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Abstract. In semidefinite programming a proposed optimal solution may be quite poor in
spite of having sufficiently small residual in the optimality conditions. This issue may be framed
in terms of the discrepancy between forward error (the unmeasurable ``true error"") and backward
error (the measurable violation of optimality conditions). In [SIAM J. Optim., 10 (2000), pp. 1228--
1248], Sturm provided an upper bound on forward error in terms of backward error and singularity
degree. In this work we provide a method to bound the maximum rank over all optimal solutions
and use this result to obtain a lower bound on forward error for a class of convergent sequences. This
lower bound complements the upper bound of Sturm. The results of Sturm imply that semidefinite
programs with slow convergence necessarily have large singularity degree. Here we show that large
singularity degree is, in some sense, also a sufficient condition for slow convergence for a family of
external-type ``central"" paths. Our results are supported by numerical observations.
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1. Introduction. It is well known that for certain pathological instances of
semidefinite programming, state-of-the-art algorithms, while theoretically guaranteed
to converge to an optimal solution, do so very slowly or can fail to converge en-
tirely. This issue is exacerbated in that it is generally undetectable. In this paper
we propose a method to detect this type of slow convergence by lower bounding for-
ward error, i.e., distance to the solution (optimal) set. This bound is obtained by
analyzing a class of parametric curves that are proven to converge to a solution of
maximum rank and then upper bounding that rank. In the second part of the paper
we present a new analysis of the relation between forward error and singularity de-
gree, a measure introduced by Sturm in [29] and shown to be a necessary condition
for slow convergence. Our results indicate that large singularity degree is, in some
sense, also a sufficient condition for slow convergence for a certain family of central
paths.

To be more specific about the type of slow convergence we are concerned with, let
\scrF \subset \BbbS n be the solution set of a semidefinite program (SDP). By solution set we mean
the set of optimal solutions. For feasibility problems the solution set coincides with the
feasible set. Throughout this paper we refer to \scrF as a spectrahedron. Here \BbbS n denotes
the ambient space of n\times n symmetric matrices. It is always possible to express \scrF as
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ERROR BOUNDS AND SINGULARITY DEGREE IN SDP 813

the intersection of an affine subspace, \scrL , and the set of positive semidefinite matrices,
\BbbS n+. Given a matrix X \in \BbbS n, the forward error is defined as

(1.1) \epsilon f (X,\scrF ) := dist(X,\scrF ).

We cannot expect to measure forward error accurately without substantial knowledge
of \scrF . For this reason forward error is generally unknown. What is readily available
to users is backward error,

\epsilon b(X,\scrF ) := dist(X,\scrL ) + dist(X,\BbbS n+).(1.2)

In backward error we recognize that \scrF is the intersection of two sets with easily
computable forward errors. Backward error serves as a proxy for the unknown forward
error. The type of slow convergence we are concerned with is when backward error is
sufficiently small but forward error is much larger. The problem with this scenario is
not just the poor quality of the proposed solution. More than this, it is the lack of
awareness of a poor solution.

To demonstrate the discrepancy between forward error and backward error, we
consider an SDP, with n = 5, from the family introduced in [30] (see also [28, Exam-
ple 4.2.6.]). The output of cvx using the solver SDPT3 is

X \approx 

\left[      
0.94 0 0.028 0.001 2.3\times 10 - 6

0 0.057 0 0 0
0.028 0 0.028 4.1\times 10 - 5 6.5\times 10 - 8

0.001 0 4.1\times 10 - 5 4.5\times 10 - 6 3.1\times 10 - 9

2.3\times 10 - 6 0 6.5\times 10 - 8 3.1\times 10 - 9 0

\right]      ,

\lambda (X) \approx 

\left(      
0.94
0.057

1.9\times 10 - 3

2.4\times 10 - 6

 - 5.4\times 10 - 12

\right)      ,

where \lambda (X) is the vector of eigenvalues of X. Similar results were obtained with the
solvers SeDuMi and MOSEK. The backward error for X is quite small at 5.46\times 10 - 12,
and cvx output states that the problem is solved. All indicators point to a ``good""
solution. However, the solution set of the SDP is a singleton consisting of the matrix
with 1 in the upper left entry and zeros everywhere else. Given this information,
X does not look like a very good solution. Indeed, forward error is 9.15\times 10 - 2,
unacceptably large. Moreover, the eigenvalues of X hardly indicate that the solution
is a rank one matrix. In the numerical case studies of section 5, we show that our
lower bound on forward error is significantly greater than backward error. Therefore,
it serves as an alarm that the proposed solution is not as accurate as it appears to be.

In [29], Sturm defined singularity degree as the fewest number of iterations re-
quired in the facial reduction algorithm, a regularization scheme for conic optimization
introduced in [3, 4, 5]. The singularity degree of a spectrahedron \scrF , denoted sd(\scrF ),
is an integer between 0 and n - 1. Loosely speaking, Sturm showed that forward error
is bounded in terms of backward error and singularity degree,

(1.3) \epsilon f (X,\scrF ) = \scrO 
\Bigl( 
\epsilon b(X,\scrF )2

 - sd(\scrF )
\Bigr) 
.

See Fact 2.2 below for a more precise presentation of the result. In particular, this
bound implies that large singularity degree is a necessary condition for large forward
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814 S. SREMAC, H. J. WOERDEMAN, AND H. WOLKOWICZ

error. Equivalently, small singularity degree implies small forward error. It is exactly
this relation that has motivated our study of singularity degree.

The challenge with singularity degree is that, like forward error, it is unknown
in most cases. In [6] it is shown that the facial reduction algorithm is stable when
singularity degree is 0 or 1, but the authors were not able to show that stability holds
for larger singularity degree. Moreover, the empirical evidence we have obtained
indicates a lack of stability of the algorithm when singularity degree is greater than
1. For this reason, we view singularity degree as intractable for general instances of
SDP. Here we obtain a lower bound on singularity degree as a consequence of the
upper bound on maximum rank.

Our final contribution in this work is showing that singularity degree is also a
sufficient measure, in some sense, for large forward error. We prove that for a class of
central paths, the eigenvalues that vanish do so at a fast rate if and only if singularity
degree is at most 1. We also prove that among the elements of the dual path that
converge to 0, there are at least sd(\scrF ) different rates of convergence.

The paper is organized as follows. In section 2 we introduce our notation and
basic concepts pertaining to facial reduction and singularity degree. The bounds on
maximum rank, forward error, and singularity degree are presented in section 3, and
in section 4 we present results that support the notion that singularity degree is a
measure of hardness. The paper is concluded with numerical observations in section 5.

2. Notation and background. Throughout this paper the ambient space is
the Euclidean space of n\times n real symmetric matrices, denoted \BbbS n, with the standard
trace inner product, \langle X,Y \rangle := trace(XY ), and the induced Frobenius norm, \| X\| F :=\sqrt{} 
\langle X,X\rangle .
The eigenvalues of any X \in \BbbS n are real and ordered so as to satisfy \lambda 1(X) \geq 

\cdot \cdot \cdot \geq \lambda n(X), and \lambda (X) \in \BbbR n is the vector consisting of all the eigenvalues. In terms
of this notation we have \| X\| F = \| \lambda (X)\| 2, where \| \cdot \| 2 is the Euclidian norm when
the argument is a vector in \BbbR n. When the argument to \| \cdot \| 2 is a symmetric matrix,
then we mean the operator 2-norm, defined as \| X\| 2 := maxi| \lambda i(X)| . In some of our
discussion we use the notation \lambda max(X) = \lambda 1(X) and \lambda min(X) = \lambda n(X) when we are
not concerned with the dimensions of the matrix or wish to stress the minimality and
maximality of the values.

The set of positive semidefinite matrices, \BbbS n+, is a closed convex cone in \BbbS n, with
interior consisting of the positive definite matrices, \BbbS n++. The cone \BbbS n+ induces the
L\"owner partial order on \BbbS n. That is, forX,Y \in \BbbS n, we writeX \succeq Y whenX - Y \in \BbbS n+,
and similarly X \succ Y when X  - Y \in \BbbS n++.

2.1. Facial reduction for SDPs. We begin with a brief discussion of the faces
of \BbbS n+. For further reading and proofs of some of our claims, we suggest [11, 25, 30, 34].
A face of \BbbS n+, denoted f \unlhd \BbbS n+, is a convex subcone of \BbbS n+ such that

X,Y \in \BbbS n+, X + Y \in f =\Rightarrow X,Y \in f.

