 393.29 2719 398.4269 396.2794 282.28  6.19e-04
rand_256  126630.6273 - - 124589.4215 124469.2129  2054.61  3.78e-05
rand_512  577604.8759 - - 570935.1468 569915.3034  9694.71  1.32e-04

Table 5.1: Lower and upper bounds for different QAP instances.

2. The second set of test instances are Eschermann, Wunderlich, esc, instances from the
QAPLIB library [9]. In esc_nx instance, the distance matrix A is the Hamming distance
matrix of order n = 2%, whose automorphism group is the automorphism group of the
Hamming graph H(d,2). In [15] the authors exploit symmetry in esc instances to solve
the DINN relaxation by the interior point method. That was the first time that
SDP bounds for large QAP instances were computed by exploiting symmetry. In particular,
the authors from [15] needed 13 seconds to compute the SDP bound for esc64a, and 140
seconds for computing the esc128 SDP bound, see also Table The bounds in [15] are
computed by the interior point solver SeDuMi [57] using the Yalmip interface [38] and
Matlab 6.5, implemented on a PC with Pentium IV 3.4 GHz dual-core processor and 3GB
of memory. Computational times in [15] include only solver time, not the time needed for
Yalmip to construct the problem.

In [43] the authors approximately solve the DININ relaxation using the ADMM algorithm,
but do note exploit symmetry. Here, we compare computational results from [43] with the
approach we present in this paper. All the instances from [43] were tested on an Intel Xeon
Gold 6130 2.10 Ghz PC with 32 cores and 64 GB of memory and running on 64-bit Ubuntu
system.

An efficient solver, called SDPNAL+, for solving large scale SDPsis presented in [58}/67].
SDPNAL+ implements an augmented Lagrangian based method. In particular, the imple-
mentation in [67] is based on a majorized semismooth Newton-CG augmented Lagrangian
method, and the implementation in [58] is based on an inexact symmetric Gauss-Seidel
based semi-proximal ADMM. In [58,|67], the authors present extensive numerical results
that also include solving on various instances from the QAPLIB library [9]. How-
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ever, they do not perform FR and SR.. In Table we include results from for solving
esc_nx, with n = 16,32. There are no results for n = 64,125 presented in their paper.
Moreover the authors emphasize that SDPNAL+ is for solving SDPs where the maximum
matrix dimension is assumed to be less than 5000. Due to the use of different computers,
the times in Table are not comparable. For example, the authors from use an Intel
Xeon CPU E5-2680v3, 2.50 GHz with 12 cores and 128 GB of memory.

In Table we present the numerical result for the esc instances. In particular, we
compare bounds and computational times of the relaxation (5.1) (no reductions, solved
in [58]), the facially reduced relaxation (solved in [43]), the symmetry reduced relax-
ation (solved in [15]), and facially and symmetry reduced relaxation (solved
by our ADMM).

We conclude that:

1. There are notably large differences in computation times between the ADMM algorithm

presented here and the one from [43], since the latter does not exploit symmetry.

. With respect to computational time, our ADMM algorithm outperforms SDPNAL+
for all instances.

. In , the authors use SeDuMi to solve a relaxation equivalent to the symmetry reduced
program ; and they obtain a LB 53.0844 for esc128. However, the bounds for this
instance for the facially and symmetry reduced program computed by the Mosek
interior point method solver is 51.7516; and our ADMM algorithm reports 51.7518. This
illustrates our improved numerical accuracy using FR and SR, and validates the statements
about singularity degree, see Section[3.4] We note in addition that we provide a theoretically
guaranteed lower bound, as well as solve huge instances that are intractable for the approach

in [15).
SDPNAL+ STYZ ﬂ58ﬂ ADMM OWX ﬂ43ﬂ SDP KS ﬂ15ﬂ ADMM
inst. opt LB time LB time LB time OBJ LB time res
escl6a 68 63.2750 16 64 20.14 63.2756 0.75 63.2856 63.2856 2.48 1.17e-11
escl6b 292 | 289.9730 24 290 3.10 289.8817 1.04 290.0000  290.0000 0.78 9.95e-13
escléc 160 | 153.9619 65 154 8.44 153.8242 1.78 154.0000  153.9999 2.11 2.56e-09
escl6d 16 13.0000 2 13 17.39 13.0000 0.89 13.0000 13.0000 1.04 9.94e-13
esclbe 28 26.3367 2 27 24.04 26.3368 0.51 26.3368 26.3368 1.21 9.89%e-13
escl6f 0 - - 0 3.22e+-02 0 0.14 0 0 0.01 2.53e-14
esclég 26 24.7388 4 25 33.54 24.7403 0.51 24.7403 24.7403 1.40 9.95e-13
escl6h 996 | 976.1857 10 977 4.01 976.2244 0.79 976.2293  976.2293 2.51 7.73e-13
escl6i 14 11.3749 6 12 100.79 11.3749 0.73 11.3749 11.3660 6.15 2.53e-06
escl6j 8 7.7938 4 8 56.90 7.7942 0.42 7.7942 7.7942 0.21 9.73e-13
esc32a 130 | 103.3206 333 104 2.89e+03 103.3194 114.88 | 103.3211 103.0465 12.36  3.62e-06
esc32b 168 | 131.8532 464 132 2.52e+03 131.8718 5.58 131.8843 131.8843 4.64 9.59%e-13
esc32c 642 | 615.1600 331 616 4.48e+-02 615.1400 3.70 615.1813  615.1813 8.04 2.05e-10
esc32d 200 | 190.2273 67 191 8.68e+4-02 190.2266 2.09 190.2271  190.2263 5.86 7.45e-08
esc32e 2 1.9001 149 2 1.81e+4-03 - - 1.9000 1.9000 0.70 4.49e-13
esc32f 2 - - 2 1.80e+03 - - 1.9000 1.9000 0.76 4.49e-13
esc32g 6 5.8336 65 6 6.04e4-02 5.8330 1.80 5.8333 5.8333 3.50 9.97e-13
esc32h 438 | 424.3256 1076 425 3.02e+4-03 424.3382 7.16 424.4027  424.3184 5.89 1.03e-06
esc64a 116 - - 98 1.64e+04 97.7499 12.99 97.7500 97.7500 5.33 8.95e-13
escl28 64 - - - - 53.0844  140.36 | 51.7518 51.7518  137.71 1.18e-12

Table 5.2: Esc instances (times with different computers).
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5.2 The graph partition problem (GP)

The graph partition problem is the problem of partitioning the vertex set of a graph into a
fixed number of sets of given sizes such that the sum of edges joining different sets is minimized.
The problem is known to be NP-hard. The GP has many applications such as VLSI design,
parallel computing, network partitioning, and floor planing. Graph partitioning also plays a
role in machine learning (see e.g., [34]) and data analysis (see e.g., [46]). There exist several
SDP relaxations for the GP of different complexity and strength, see e.g., [30,52./53},62./66].

5.2.1 The general GP

Let G = (V, E) be an undirected graph with vertex set V, |V| = n and edge set E, and k > 2
be a given integer. We denote by A the adjacency matrix of G. The goal is to find a partition
of the vertex set into k (disjoint) subsets Si,..., Sk of specified sizes m; > ... > my, where
Zle m; = n, such that the sum of weights of edges joining different sets .S; is minimized. Let

Py = {S:(Sl,...,Sk)|SiCV,|Si|:mi,Vi, SinS;=0,ij, UQ?:IS,-:V} (5.24)

denote the set of all partitions of V' for a given m = (myq, ..., my). In order to model the GP in
binary variables we represent the partition S € P, by the partition matrix X € R™** where the
column j is the incidence vector for the set S;.

