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Abstract

We study large scale extended trust region subproblems (eTRS) i.e., the minimiza-

tion of a general quadratic function subject to a norm constraint, known as the trust

region subproblem (TRS) but with an additional linear inequality constraint. It is

well known that strong duality holds for the TRS and that there are efficient algo-

rithms for solving large scale TRS problems. It is also known that there can exist at

most one local non-global minimizer (LNGM) for TRS. We combine this with known

characterizations for strong duality for eTRS and, in particular, connect this with the

so-called hard case for TRS.

We begin with a recent characterization of the minimum for the TRS via a gener-

alized eigenvalue problem and extend this result to the LNGM. We then use this to

derive an efficient algorithm that finds the global minimum for eTRS by solving at

most three generalized eigenvalue problems.

Keywords: Trust region subproblem, linear inequality constraint, large scale opti-

mization, generalized eigenvalue problem
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1 Introduction

We study large scale instances of the extended trust region subproblem, eTRS

p∗ := min q(x) := xTAx+ 2aTx

s.t. g(x) := ||x||2 − δ ≤ 0,

`(x) := bTx− β ≤ 0,

(eTRS)

where A ∈ Sn is a real n × n symmetric matrix, a, b ∈ Rn\{0} and β ∈ R, δ ∈ R++.

Here a linear inequality constraint is added onto the standard trust region subproblem,

TRS . The TRS is an important subproblem in trust region methods for both con-

strained and unconstrained problems, e.g. [5]. The eTRS problem extends the TRS

and is a step toward solving TRS with a general number of inequality constraints.

Such problems would be useful for example in the subproblem of finding search di-

rections for sequential quadratic programming (SQP) methods for general nonlinear

programming, e.g., [3].

It is known that, surprisingly, strong duality holds for TRS and the global mini-

mizer can be found efficiently and accurately, even though the objective function is not

necessarily convex. The early algorithms for moderate sized problems are based on ex-

ploiting the positive semidefinite second order optimality conditions using a Cholesky

factorization of the Lagrangian, see e.g., [8, 16]. These methods were extended to the

large scale case using a parametrized eigenvalue problem, e.g. [9, 10, 13, 17]. A re-

lated problem is finding the local non-global minimizer (LNGM) of TRS if it exists,

see [15]. See [5] for more extensive details, applications, and background for TRS.

However, strong duality can fail for the eTRS. This is characterized in [2] for

the more general two quadratic constraint problem. We show that this is exactly

connected to the so-called hard case for TRS. We use this fact to find an efficient

approach for finding the global minimizer for eTRS. Recently, a generalized eigenvalue

characterization for the TRS optimum is derived in Adachi et al [1] based on solving

a single generalized eigenvalue problem. This algorithm is shown to be extremely

efficient for solving the TRS. In this paper we extend this result for the LNGM

optimum using the second largest real generalized eigenvalue of a matrix pencil. This

provides an efficient procedure for finding the LNGM. From combining the solutions

for TRS and LNGM we derive an efficient algorithm for eTRS.

We include a discussion relating strong duality and stability for eTRS. Extensive

numerical tests show that our new algorithm is accurate and can solve large scale

problems efficiently.

Related previous work on strong duality and an eigenvalue approach on eTRS

appeared in e.g., [11, 12,18,19].

1.1 Notation and Preliminaries

We let

λmin(A) = λ1 ≤ λ2 ≤ . . . ≤ λn
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denote the eigenvalues of A in nondecreasing order, and A = QΛQT be the or-

thogonal spectral decomposition of A with the diagonal matrix of eigenvalues Λ =

Diag(λ1, ..., λn). We denote the orthogonal matrices, On. We let qi denote the or-

thonormal columns of the eigenvector matrix Q ∈ On.

For X ∈ Sn the space of n × n real symmetric matrices, we let X � 0,� 0 denote

positive semidefiniteness and definiteness, respectively. In addition, we define the vector

of ones, e of appropriate size and Diag(v) be the diagonal matrix formed from the vector

v.

It is now well known that, surprisingly, the possibly nonconvex TRS problem has

the following characterization of optimality with a positive semidefinite Lagrangian

Hessian.

Theorem 1.1 (Characterization of Global Minimum of TRS , [8, 16]). Define the

Lagrangian of TRS, L(x, λ) := q(x) + λ(‖x‖2 − δ). (1.1)

The vector x∗ ∈ Rn is a global optimum of TRS if, and only if, there exists λ ∈ R
such that

1
2∇L(x∗, λ∗) = (A+ λ∗I)x∗ + a = 0, λ∗ ≥ 0

1
2∇

2L(x∗, λ∗) = A+ λ∗I � 0

‖x∗‖2 − δ ≤ 0

λ(‖x∗‖2 − δ) = 0

Now if x∗ is a global minimizer of TRS and ∇2L(x∗, λ∗) is singular, then

λ∗ = −λ1 and 0 6= a ∈ Range(A+ λ∗I) = (Null(A+ λ∗I))⊥

holds and leads to the following definition.

Definition 1.1 (Hard Case). The hard case holds for TRS if a is orthogonal to the

eigenspace corresponding to λ1, Null(A+ λ∗I).

In addition, the Slater constraint qualification, SCQ , or strict feasibility, can be

assumed without loss of generality for feasible instances of eTRS.

Lemma 1.1. The eTRS is feasible, respectively strictly feasible, if, and only if

−
√
δ‖b‖ ≤ β, respectively −

√
δ‖b‖ < β. (1.2)

Moreover, if equality holds on the left in (1.2), then eTRS has the unique feasible (and

so optimal) point x∗ = −−
√
δ

‖b‖ b.

Proof. Consider the problem minx{xT b : ‖x‖2 ≤ δ}. We can differentiate the La-

grangian to get

0 6= x =
−1

2λ
b, λ > 0.
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Since xT b = −1
2λ b

T b < 0, the minimum value is obtained with 0 < λ small. We now

have

xTx =
1

(2λ)2
‖b‖2 ≤ δ =⇒ 2λ =

‖b‖√
δ
.

The result now follows by noting that the linear inequality constraint is

xT b = − 1

2λ
‖b‖2 ≤ β

and then substituting for the value found for 2λ.