For a given f \unlhd \BbbS n+, there exists r \in \{ 0, . . . , n\} , W \in \BbbS n+, and V \in \BbbR n\times r such that

(2.1) WV = 0, W + V V T \succ 0, f = V \BbbS r+V T = \BbbS n+ \cap W\bot .

When the matrix W in (2.1) is not the 0 matrix, it is referred to as an exposing vector
for f .

An important notion regarding SDPs is that of minimal face. The minimal face of
\BbbS n+ containing a convex set C, denoted face(C), is the intersection of all faces of \BbbS n+ that
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ERROR BOUNDS AND SINGULARITY DEGREE IN SDP 815

contain C. If the minimal face for an SDP is known, then the SDP may be transformed
into an equivalent SDP for which the Slater condition---strict feasibility with respect
to the positive semidefinite constraint---holds. See the survey [11] or [21, 22, 23, 31]
for further reading on regularization of SDPs via facial reduction.

For SDPs with special structure, the minimal face may be obtained through the-
oretical analysis. Alternatively, the minimal face may be obtained using the facial
reduction algorithm, introduced in [3, 4, 5]. This algorithm generates a sequence of
faces f1, \cdot \cdot \cdot , fd satisfying

f1 \supsetneq \cdot \cdot \cdot \supsetneq fd, fd = face(\scrF ).

Equivalently, using the two characterizations of faces in (2.1), the algorithm gener-
ates a sequence of matrices W 1, . . . ,W d, a sequence of decreasing positive integers
r1, . . . , rd, and a sequence of matrices V k \in \BbbR n\times rk with k \in \{ 1, . . . , d\} such that

fk = V k\BbbS rk+
\bigl( 
V k
\bigr) T

= \BbbS n+ \cap 
\bigl( 
W k
\bigr) \bot 

, k \in \{ 1, . . . , d\} .

The facial reduction algorithm depends on the algebraic representation of the
solution set of an SDP. As stated earlier, such a set is the intersection of an affine
subspace and \BbbS n+. We assume that the affine subspace is defined in terms of a linear
map \scrA : \BbbS n \rightarrow \BbbR m and a vector b \in \BbbR m so that

(2.2) \scrF = \scrF (\scrA , b) = \{ X \in \BbbS n+ : \scrA (X) = b\} .

The notation \scrF (\scrA , b) stresses the dependence on the algebraic representation of the
affine subspace. The facial reduction algorithm relies on the following theorem of the
alternative.

Fact 2.1. Let \scrF = \scrF (\scrA , b) \not = \emptyset be defined as in (2.2). Then exactly one of the
following holds:

(i) \scrF \cap \BbbS n++ \not = \emptyset ,
(ii) there exists nonzero W = \scrA \ast (y) \succeq 0 with yT b = 0.

A proof of this result may be found in [11], for instance.
Now let us briefly describe how this result may be used for facial reduction.

Recall that the purpose of the facial reduction algorithm is to create an equivalent
representation of \scrF so that the Slater condition holds. Now if Fact 2.1(i) holds, then
\scrF has a Slater point, and we are done. On the other hand if Fact 2.1(ii) holds, then
we easily see that the matrix W is an exposing vector for a face containing face(\scrF ),

X \in \scrF =\Rightarrow 0 = yT b = yT\scrA (X) = \langle \scrA \ast (y), X\rangle = \langle W,X\rangle .

Letting r be the nullity of W and choosing V so as to satisfy the properties in (2.1),
we see that for all X \in \scrF we have X \in V \BbbS r+V T . It follows that

\scrF = \{ V RV T \in \BbbS n+ : \scrA (V RV T ) = b\} 
= V \{ R \in \BbbS r+ : \scrA (V RV T ) = b\} V T

= V \scrF 
\bigl( 
\scrA (V \cdot V T ), b

\bigr) 
V T .

In the next iteration of the algorithm we apply Fact 2.1 to the spectrahedron \scrF (\scrA (V \cdot 
V T ), b). We continue in this way until eventually Fact 2.1(i)---the Slater condition---
holds. We have included Algorithm 2.1, page 816, as a more rigorous description of
facial reduction.
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816 S. SREMAC, H. J. WOERDEMAN, AND H. WOLKOWICZ

Algorithm 2.1 Facial Reduction for f , V , W , Rank rd in (2.1), and Singularity
Degree d

1: INPUT: \scrA , b.
2: initialize: k = 0, \scrA k = \scrA , V k = I, W k = 0, rk = n, qk = 0

3: define: Sk =
\Bigl\{ 
Z : 0 \not = Z =

\bigl( 
\scrA k
\bigr) \ast 

(y) \succeq 0, yT b = 0
\Bigr\} 

4: while Sk \not = \emptyset do
5: obtain (nonzero) Zk+1 \in Sk and orthogonal

\bigl[ 
Qk+1

1 Qk+1
2

\bigr] 
such that

Zk+1 =
\bigl[ 
Qk+1

1 Qk+1
2

\bigr] \biggl[ \Lambda k+1 0
0 0

\biggr] \bigl[ 
Qk+1

1 Qk+1
2

\bigr] 
,

where \Lambda k+1 \succ 0 and Qk+1
1 \in \BbbR rk\times qk+1 .

6: if Zk+1 \succ 0 then
7: Qk+1

2 = 0 \in \BbbS rk , V k+1 = 0 \in \BbbS n, and rk+1 = 0
8: else
9: Qk+1

2 \in \BbbR rk\times rk+1 and V k+1 = V kQk+1
2 \in \BbbR n\times rk+1

10: end if
11: W k+1 = W k + V kZk+1

\bigl( 
V k
\bigr) T \in \BbbS n+

12: \scrA k+1 = \scrA 
\Bigl( 
V k+1 \cdot 

\bigl( 
V k+1

\bigr) T\Bigr) 
13: k = k + 1

14: Sk =
\Bigl\{ 
Z : 0 \not = Z =

\bigl( 
\scrA k
\bigr) \ast 

(y) \succeq 0, yT b = 0
\Bigr\} 

15: end while
16: OUTPUT: d = k, V = V k, W = W k, r = rd, f = V \BbbS r+V T (= \BbbS n+ \cap W\bot ).

At each iteration, the order of the semidefinite matrices is reduced by at least
one, implying that the algorithm terminates in at most n iterations. In fact, the
upper bound is actually n - 1 since in the case \scrF = \{ 0\} it can be shown that we can
choose W of full rank and the algorithm terminates in exactly 1 iteration. Moreover,
it is shown in [5, Algorithm B] and [28, Theorem 3.5.4] that at least one constraint
becomes redundant at each iteration. Therefore the upper bound is min\{ m,n - 1\} .

2.2. Singularity degree and the bounds of Sturm. The number of itera-
tions required by the facial reduction algorithm of the previous section is dependent
on the choice of exposing vector, Zk+1, obtained at each iteration. When the ex-
posing vector is chosen to have maximum rank, the number of iterations generated
by Algorithm 2.1 is defined as the singularity degree and denoted sd(\scrF ). It can be
shown that the singularity degree is the least number of iterations required by the
algorithm.

Two special cases deserve mention. The first case is that of sd(\scrF ) = 0. This
case occurs if and only if the solution set satisfies the Slater condition. The second
special case is when \scrF = \{ 0\} . Here our definition of singularity degree does not
coincide with that of Sturm. By our definition we have sd(\scrF ) = 1, since exactly one
iteration of the algorithm is required to obtain the Slater condition. On the other
hand, Sturm defines sd(\scrF ) = 0 for this case, based on his error bounds. That is, the
worst case error bounds when \scrF = \{ 0\} are the same as when \scrF satisfies the Slater
condition.

We now state the error bounds of Sturm. For a proof see [29, Theorem 3.3].
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ERROR BOUNDS AND SINGULARITY DEGREE IN SDP 817

Fact 2.2. Let \scrF = \scrF (\scrA , b) be a nonempty spectrahedron, and let \{ X(\alpha ) \in \BbbS n :
\alpha > 0\} be a sequence where \| X(\alpha )\| is bounded. Then,

\epsilon f (X(\alpha ),\scrF ) =

\Biggl\{ 
\scrO 
\bigl( 
\epsilon b(X(\alpha ),\scrF )

\bigr) 
if \scrF = \{ 0\} ,

\scrO 
\Bigl( 
\epsilon b(X(\alpha ),\scrF )2

 - sd(\scrF )
\Bigr) 

otherwise.

In proving Fact 2.2, Sturm actually obtained the following more precise statement
about the way in which X(\alpha ) approaches \scrF .