The GP can be stated as follows

1
in - AX(J, — ) XT
Xrg/l\fllm 5 trace(AX (Jx — I;) X" ),

where
My = {X € {0,1}* | Xep =e,, XTe, =m} (5.25)

is the set of partition matrices.
Here, we consider the following DININ relaxation that is equivalent to the relaxation from [66]:

min 1 trace (A ® B)Y)

st. GgY)=0
trace(D1Y) — 2(e, ® e;,)T diag(Y) +n =0
trace(DoY) — 2(e, @ m)T diag(Y) +mTm =0

Do (Y) = Diag(m) (5.26)
D(Y)=e
(J,Y) =n?
Y >0,Y =0,
where B = J;, — I, and
yan o y@n)
Y == : T . : G Skn
y®) o y®n)

with each Y (@) being a k x k matrix, and

Dy =I,® Jk
Dy =J,®1I
DoY) =31 Yiesk
D.(Y) = (traceY?®) ¢ R"
GY) =Un® (Jr — It),Y).
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To compute DNN bounds for the GP , we apply FR for symmetry reduced relaxation ([5.26]).
The details are similar to the QAP , and thus omitted.

We present numerical results for different graphs from the literature. Matrix canl61 is from
the library Matrix Market [4], matrix grid3dt5 is 3D cubical mesh, and gridtzz matrices are 2D
triangular meshes. Myciel7 is a graph based on the Mycielski transformation and 1_Fulllns 4
graph is a generalization of the Mycielski graph. Both graphs are used in the COLOR02 sympo-
sium [2§].

1. In Table[5.3] we provide information on the graphs and the considered 3-partition problems.
In particular, the first column specifies graphs, the second column provides the number of
vertices in a graph, the third column is the number of orbits after symmetrization, the
fourth column lists the number of blocks in QT AQ. Here, the orthogonal matrix Q is
computed by using the heuristic from [15]. The last column specifies sizes of partitions.

instance | |V| | # orbits blocks of A m

1 Falllns 4 | 93 | 3629 (53.27,9,3.1) (30,31,32)
canl6l | 161 | 921 | (20,20,20,20,20,20,20,11,10) | (52,53,56)
orid3dt5 | 125 | 4069 (39,36,26,24) (40,41,44)
gridtl5 | 120 | 2432 (80,24,16) (39,40,41)
gridt17 | 153 | 3942 (102,30,21) (50,51,52)
myciel7 | 191 | 6017 (64,64,63) (62,63,66)

Table 5.3: Graphs and partitions.

2. Table lists lower bounds obtained by using Mosek and our ADMM algorithm. The
table also presents computational times required to compute bounds by both methods
as well as the number of interior point method iterations. The results show that the
ADMM with precision € = 1072 provides competitive bounds in much shorter time than
the interior point method solver. In Table some instances are marked by . This
means that our 64GB machine did not have enough memory to solve these instances by the
interior point method solver, and therefore they are solved on a machine with an Intel(R)
Xeon(R) Gold 6126, 2.6 GHz quad-core processor and 192GB of memory. However, the
ADMM algorithm has much lower memory requirements, and thus the ADMM is able to
solve all instances from Table [5.4 on the smaller machine.

IPM (Symmetry
&Facially reduced)
instance LB time iter. OBJ LB time res
1 Fulllns 4 | 194.2825 311.95 26 194.2686 194.0523  141.29 1.50e-01
canl6l 33.0151 124.32 19 33.0392 30.4470 19.74  2.58e-01
grid3dtb 68.3175 245.65 17 68.3029 68.0436 200.35 2.02e-01
gridt15 12.1153 1302.10 41 12.1116 11.3654 97.17  1.91e-01
gridt17* 12.2482 1865.67 21 12.2532 11.1459 357.53  1.80e-01
myciel7* | 1126.0309 2579.65 17 | 1126.0385 1123.8526 553.67 9.50e-02

ADMM (e = 10-%)

Table 5.4: Numerical results for the graph 3-partition.

5.2.2 The vertex separator problem (VSP) and min-cut (MC)
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The problem of partitioning the vertex set of a graph into k subsets of given sizes in order
to minimize the number of edges between the first £ — 1 partition sets is known as the min-
cut problem. The MC problem is a special instance of the general GP but also arises as a
subproblem of the vertex separator problem. The vertex separator problem is to find a subset
of vertices (called vertex separator) whose removal disconnects the graph into k£ — 1 components.
This problem is NP-hard.

The vertex separator problem was studied by Helmberg, Mohar, Poljak and Rendl [25], Povh
and Rendl [48], Rendl and Sotirov [50], Pong, Sun, Wang, Wolkowicz [47]. The VSP appears in
many different fields such as VLSI design [3] and bioinformatics [20]. Finding vertex separators
of minimal size is an important problem in communication networks [33] and finite element
methods [40]. The VSP also appears in divide-and-conquer algorithms for minimizing the work
involved in solving systems of equations, see e.g., [36,[37].

The VSP is closely related to the following graph partitioning problem. Let 6(.S;, S;) denote
the set of edges between S; and S;, where S; and S are defined as in . We denote the set
of edges with endpoints in distinct partition sets Si,...,S5;_1 by

0(S) = Uicj<k0(Ss, S;).

The min-cut problem is
cut(m) = min{|6(S)|| S € P, }.

The graph has a vertex separator if there exists S € P, such that after the removal of Sj the
induced subgraph has no edges across S; and S; for 1 <1 < j < k. Thus, if cut(m) = 0 or
equivalently §(S) = (), there exists a vertex separator. On the other hand cut(m) > 0 shows that
no separator Sy for the cardinalities specified in m exists.

Clearly, |0(S)| can be represented in terms of a quadratic function of the partition matrix X,
i.e., as & trace(AX BXT) where

N Ik=1 =11 O k
B:= [ 0 0] € S”. (5.27)

Therefore,

1
= min — AXBXT
cut(m) Zin 5 trace( )
where M,, is given in (5.25). To compute DINN bounds for the MC problem and provide
bounds for the vertex separator problem, we use the DNN relaxation ([5.26)) with B defined as

in (E27)

1. We present numerical results for the Queen graphs, where the n x n Queen graph has the
squares of an n x n chessboard for its vertices and two such vertices are adjacent if the
corresponding squares are in the same row, column, or diagonal. The instances in this class
come from the DIMACS challenge on graph coloring. In Table we provide information
on the Queen graphs. The table is arranged in the same way as Table
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instance |V| | # orbits blocks of A m
queens 5 | 25 91 (12,6,3,3,1) (4,5,16)
queen6._6 | 36 171 (18,6,6,3,3) (6,7,23)
queen7_7 | 49 325 (24,10,6,6,3) (9,9,31)
queen8.8 | 64 528 (32,10,10,6,6) | (11,12,41)
queen9 9 | 81 861 (40,15,10,10,6) | (14,15,52)
queenl0_10 | 100 1275 (50,15,15,10,10) | (18,18,64)
queenll 11 | 121 | 1891 | (60,21,15,15,10) | (21,22,78)
queenl2_12 | 144 | 2628 | (72,21,21,15,15) | (25,26,93)
queenl3_13 | 169 | 3655 | (84,28,21,21,15) | (30,30,109)

Table 5.5: The Queen graphs and partitions.