We note that if the global solution of TRS is feasible for eTRS then it is clearly

optimal. And from the above, we know that it can be found efficiently using a general-

ized eigenvalue problem. Therefore from this and Lemma 1.1 we can make the following

assumption for the theoretical part of the paper. (We do not make this assumption for

the algorithmic part.)

Assumption 1.1. We assume in this paper that eTRS is strictly feasible and that

the global solution of TRS is infeasible for eTRS.

1.2 Outline

We continue in Section 2 with the details on the LNGM. This includes known results

from [15] and one of the main results of this paper in Theorem 2.4, the necessary

conditions for a LNGM using the second largest real generalized eigenvalue of a

matrix pencil. In Section 3.1 we discuss necessary and sufficient conditions for strong

duality to hold for eTRS. A discussion on the stability of eTRS and resulting stability

of our approach is given in Section 3.2.

The various optimality conditions for eTRS are applied in Section 4. Included in

this section are outlines of the algorithms for an efficient numerical procedure to find

the global optimum of eTRS. Our numerical results appear in Section 5. We provide

concluding remarks in Section 6.

2 On a Local Non-global Minimizer (LNGM) of

TRS

2.1 Background on LNGM

Let x∗ be a global optimal solution of eTRS. Then the linear constraint is either

inactive bTx∗ < β or active bTx∗ = β. In the former case, we have x∗ must be a local

(not global by Assumption 1.1) minimizer of TRS, i.e., we can have x∗ being a local

non-global minimizer, LNGM , of TRS. We now provide some background on the

LNGM.

Lemma 2.1. If A � 0, then no LNGM exists.
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Proof. This is immediate since A � 0 implies that TRS is a convex problem, i.e., a

problem where local minima are global minima. (It also follows from Theorem 2.1

below, since 0 ≤ λ∗ < −λ1.)

Therefore, in this section we assume that λ1 < 0. We continue and present some

known results related to LNGM. Then following the results in [1], we show that the

LNGM can be computed via a generalized eigenvalue problem.

Theorem 2.1 (Necessary Conditions for LNGM , [15]). Let x∗ be a LNGM. Choose

V ∈ Rn×(n−1) such that
[

1
‖x∗‖x

∗ V
]
∈ On. Then there exists a unique λ∗ ∈

(max{0,−λ2},−λ1)1 such that

V T (A+ λ∗I)V � 0, (A+ λ∗I)x∗ = −a, ||x∗||2 = δ. (2.1)

Corollary 2.1. If the so-called hard case holds for TRS, i.e., a is orthogonal to the

eigenspace corresponding to λ1, then no LNGM exists.2

Proof. The proof is given in [15, Lemma 3.2]. We include a separate proof to emphasize

that a stronger result holds as is given in Corollary 2.2 below.

After a rotation if needed, we can assume for simplicity that A = Diag(λ) is a

diagonal matrix. To obtain a contradiction, we assume that aT q1 = 0. From this

assumption we have that the first element a1 = 0. From (2.1) this implies that the first

element x∗1 = 0 which yields that the first eigenvector given by the first unit vector

e1 satisfies e1 = V u, for some u. We have uTV T (A + µI)V u = λ1 + λ∗ < 0. This

contradicts the second order semidefiniteness condition in (2.1).

Corollary 2.2. If the weak form of the hard case holds for TRS, i.e., a is orthogonal

to some eigenvector corresponding to λ1, then no LNGM exists.

Proof. The proof of Corollary 2.1 just needed one eigenvector orthogonal to a.

Now let

φ(λ) := ‖(A+ λI)−1a)‖2.

For

λ ∈ (max{0,−λ2},−λ1),
1 We have added the fact that λ∗ > 0 whereas only nonnegativity is given in [15, Theorem 3.1]. Strict

complementarity is proved in [14, Prop. 3.4]. In fact, it is easy to see by the second order conditions that
strict complementarity holds as well for the global minimum for TRS in the λ1 < 0 case.

2The hard case arises in algorithms for TRS. The singularity that can arise requires special treatment,
see e.g., [16]. In fact, it can be handled by a shift and deflation step, see [7].
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Theorem 2.1 shows that the equation φ(λ) = δ is a necessary condition for a LNGM.

Furthermore, using the eigenvalue decomposition of A we have

φ(λ) =

n∑
i=1

(qTi a)2

(λi + λ)2
,

φ′(λ) = −2

n∑
i=1

(qTi a)2

(λi + λ)3
, (2.2)

φ′′(λ) = 6

n∑
i=1

(qTi a)2

(λi + λ)4
.

The equations (2.2) imply that the function φ(λ) is strictly convex on λ ∈ (max{0,−λ2},−λ1)
and so it has at most two roots in the interval (max{0,−λ2},−λ1). The following the-

orem states that only the largest root can correspond to a LNGM.

Theorem 2.2. ( [15, Theorem 3.1])

1. If x∗ is a LNGM, then (2.1) holds with a unique λ∗ ∈ (max{0,−λ2},−λ1) and

with φ′(λ∗) ≥ 0.

2. There exists at most one LNGM.

2.2 Characterization using a Generalized Eigenvalue Prob-

lem

We now consider the problem of efficiently computing the LNGM. Due to the results

in Section 2.1 we can make the following two assumptions.

Assumption 2.1. 1. The smallest two eigenvalues of A satisfy

λ1 < min{0, λ2}.

2. The hard case does not hold, i.e., a is not orthogonal to the eigenspace corre-

sponding to λ1 which here is span(q1) the span of the eigenvector of λ1, aT q1 6= 0.

To the best of our knowledge, the only algorithm for computing the LNGM is the

one by Martinez [15] which tries to find the largest root of the equation φ(λ) = δ for

λ ∈ (max{0,−λ2},−λ1) via an iterative algorithm. Each step of his approach requires

solving an indefinite system of linear equations which can be expensive for large scale

instances. In what follows, we follow on the ideas of [1] and present a new algorithm

that shows that the LNGM can be computed efficiently by a generalized eigenvalue

problem. Our result is then used to solve large instances of eTRS.