Fact 2.3. Let 0 \not = \scrF = \scrF (\scrA , b) be a nonempty spectrahedron with sd(\scrF ) \geq 1 and
let \{ X(\alpha ) \in \BbbS n : \alpha > 0\} be a sequence where \epsilon b(X(\alpha ),\scrF ) = \scrO (\alpha ). For i \in \{ 1, . . . ,
sd(\scrF )\} , let Zi be a maximum rank exposing vector obtained as in Algorithm 2.1 with
qi := rank(Zi). Let \=\alpha > 0 be fixed. Then there exists an orthogonal matrix Q such
that

face(Q\scrF QT ) =

\biggl[ 
\BbbS r+ 0
0 0

\biggr] 
and

QX(\alpha )QT =

\left[     
X0(\alpha ) \ast \cdot \cdot \cdot \ast 

\ast X1(\alpha )
...

. . . \ast 
\ast \ast \ast Xsd(\scrF )(\alpha )

\right]     ,

where X0(\alpha ) \in \BbbS r and for all i \in \{ 1, . . . , sd(\scrF )\} and \alpha \in (0, \=\alpha ) it holds that

Xi(\alpha ) \in \BbbS qi and \| Xi(\alpha )\| = \scrO 
\Bigl( 
\alpha \xi (i)

\Bigr) 
, \xi (i) := 2 - (sd(\scrF ) - i).

This result shows that under the correct orthogonal transformation, the diagonal blocks
of X(\alpha ) that converge to 0 may do so at different rates.

3. Bounds on maximum rank, forward error, and singularity degree.
We consider SDPs in the form

p\ast := min \langle C,X\rangle 

s.t. \widehat \scrA (X) = \widehat b,
X \succeq 0,

(3.1)

where \widehat \scrA : \BbbS n \rightarrow \BbbR \widehat m is a linear map, \widehat b \in \BbbR \widehat m, C \in \BbbS n, and p\ast is finite. The solution
set, optimality set of (3.1), is the spectrahedron

(3.2) \scrF = \{ X \in \BbbS n+ : \widehat \scrA (X) = \widehat b, \langle C,X\rangle = p\ast \} .

When (3.1) is a feasibility problem, then C = 0 and p\ast = 0. In this case we let

m := \widehat m, \scrA := \widehat \scrA , and b := \widehat b so that \scrF = \scrF (\scrA , b) = \scrF ( \widehat \scrA ,\widehat b). On the other hand,
when the objective of (3.1) is nontrivial, i.e., C \not = 0, then it may not be the case that

\scrF = \scrF ( \widehat \scrA ,\widehat b). Thus we define m := \widehat m+ 1 and define \scrA and b as

\scrA (X) :=

\biggl( \widehat \scrA (X)
\langle C,X\rangle 

\biggr) 
, b :=

\biggl( \widehat b
p\ast 

\biggr) 
.

Then \scrF = \scrF (\scrA , b) is a spectrahedron in the notation we have already developed.
Note that in the C \not = 0 case, strict feasibility fails in general as optimal solutions are
singular in general. In the likely case that p\ast is not known, the affine manifold cannot
be constructed. However, in Remark 3.10 we show that the results of this section can
still be applied.
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Assumption 3.1. Let \scrF = \scrF (\scrA , b) be the spectrahedron consisting of the solutions
to the SDP in (3.1). We assume that \scrF is nonempty, sd(\scrF ) \geq 1, and \scrF \not = \{ 0\} .

The assumption that \scrF is nonempty is for the purpose of defining singularity
degree. The other two assumptions ensure that there is a possibility of discrepancy
between forward error and backward error.

Our analysis in this section is based on path-following algorithms for SDP. The
foundation of such algorithms is the central path, a smooth parametric curve, say,
\{ X(\alpha ) : \alpha > 0\} , that is known to converge to a solution of the SDP, granted that a
solution exists. Specifically we mean that X(\alpha ) \rightarrow \=X as \alpha \searrow 0 and \=X \in \scrF . Then
a path-following algorithm produces a sequence of positive numbers \{ \alpha k\} and ma-
trices \{ Xk\} such that \alpha k is successively closer to 0 and Xk is a successively better
approximation of X(\alpha k). In other words, the iterates approach the solution set along
a trajectory that approximates the central path.

Remark 3.2. We have chosen to work with path-following methods. The approx-
imations Xk for such methods are typically obtained by applying a second order
approximation, a Newton-type method, onto (perturbed) optimality conditions. For
appropriate convergence, one requires full rank of the Jacobian in the limit, loss of
which results in inaccurate search directions, slow convergence, and low precision so-
lutions. For standard primal-dual path-following methods, it is known that loss of
strict feasibility and/or strict complementarity results in degeneracy, loss of full rank;
see, e.g., [1, 9, 33]. First order methods require regularity as well, e.g., [10]. To
avoid the slow convergence and/or loss of precision, one has to somehow remove the
degeneracy. For loss of strict feasibility, that is what facial reduction is about. Remov-
ing the degeneracy arising from strict complementarity requires different approaches,
e.g., recognizing and deflating appropriate eigenvectors of primal-dual solutions.1

To obtain a method for bounding maximum rank and forward error, we study
central paths that satisfy the following assumptions.

Assumption 3.3. Let \{ X(\alpha ) : \alpha > 0\} be a central path, and let \scrF = \scrF (\scrA , b) be
the spectrahedron consisting of the solutions to the SDP in (3.1). We assume that

(i) there exists \=X \in relint(\scrF ) such that lim\alpha \searrow 0 X(\alpha ) = \=X,
(ii) X(\alpha ) \succ 0 for all \alpha > 0.

Many of the well-known algorithms for SDP are based on central paths that satisfy
this assumption, e.g., [18].

3.1. A bound on maximum rank. We provide two ways to bound maximum
rank. The first method is based on tracking the ratios,

(3.3)
\lambda i(X(\alpha ))

\lambda i+1(X(\alpha ))
, i \in \{ 1, . . . , n - 1\} .

The ratios that diverge to +\infty indicate one of two scenarios. The first scenario is
that both eigenvalues converge to 0, but \lambda i+1(X(\alpha )) does so much more quickly. The
second is that \lambda i(X(\alpha )) converges to a positive value and \lambda i+1(X(\alpha )) vanishes. This
only happens when i corresponds to the rank of the limit point \=X. Thus the smallest
index i for which the ratio tends to infinity as \alpha \rightarrow 0 corresponds exactly to the
maximum rank. We state this observation formally in the following.

1It is conceivable that higher order methods of the recent type introduced in, e.g., [13, 19] might
outperform our second order approach. However, even these require some sort of regularity.
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Proposition 3.4. Let \{ X(\alpha ) : \alpha > 0\} be a central path satisfying Assumption 3.3
for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 3.1. Let i be the smallest index
such that the ratio in (3.3) tends to infinity as \alpha \rightarrow 0. Then i is the maximum rank
over \scrF .

In practice, a ratio of the form in (3.3) may diverge to +\infty slowly, so that it may
appear to be bounded. In such cases an approximation of the maximum rank may be
obtained by the smallest index i for which it is clear that the ratio tends to infinity
as \alpha \rightarrow 0.

In addition to differentiating between eigenvalues that vanish and those that do
not, the ratios in (3.3) also indicate the number of different rates of convergence among
the eigenvalues that do converge to 0. We explore this further in subsection 4.2.

The second method to bound maximum rank is more involved but provides us
with additional information on singularity degree. Moreover, this method appears to
be more reliable in our experiments. The approach is to analyze the Q-convergence
rates of the eigenvalues of X(\alpha ). We begin by translating Fact 2.3 into a statement
about the eigenvalues of X(\alpha ).

Lemma 3.5. Let \{ X(\alpha ) : \alpha > 0\} be a central path satisfying Assumption 3.3 for
a spectrahedron \scrF = \scrF (\scrA , b) that satisfies Assumption 3.1. Assume further that
\epsilon b(X(\alpha ),\scrF ) = \scrO (\alpha ). For i \in \{ 1, . . . , sd(\scrF )\} , let Zi be a maximum rank exposing
vector obtained as in Algorithm 2.1, and let qi := rank(Zi). Let r denote the maximum
rank over \scrF . Let \scrI 0, \scrI 1, . . . , \scrI sd(\scrF ) form a partition of \{ 1, . . . , n\} such that \scrI 0 =
\{ 1, . . . , r\} and

\scrI 1 = r + \{ 1, . . . , q1\} , \scrI 2 = r + q1 + \{ 1, . . . , q2\} ,

and so on. Then, for j \in \{ 1, . . . , n\} it holds that for sufficiently small \alpha > 0,

j \in \scrI i =\Rightarrow \lambda j(X(\alpha )) =

\Biggl\{ 
\Theta (1) if i = 0,

\scrO 
\bigl( 
\alpha \xi (i)

\bigr) 
otherwise,

where \xi (i) := 2 - (sd(\scrF ) - i).