2. In Table we provide the numerical results for the vertex separator problem. More

specifically, we are computing the largest integer mg such that the solution value of the
DNN relaxation ([5.26]) is positive with partition

n—ms, -N—ms

m = (T [ ) (5.25)

Then m3 + 1 is a lower bound for the vertex separator problem with respect to the choice
of m. One may tend to solve for all possible mg3 between 0, 1,...,|V|—1 to find the
largest mg for which the DININ bound is positive. However, the optimal value of is
monotone in mg, and thus we find the appropriate mgs using binary search starting with
m3 = [5]. We present the lower bound on the vertex separator, i.e., m3 + 1 in the third
column of Table The total number of problems solved is listed in the fourth column
of the same table. The running time given in the last two columns is the total amount of
time used to find a positive lower bound for for some m3 by using Mosek and our
ADMM algorithm, respectively. This task is particularly suitable for the ADMM, as we
can terminate the ADMM once the lower bound in an iterate is positive. For example, it
takes 786 seconds to solve the min-cut relaxation on queen12_12 by Mosek, see Table
However, though not shown in the table, it takes ADMM only 120 seconds to conclude
that the optimal value is positive.

instance V| | ms+1 | #problems IPM (Symmetry.&Facially reduced) ADMM.(e =10"1?)
time time
queen 5.5 25 17 4 7.49 2.69
queen 6_6 36 24 5 9.62 2.91
queen 7.7 49 32 ) 25.34 5.95
queen 8_8 64 42 6 85.72 34.35
queen 9.9 81 53 6 304.44 64.10
queen 10_10 | 100 65 7 1309.85 131.66
queen 1111 | 121 79 7 3416.01 387.38
queen 1212 | 144 94 7 6147.20 671.02
queen 1313 | 169 110 8 - 1352.17

Table 5.6: The vertex separator problem on the Queen graphs.

3. In Table we compare bounds and computational times required to solve, for fixed m,

symmetry reduced DNN relaxation ([5.26]) by the interior point algorithm, as well as sym-
metry and facially reduced relaxation (5.26]) by using Mosek and our ADMM algorithm.

38



IPM IPM (Symmetry 19
(Symmetry reduced) &Facially reduced) ADMM (e = 107)
instance LB time iter. LB time  iter. | OBJ LB time res
queend_d 0.0908 1.04 38 | 0.1658 0.27 10 | 0.1658 0.1658 6.88 7.36e-11
queen6_6 0.0962 3.43 31 | 0.1411 0.91 11 | 0.1411 0.1411 11.37 1.83e-10
queen7_7 | 0.5424 15.42 32 | 0.6196 1.92 10 | 0.6196 0.6196 17.97  5.53e-11
queen88 | 0.1967 127.60 39 | 0.3087  7.38 13 | 0.3087 0.3087  61.50  1.15¢-10
queen9_9 0.0698  377.77 32 | 0.2175  19.98 12 | 0.2175 0.2175 204.39  1.16e-06
queenl0_10 | 0.8159 1664.09 42 1.0211  85.42 14 1.0211  1.0211  239.75  1.09e-09

queenll_11 - - - 0.2131 27520 16 | 0.2131 0.2131 877.85  1.82e-05
queenl2_12 - - - 0.3248 786.12 25 | 0.3248 0.3248 1474.45 1.20e-06
queenl3_13 - - - - - - 0.9261 0.9261 1864.30 5.71e-09

Table 5.7: The min-cut problem on the Queen graphs.

We conclude from Tables 5.6 and 5.1 that

e For small instances, the interior point algorithm is faster than the ADMM as shown in Ta-
ble[5.7 For larger instances, the interior point algorithm has memory issues. However, the
ADMM algorithm can still handle large instances due to its low memory demand.

e To obtain bounds on the vertex separator of a graph, one does not need to solve the
DNN relaxation to high-precision. The ADMMis able to exploit this fact, and find a
lower bound on the size of the vertex separator in significantly less amount of time than
the interior point algorithm, see Table

e The symmetry reduced program without FR is heavily ill-conditioned, and the interior
point method is not able to solve it correctly for any of the instances. The running time is
also significantly longer than the symmetry and facially reduced program, see Table

Note that we have solved the queen10_10 problem with high accuracy with FR . The dis-
tance between the optimal solutions in norm was very large with no decimals of accuracy.
This emphasizes the importance of FRin obtaining accuracy in solutions, see e.g., [54].

6 Conclusion

In this paper we propose a method to efficiently implement facial reduction to the symmetry
reduced SDP relaxation, and we demonstrated the efficiency by solving large scale NP-hard
problems. More specifically, if an exposing vector of the minimal face for the input SDP is given,
then we are able to construct an exposing vector of the minimal face for the symmetry reduced
SDP. The resulting relaxation is symmetry reduced, satisfies the Slater condition, and thus can
be solved with improved numerical stability.

We then extend our reduction technique to doubly nonnegative, DNN, programs. In fact, our
approach allows for the vector nonnegativity from the original SDP, to be passed to simple vector
nonnegativity for the DNN. Again we exploit exposing vectors of DNN as a decomposition into
a sum of a semidefinite and nonnegative exposing vectors. Further, we discuss the importance
of the order of the reductions in our theory. We also show that the singularity degree of the
symmetry reduced program is no greater than the original program.

We apply our technique to many combinatorial problems and their DNN relaxation, i.e., we
facially and symmetry reduce them. The obtained relaxations can be solved extremely efficiently
using the alternating direction method of multipliers. We also show that interior point methods
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are more efficient on a symmetry and facially reduced relaxation. As a result, we are able to
compute improved lower bounds for some QAP instances in significantly less time.
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Index

Ag, gommutant, [o]
=b]

PR e
E; = ulu;f,
F <K, face,
J, matrix of all ones, [0]
Nn, symmetric nonnegative, [I3]
P, polyhedral constraints on =,
Blkdiag, block diagonal,
DNN" =~ DNN, DNN cone, [
Fx, feasible set, []
Fu, feasible set with z, ]
g, group of permutation matrices, [6]
G, gangster operator, @
Pr, feasible problem, [4]
Pr,, feasible problem, [J]
II, permutation matrices order n,
Rg(X), Reynolds operator, (6}
S., feasible set with B*(z),
S™, symmetric matrices,
S?, positive semidefinite cone,
aut(A), automorphism group of A,
blkdiag, adjoint of Blkdiag, [12]
dr,s, Kronecker delta, [7]
dist, norm-distance to a set,
€, tolerance parameter,
face(S), minimal face of S} containing S,
gsvec,