Recently, Adachi et al. [1] designed an efficient algorithm for TRS which solves

just one generalized eigenvalue problem. They consider the following 2n × 2n regular
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symmetric matrix pencil which has 2n finite eigenvalues.3

M(λ) =

[
−I A+ λI

A+ λI −1
δaa

T

]
.

We can rephrase Theorem 1.1 as x∗g is a global optimal solution of TRS if, and only

if, the following system is consistent.

(A+ λ∗gI)x∗g = −a, (2.3a)

A+ λ∗gI � 0, λ∗g ≥ 0 and unique, (2.3b)

||x∗g||2 ≤ δ, (2.3c)

λ∗g(||x∗g||2 − δ) = 0. (2.3d)

Lemma 2.2 (Generalized Eigenvalue of Pencil , [1]). For every Lagrange multiplier

λ∗g 6= 0, satisfying the stationarity condition (2.3a) with equality in the quadratic con-

straint (2.3c), we have detM(λ∗g) = 0, i.e., λ∗g is a generalized eigenvalue of the pencil

M(λ).

Proof. The Lemma is proved in [1]. We include a shorter proof.

For simplicity we denote D = A + λI and let λ = λ∗g be a Lagrange multiplier

satisfying (2.3a). We can rewrite (with x = x∗g)[
I 0

0 D

][
−I I

I −1
δxx

T

][
I 0

0 D

]
=

[
I 0

0 D

][
−I D

I −1
δxx

TD

]
= M(λ). (2.4)

The result follows by observing that the vector 0 6=

(
x

x

)
∈ Null

([
−I I

I −1
δxx

T

])
.

Corollary 2.3. The set of real generalized eigenvalues of M(λ) is nonempty. More-

over, if detM(λ) = 0, λ ∈ R, then either −λ is an eigenvalue of A or

det

([
−I I

I −1
δxx

T

])
= 0, x = −(A+ λI)−1a.

Proof. This follows immediately from Lemma 2.2 and from (2.4) in its proof.

The following theorem shows that the global optimal solution of TRS can be

obtained via computing an eigenpair of the pencil M(λ).

Theorem 2.3 (Eigenvalue Characterization of TRS , [1]). Let (x∗g, λ
∗
g) be a global

optimal solution of TRS with ||x∗g||2 = δ. Then the multiplier λ∗g is equal to the

largest real eigenvalue of M(λ). Furthermore, if λ∗g > −λ1, then x∗g can be obtained by

x∗g = − δ
aT y2

y1, where

[
y1
y2

]
∈ Rn × Rn is an eigenvector for M(λ∗g) and also we have

aT y2 6= 0.

3The objective function in [1] is 1/2 our objective function and I in the pencil is a general B � 0.
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Theorem 2.3 establishes that the largest real eigenvalue of M(λ) is the Lagrange

multiplier associated with the global optimal solution of TRS. In the following theo-

rem, we prove that if TRS has a LNGM, then the corresponding Lagrange multiplier

is the second largest real eigenvalue of M(λ). This is the main result of this section.

Theorem 2.4 (Eigenvalue Characterization of LNGM). Let x∗ be a LNGM. Then

the corresponding Lagrange multiplier λ∗ is equal to the second largest real eigenvalue

of M(λ). Moreover, x∗ can be computed as x∗ = − δ
aT y2

y1, where

[
y1
y2

]
is an eigenvector

for M(λ∗) and we also have aT y2 6= 0.

Proof. From Theorem 2.1 we have λ∗ ∈ (max{0,−λ2},−λ1). Moreover, ||x∗||2 = δ

and it follows from Lemma 2.2 that λ∗ is an eigenvalue of M(λ), i.e. detM(λ∗) = 0.

We know that the hard case does not hold, see Corollary 2.1. Therefore, by Theorem

2.3 and the optimality conditions in (2.3), we get that the largest real eigenvalue of

M(λ) is the unique multiplier associated with the global optimal solution of TRS and

is the unique root of equation φ(λ) − δ = 0 in (−λ1,∞). Moreover, it follows from

Theorem 2.2 that λ∗, the multiplier corresponding to the LNGM, is positive and is

the largest root of the equation φ(λ) − δ = 0 in (−λ2,−λ1). Next, note that Lemma

2.2 implies that −λ1 is not an eigenvalue of M(λ). From the interval considerations

for the optimum of TRS and eTRS, this establishes that λ∗ is the second largest real

eigenvalue of M(λ).

Now let

(
y1
y2

)
be an eigenvector for λ∗ for M(λ). We have

(A+ λ∗I)y2 = y1, (2.5)

(A+ λ∗I)y1 =
1

δ
aaT y2. (2.6)

We first show that aT y2 6= 0. Suppose by contradiction that aT y2 = 0. Then, since

(A + λ∗I) is nonsingular, we obtain first that y1 = 0 from the second equation which

then implies y2 = 0 from the first equation, i.e., we have y1 = y2 = 0, a contraction

of the fact that

(
y1
y2

)
is an eigenvector. Hence, aT y2 6= 0. Thus, (2.6) implies that

x∗ = −δ
aT y2

y1 satisfies

(A+ λ∗I)x∗ = −a. (2.7)

Moreover, we have

||x∗||2 =
δ2

(aT y2)2
yT1 y1 =

δ2

(aT y2)2
yT2 (A+ λ∗I)(A+ λ∗I)−1

aaT

δ
y2 = δ.
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3 Strong Duality and Stability for eTRS

3.1 Characterization of Strong Duality for eTRS

A necessary and sufficient condition for strong duality of the problem of minimizing

a quadratic function over two quadratic inequality constraints, when one of them is

strictly convex, is presented in [2]. Since eTRS is a special case, we have the following.

Theorem 3.1 (Characterization Strong Duality eTRS). Strong duality fails for eTRS

if, and only if, there exist multipliers λ, µ such that the following hold:

1. λ > 0 and µ > 0;

2. A+ λI � 0, and rank(A+ λI) = n− 1;

3. The following system of linear equations is consistent.

2(A+λI)xi = −2a−µb, xTi xi = δ, i = 1, 2, (bTx1−β)(bTx2−β) < 0. (3.1)

Proof. This follows immediately from the characterization in [2, Thm 5.2] for two

quadratic constraints, since the affine constraint is a special case of a quadratic con-

straint.