Proof. By assumption, X(\alpha ) \rightarrow \=X \in relint(\scrF ) and rank( \=X) = r. Therefore for
sufficiently small \alpha > 0, the r largest eigenvalues of X(\alpha ) are converging to positive
numbers. It follows that for sufficiently small \alpha > 0,

j \in \scrI 0 =\Rightarrow \lambda j(X(\alpha )) = \Theta (1),

proving one part of the desired result.
Next, by Fact 2.3 there exists an orthogonal Q such that

face(Q\scrF QT ) =

\biggl[ 
\BbbS r+ 0
0 0

\biggr] 
, QX(\alpha )QT =

\left[     
X0(\alpha ) \ast \cdot \cdot \cdot \ast 

\ast X1(\alpha )
...

. . . \ast 
\ast \ast \ast Xsd(\scrF )(\alpha )

\right]     \forall \alpha > 0,

(3.4)

where X0(\alpha ) \in \BbbS r and for all i \in \{ 1, . . . , sd(\scrF )\} it holds that

(3.5) Xi(\alpha ) \in \BbbS qi and \| Xi(\alpha )\| = \scrO 
\Bigl( 
\alpha \xi (i)

\Bigr) 
.
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820 S. SREMAC, H. J. WOERDEMAN, AND H. WOLKOWICZ

Now let i \in \{ 1, . . . , sd(\scrF )\} , and let j \in \scrI i. Consider the principal submatrix of
QX(\alpha )QT ,

(3.6) S(\alpha ) :=

\left[   Xi(\alpha )
. . .

Xsd(\scrF )(\alpha )

\right]   .

By Assumption 3.3, X(\alpha ) \succ 0, implying that S(\alpha ) \succ 0. Thus by (3.5) we have

\| S(\alpha )\| = \scrO 
\biggl( 

max
\ell \in \{ i,... ,sd(\scrF )

\| X\ell (\alpha )\| 
\biggr) 

= \scrO 
\Bigl( 
\alpha \xi (i)

\Bigr) 
.

It follows that \lambda 1(S) = \scrO 
\bigl( 
\alpha \xi (i)

\bigr) 
. Moreover, the interlacing eigenvalue theorem im-

plies that

\lambda j(X(\alpha )) \leq \lambda 1(S).

Combining these inequalities yields the desired result, \lambda j(X(\alpha )) = \scrO 
\bigl( 
\alpha \xi (i)

\bigr) 
.

Now that we have bounds on those eigenvalues of X(\alpha ) that converge to 0 we
analyze their Q-convergence rates. First a lemma.

Lemma 3.6. Let \{ ak\} k\in \BbbN and \{ bk\} k\in \BbbN be sequences of positive reals such that
ak \rightarrow 0 and bk \rightarrow 0. If ak \leq bk for all k \in \BbbN , then

(3.7) lim inf
k\rightarrow \infty 

ak+1

ak
\leq lim sup

k\rightarrow \infty 

bk+1

bk
.

Proof. Let La and Lb denote the limit inferior and limit superior of (3.7), respec-
tively. For simplicity we assume that La and Lb are finite, but the arguments extend
to the general case trivially. Suppose for the sake of contradiction that there exists
\tau > 0 such that La  - \tau \geq Lb. Then there exists \=k \in \BbbN such that for all k \geq \=k,

(3.8)
ak+1

ak
\geq La  - 

\tau 

3
and

bk+1

bk
\leq La  - 

\tau 

2
.

Rearranging the first equation in (3.8) gives us

(3.9) ak+1 \geq ak

\Bigl( 
La  - 

\tau 

3

\Bigr) 
\forall k \geq \=k.

Replacing k with k  - 1 we get that

(3.10) ak \geq ak - 1

\Bigl( 
La  - 

\tau 

3

\Bigr) 
\forall k \geq \=k + 1.

Combining (3.9) with (3.10) yields

ak+1 \geq ak - 1

\Bigl( 
La  - 

\tau 

3

\Bigr) 2
\forall k \geq \=k + 1.

Continuing in this fashion we get

(3.11) ak \geq a\=k

\Bigl( 
La  - 

\tau 

3

\Bigr) k - \=k

=
a\=k\bigl( 

La  - \tau 
3

\bigr) \=k \Bigl( La  - 
\tau 

3

\Bigr) k
\forall k \geq \=k.
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Through an analogous approach applied to the second equation of (3.8) we get

(3.12) bk \leq b\=k\bigl( 
La  - \tau 

2

\bigr) \=k \Bigl( La  - 
\tau 

2

\Bigr) k
\forall k \geq \=k.

Combining the hypothesis that bk dominates ak with (3.11) and (3.12) we get

(3.13)
b\=k\bigl( 

La  - \tau 
2

\bigr) \=k \Bigl( La  - 
\tau 

2

\Bigr) k
\geq a\=k\bigl( 

La  - \tau 
3

\bigr) \=k \Bigl( La  - 
\tau 

3

\Bigr) k
\forall k \geq \=k.

Observe that Lb \geq 0 since bk \geq 0 for every k \in \BbbN . Therefore, La  - \tau \geq 0, and we
have La  - \tau 

3 > La  - \tau 
2 > 0. It follows that for sufficiently large k, the inequality in

(3.13) is violated, giving us the desired contradiction.

Our main result on Q-convergence rates of eigenvalues considers sequences of the
form \{ \sigma k\} for some \sigma \in (0, 1) where the kth term, \sigma k, is the kth power of \sigma , i.e., \sigma k.

Theorem 3.7. Let \{ X(\alpha ) : \alpha > 0\} be a central path satisfying Assumption 3.3
for a spectrahedron \scrF = \scrF (\scrA , b) that satisfies Assumption 3.1. Assume further
that \epsilon b(X(\alpha ),\scrF ) = \scrO (\alpha ). Let \scrI 0, \scrI 1, . . . , \scrI sd(\scrF ) be a partition of \{ 1, . . . , n\} as in
Lemma 3.5. For \sigma \in (0, 1) the following hold.

(i) If j \in \scrI 0, then

lim
k\rightarrow \infty 

\lambda j(X(\sigma k+1))

\lambda j(X(\sigma k))
= 1.

(ii) If j \in \scrI i with i \in \{ 1, . . . , sd(\scrF )\} , then

lim inf
k\rightarrow \infty 

\lambda j(X(\sigma k+1))

\lambda j(X(\sigma k))
\leq \sigma \xi (i) < 1,

where \xi (i) = 2 - (sd(\scrF ) - i).

Proof. By Assumption 3.3 and the definition of \scrI 0 we have that \lambda j(X(\sigma k)) con-
verges, in k, to a positive number whenever j \in \scrI 0. We have proved item (i).

Now let j \in \scrI i with i \in \{ 1, . . . , sd(\scrF )\} . By Lemma 3.5 we have

(3.14) \lambda j(X(\sigma k)) = \scrO 
\Bigl( \bigl( 

\sigma k
\bigr) \xi (i)\Bigr) \forall k \in \BbbN .

Thus there exists M > 0 such that \lambda j(X(\sigma k)) \leq M\sigma k\xi (i). Now the sequences
\{ \lambda j(X(\sigma k))\} k\in \BbbN and \{ M\sigma k\xi (i)\} k\in \BbbN satisfy the assumptions of Lemma 3.6. There-
fore,

lim inf
k\rightarrow \infty 

\lambda j(X(\sigma k+1))

\lambda j(X(\sigma k))
\leq lim sup

k\rightarrow \infty 

M\sigma (k+1)\xi (i)

M\sigma k\xi (i)
= \sigma \xi (i).

Lastly \sigma \xi (d) < 1 holds since \sigma \in (0, 1) and \xi (i) > 0.

The following corollary emphasizes how Theorem 3.7 may be used to upper bound
the rank of \=X.