Ps. (), projection onto positive semidefinite ma-
trices, 22|

offDiag(Yy) = 0,

sd(Pr), singularity degree,

> 0, positive semidefinite, [4]

svec, [25]
{Bi,...,Bg}, basis for Ag, [f]

d, dimension of basis for Ag, [0]
en or e, [25]
m, number of constraints in SDP,
n, order of SDP matrices,
PhNn » DPNN optimal value,
Prr.DNN » FR,DNN optimal value,
Pir » FRoptimal value,
pP&pp » primal optimal value,
t, number of blocks,
t(k) = k(k + 1)/2, triangular number, 9
Ug @
L(x, R, 7), augmented Lagrangian,
B*(z),
X),
A(y),
Fr, [
PDNN 5
V*(R) = VRVT,
DNN cone, DNN"™ = DNN, @
DNN optimal value, pfynp
DNN, doubly nonnegative, [4] [26]
FR optimal value, pgg ,
FR, facial reduction, [3]
FR,DNN optimal value, ppg pNN -
LB, lower bound,
OBJ, objective ADMDM value,
QAP, quadratic assignment problem,
SDP, semidefinite program, [4]
SR, symmetry reduction,

adjoint,

adjoint of Blkdiag, blkdiag, [T
augmented Lagrangian, £(z, R Z ,
automorphism group of A, aut(A),
auxiliary system, [I7]

basic matrix x-algebra,
basis for Ag, {Bi,...,Ba}, |§|
block diagonal, Blkdiag,

centralizer ring, [0]
coherent configuration, [0]
commutant, Ag, [6]

dimension of basis for Ag, d, [0]
doubly nonnegative, DNN,
doubly nonnegative, DNN, [4]
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dres, dual residual, [31]

dual cone,
dual residual, dres,

esc, Eschermann, Wunderlich, [33]
Eschermann, Wunderlich, esc,
exposing vector, [f]

face, F < K,

facial reduction,

facial reduction, FR, [3]
feasible problem, Pp, 4]
feasible problem, Pp,, |§|
feasible set with B* ), Sz |§|
feasible set with =, .7-}, Ol
feasible set, Fx, [

gangster constraints, @

gangster operator, Q
_ _Piook—d100k

gap = 1+p1opr+diook ’

ground set, h

group average, [0]

group of permutation matrices, G, [6]
Hamming graph,
Kronecker delta, 0, s,

lower bound, LB, [32]

Mangasarian-Fromovitz constraint qualification,
LLO)

matrix *-algebra, [0]

matrix of all ones, J, [f]

minimal face, [3] [9]

minimal face of S} containing S, face(S),

minimal face of the SDP,

norm-distance to a set, dist, [I7]
number of blocks, t,
number of constraints in SDP, m,

objective ADMM value, OBJ, [32]
orbit, [6]
order of SDP matrices, n,

permutation matrices order n, II, [24]
polyhedral constraints on z, P,
positive semidefinite cone, S, [
positive semidefinite, = 0, [

pres, primal residual,

primal optimal value, p§pp ,
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primal residual, pres, [31]
projection onto positive semidefinite matrices,

PS.;,(‘)?

quadratic assignment problem, QAP,

repeated blocks, [J]
res := max{pres, dres},
Reynolds operator, Rg(X), |§|

semidefinite program, SDP,
singularity degree, sd(Pr),
Slater constraint qualification,
substitution

block diagonal symmetry reduction,

facial reduction, [5]

symmetry reduction,
symmetric matrices, S™, [
symmetric nonnegative, Nn,
symmetry reduced formulation, [9]
symmetry reduction, SR,

tolerance parameter, ¢,
triangular number, t(k) = k(k +1)/2, [0
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A Response: to Associate Editor and Reviewers

A.0.1 Response:to Assoc. Editor

We would like to sincerely thank the reviewers and associate editor for carefully reading our
manuscript and providing us with insightful comments. Many of the comments are very con-
structive and this encouraged us to make serious improvements to the manuscript in both content
and presentation. All major changes within the manuscript itself are colored in blue. We have
attempted to make a minimal amount of changes, but we did have to make some additions
to properly respond to the referees’ questions. In addition, we made a few minor unasked for
changes to improve readability/clarity /grammar. We have left the index and table of contents
in to help the readability for the referees. We fully expect to remove these for the final version
of the paper.

We include our responses to you and the referees in this appendix in order to have the
theorems, citations, page numbers, etc... coordinated and linked/clickable in combination with
the paper itself. Many theorems/citations etc... are therefore renumbered to coordinate with the
new version of the paper.

In particular, we respond carefully on the concerns raised about the strength of the theoretical
contributions of the paper in Appendix

A.0.2 Response:on theoretical contributions

In reply to the request from the associate editor and the question from Reviewer #1 in Ap-
pendix [AT1.1] following is a brief outline of the theoretical contributions that appear in the
paper. In particular, we include an outline of some new added contributions.

1. We think that one main contribution is showing how to efficiently combine FR and SR to
obtain a final reduced problem without losing the structure of the original problem. The key
is concentrating on the SDP and exploiting the exposing vectors from FR and transforming
them to SR. We are then able to add the nonnegativity constraints X > 0 to the original
problem and simply move them seamlessly through to x > 0 in the final reduced problem,
and do FR on the nonnegative cone, and maintain simple vector nonnegativity, thus solving
the original DININ problem. This is particularly suited for the ADMM splitting approach.

We think that both FR and SR techniques are nontrivial, important, theoretical tools that
are still not exploited fully, both due to the lack of exposure and the difficulty in the
application. Moreover, they arise in surprisingly many applications. This is illustrated by
the many recent publications/surveys/theses in this area; many of which are included in
our citations.

We want to emphasize that the special form of doing SR and then FR accomplishes several
purposes:

b)
(c) simple structure (block diagonal);
(d)

(a) significant decrease in size (dimension/constraints);
(

stability /robustness (strict feasibility);

decrease in singularity degree to 0, thus improving approximate solutions in splitting
type methods;

(e) maintaining simplicity of nonnegativity constraints, thus fitting perfectly into a split-
ting/ ADMM type of approach.
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Note that the last Item [le| is extremely important as it means that our subproblems for
the ADMM remain extremely simple rounding, and therefore can be solved efficiently.
Therefore, we have added some lines to emphasize this throughout the paper.

. This approach in Item [1] above, essentially yields FR and SR on the DNN cone by working
on the SDP cone, i.e., we do SR on the original SDP relaxation and then use an exposing
vector approach to get FR. The application on the SDP and then applying the nonnega-
tivity later is an ongoing theme in the paper. This results in a Slater point for the final split
problem that has both a SDP and a nonnegative cone. This is due to the special choice
of basis that arises by using permutation groups, i.e., this allows 0,1 matrices in the basis
and allows for positivity from the original problem to move through to the SR problem.
Therefore FR on the SDP cone results in a Slater point for the DINN cone. And we also
end up with a Slater point that works for the split problem obtained after SR.

. This approach in Item[I]above, allows for the solution of huge problems with stable, theoret-
ically guaranteed lower and upper bounds. See Section [5.1.2] and in particular Lemma [5.9
Please note that lower bounds in the literature are often obtained from the optimal value of
a primal SDP relaxation. However, due to inaccurate solvers, this can result in the value
not being a true lower bound. Our lower bound comes from weak duality and a feasible
dual solution for a modified dual problem with redundant constraints to strengthen the
bound. The important problem of getting valid lower bounds from inaccurate solvers is
recently discussed in [19]. (online link.) We added this citation to the paper.

. In Item [2| above, we outlined how we can add redundant constraints to improve the lower
bounds. This is a theme throughout, since we use splitting methods and can add the
redundant constraints for the subproblems at any stage of the development.