It is interesting to translate this theorem under our special assumptions and the

language of the hard case. In fact, we see that loss of strong duality is directly connected

to the hard case in TRS. Note that the hard case is identified by obtaining a feasible

solution that satisfies all the optimality conditions except for complementary slackness.

Corollary 3.1. Consider the Lagrangian dual of eTRS in parametric form.

d∗eTRS := max
µ≥0

g(µ),

where the dual function, g(µ), with λ implicit in g, is a parametric TRS, TRSµ,

g(µ) := max
λ≥0

min
x

[
L(x, λ) + µbTx

]
− µβ (TRSµ )

Then strong duality fails for eTRS if, and only if, there exists µ > 0 such that the

parametrized TRSµ has a hard case solution x∗µ that satisfies all the optimality condi-

tions except for complementary slackness, i.e.,

‖x∗µ‖2 < δ, bTx∗µ = β.

Proof. Since eTRS is a convex problem if λ1 ≥ 0, without loss of generality we assume

that λ1 < 0. We conclude that the optimal Lagrange multiplier for TRSµ satisfies

λ > 0 and moreover there exists an optimal solution on the boundary of the trust

region.

The three conditions in Theorem 3.1 are equivalent to the optimality conditions

for the parametrized problem at µ. And the two points xi, i = 1, 2 are on opposite
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sides of the affine manifold for the linear constraint. We note that necessarily 0 6= v :=

x1 − x2 ∈ Null(A+ λI). Therefore v is the required eigenvector and this is equivalent

to finding the convex combination x∗ = αx1 + (1− α)x2, α ∈ (0, 1) with bTx∗ = β and

necessarily ‖x∗‖ < δ.

Therefore, the parametrized TRS has multiple optimal solutions and the hard case

holds for the corresponding TRSµ, i.e., 2a+ µb ∈ Range(A− λ1I), λ∗ = −λ1.
More details on ‖x∗µ‖2 < δ and the relation with the minimum norm solution

x̂ := 1
2(A−λ1I)†(−2a−µb) are discussed in Section 4.2.1, where we define the Moore-

Penrose generalized inverse, C†. In fact, necessarily ‖x∗µ‖2 = 1
2(A−λ1I)†(−2a−µb)+v

for v ∈ Null(A− λ1I).

Remark 3.1. Corollary 3.1 illustrates the geometry of strong duality in terms of the

parametrized TRSµ. If we start with µ = 0 and increase µ ↑, then the corresponding

optimal solution of TRSµ moves on the boundary of the trust region. If we encounter

the boundary of the linear constraint first then strong duality holds. On the other hand

if we encounter the hard case at µ > 0 and if we can move using the nullspace x̄ = xµ+v

so that ‖x̄‖2 < δ, bT x̄ = β, then strong duality fails.

This means that given a TRS we can characterize all the b, β where strong duality

would fail using the characterization of the hard case.

We know that strong duality fails if the LNGM is the optimum for eTRS. We

now see that it requires a special eigenvalue configuration for strong duality to fail if

the linear constraint is active.

Theorem 3.2. Suppose that x∗ solves eTRS with bTx∗ = β. Suppose that λ2 < 0.

Then strong duality holds for eTRS.

Proof. As above, we can construct a full column rank matrix W to represent Null(bT ).

From interlacing of eigenvalues we get that λmin(W TAW ) < 0. Therefore, there exists

an optimal solution on the boundary of the trust region for the projected problem,

i.e., complementary slackness holds. This means that the optimum for eTRS is also

on the boundary of the trust region constraint. We can therefore add a multiple of the

identity to the Hessian of the original problem and obtain a convex equivalent problem.

This shows that strong duality holds. The dual problem is equivalent to perturbing

the Hessian to Q− λ1I as long as we subtract the constant λ1β.

3.2 Stability for eTRS

We now see that the eTRS is stable with respect to perturbations in the data.

Lemma 3.1. Recall that we have made Assumptions 1.1 and 2.1. Let x∗ be the optimal

solution for eTRS. Then the linear independence constraint qualification, LICQ, holds

at x∗. Moreover, x∗ is the unique optimal solution if the second constraint is inactive.

Thus unique Lagrange multipliers λ∗1, λ
∗
2 exist for the two constraints, respectively.4

4We note that the optimum does not have to be unique for the projected problem, i.e., though the hard
case does not hold for TRS, it can hold for the projected problem.
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Proof. Suppose that the second constraint is inactive bTx∗ < β. First we note that the

first constraint is active by the λ1(A) < 0 assumption and the gradients of the active

constraint is 2x∗ 6= 0. Therefore the LICQ holds. This immediately implies that

λ∗1 > 0 exists. Moreover, both x∗ and the optimal Lagrange multiplier λ∗ are unique

by the λ1(A) < λ2(A) assumption.

If the second constraint is active bTx∗ = β, then x∗ is the optimal solution of

the projected problem. If the first constraint is inactive, we are done as {b} is a

linearly independent set. And it is clear from the geometry that if both constraints are

active then the gradients {b, 2x∗} are linearly dependent only if strict feasibility fails,

a contradiction. Therefore, LICQ holds and the multipliers are unique.

Corollary 3.2. The eTRS is a stable problem with respect to perturbations in the

data.

Proof. This follows from standard results in sensitivity analysis since the Lagrange

multipliers are unique, satisfy LICQ and the feasible set is compact, e.g., [6].

Remark 3.2. We note that these results on stability along with standard sensitivity

results on eigenvalue algorithms imply that our approach is a robust method for solving

eTRS.

In addition, strict complementarity can fail for eTRS. If the LNGM is the opti-

mal solution for eTRS, then one can perturb the linear constraint till it becomes active.

It is therefore a redundant constraint illustrating that the corresponding Lagrange mul-

tiplier can be zero. This would then be a degenerate problem and perturbing the linear

constraint further can make the projected trust region optimal point the optimum for

eTRS, i.e., the result is a jump in the optimal solution.

4 Algorithm and Subproblems for eTRS

We now describe our proposed method to solve eTRS in Algorithm 4.1. This finds

the global optimal solution for the general problem of eTRS. We include the details

about the global minimizer for TRS and the details for the subproblems that need to

be solved. We do not assume that the global minimizer of TRS is infeasible in the

details of our algorithm, i.e., our algorithm solves the general case.