Corollary 3.8. Let \{ X(\alpha ) : \alpha > 0\} be a central path satisfying Assumption 3.3
for a spectrahedron \scrF = \scrF (\scrA , b) that satisfies Assumption 3.1. Assume further that
\epsilon b(X(\alpha ),\scrF ) = \scrO (\alpha ). Let r denote the maximum rank over \scrF , and let \sigma \in (0, 1).
Then,

lim inf
k\rightarrow \infty 

\lambda i(X(\sigma k+1))

\lambda i(X(\sigma k))
\leq \sigma \xi (1) = \sigma 2 - (sd(\scrF ) - 1)

< 1 \Leftarrow \Rightarrow i > r.
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822 S. SREMAC, H. J. WOERDEMAN, AND H. WOLKOWICZ

The number \sigma 2 - (sd(\scrF ) - 1)

serves as a threshold so that limit inferiors of the eigen-
value ratios lie below this number if and only if those eigenvalues converge to 0. For

large singularity degree, it may be difficult to distinguish \sigma 2 - (sd(\scrF ) - 1)

from 1, numeri-
cally. However if we can identify another number, say, \tau \in (0, 1), that is numerically
distinguishable from 1 and there exists a positive integer r such that

lim inf
k\rightarrow \infty 

\lambda i(X(\sigma k+1))

\lambda i(X(\sigma k))
\leq \tau \Leftarrow \Rightarrow i > r,

then r is an upper bound on the maximum rank, r, over \scrF . We state this result
formally in the following.

Corollary 3.9. Let \{ X(\alpha ) : \alpha > 0\} be a central path satisfying Assumption 3.3
for a spectrahedron \scrF = \scrF (\scrA , b) that satisfies Assumption 3.1. Assume further that
\epsilon b(X(\alpha ),\scrF ) = \scrO (\alpha ). Let r denote the maximum rank over \scrF , and let \sigma \in (0, 1).
Suppose there exists \tau \in (0, 1) and r \in \{ 1, . . . , n\} such that

lim inf
k\rightarrow \infty 

\lambda i(X(\sigma k+1))

\lambda i(X(\sigma k))
\leq \tau \Leftarrow \Rightarrow i > r.

Then r \geq r.

Remark 3.10. In the results of this section we require knowledge of the magnitude
of backward error for \scrF . When the SDP in (3.1) has a nontrivial objective, we cannot
expect to know the optimal value p\ast . Consequently, backward error is intractable.
However, taking a cue from Sturm [29], we use the duality gap to upper bound
(\langle C,X\rangle  - p\ast ). Thus,

\epsilon b(X,\scrF ) \leq dist
\Bigl( 
X, \{ S : \widehat \scrA (S) = \widehat b\} \Bigr) + dist(X,\BbbS n+) + (\langle C,X\rangle  - p\ast ).

In particular, for the central path \{ X(\alpha ) : \alpha > 0\} it holds that

dist
\Bigl( 
X(\alpha ), \{ S : \widehat \scrA (S) = \widehat b\} \Bigr) + dist(X(\alpha ),\BbbS n+) + (\langle C,X(\alpha )\rangle  - p\ast ) = \scrO (\alpha )

=\Rightarrow \epsilon b(X(\alpha ),\scrF ) = \scrO (\alpha ),

the assumed bound in the above results. This observation allows us to apply the main
results of this section to SDPs with nontrivial objectives even when the optimal value
is not known.

3.2. Bounds on forward error and singularity degree. Any bound on max-
imum rank, such as the one from the previous section, may be used to provide lower
bounds on forward error and singularity degree.

Theorem 3.11. Let \{ X(\alpha ) : \alpha > 0\} be a central path satisfying Assumption 3.3
for a spectrahedron \scrF = \scrF (\scrA , b) that satisfies Assumption 3.1. If r is an upper bound
for the maximum rank over \scrF , then for all \alpha > 0 it holds that

\epsilon f (X(\alpha ),\scrF ) \geq \| 
\bigl( 
\lambda r+1(X(\alpha )) \cdot \cdot \cdot \lambda n(X(\alpha ))

\bigr) T \| 2.
Proof. Let r be as in the hypothesis, and let \alpha > 0. Since \scrF is a closed convex

set, there exists X \in \scrF such that

\epsilon f (X(\alpha ),\scrF ) = \| X(\alpha ) - X\| F .
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ERROR BOUNDS AND SINGULARITY DEGREE IN SDP 823

Then observing that \| S\| F = \| \lambda (S)\| 2 for any S \in \BbbS n, we have

\epsilon f (X(\alpha ),\scrF )2 = \| X(\alpha ) - X\| 2F
= \| X(\alpha )\| 2F + \| X\| 2F  - 2\langle X(\alpha ), X\rangle 
= \| \lambda (X(\alpha ))\| 22 + \| \lambda (X)\| 22  - 2\langle X(\alpha ), X\rangle .

Applying the classical bound \langle X,Y \rangle \leq \lambda (X)T\lambda (Y ), e.g., [12, 14], we get

\epsilon f (X(\alpha ),\scrF )2 \geq \| \lambda (X(\alpha ))\| 22 + \| \lambda (X)\| 22  - 2\lambda (X(\alpha ))T\lambda (X)

= \| \lambda (X(\alpha )) - \lambda (X)\| 22
\geq \| 
\bigl( 
\lambda r+1(X(\alpha )) \cdot \cdot \cdot \lambda n(X(\alpha ))

\bigr) T \| 22.
Taking the square root of both sides yields the desired result.

Theorem 3.12. Let \{ X(\alpha ) : \alpha > 0\} be a central path satisfying Assumption 3.3
for a spectrahedron \scrF = \scrF (\scrA , b) that satisfies Assumption 3.1. Assume further that
\epsilon b(X(\alpha ),\scrF ) = \scrO (\alpha ). Let r be an upper bound on the maximum rank over \scrF , and let
\sigma \in (0, 1). Suppose d is the smallest positive integer such that

(3.15) lim inf
k\rightarrow \infty 

\lambda i(X(\sigma k+1))

\lambda i(X(\sigma k))
\leq \sigma 2 - (d - 1)

\Leftarrow \Rightarrow i > r.

Then d \leq sd(\scrF ).

Proof. Let r denote the maximum rank over \scrF . Suppose r > r. Then by Corol-
lary 3.8 and (3.15) we have

\sigma 2 - (d - 1)

< lim inf
k\rightarrow \infty 

\lambda r+1(X(\sigma k+1))

\lambda r+1(X(\sigma k))
\leq \sigma 2 - (sd(\scrF ) - 1)

.

It follows that d \leq sd(\scrF ). Now suppose that r = r. Then by Corollary 3.8 we have

(3.16) lim inf
k\rightarrow \infty 

\lambda i(X(\sigma k+1))

\lambda i(X(\sigma k))
\leq \sigma 2 - (sd(\scrF ) - 1)

\Leftarrow \Rightarrow i > r = r.

Out of all positive integers that could replace sd(\scrF ) in (3.16), we chose d to be the
smallest. Hence d \leq sd(\scrF ), as desired.

4. Singularity degree as a measure of hardness. It is certainly possible to
construct a parametric curve \{ X(\alpha ) : \alpha > 0\} with the properties of Assumption 3.3,
for which singularity degree is large but forward error is small. For instance, the path
defined as X(\alpha ) := \=X + \alpha I, where \=X \in relint(\scrF ), exhibits fast convergence and low
forward error irrespective of the singularity degree. This demonstrates that singularity
degree is not a sufficient condition for slow convergence for all parametric curves.
However, for many of the central paths constructed by state of the art algorithms,
empirical evidence indicates otherwise. In this section we present several results that
give credence to the notion that singularity degree is a measure of hardness for a
family of central paths. In subsection 4.1 we introduce the family of central paths,
and in subsection 4.2 we present the main results of the section.
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4.1. Analysis of a family of central paths. The classical interior point
method for SDPs is based on a central path that is constructed by assuming that
both the primal and the dual satisfy the Slater condition. As this assumption is
quite restrictive, infeasible central paths assuming weaker conditions have been sub-
sequently proposed. Among these are [7, 8, 16, 20, 24].

In [24], Potra and Sheng proposed a family of infeasible central paths that are
based on perturbing the feasible region so as to satisfy the Slater condition, and
then decreasing the perturbation. Our analysis requires a complete knowledge of the
algebraic representation of the spectrahedron. Thus we assume that \scrF = \scrF (\scrA , b)
for a known linear map \scrA and vector b. In terms of the SDP of (3.1), this equates

to feasibility problems, i.e., C = 0 and \scrA := \widehat \scrA , b := \widehat b. From the family of paths
proposed by Potra and Sheng we choose the path \{ X(\alpha ) : \alpha > 0\} defined by

(4.1)

\left\{       
X(\alpha ) := argmax\{ \alpha log det(X) : X \in \scrF (\alpha )\} ,

\scrF (\alpha ) := \{ X \in \BbbS n+ : \scrA (X) = b(\alpha )\} ,

b(\alpha ) := b+ \alpha \scrA (B),

where B \succ 0 is fixed. The matrix X(\alpha ) exists for each \alpha > 0 if and only if \scrF (\alpha ) is
nonempty and bounded. Hence the following assumption.