. We discuss the importance of applying the FR and SR reductions to the original primal
problem of interest as opposed to a primal-dual reduction discussed in [45], see Remark

. We have added new Sections and This provides new results on the order of the
reductions FR, SR, provides extensions of two known theorems for viewing FR from the
ground set see Section and also shows the relations between singularity degrees. In
particular, Theorem [3.14]shows that the singularity degree does not increase when applying
SR, thus heuristically indicating no increase of error. In addition, we discuss relationships
between the singularity degrees of the SDP and DNN relaxations Remark and show
that the singularity degree is one for our applications Theorem [3.16

In addition, we show the importance of doing the FR properly to avoid losing the symmetry
structure.

. We consider the implementation of the ADMM in Section 4] to be a nontrivial contribution.
This required special forms of SR and FR to a special form of the DINN relaxation. Then
choosing how to form and solve the subproblems efficiently is again subtle. The many
pieces of the theory and efficient implementation led to the solution of the huge problems.
In summary, it is the combination of the special FR and SR with fitting into this special
implementation that allows this all to work. We hope this is a theoretical contribution that
can be applied to other hard combinatorial problems.

. We think that an indication of a strong theory is when it fits well with applications (em-
pirical evidence). This is evidenced by our numerical Section
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A.1 Reviewer Report # 1

We thank the referee for the comments that have helped us to this improved version of the
manuscript. The list below contains the issues raised in the review (in italics), followed by our
response. We have renumbered all theorems, citations, page numbers, etc... to coordinate with
the new version of the paper.

A.1.1 Major comments on the theory

1.

.... prelim. comments deleted .... In view of this, my impression was that the results in
Section[3 deal with interesting, but nonetheless, slightly more tangential questions related to
the interplay between both techniques. Section[{] deals with mostly implementational issues
of an already existing technique (described in Lofberg [39] to the authors’s setting. This is
by no means grounds for rejection, but, for reasons explained below, this paper does feel a
bit underdeveloped in the theory department for a Mathematical Programming paper and
suggests that MP might be the wrong venue for this work.

Response: We have briefly outlined the major theoretical contributions in Appendix
as requested by the associate editor. We summarize a couple of points here.

We think that our technique of showing how to join the two using exposing vectors is
a strong theoretical contribution. It is not true that one can just apply SR and then
FRor vice-versa. Applying one technique can destroy the structure of the problem and
not allow efficient application of the second technique. In our approach, we do not lose the
structure of the original problem and therefore we can exploit the original structure as we
do SR first and then using the exposing vectors to do FR. Moreover, the nonnegativity
constraints move over to the reduced problem as simple nonnegativities thus allowing for
simple but subtle subproblems in the ADMM approach. The strength of the various
theoretical contributions is illustrated/emphasized by seeing how they can be combined
into the algorithms that are used to solve the multiple applications and, in particular, by
the huge problems that can be solved.

We hope the referee reads the outline in Appendix and looks at the new theoretical
contributions that we have added to the paper.

(a) One interesting result is that SR preserves the mazximum rank (Theorem M), which
seems to suggest that FR will produce the same reduction whether it is applied before
or after SR. Is this interpretation correct? Because of Theorem [3.1, one gets the
feeling that applying SR and then FR. might either be the optimal order or the order
should not matter, but this question is never completely explained. If one applies FR
first and then try to apply SR, what can be said about the resulting matriz x-algebra
in comparison with the matriz x-algebra related to applying SR to the original (non-
facially reduced) problem? They are matriz x-algebras of matrices of different sizes,
but they could still be isomorphic in some sense.

Response: Yes, this interpretation is correct. The order matters. One can compare
to the sparse QR decomposition that is essentially a change of basis problem. One can
ignore the order of the columns and lose a lot of the possible sparsity. In addition, one
loses stability without applying the robust Gram-Schmidt approach. Here we have a
change of basis with the SR, and possible loss of stability if one does not handle the
FR properly. Note that Theorem heuristically shows that we do not lose stability
if FR follows SR.
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Moreover, if FR is applied first, then we may lose the symmetry completely. For ex-
ample, assume the data matrices C, Ay, ..., Ay, of the original problem are invariant
under a non-trivial permutation group G, e.g., PCPT = C and PA;PT = A, for
i1 =1,...,m and any P € G. Note that the data structure of the facially reduced
problem depends on the choice of V' whose columns span the null space of the ex-
posing vector. The data matrices VIOV, VT A V,..., VT A,,V of the facially reduced
problem may not be invariant under any non-trivial group. Thus there might be no
symmetry in the facially reduced problem. In Section [3.2.1] we explain how to take
appropriate V' that leads to a symmetry reduction.

(b) There is a theoretical issue that was unclear to me from the discussion in Section .
Consider the following SDP system (P), assumed to be feasible

min{((C, X)|A(X) =b, X = 0}.

Because S} is facially exposed, there is always a matriz W € St such that S’}FQ{VV}l 18
the minimal face of ST} containing the feasible region of (P). The results in Section
seem to be related to the computation of this W for symmetry reduced problems.

However, in theory, when doing facial reduction, W is generally not obtained in a
single step: the facial reduction algorithm proceeds by finding matrices W1, ..., W,
such that W; = A*y;, (b,y;) =0 and

Wi e (St n{Witn...n{Wisi}h),

and such that (S7 N{Wi}t N...N{W;_1}1)* is the minimal face associated to the
problem (P). In particular, the smallest | for which we can find this kind of sequence
of matrices is usually called the singularity degree of the problem.

As far as I could see, the results in Section[3.9 do not seem to give any information on
the singularity degree of the symmetry reduced problem in comparison with the original
problem, except in the case where the singularity degree is 1. This is related to the
difficulty of doing facial reduction from scratch at the symmetry reduced problem vs
doing from scratch at the original problem. I believe it is quite natural to elucidate
this issue.

For example, using (W, ..., W}), how can we obtain a “facial reduction sequence” for
the symmetry reduced problem?

Response: If Wy,...,W;_; are the exposing vectors found by the facial reduction
algorithm such that W; € (S% N {Wi}+ n...N{W;_1}1)* is the minimal face, then
W = 22:1 W; is an exposing vector W for the minimal face of 8™ containing the
feasible set F of the original problem. Then we can proceed as described in Section (3.2
See also Remark We address the issue on singularity degree in Section [3.4] and
in particular Theorem [3.14] shows that the singularity degree does not increase after
SR, and Corollary shows that it is unchanged, since we have shown that our
applications have singularity degree one Theorem |3.16

2. The way that DNN comes into the discussion causes me some level of anxiety. Up to Corol-
lary[3:19, all the theoretical results on facial reduction and symmetry reduction were proved
for the SDP case only. Then, suddenly in Theorem there is a talk of “facially and
symmetry reduced DINN relazation”. “Facially and symmetry reduced DINN s” are also
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used in Section[5. In Section[d this problem is aggravated because authors alternate rapidly
between DINN and SDP relaxations of the same problem.

I worry whether everything is standing on theoretically sound ground. Facial reduction
can be, of course, applied to DINN instances, because facial reduction can be done for any
arbitrary cone. It also seems plausible that symmetry reduction of DINN instances can also
be done with matriz*-algebras, however, is this discussed somewhere? For example, does a
result analogous to Theorem hold for DNN instances?