Lemma 4.1. Strong duality fails for the LNGM.

Proof. The Lagrangian of TRS is given in (1.1). The Lagrangian dual of TRS is

maxλ≥0 minx L(x, λ). Since the inner problem is a minimization of a quadratic, for it

to be finite we get the necessary (hidden) condition that the Hessian of the quadratic

A + λI � 0. This contradicts the Lagrange multiplier condition for LNGM given in

Theorem 2.2.

Theorem 4.1. Suppose that strong duality holds for eTRS and that the optimal solu-

tion of eTRS is x∗. Then bTx∗ = β and x∗ is a global optimal solution of TRS after

projection onto the linear manifold of the linear constraint.

12



Proof. If bTx∗ < β, then either x∗ is the global minimizer or a LNGM. Since strong

duality fails for the LNGM, we conclude that it must be the global minimizer of the

TRS. But our Assumption 1.1 means that the global minimizer is infeasible for eTRS.

If the linear inequality is active, then we have a TRS problem after a projection

onto the linear manifold and we obtain the global minimizer on this affine manifold.

4.1 Main Algorithm

Theorem 4.1 suggests the following Algorithm 4.1 for eTRS. Without loss of generality,

by Lemma 1.1, we can assume that strict feasibility holds.

In addition, we see that the cost of the algorithm in the worst case is to find λ1, λ2
and eigenvector v1 for λ1; check for strong duality; find the TRS and projected TRS

optima or the LNGM and the projected TRS optima.

Algorithm 4.1.

INPUT: A ∈ Sn, a, b ∈ Rn, δ ∈ R++, β ∈ R with −
√
δ‖b‖ < β.

INITIALIZATION: Solve the symmetric eigenvalue problem for λ1, λ2 and eigen-
vector v1 for λ1.

IF: λ1 ≥ 0 or λ1 = λ2, THEN Strong duality holds; solve TRS for x.

IF: x is feasible, THEN it is opt. STOP.

ELSE: Solve the projected TRS problem for x; it is opt. STOP.

END:

ELSE: Check the strong duality condition for eTRS.

IF: strong duality holds, THEN solve TRS for x.

IF: x is feasible, THEN it is opt. STOP.

ELSE: Solve the projected TRS problem for x; it is opt. STOP.

END:

ELSE: Solve for the projected TRS and the LNGM if it exists; discard LNGM
if it is not feasible; choose the x as the best of the remaining solutions; it
is opt. STOP.

END:

END:

OUTPUT: x is optimizer of eTRS.

Table 4.1: Algorithm: Solve the General (strictly feasible) eTRS
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Recall that, if the LNGM exists then we can use Theorem 2.4 and find it efficiently

via the second largest real eigenvalue of the matrix pencil. The other subproblems are

now discussed.

4.2 Subproblems

4.2.1 Verifying Strong Duality

To specify the value of µ in Theorem 3.1, first notice that, for given µ, system (3.1) is

consistent if, and only if, vT (2a + µb) = 0 where v is a normalized eigenvector for λ1.

Next, let us consider the following cases:

1. vT b = 0: In this case, we show that strong duality holds for eTRS. We show

this by contradiction. Suppose that strong duality does not hold for eTRS.

Then system (3.1) has two solutions x1 and x2 satisfying xTi xi = δ, i = 1, 2,

and (bTx1 − β)(bTx2 − β) < 0 for some µ > 0. Moreover, we know that the

solutions x1 and x2 necessarily have the form x1 = 1
2(A − λ1I)†(−2a − µb) + z1

and x2 = 1
2(A − λ1I)†(−2a − µb) + z2 where zi, for i = 1, 2, is an eigenvector

corresponding to λ1. By the fact that b is orthogonal to the eigenspace of λ1 (λ1
has multiplicity one), we have bTx1 − β = bTx2 − β, a contradiction to the fact

that (bTx1 − β)(bTx2 − β) < 0, i.e., we have strong duality for eTRS.

2. vT b 6= 0: In this case, consistency of system (3.1), i.e., vT (2a + µb) = 0 implies

that necessarily µ = −2vT a
vT b

. If µ = 0, it follows from Theorem 3.1 that eTRS

enjoys strong duality. If µ > 0, then strong duality does not hold for eTRS if,

and only if, system (3.1) for µ = −2vT a
vT b

has two solutions x1 and x2 satisfying

xTi xi = δ, i = 1, 2, and (bTx1 − β)(bTx2 − β) < 0.

To verify whether strong duality holds we suppose that xi, i = 1, 2 are as defined in

Theorem 3.1. clearly, xi = xp+αiv where v is a normalized eigenvector associated with

λ1, xp = 1
2(A − λ1I)†(−2a − µb) and αi, i = 1, 2, are roots of the following quadratic

equation.

α2 + 2αvTxp + xTp xp − δ = 0.

The main task in finding xi, i = 1, 2, is computing xp. In the sequel, we show that xp
is indeed the solution of a symmetric positive definite linear system. To see this, let us

consider the eigenvalue decomposition of A defined as before in which Q contains v as

its first column. Noting that vT (2a+ µb) = 0, we have

(A+ γvvT − λ1I)−1(−2a− µb) = Q(Λ + γe1e
T
1 − λ1I)−1QT (−2a− µb)

= Q(Λ− λ1I)†QT (−2a− µb)
= (A− λ1I)†(−2a− µb),

where γ is a positive constant and e1 is the first unit vector. This implies that xp can

be computed efficiently by applying the conjugate gradient algorithm to the following
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positive definite system.

2(A+ γvvT − λ1I)xp = (−2a− µb).

However, we note that the perturbation with γvvT is not required since the right-hand

side (−2a − µb) ∈ Range(A − λ1I). The MATLAB pcg works fine even though the

matrix is singular.