Assumption 4.1. Let \scrF = \scrF (\scrA , b) be a spectrahedron defined in terms of a map
\scrA : \BbbS n \rightarrow \BbbR m and a vector b \in \BbbR m. We assume that

(i) \scrF is nonempty, bounded, sd(\scrF ) \geq 1, and \scrF \not = \{ 0\} ,
(ii) \scrA is surjective.

Assumption 4.1 differs from Assumption 3.1 in the additional requirements that
\scrF is bounded and that \scrA is surjective. The need for a bounded \scrF has already been
discussed, and the restriction on \scrA ensures a unique y \in \BbbR m for every Z \in range(\scrA \ast ),
a property that will prove convenient in the subsequent discussion.

It is easy to see that if \scrF \not = \emptyset , then \scrF (\alpha ) has a Slater point for every \alpha > 0.
For instance, the set \scrF + \alpha B has positive definite elements and is contained in \scrF (\alpha ).
Since X(\alpha ) is chosen to be the determinant maximizer over \scrF (\alpha ) it follows that
X(\alpha ) \succ 0 and X(\alpha ) \in relint(\scrF ) for each \alpha > 0. We have thus shown that this central
path satisfies Assumption 3.3(ii). In the remainder of this section we show that it
also possesses the other properties of Assumption 3.3, namely, that \{ X(\alpha ) : \alpha > 0\} 
is smooth and converges to a matrix in relint(\scrF ) as \alpha \searrow 0.

The optimality conditions for (4.1) yield the primal-dual central path,

(4.2)

\left\{     (X(\alpha ), y(\alpha ), Z(\alpha )) \in \BbbS n++ \times \BbbR m \times \BbbS n++ :

\left[   \scrA 
\ast (y(\alpha )) - Z(\alpha )

\scrA (X(\alpha )) - b(\alpha )

Z(\alpha )X(\alpha ) - \alpha I

\right]   = 0, \alpha > 0

\right\}     .

This primal-dual central path is smooth around every \alpha > 0 and admits the following
convergence result.

Theorem 4.2. Let \{ (X(\alpha ), y(\alpha ), Z(\alpha )) : \alpha > 0\} be the primal-dual central path
of (4.2) for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 4.1. Then,

lim
\alpha \searrow 0

(X(\alpha ), y(\alpha ), Z(\alpha )) = ( \=X, \=y, \=Z) \in \BbbS n+ \times \BbbR m \times \BbbS n+
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with

(4.3)

\left\{     
\=X \in relint(\scrF ),
\=Z = \scrA \ast (\=y),
\=Z \in relint\{ Z \in \BbbS n+ \setminus \{ 0\} : Z = \scrA \ast (y), yT b = 0, y \in \BbbR m\} .

Proof. For a proof see [28, section 6.1].

An immediate consequence of Theorem 4.2 is a statement about the convergence
rates of eigenvalues of X(\alpha ) and Z(\alpha ).

Corollary 4.3. Let \{ (X(\alpha ), y(\alpha ), Z(\alpha )) : \alpha > 0\} be the primal-dual central path
of (4.2) for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 4.1. Let ( \=X, \=y, \=Z) be
the limit point of the primal-dual central path, and let r and q denote the rank of \=X
and \=Z, respectively. Let \=\alpha > 0. Then for \alpha \in (0, \=\alpha ) it holds that \epsilon b(X(\alpha )) = \scrO (\alpha ).
Moreover,

(4.4) \lambda i(X(\alpha )) =

\left\{     
\Theta (1), i \leq r,

\Omega (\alpha ) and \not = \scrO (\alpha ), i \in [r + 1, n - q],

\Theta (\alpha ), i \geq n - q + 1

and

(4.5) \lambda i(Z(\alpha )) =

\left\{     
\Theta (1), i \leq q,

\scrO (1) and \not = \Omega (1), i \in [q + 1, n - r],

\Theta (\alpha ), i \geq n - r + 1.

Proof. The claim \epsilon b(X(\alpha )) = \scrO (\alpha ) is proved in Lemma 6.2.2 of [28]. The conver-
gence result of Theorem 4.2 implies that the r largest eigenvalues of X(\alpha ) and the q
largest eigenvalues of Z(\alpha ) converge to positive values and hence are \Theta (1). Moreover,

the relation Z(\alpha ) = \alpha X(\alpha )
 - 1

gives that the q smallest eigenvalues of X(\alpha ) and the r
smallest eigenvalues of Z(\alpha ) converge to 0 at a rate that is \Theta (\alpha ).

Now let i \in \{ r + 1, . . . , n - q\} . The lower bound \Omega (\alpha ) holds since

\lambda i(X(\alpha )) \geq \lambda n(X(\alpha )) = \Theta (\alpha ).

Now suppose, for the sake of contradiction, that \lambda i(X(\alpha )) = \scrO (\alpha ). Combining with
the lower bound, \Omega (\alpha ), we conclude that \lambda i(X(\alpha )) = \Theta (\alpha ). Once again using the

relation Z(\alpha ) = \alpha X(\alpha )
 - 1

implies that there are q + 1 eigenvalues of Z(\alpha ) that are
bounded away from 0, contradicting the assumption that rank( \=Z) = q and the state-
ment of Theorem 4.2:

\=Z \in relint\{ Z \in \BbbS n+ \setminus \{ 0\} : Z = \scrA \ast (y), yT b = 0, y \in \BbbR m\} .

The remaining bounds on Z(\alpha ) are obtained in similar fashion.

Since the time of our original submission, similar convergence bounds have been
derived in [17] for a different central path.

4.2. On singularity degree and slow convergence. An immediate impli-
cation of Corollary 4.3 is that fast convergence of eigenvalues does not occur when
singularity degree is greater than 1.
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Theorem 4.4. Let \{ (X(\alpha ), y(\alpha ), Z(\alpha )) : \alpha > 0\} be the primal-dual central path
of (4.2) for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 4.1. If r denotes the
maximum rank over \scrF , then

\lambda i(X(\alpha )) = \scrO (\alpha ) \forall i \in \{ r + 1, . . . , n\} \Leftarrow \Rightarrow sd(\scrF ) = 1.

This result identifies two groups of spectrahedra, those with ``good"" convergence of
eigenvalues and those with ``bad"" convergence of eigenvalues. There is an interesting
connection here to another notion that has been used throughout the literature to
guarantee good convergence: strict complementarity. In [28, section 4.5] it is proved
that strict complementarity holds for an SDP if and only if the optimal set of the
primal has singularity degree 1. While strict complementarity separates SDPs into two
classes, the framework of singularity degree creates a greater stratification of SDPs.
As we will see later in this section, singularity degree gives a more comprehensive
explanation of poor convergence than strict complementarity. In particular, the main
result of this section, Theorem 4.7, states that larger singularity degree leads to greater
irregularity in the way that components of Z(\alpha ) converge. To simplify the proof we
introduce two lemmas. First we bound the projection of y(\alpha ) onto span(b).

Lemma 4.5. Let \{ (X(\alpha ), y(\alpha ), Z(\alpha )) : \alpha > 0\} be the primal-dual central path of
(4.2) for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 4.1. Suppose that b \not = 0,
and let v1, . . . , vm - 1 \in \BbbR m form a basis for b\bot . Let \=\alpha > 0, and for all \alpha \in (0, \=\alpha ) let
\beta (\alpha ) and \nu 1(\alpha ), . . . , \nu m - 1(\alpha ) be real coefficients such that

y(\alpha ) = \beta (\alpha )b+

m - 1\sum 
i=1

\nu i(\alpha )v
i.

Then for all \alpha \in (0, \=\alpha ),
| \beta (\alpha )| = \Theta (\alpha ).

Proof. By definition of b(\alpha ) in (4.1) and by (4.2) we have

y(\alpha )T b = y(\alpha )T (b(\alpha ) - \alpha \scrA (B))

= y(\alpha )T (\scrA (X(\alpha )) - \alpha \scrA (I))

= \langle \scrA \ast (y(\alpha )), X(\alpha )\rangle  - \alpha \langle B,\scrA \ast (y(\alpha ))\rangle 

= \alpha \langle X(\alpha )
 - 1

, X(\alpha )\rangle  - \alpha \langle B,\scrA \ast (y(\alpha ))\rangle 

= \alpha (n - \langle B,\scrA \ast (y(\alpha ))\rangle ).