These concerns also apply to the authors’ own results. Do some of the results in 2.2.1,
2.2.2 and 3.2 apply to DN N instances as well?

Overall, I got the impression that the authors prove results for SDPs and then assume
implicitly that everything also holds for DINN instances, except where explicitly stated oth-
erwise. This is confusing and less than ideal. Initially, I was unsure about which of the
following alternatives correspond to “facially and symmetry reduced DINN relaxation”:

a) original DNN instance = SR + FR,, where FR is done over the cone of DINN matrices.
b) original SDP instance = SR + FR = add nonnegativity constraints

Question A.1. Is (b) what the authors are doing?

Response: We have added details throughout the paper to carefully respond to this con-
cern. Note that our approach applies SR and then FRto the SDP relaxation, i.e., we
ignore the nonnegativity constraints. We obtain a strictly feasible (positive definite) feasi-
ble point, the Slater condition holds. We then observe that adding nonnegativity for the
original problem X > 0 is equivalent to adding nonnegativity to the first reduced problem
from the substitution, X = B*(z) > 0 (2.8). We then show that we have kept nonnega-
tivity, i.e. nonnegativity for the vector variable z > 0 is equivalent to nonnegativity of the
original X, Theorem and Remark (One can also compare this with the added dis-
cussion in Remark ) Eliminating the gangster constraints are then needed to maintain
strict feasibility for the nonnegativity, i.e., FRis done wrt the nonnegative cone. There-
fore, we obtain a strictly feasible DINN type relaxation, though presented in the splitting
variable format. We summarize that due to the structure of the 0—1 basis, the adding of
the nonnegativity constraints X > 0 in SDP is equivalent to adding the additional
constraint x > 0 to , i.e., the simple nonnegativity constraints are maintained as
mentioned above. Then we discard the trivial variables z; that are zero due to the gangster
constraints. The new Section [3.3| addresses these concerns and provides additional results
about SR and FR on DNN programs.

Note that applying FR directly to the DININ relaxation is more difficult and not as amenable
to the application of a splitting and the ADMM.

In reply to Question above: (b) is essentially what we are doing. In addition, we can
discard the variables corresponding to the gangster constraints and so only need nonnegativ-
ity constraints for the complement of the gangster constraints, i.e., FR on the nonnegative
cone. We also added a sentence in Section page [§] for clarification; and we extend
two known theorems to view this FR from the ground set, see Section [3.3.1

A.1.2 Major comments on the computation

3. One of the state-of-the-art codes for handling PSD plus nonnegativity constraints is SDP-
NAL+. I believe these papers should be cited and a comparison with their work should be
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done, wherever it is applicable. (Or, if the authors disagree, I would like the understand
the rationale for that.) In particular, in their paper, Yang, Sun and Toh also have results
on QAP and a comparison with ADMM approaches. If the authors can solve much larger
instances than what is feasible to do with SDPNAL+ directly that would also strengthen
their case.

Response: We added a paragraph on SDPNAL+ at the end of Section @ Moreover,
we included numerical results on solving esc_nx, with n = 16,32, see Table There
are no results for n = 64, 125 presented in the SDPNAL+ papers. Namely, the authors
emphasize that SDPNAL+ is for solving semidefinite programming problems where the
maximum matrix dimension is assumed to be less than 5000. Note that the order of the
symmetric matrix variable in the SDP relaxation of the QAP with n = 500 is 250, 000,
yielding approximately %625 x 108 variables. Thus, a QAP instance with n = 125 is
above the limit of SDPNAL+. The results in Table show that our ADMM algorithm
outperforms SDPNAL+ on all presented esc instances in efficiency. Note that SDPNAL+
does not exploit symmetry and/or facial reduction.

Please note that most of the instances in Table are also too large for SDPNAL+.

4. Since the is paper focused on numerics and implementation, was there any particular reason
for mot submitting the codes too?

Response: We have upload our ADMM code for the quadratic assignment problem. We
have added the following lines in the paper, page
“The link to the codes for the QAP can be found on the webpage www.huhao.org. The
codes for the other problems require finding symmetries in the graph; and therefore the
codes and details can be obtained from the authors.”

A.1.3 Minor comments

1. There are some loose points in the discussion of matriz*-algebras. The authors refer to
[13], but complex matriz*-algebras are discussed in [13], not real ones as described in Sec-
tion [2.9. Complex matrices suddenly appear in Section however. Please be crystal
clear about these fine points.

Related to real matriz*-algebra, consider mentioning the paper A Numerical Algorithm for
Block-Diagonal Decomposition of Matrixz *-Algebras by Murota, Kanno, Kojima and Ko-
jima.

Response: We added two paragraphs with explanations below Theorem and Theo-
rem [2.6] and also mentioned the above paper.

2. About the proof of Theorem [3.1]
— pg.8 lines 24-27: perhaps it should be S', | instead of S', .
— What is the assumption on G in this proof? Is G such that Ag satisfies Theorem[2.3, i.e.,
Ag contains the data matrices of 2 I think this is necessary to ensure that PTX P is
feasible for the original SDP (2.1)) as it is stated in line 28. Please consider mentioning
this.
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www.huhao.org

Response:
— Correct.
— We point out this below Theorem so that it applies to the remainder of the paper.

. In page 14, footnote 3, what is a coherent configuration? Is this related to Example 2.27¢
Response: The basis {B1,..., By}, see (2.5)), forms a so-called coherent configuration.
Definition A.2. A set of zero-one n x n matrices {Bi, ..., By} is called a coherent con-
figuration of rank d if it satisfies the following properties:

(a) > ;cr Bi =1 for some index set T C {1,...,d} and Zle B, =J,

(b) BY € {Bi,...,By} fori=1,....d,

(c) There exist p?j, such that B;Bj = Zizlp%Bh forije{1,...,d}.

We added this definition in Section 2.2

pg 14, lines 35-36. This part is a bit confusing. It might be missing —7 somewhere. [
think it should be that the zero and positive entries of x correspond to the smaller than —T1
and the larger than —T entries of (w{lyi)?zl, respectively.

Response: Correct. We fixed it as suggested.

. A side comment: even for general P, I suspect that reduces to computing the projection
on some polyhedral set. Rutkowski has recently worked out how to obtain (quite complicated)
closed form solutions for this problem, see Closed-Form FExpressions for Projectors onto
Polyhedral Sets in Hilbert Spaces, SIAM Journal on Optimization 27(3).

Response: Thank you for this information. We decided to leave our approach since Algo-
rithm is very efficient. The paper by Rutkowski appears to be a theoretical contribu-
tion and does not include numerics. The evaluation of full rank principal submatrices, in
Rutkowski Thoerem 2, are needed, and that appears to be expensive.

. In Lemma[{4 consider reminding the reader that J is as in Section[2.3

Response: Done. See the paragraph before the lemma.

. In page 16, consider adding a quick explanation or a footnote about aut(A). Is aut(A) the
group of permutation matrices P for which PA = AP?

Response: Exactly. We added an explanation, see Section

. In the statement of Lemma[5.9: the feasible solution = a feasible solution. Also, what is
the barycenter of (5.1)?
Response: We changed the statement of Lemma The barycenter is:
i > vee(X)vee(X)T LY
= — v A\ = — O ——
n?2 n2(n

n!

P = 1)(71]— J)® (nl —J).