4.2.2 Solving the TRS Subproblem

The main work of the algorithms lie in solving generalized eigenvalue problems. For

the TRS, we use the method of [1] that solves the scaled TRS

min
1

2
xTAx+ aTx

xTBx ≤ δ, (4.1)

whereB is a positive definite matrix. The algorithm computes one generalized eigenpair

and is able to handle the hard case efficiently. Specifically, it is shown that the optimal

Lagrange multiplier corresponding to the solution of (4.1) is the largest real eigenvalue

of the 2n× 2n matrix pencil M0 + λM1, where

M̃(λ) = M0 + λM1, M0 =

[
−B A

A −aaT

δ

]
, M1 =

[
On×n B

B On×n

]
.

As above we have an equivalent result to Lemma 2.2 that every nonzero KKT multiplier

is a generalized eigenvalue of the pencil, det(M̃(λ)) = 0.

Lemma 4.2 (Generalized Eigenvalue of Pencil , [1, Lemma 3.1]). For every nonzero

KKT multiplier λ∗g 6= 0 for (4.1) with equality in the quadratic constraint we have

det M̃(λ∗g) = 0, i.e., λ∗g is a generalized eigenvalue of the pencil M̃(λ).

4.2.3 Solving the Projected TRS Subproblem

We can eliminate the equality constraint bTx = β to solve the projected TRS. For

ease of exposition, we assume that

|b1| ≥ |b2| ≥ . . . ≥ |br| > 0 = br+1 = . . . = bn.

In order to find a basis of Null(bT ), we define b̄:=
(
b−12 . . . b−1r

)T
and the matrix

W :=

 −b
−1
1 eTr−1 0n−r

Diag(b̄) 0

0 In−r

 ∈ Rn×(n−1).
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Algorithm 4.2. 1. Solve Ax0 = −a by the conjugate gradient algorithm and keep x0
if it is feasible, i.e., if xT0Bx0 ≤ δ.

2. Compute λ∗g, the largest generalized eigenvalue of the symmetric regular pencil M0+

λM1, and a corresponding eigenvector

(
y1
y2

)
, i.e.,

[
−B A

A −aaT

δ

](
y1
y2

)
= −λ∗g

[
On×n B
B On×n

](
y1
y2

)
. (4.2)

3. If ||y1|| ≤ τ (default is τ = 10−4), then the hard case is detected; run Steps 4 to 6.
Else go to Step 7.

4. Compute H := (A + λ∗gB + α
∑d

i=1Bviv
T
i B) where V = [v1, ..., vd] is a basis of

Null(A+λ∗gB) that is B-orthogonal, i.e., V TBV = I, d = dim(Null(A+λ∗gB)) and
α is an arbitrary positive scalar.

5. Solve Hq = −a by the conjugate gradient algorithm.

6. Take an eigenvector v computed above, and find η such that (q+ηv)TB(q+ηv) = δ
and return x∗ = q + ηv as global optimal solution of (4.1).

7. Set x1 = −sign(aTy2)
√
δ y1√

yT1 By1
.

8. The global optimal solution of (4.1) is either x1 or x0, whichever gives the smaller
objective value.

Table 4.2: Algorithm: Solve scaled TRS (4.1), [1, Theorem 3.1]

Define a particular solution, x̂ satisfying bT x̂ = β, ‖x̂‖2 < δ.5 We choose

x̂ =

{
0, if β = 0
β
‖b‖2 b, if β 6= 0.

6 (4.3)

Then it is clear that

bTx = β ⇐⇒ x = x̂+Wy, for some y ∈ Rn−1.

We can now substitute for x into eTRS and eliminate the linear equality constraint.

The objective function becomes

(x̂+Wy)TA(x̂+Wy)+2aT (x̂+Wy) =
[
yT (W TAW )y + 2

(
W T (a+Ax̂)

)T
y
]
+
[
(Ax̂+ 2a)T x̂

]
.

5Some scaling issues can arise here. It is preferable to take x̂ strictly feasible for the trust region constraint.
6We note that the choice x̂ = 0 simplifies the nonhomogeneous nTRS below.
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The constraint becomes

yT (W TW )y + 2(W T x̂)T y ≤ δ − x̂T x̂.

We get the following equivalent problem in the case that the linear constraint is active.

min yT (W TAW )y + 2(W T (a+Ax̂))T y

s.t. yT (W TW )y + 2(W T x̂)T y ≤ δ − x̂T x̂
(TRSproj )

We let

B := W TW, Â := W TAW, â := W T (a+Ax̂), b̂ := 2(W T x̂)., δ̂ = δ − x̂T x̂.

Therefore, we need to solve the nonhomogeneous TRS, nTRS

min xT Âx+ 2âTx

s.t. xTBx+ b̂Tx ≤ δ̂.
7 (nTRS )

By the change of variables

x← y + g, with 2Bg = −b̂,

we get
xT Âx+ 2âTx = (y + g)T Â(y + g) + 2âT (y + g)

= yT Ây + 2(Âg + â)T y + constant.

and
xTBx+ b̂Tx = (y + g)TB(y + g) + b̂T (y + g)

= yTBy + (2Bg + b̂)T y + gTBg + bT g

= yTBy + gTBg + bT g

We write nTRS as the scaled homogeneous TRS, sTRS ,

min yT Ây + 2(Âg + â)T y

s.t. yTBy ≤ δ̂ − gTBg − b̂T g.
(sTRS )

This means we can directly apply the approach in [1] where the scaled TRS is solved

using the generalized eigenvalue approach.

Remark 4.1. When we solve for the optimimum in sTRS using (4.2) we do not

form B explicitly but exploit the rank one update structure of W and its inverse. This

means we can exploit the original sparsity in A in the objective function and in the,

now scaled, I in the original trust region constraint when performing the matrix-vector

multiplications needed for eigs in MATLAB. Let

B̄ := Diag(b̄), ē :=

(
eTr−1
0n−r

)
.

7We note again here that if β = 0 then we can choose x̂ = 0 and the homogeneous TRS is maintained.
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Note that

B =

[
B̄2 0

0 In−r

]
+ b−21 ēēT

=

{[
B̄ 0

0 In−r

]
+ wwT

}{[
B̄ 0

0 In−r

]
+ wwT

}
= B1/2B1/2.

We can then find the appropriate rank one update of

[
B̄ 0

0 In−r

]
to find the inverse

B−1/2. Therefore we can take a diagonal congruence of both sides of (4.2) and obtain

a simple right-hand side of the generalized eigenvalue problem.