Now \langle B,\scrA \ast (y(\alpha ))\rangle is bounded below and above on \alpha \in (0, \=\alpha ), implying that | y(\alpha )T b| =
\Theta (\alpha ). On the other hand, \{ v1, v2, . . . , vm - 1\} \in b\bot by construction. Therefore, y(\alpha )T b
= \beta (\alpha )\| b\| 2, yielding

| \beta (\alpha )| = | y(\alpha )T b| 
\| b\| 2

= \Theta (\alpha ),

as desired.

Lemma 4.6. Let \{ (X(\alpha ), y(\alpha ), Z(\alpha )) : \alpha > 0\} be the primal-dual central path of
(4.2) for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 4.1. Let r denote the
maximum rank over \scrF , and let \=\alpha > 0 be fixed. Let \^Z(\alpha ) \in \BbbS \^n be a principal submatrix
of Z(\alpha ) for some \^n \leq n. Then for all \alpha \in (0, \=\alpha ) it holds that

(i) \| \^Z(\alpha )\| = \Omega (\alpha );
(ii) if \^n \geq r + 1, then \| \^Z(\alpha )\| = \Omega (\alpha 1 - \xi (1)).
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ERROR BOUNDS AND SINGULARITY DEGREE IN SDP 827

Proof. By interlacing eigenvalues we have

(4.6) \| \^Z(\alpha )\| 2 = \lambda 1( \^Z(\alpha )) \geq \lambda n - r(Z(\alpha )).

Now to see that item (i) holds, observe that \lambda n - r(Z(\alpha )) \geq \lambda n(Z(\alpha )) and that

\lambda n(Z(\alpha )) = \Theta (\alpha ) by 4.3. To see that item (ii) holds we recall that Z(\alpha ) = \alpha X(\alpha )
 - 1

.
Substituting into (4.6) we get

(4.7) \| \^Z(\alpha )\| 2 \geq \lambda n - r(\alpha X(\alpha )
 - 1

) = \alpha \lambda r+1(X(\alpha )) - 1.

From 4.3 we have that \epsilon b(X(\alpha )) = \scrO (\alpha ); hence \{ X(\alpha ) : \alpha > 0\} satisfies the assump-
tions of Fact 2.3. It follows by interlacing eigenvalues that \lambda r+1(X(\alpha )) = \scrO (\alpha \xi (1)).
Combining this observation with (4.7) yields the desired result. Naturally, these
bounds extend to any other norm on \BbbS n.

Now we show that after a suitable orthogonal transformation, Z(\alpha ) admits a
block partition where at least sd(\scrF ) of these blocks converge to 0, each at a different
rate.

Theorem 4.7. Let \{ (X(\alpha ), y(\alpha ), Z(\alpha )) : \alpha > 0\} be the primal-dual central path
of (4.2) for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 4.1. Let \=\alpha > 0 be
fixed. Then there exists an integer d \in [sd(\scrF ), \=m], where

\=m =

\Biggl\{ 
m if b = 0,

m - 1 otherwise

and a suitable orthogonal transformation of \scrF such that

Z(\alpha ) =

\left[     
Zd+1(\alpha ) \ast \cdot \cdot \cdot \ast 

\ast Zd(\alpha ) \cdot \cdot \cdot \ast 
...

...
. . .

...
\ast \ast \cdot \cdot \cdot Z1(\alpha )

\right]     ,

where for all \alpha \in (0, \=\alpha ) it holds that
(i) Z1(\alpha ) \rightarrow S1 \succ 0 and Zi(\alpha ) \rightarrow 0 for all i \in \{ 2, . . . , d+ 1\} ,
(ii) \lambda min(Zi(\alpha ))

\lambda max(Zi+1(\alpha ))
\rightarrow \infty for all i \in \{ 1, . . . , d\} ,

(iii) \lambda min(Zi(\alpha )) = \Theta (\lambda max(Zi(\alpha ))) for all i \in \{ 1, . . . , d+ 1\} ,
(iv) \| Zi(\alpha )\| 

\| Zi+1(\alpha )\| \rightarrow \infty for all i \in \{ 1, . . . , d\} ,
(v) \| Zd+1(\alpha )\| = \Theta (\alpha ).

Proof. We assume, without loss of generality, that

(4.8) face(\scrF ) =

\biggl[ 
\BbbS r+ 0
0 0

\biggr] 
.

As above, let ( \=X, \=y, \=Z) be the limit point of the primal-dual central path. We know
from Theorem 4.2 that \=Z is an exposing vector for a face containing face(\scrF ). Thus
\=yT b = 0. Without loss of generality we may assume that

(4.9) \=Z =:

\biggl[ 
0 0
0 S1

\biggr] 
, S1 \succ 0.

Now we define y1 := \=y and choose v1, . . . , vmv \in span\{ b, y1\} \bot for some mv \leq m so
that the collection of vectors \{ y1, v1, . . . , vmv\} is a basis for b\bot . Note that when b \not = 0,
then \{ b, y1, v1, . . . , vmv\} is also a basis for \BbbR m.
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Now for each \alpha > 0 there exist coefficients \beta (\alpha ) and \nu 1(\alpha ), . . . , \nu mv
(\alpha ) and \gamma 1(\alpha )

such that

(4.10) y(\alpha ) = \gamma 1(\alpha )y
1 + \beta (\alpha )b+

mv\sum 
i=1

\nu i(\alpha )v
i.

Since y(\alpha ) \rightarrow y1 we have \gamma 1(\alpha ) \rightarrow 1 and \gamma 1(\alpha ) dominates the other coefficients. That
is,

(4.11) lim
\alpha \searrow 0

\sum mv

i=1| \nu i(\alpha )| 
\gamma 1(\alpha )

= 0.

Now let us consider a block partition of Z(\alpha ) according to the block partition of \=Z in
(4.9). We have

(4.12) Z(\alpha ) =

\biggl[ 
0 0
0 \gamma 1(\alpha )S1

\biggr] 
+\scrA \ast 

\Biggl( 
\beta (\alpha )b+

mv\sum 
i=1

\nu i(\alpha )v
i

\Biggr) 
.

Note that the two diagonal blocks of Z(\alpha ) in (4.12) possess the properties of item (i)
and item (ii).

Let Z11(\alpha ) denote the upper left block of Z(\alpha ). We consider two possibilities.
First, suppose that \| Z11(\alpha )\| = \scrO (\alpha ). In this case the lower bound of Lemma 4.6(i)
implies that \| Z11(\alpha )\| = \Theta (\alpha ). Consequently the two blocks of Z(\alpha ) also satisfy
the properties of items (iii)--(v) with d = 1. It is immediate that d \leq \=m. Next,
Lemma 4.6(ii) implies that Z11(\alpha ) has at most r rows. Moreover, by our assumption
on the facial structure of face(\scrF ) in (4.8) we conclude that Z11(\alpha ) has exactly r
rows; otherwise \=Z exposes a face that is strictly smaller than face(\scrF ). Thus we
have sd(\scrF ) = 1 \leq d, as desired.

The second possibility is that \| Z11(\alpha )\| \not = \scrO (\alpha ). In this case, at least one of
the coefficients other than \gamma 1(\alpha ) converges to 0 at a rate not equal to \scrO (\alpha ). This
coefficient is not \beta (\alpha ), since Lemma 4.5 implies that \beta (\alpha ) = \Theta (\alpha ) when b \not = 0. When
b = 0 we may set \beta (\alpha ) = 0 as it is irrelevant. Thus we conclude that | \nu i(\alpha )| \not = \scrO (\alpha )
for some i \in \{ 1, . . . ,mv\} .

Now let y2 be a limit point of \beta (\alpha )b+
\sum mv

i=1 \nu i(\alpha )v
i, after normalizing. By the ar-

guments above, y2 \in span\{ v1, . . . , vmv\} and thus (y2)T b = 0. Secondly, (\scrA \ast (\beta (\alpha )b+\sum mv

i=1 \nu i(\alpha )v
i))11 is positive definite for every \alpha > 0 by (4.12). This implies that

(\scrA \ast (y2))11 \succeq 0. Thus if (\scrA \ast (y2))11 is not the zero matrix it is an exposing vector in
the second step of facial reduction.

Let us first address the case (\scrA \ast (y2))11 = 0. Here we let w1 := y2 and choose

v1, . . . , vmv \in span\{ b, y1, w1\} \bot 

for some mv, different than the previously used mv, so that \{ y1, w1, v1, . . . , vmv\} is
a basis for b\bot . Now we repeat the above process until we obtain a new y2 such that
(\scrA \ast (y2))11 \not = 0, i.e., we are in the second case.