Now, we include the barycenter explicitly in Lemma [5.2
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9. lines 40-41. Although is an DNNinstance, in these lines it is referred as an
SDP instance. I understand that all DINN instances can be cast as SDPs, but the authors
are using the fact that a symmetry reduced SDP has an optimal solution in Ag (Theo-
rem . This is confusing and too handwavy. This is also related to item 2. in the Major
comments on the theory part.

Response: Please note that we state at the beginning of the Section that due to the
structure of the basis in , that is zero—one matrices that sum to the all ones matrix,
additional constrains X > 0 in SDP is equivalent to adding the additional constraint
x>0 to . Please see also our reply to item 2. in the Major comments.

A.2 Reviewer Report # 2

We would like to thank the reviewer for carefully reading our manuscript and suggestions that
led to this improved version. We have renumbered all theorems, citations, page numbers, etc...
to coordinate with the new version of the paper. The list below contains the issues raised in the
review (in italics), followed by our response.

A.2.1 Major comments following preliminary comments

1. Please cite the aforementioned article [39] by Lofberg for its combination of symmetry
and facial reduction. Section V of his paper, for instance, contains an example where
facial reduction (via monomial basis selection) reduces the order of the SDP matrices from
330 to 137, and symmetry reduction (via identification of sign-symmetries) yields a block-
diagonalization. Note Section III.C of his paper explains the connection between sign-
symmetries of the polynomial and symmetry reduction. Section 6.4 of [18] Drusvyatskiy
and Wolkowicz explains the connection between facial reduction and monomial basis selec-
tion; see also [64] Waki Muramatsu.

Response: Thank you for pointing us to the papers and related results. We added, as best
we could, all references and related results. See a new paragraph highlighted in blue in the
introduction Section [Il

The Lofberg paper combines partial FR and SR for solving sum of square (SOS) programs.
In addition, the monomial reduction and symmetry reduction are done separately rather
than connected together. In our paper, we connect the two reductions using the exposing
vectors. Please note that FR for polynomial systems is also done in e.g.,

(a) G. Reid, F. Wang, and H. Wolkowicz. Finding maximum rank moment matrices
by facial reduction on primal form and douglas-rachford iteration. ACM Commun.
Comput. Algebra, 51(1):35-37, May 2017. submitted Dec. 2014, 38 pages.

(b) G. Reid, F. Wang, and H. Wolkowicz. An SDP-based method for the real radical ideal
membership test. SYNASC2017, International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2017.

(¢) G. Reid, F. Wang, H. Wolkowicz, and W. Wu. Facial reduction and SDP methods for
systems of polynomial equations. Technical report, University of Western Ontario,
London, Ontario, 2014. submitted Dec. 2014, 38 pages.
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2. Section [ contains results on the interplay between facial reduction and symmetry reduc-
tion. In my view, it could be simplified and better connected to existing results. Suggested
simplifications follow. Note I state these results using the commutant Ag directly instead
of the parameterization Ag = {QB*(2)QT |z € R%} from Section .

(a) Theorem[3.1] could be restated as the equality:

maxrank X = max rank X
Fx FxNAg

which s a corollary of known properties of the Reynolds operator Rg:
rank Rg(X) >rank X, Rg(Fx)= Fx NAg.
(b) Lemmas and could be combined and restated as a corollary of the fact Rg is

the orthogonal projector onto Ag. A restatement and proof are as follows:

Lemma 1.1 If the hyperplane span{W}J- contains Fx, then the hyperplane
span{Rg(W)}*+ contains Fx N Ag.

Proof. Since Rq is the orthogonal projector onto Ag, it is it is self-adjoint and satisfies

Re(X) =X VX € Ag.
Hence, if span{W}* contains Fx, then, for all X € Fx N Ag,
0=(X,W) = (Rg(X),W) =(X,Ra(W)). O

(¢) Theorem 3.7 (notation from the first submission, now Corollary should be a
triviality: if an SDP has redundant constraints, then they should of course remain
redundant if we add more constraints (e.g., if we restrict to Ag via symmetry reduc-
tion). A restatement of Theorem 3.7 (old notation) that is transparently true follows.
Let S denote the solutions of the linear constraints and S the solutions of the non-
redundant subset I, i.e.,

S={X:(A,X)=0b; Yie[m]}), S={X:(4;,X)=0b Vkel}.

Let F denote the face {VSVT : S € ST.}. In this notation, Theorem 3.7 (old notation)
can be stated as

Lemma 1.2. In FNS = FNS then (FNS)NAg = (FNS)NAg. which is a
triviality.

Response: a) We kept the same proof since it is more elaborate. However, we emphasize
now that we use known properties of the Reynolds operator.

b) Correct, Lemmas and could be combined as suggested. However, we leave them
for more clarity in the paper. We have shortened the proof of Lemma

¢) We added the above lemma, i.e., Lemma Theorem 3.7 from the earlier version is
now Corollary whose prove is now omitted.

3. Please clarify the new contributions in the ADMM Section [J] You write that you fol-
low [43], but appear to present new results on solving the A DMM sub-problems.

Response: Correct - we needed to find a way to efficiently solve the z-subproblem. We
have extended the first paragraph in Section [4.1
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4. I would add a table comparing complexity measures (e.g., solution time) of the SDP s

given by (5.1) (no reductions), Lemmal5.4] (facial reduction), (5.7) (symmetry reduction)
and (5.12) (facial and symmetry reduction).

Response: We extended Table Now the table incudes the following information.

(a) Bounds and solution times obtained by using SDPNAL+ to solve the formulation
(no reductions).
/58], D. Sun, K.C. Toh, Y. Yuan, and X.Y. Zhao. SDPNAL +: A Matlab software for
semidefinite programming with bound constraints (version 1.0). Optimization Methods
and Software, 35(1):87-115, 2020

(b) Results obtained by using ADMDM to solve the facially reduced formulation (5.5).

143], D.E. Oliveira, H. Wolkowicz, and Y. Xu. ADMM for the SDP relaxation of the
QAP. Math. Program. Comput., 10(4):631-658, 2018

(¢) Results obtained by using interior point method to solve the symmetry reduced for-

mulation ([5.7)).

/15, E. de Klerk and R. Sotirov. Ezploiting group symmetry in semidefinite program-
ming relazations of the quadratic assignment problem. Math. Program., 122(2, Ser.
A):225-246, 2010.

(d) Results obtained by using our ADMM algorithm, thus solving facially and symmetry
reduced program ([5.12]).

Note that most of the instances in Table are too large to be solved by other approaches
than our ADMM algorithm. Text related to the additional results is highlighted in blue
in the manuscript.

A.2.2 Minor comments

1. As you note with Theorem symmetry reduction as defined in Section (2.9 is a special
case of a more general technique: reformulation over the *-algebra generated by the data
matrices (or an isomorphic algebra). You should mention this more general technique can
restore Slater’s condition. As a trivial example, consider the following LMI:

( e ) -0 (A1)

This LMI is not strictly satisfied for any y. However, since the data matriz generates
a *-algebra isomorphic to R, we can reformulate it as a scalar inequality y > 0 which s
strictly satisfiable.

Response: With respect to the above example in li please note that for any problem

such as
A%y 0 C 0 m
-
{0 o]—[o 0]’y€R ’

where there exists § with A*g = C, FRis exactly equivalent to discarding the ZERO blocks
and we get a problem in m variables that satisfies Slater A*y > C. So this can be equivalent
to stating that we have an isomorphism to R™ if we maintain the linear independence, A*
onto, assumption.