5 Numerical Results

We now present our numerical results to illustrate the efficiency of the new algorithm.

We compare with the second order cone and semidefinite programming, SOCP/SDP,

reformulation in [4] on some small instances as this reformulation is not able to handle

large instances. Hence, for large instances we just report the solution obtained by our

new algorithm.

All computations were done in MATLAB 8.6.0.267246 (R2015b) on a Dell Optiplex

9020 with 16GB RAM with Windows 7. To solve the SOCP/SDP reformulation, we

used SeDuMi 1.3, [20].

5.1 Four Classes of Test Problems

We divide our tests into four classes I,II,III,IV, of test problems.

5.1.1 Class I

In this section, we apply our algorithm and the SOCP/SDP reformulation to some

eTRS instances for which the LNGM of the corresponding TRS is a good candidate

for the global optimal solution of eTRS. To generate the desirable random instances

of eTRS, we proceed as follows. First we construct a TRS problem having a local

non-global minimizer based on Theorem 2.4. Then we add the inequality constraint

bTx ≤ β to enforce that the global minimizer of TRS is infeasible but that the LNGM

remains feasible.

Comparison with the SOCP/SDP reformulation is given on some small instances

in Table 5.1. We follow [1] and report the relative objective function difference

|q(x∗)− q(xbest)|
|q(xbest)|

accuracy measure,

where x∗ is the computed solution by each method and xbest is the solution with

18



the smallest objective value among the two algorithms. For each dimension, we have

generated 10 eTRS instances. We report the dimension n, and the average values of

the relative accuracy, the run time in cpu-seconds and we include the time taken for

checking the strong duality property of eTRS in Algorithm 4.1. Moreover, for each

dimension, # LNGM denotes the number of test problems among the 10 instances

for which our algorithm has detected the LNGM of the corresponding TRS as a

global optimal solution of eTRS. It should be noted that the algorithm which gets

xbest varies from problem to problem and since we are reporting the average of 10 runs,

we can have a positive accuracy in both columns of the table.

Accuracy Accuracy CPUsec CPUsec CPUsec # LNGM
Main Algor. SOCP/SDP Main Algor Str. Dual. SOCP/SDP Main Algor.

100 0.0 1.1309e-10 0.043 0.019 1.372e+00 10
200 0.0 2.9945e-10 0.037 0.012 8.440e+00 10
300 0.0 2.7884e-10 0.040 0.012 3.193e+01 10
400 0.0 3.1309e-10 0.049 0.018 9.017e+01 10

;

Table 5.1: Class I: Comparison with SOCP/SDP reformulation.

We see in Table 5.1 that our algorithm finds the global optimal solution of eTRS

significantly faster than the SOCP/SDP reformulation and with improved accuracy.

The generated matrix A in this the first class of test problems is dense and so we do

not perform tests of large size as the aim of our method is solving large sparse eTRS

instances.

5.1.2 Class II

In this section we test our algorithm on both small and large sparse eTRS instances.

we take advantage of the following lemma from [15] to generate such eTRS instances.

Lemma 5.1 (Lemma 3.4 of [15]). Consider the TRS problem. Suppose that λ1 < 0,

has multiplicity one, and the TRS is an easy case instance. Then there exists δ0 > 0

such that TRS admits a local non-global minimizer for all δ > δ0.

The second class of test problems are generated as follows. We generate a ran-

dom sparse symmetric matrix A via A=sprandsym(n,density). Next we generate the

vector a via a=randn(n,1) and make sure that vTa 6= 0 where v is the eigenvector

corresponding to λ1, i.e., we get the easy case TRS. Then we set δ = 4000 following

Lemma 5.1. Finally we set b = 0.9xopt and c = ||b||2 to cut off xopt, the global optimal

solution of the generated TRS instance. We have compared our algorithm with the

SOCP/SDP reformulation on the test problems of small size in both runtime and

solution accuracy. For each dimension, we have generated 10 eTRS instances and the

corresponding numerical results are presented in Table 5.2, where we report the di-

mension of the problem n, the algorithm run time and the time taken for checking the

strong duality property of eTRS , and the accuracy at termination averaged over the

10 random instances. Moreover, for each dimension, # LNGM denotes the number
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of test problems among 10 instances for which our algorithm has detected the LNGM

of the corresponding TRS as a global optimal solution of eTRS. It should be noted

that the algorithm which gets xbest varies from problem to problem and since we are

reporting the average of 10 runs, we have positive accuracy in the Table. Furthermore,

we verified that in all cases, there was a positive duality gap for generated eTRS

instances. As in the previous test problems the new algorithm finds higher accuracy

solutions in significantly shorter time than the SOCP/SDP reformulation.

Accuracy Accuracy CPUsec CPUsec CPUsec # LNGM
Main Algor. SOCP/SDP Main Algor Str. Dual. SOCP/SDP Main Algor.

100 0.0 4.2588e-09 0.093 0.028 1.697e+00 9
200 0.0 1.0547e-08 0.128 0.030 1.167e+01 6
300 0.0 9.3557e-09 0.180 0.036 4.694e+01 7
400 0.0 3.3775e-09 0.252 0.042 1.287e+02 5

;

Table 5.2: Class II: Comparison with SOCP/SDP reformulation; density 0.1

Now we turn to solving large sparse eTRS instances. For this class we just re-

port the results of our algorithm since the SOCP/SDP approach could not handle

problems of this size. Let x∗ be a global optimal solution of eTRS and λ∗ the cor-

responding Lagrange multiplier. Depending on the context of the linear constraint

being not active or being active, we denote the error in the stationarity condition by:

KKT1 := ||(A + λ∗I)x∗ + a||∞ or the corresponding conditions for the scaled active

case, respectively; and the error in complementary slackness by KKT2 := λ∗(||x∗||2−δ)
or the corresponding condition for the scaled linear active case, respectively. For each

dimension, we have generated 10 eTRS instances. In both cases the global optimal

solution of eTRS is obtained from solving generalized eigenvalue problems. Numerical

results are presented in Table 5.3.

Opt. Cond. Opt. Cond. CPUsec CPUsec # LNGM
KKT1 eTRS KKT2 C.S. Algor Time Str. dual. Time Main Algor.