Reduction techniques based on the Constrained Set Invariance Conditions, that restore
Slater’s condition, see e.g., [45], include removing zero blocks to restore Slater’s condition.
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We consider these to be implicitly equivalent to FR, since it is a trivial step, a FR step, to
remove ZERO blocks.

We modified a paragraph on page [5| and made it into Remark

Please note that the Constrained Set Invariance Conditions approach in [45] uses both the
primal and dual sets. For the example [45, Example 1.5.4] the reduction found is equivalent
to that found using FR. We have attempted to explain this, shortly, in Remark using
rotations and staying in the same space. It appears that the projection approach in [45] is
FR applied to the feasible set obtained from using both the primal and dual feasible sets
together.

. In Lemma you write “Let W be an exposing vector of the face of S't containing Fx.”
There can be many faces that contain Fx. Therefore, please say a face instead of the face.
Alternatively, say “the minimal face.”

Response: Fixed. We say now: “a face of S'! containing Fx”. We also changed the state-
ment of Lemma [3.4] accordingly.

. Lemma shows that Ag contains exposing vectors. You might cite the following related
results about objects contained in Ag:

— Dual solutions and the central path. See thms 3.1-4.1 of

131] Kojima, M., Kojima, S., Hara, S.: Linear algebra for semidefinite programming, Re-
search Report B290, pp. 1-23. Tokyo Institute of Technology. October 1994; also in RIMS
Kokyuroku 1004, Kyoto University (1997)

— Search directions. See Section 5 of:
[29] Y. Kanno, M. Ohsaki, K. Murota, and N. Katoh: “Group symmetry in interior-point
methods for semidefinite program.” Optimization and Engineering 2.3 (2001): 293-320.

— Infeasibility certificates. See, e.g., Proposition 2.2 of
144 Permenter, Frank, and Pablo A. Parrilo. “Dimension reduction for semidefinite pro-
grams via Jordan algebras.” Mathematical Programming (2019).

Response: Thank you for pointing this out. We added the references and appropriate text
in Section

A.3 Reviewer Report # 3

We would like to thank the reviewer for carefully reading our manuscript and for the positive
feedback in the provided outline.

The list below contains the issues raised in the review (in italics), followed by our response.

We have renumbered all theorems, citations, page numbers, etc... to coordinate with the new
version of the paper.

e Section

— The use of the conjugate transpose is confusing as the entire paper does not consider
complex numbers.

o8



— It would be nice to give a reference for the well-known orthogonality relations of the
Krawtchouk polynomials.

Response: — We replaced “conjugate transposes” by “transposes”.
— We refer now to: [17]; P. Delsarte. An Algebraic Approach to the Association Schemes
of Coding Theory. PhD thesis, Universite Catholique de Louvain, Louvain, France, 1973

Section [2.2.]]
— Typo in the statement of Theorem[2.6: “.. containing the identity. . . ”
— Also Theorem[2.6: Q*MQ is a direct sum of basic matriz *-algebras.

Response: — Fixed.

Section[2.2.2

— The rotation is rather a conjugation.

Response: This linear transformation is a rotation since @ is orthogonal. It is also a
congruence, i.e., an orthogonal congruence. But we used the simple reformulated sentence
as follows:

“...is the linear transformation obtained from A as follows: flj = QTAjQ,Vj .7 See page

i)

Section
- In Lemma one chooses “the face of S containing Fx”. However, Fx may be con-
tained in multiple faces. So it might be better to talk about “a face of S} containing Fx 7.

Response: - Fixed. We say now: “a face of S} containing Fx” (in math notation). We
also changed the statement of Lemma [3.4] accordingly.

Section [3.4]
— The second equation in Theorem contains Diag(w™!). I assume this should be
Diag(w)*.

Response: Correct — fixed.

Section [51.1]

— How is the automorphism group of a matriz defined?

— In Lemma|5.9 it says “... null space of the feasible solution Y ...”.

Since there may be more than one feasible solution I suggest “.. null space of a feasible
solution Y ... 7.

— In Lemma it is not clear what exactly the transformation G is. Defining it rigorously
seems to be easy and, to my mind, would make Lemma[5.4 much more comprehensible.

Response:

— The automorphism group of a matrix is defined as: aut(A) := {P € II,, : AP = PA}.
We added this in the text.

— We have expanded the wording as it should include relative interior point.

— We specify now: “G : 8** — 8" is a lincar operator defined by G(Y) := (J — (I ® (J —
N+ (J-1)®I)oY”.

Section [5. 1.9
— Typo in the first line of this section: “. ..how to us ADMM ...”".
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— In the fourth line of this section:“. .. proceed in the similar way” should be corrected to
“ .. proceed in a stmilar way”.

— On page 20, line 12: “ Let us to present our reformulated DNN relazation for ADMM.”
The word “to” needs to be removed.

Response: Corrected. Thank you.
Section

— At the second bullet point at the start of this section it reads
value at ...”. The word “ value ” should be removed.

“...some dual feasible point

Response: Corrected.

Section [5.2

— In the second line of this section: “...the sum of edges joining different sets is optimized”.
I suggest to replace the word “optimized” by “minimized” as this is not immediately clear.
— The second and third sentence of this section are in part repetitive (“GP has many ap-
plications”).

— In the definition of the set M., the equation Xep = Xe, should probably read Xep = €.
— I suggest to add a bracket to the objective function in : ttrace((A® B)Y).

114

Response:

— Done.

— We changed the first sentence: “ The problem is known to be NP-hard.”
— Correct.

— Done.

Section [5.2.3

— At the start of the section VSP is loosely introduced. To my mind this introduction is
rather confusing, in particular the term “cut obtained by removing a set”. A possible so-
lution would be to introduce the min-cut problem first (as it becomes clear what a cut is).
Also in the first sentence the term “node set” appears. For the sake of consistency “vertex
set” seems to be a better choice.
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— Second paragraph in this section “. ..important problem in communications network ...”.
This should read “communication networks”. — In the next sentence: “. ..solving system
of equations. ..”. This should be corrected to “systems of equations”.

— In the paragraph before Table it reads “. ..has the squares of n X n chessboard ...".
This should be “. ..has the squares of an n X n chessboard ...”.

— Between Tables and [5.7: “...by using Mosek our ADMM algorithm”. Here a word
is missing after “Mosek”.

“©

— At the second bullet point at the end of this section: “ ..obtain bounds on the the vertex

separator ...”. One “the” needs to be removed.

Response:

— We changed the text as follows:

“The problem of partitioning the vertex set of a graph into k subsets of given sizes in order
to minimize the number of edges between the first £ — 1 partition sets is known as the
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min-cut problem. The MC problem is a special instance of the general GP but also arises
as a subproblem of the vertex separator problem. The vertex separator problem is to find a
subset of vertices (called vertex separator) whose removal disconnects the graph into k — 1
components. This problem is NP-hard.”

— Corrected.

— Corrected.

— We forgot to put “and”. Corrected.

— Fixed.

Section [@l
— In the last sentence:
“a” should be remowved.

“ .. QAP instances in a significantly less amount ...”. The word

Response: We write now: “in significantly less time”.
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