10000 1.4085e-08 -1.3688e-12 1.087 0.168 4
20000 1.3465e-10 -7.7060e-13 2.506 0.294 6
40000 1.9584e-09 -3.8369e-14 10.343 0.963 2
60000 1.9876e-10 1.8024e-14 13.694 1.912 4
80000 1.8937e-10 5.3614e-13 26.768 3.253 5
100000 8.5902e-11 2.8473e-12 29.225 5.415 2

;

Table 5.3: Class II: Large instances; density 0.0001

The following lemma is useful in generating test problems for the next two classes.

Lemma 5.2 (Generating LNGM). Let A ∈ Sn and suppose that λ1 < min{0, λ2}.
Then there exists linear term a for which the eigenvector associated with λ1 is the

LNGM.

Proof. Let µ ∈ (max {0,−λ2},−λ1). Set a = −(A+µIn)v1 where v1 is the eigenvector

for λ1 with ||v1||2 = δ. Then for this choice we have the first order stationary conditions.
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Now let Range(W ) = Null(vT1 ). Then W T (A+ µIn)W = diag(λ2 + µ, ..., λn + µ). Due

to the choice of µ, the diagonal matrix has all diagonal elements positive. Thus we

have the positive definiteness of the reduced Hessian. This implies that v1 is the

LNGM.

5.1.3 Class III

In this section, we consider a class of large sparse eTRS instances for which strong

Lagrangian duality holds while the corresponding TRS has a LNGM which is feasible

for eTRS. We generate the TRS using the previous Lemma 5.2 and set b = (A−λ1I)x

where x=rand(n,1). This means that bT v1 = 0 implying that we have strong duality

property for generated eTRS instances.

Now let x∗ be a global optimal solution of eTRS. Then either bTx∗ < β or bTx∗ =

β. Since strong duality holds, in the former case, x∗ is the global minimizer of the

corresponding TRS. We define KKT1 and KKT2 as the previous section. For each

dimension, we have generated 10 eTRS instances and the corresponding numerical

results are presented in Table 5.4.

Opt. Cond. Opt. Cond. CPUsec CPUsec
KKT1 eTRS KKT2 C.S. Algor Time Str. dual. Time

10000 5.4076e-14 5.4076e-14 0.313 0.118
20000 3.1243e-14 3.1243e-14 0.731 0.242
40000 2.0866e-12 2.0866e-12 2.279 0.721
60000 8.9301e-14 8.9301e-14 3.827 1.448
80000 4.5073e-14 4.5073e-14 5.998 2.333
100000 9.7731e-14 9.7731e-14 9.727 3.820

Table 5.4: Class III: density 0.0001

5.1.4 Class IV

For this class also we follow the above Lemma 5.2 to generate TRS having LNGM.

We follow the same procedure as in Section 5.1.3 to obtain A, a, δ and LNGM but

we set b = xopt − xl and β = bT (0.9xl + 0.1xopt) to cut off xopt but leave xl feasible

where xopt and xl are the global optimal solution and LNGM of the corresponding

TRS, respectively.

Accuracy Accuracy CPUsec CPUsec CPUsec # LNGM
Main Algor. SOCP/SDP Main Algor Str. Dual. SOCP/SDP Main Algor.

100 1.8488e-10 0.0 0.132 0.025 9.170e-01 10
200 2.3815e-10 0.0 0.145 0.025 7.037e+00 10
300 2.1072e-10 0.0 0.230 0.034 2.926e+01 10
400 2.1792e-10 0.0 0.386 0.041 8.877e+01 10

Table 5.5: Class IV: density 0.1
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Opt. Cond. Opt. Cond. CPUsec CPUsec # LNGM
KKT1 eTRS KKT2 C.S. Algor Time Str. dual. Time Main Algor.

10000 1.3807e-13 2.1481e-18 2.564 0.167 10
20000 3.3108e-14 1.2592e-16 2.712 0.314 10
40000 1.9213e-13 -9.3530e-16 10.682 0.981 10
60000 3.8501e-13 7.6124e-16 19.285 2.060 10
80000 6.2677e-14 3.1855e-16 29.587 3.736 10
100000 1.1080e-13 -7.4408e-16 44.761 6.171 10

Table 5.6: Class IV: density 0.0001

6 Conclusion

In this paper we have derived a new necessary condition for the local non-global optimal

solution LNGM of the TRS that is based on the second largest real generalized

eigenvalue of a matrix pencil. This is then used to derive an efficient algorithm for

finding the global minimizer of the extended TRS, the eTRS. We have presented

numerical tests to show that our method far outperforms current methods for eTRS.

And our method solves large sparse problems which are too large for current methods

to be applied. We have included discussions on a characterization of when strong

duality holds for eTRS as well as details on the stability of the problem.

It is well known that TRS is important for unconstrained trust region methods,

restricted Newton methods, for unconstrained minimization; as well it is important

for general minimization algorithms such as sequential quadratic programming (SQP)

methods. For SQP methods it is customary to solve a standard quadratic program-

ming problem for the search direction after using something akin to a quasi-Newton

method to guarantee convexity of the objective function. The eTRS we have studied

can be viewed as a step toward solving a TRS with multiple linear constraints for the

search direction in SQP methods.
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dual function, g(µ), 10

Eigenvalue Characterization of TRS, 8

extended trust region subproblem, eTRS , 3

Generalized Eigenvalue of Pencil, 8, 15

generalized eigenvalue of the pencil M(λ), 8

hard case, 4, 6

KKT, Karush-Kuhn-Tucker, 8

Lagrangian dual of eTRS , 10

Lagrangian of TRS, L(x, λ), 4

linear independence constraint qualification, LICQ, 11

local non-global minimizer, LNGM, 5

Moore-Penrose generalized inverse, C†, 11

Necessary Conditions for LNGM, 6

nonhomogeneous TRS, nTRS, 17

orthogonal matrices, On, 4

orthogonal spectral decomposition of A, 4

parametric TRS, TRSµ, 10

particular solution, x̂, 16

scaled homogeneous TRS, sTRS, 17

Slater constraint qualification, SCQ, 4

symmetric real n× n matrices, Sn, 3

trust region subproblem, TRS, 3

vector of ones, e, 4
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