Now we may assume that we have obtained y2 as above and (\scrA \ast (y2))11 \not = 0. We
also assume, without loss of generality, that

(4.13) (\scrA \ast (y2))11 =

\biggl[ 
0 0
0 S2

\biggr] 
, S2 \succ 0.

Then the matrix

(4.14)

\left[  0 0 0
0 S2 0
0 0 S1

\right]  
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ERROR BOUNDS AND SINGULARITY DEGREE IN SDP 829

exposes a face containing face(\scrF ), and this face is smaller than the one exposed by
\=Z. In other words, we have obtained a better exposing vector. Let us assume that
we have accumulated mw vectors of the type w1 obtained in the case (\scrA \ast (y2))11 = 0.
Then we choose

(4.15) v1, . . . , vmv \in span\{ b, y1, y2, w1, . . . , wmw\} \bot 

so that \{ y1, y2, w1, . . . , wmw , v1, . . . , vmv\} is a basis for b\bot . As above, there exist
coefficients

(4.16) \beta (\alpha ), \gamma 1(\alpha ), \gamma 2(\alpha ), \omega 1(\alpha ), . . . , \omega mw
(\alpha ), \nu 1(\alpha ), . . . , \nu mv

(\alpha )

such that

y(\alpha ) = \beta (\alpha )b+

2\sum 
i=1

\gamma i(\alpha )y
i +

mw\sum 
i=1

\omega i(\alpha )w
i +

mv\sum 
i=1

\nu i(\alpha )v
i.

Then,

(4.17) Z(\alpha ) =

\left[  0 0 0
0 \gamma 2(\alpha )S2 0
0 0 \gamma 1(\alpha )S1

\right]  +\scrA \ast 

\Biggl( 
\beta (\alpha )b+

mv\sum 
i=1

\nu i(\alpha )v
i +

mw\sum 
i=1

\omega i(\alpha )w
i

\Biggr) 
,

where the upper left block is \scrA \ast 
11

\bigl( 
\beta (\alpha )b+

\sum mv

i=1 \nu i(\alpha )v
i
\bigr) 
. By construction we have

(4.18)
\gamma 1(\alpha )

\gamma 2(\alpha )
\rightarrow \infty and

\gamma 2(\alpha )

b(\alpha ) +
\sum mv

i=1| \nu i(\alpha )| 
\rightarrow \infty .

Thus we conclude that the diagonal blocks of Z(\alpha ) satisfy the properties of item
(i) and item (ii). In addition, the blocks containing \gamma 1(S1) and \gamma 2(S2) satisfy the
properties of item (iii) and item (iv).

By Lemma 4.6 we may continue in this fashion until
(4.19)

Z(\alpha ) =

\left[     
0 0 \cdot \cdot \cdot 0
0 \gamma d(\alpha )Sd \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot \gamma 1(\alpha )S1

\right]     +\scrA \ast 

\Biggl( 
\beta (\alpha )b+

mv\sum 
i=1

\nu i(\alpha )v
i +

mw\sum 
i=1

\omega i(\alpha )w
i

\Biggr) 

for some positive integer d and the upper left block has norm that is \scrO (\alpha ). By
reasoning analogous to that of the discussion following (4.12), we conclude that the
blocks of Z(\alpha ), according to the block partition of (4.19), satisfy the properties of
items (i)--(v) and that d \in [sd(\scrF ), \=m], as desired.

The issue with different rates of convergence among the blocks of Z(\alpha ) that vanish
is one of a practical nature. When singularity degree is high, it may be the case that
\| Zd+1(\alpha )\| << \| Z2(\alpha )\| . By combining Corollary 4.3 and Theorem 4.7 we get the
relation

\epsilon b(X(\alpha )) = \scrO (\| Zd+1(\alpha )\| ) << \| Z2(\alpha )\| = \scrO (\| Z(\alpha ) - \=Z\| )

for spectrahedra with high singularity degree. Now suppose a path-following algorithm
is applied and accurately follows the primal-dual central path. To obtain a good
approximation of the dual limit point \=Z we may need a very small backward error.
Due to numerical issues, such as ill-conditioning of the Jacobian of (4.2), a very small
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backward error is generally not attainable. For this reason, we cannot expect Z(\alpha ),

and by extension X(\alpha ) = \alpha Z(\alpha )
 - 1

, to be accurate when singularity degree is high.
The integer d of Theorem 4.7 actually provides an upper bound on sd(\scrF ) that

complements the lower bound of Theorem 3.12. However, this upper bound is gen-
erally intractable due to its reliance on an unknown orthogonal transformation. If
the statement of the theorem can be translated to a statement about convergence
rates of blocks of eigenvalues, then we would have a tractable upper bound on sd(\scrF ).
However this may not be true, as illustrated by the parametric sequence,

(4.20) S(\alpha ) :=

\left[  3 \alpha 1/2 0
\alpha 1/2 \alpha 

3 - \alpha 2 0

0 0 \alpha 3

\right]  , \alpha > 0.

Here S(\alpha ) has different rates of convergence among the diagonal, but the two eigen-
values that vanish do so at the same rate, \Theta (\alpha 3). One way to guarantee that the
diagonal blocks correspond to blocks of eigenvalues is the following.

Corollary 4.8. Let \{ (X(\alpha ), y(\alpha ), Z(\alpha )) : \alpha > 0\} be the primal-dual central path
of (4.2) for a spectrahedron \scrF = \scrF (\scrA , b) satisfying Assumption 4.1. Let \=\alpha > 0 be
fixed, and let d be as in Theorem 4.7. For every \alpha \in (0, \=\alpha ) we assume that Z(\alpha ) has
the block structure of Theorem 4.7. If every principal submatrix of Z(\alpha ) of the form

Si(\alpha ) =

\left[   Zi(\alpha ) \cdot \cdot \cdot \ast 
...

. . .
...

\ast \cdot \cdot \cdot Z1(\alpha )

\right]   , i \in \{ 2, . . . , d\} ,

satisfies \lambda min(Si(\alpha )) = \Theta (\lambda min(Zi(\alpha ))), then there are exactly d different rates of
convergence among the eigenvalues of X(\alpha ) that vanish.

Proof. Applying the interlacing eigenvalue theorem with the principal submatrices\left[   Zd+1(\alpha ) \cdot \cdot \cdot \ast 
...

. . .
...

\ast \cdot \cdot \cdot Zi(\alpha )

\right]   and

\left[   Zi(\alpha ) \cdot \cdot \cdot \ast 
...

. . .
...

\ast \cdot \cdot \cdot Z1(\alpha )

\right]   
yields the upper bound of \lambda max(Zi(\alpha )) and the lower bound \lambda min(Zi(\alpha )) on a block
of \lambda (Z(\alpha )) having the same size as the number of rows Zi(\alpha ). Since \lambda min(Zi(\alpha )) =
\Theta (\lambda max(Zi(\alpha ))), these bounds are the same. Thus we conclude that for each i \in 
\{ 2, . . . , d+ 1\} there is a block of eigenvalues that converges to 0 at the same rate as

Zi(\alpha ) does. The desired result follows from the relation X(\alpha ) = \alpha Z(\alpha )
 - 1

.

The challenge with this result is that the hypothesis is unverifiable just as the
block structure of Z(\alpha ) is unobservable without knowledge of the appropriate orthogo-
nal transformation. However, our numerical observations indicate that the conclusion
of the corollary holds for those test cases for which it can be verified.

5. Numerical case studies. In this section we apply the main results above
to obtain bounds on forward error, singularity degree, and maximum rank for several
problems from the literature. Our analysis is focused on problems with relatively
large singularity degree; although we do study one instance with singularity degree
1 in order to demonstrate good convergence. For some of the instances, the exact
singularity degree is known, allowing us to test the quality of our bounds. In other
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instances, the singularity degree is not known, and we use our bounds to provide an
estimate of it.

In order to study the notion that large singularity degree is sufficient, in some
sense, for slow convergence, we consider bounded spectrahedra satisfying Assump-
tion 4.1. We follow the primal-dual central path of (4.2) with a path-following algo-
rithm based on the Gauss--Newton search direction; see [9, 15]. Like most interior
point algorithms, our implementation generates a sequence of positive semidefinite
matrices \{ \~X(\sigma k)\} that approximates the true sequence \{ X(\sigma k)\} , contained on the
central path. In our case \sigma = 0.6. These sequences are inherently well-suited to the
results of this paper, in particular, those of section 3.

For each of our test problems, we present two plots. The first is an approximation
of the Q-convergence ratio of Theorem 3.7. To make the subsequent discussion less
cumbersome, we introduce the notation

(5.1) RQ(i, k) :=
\lambda i( \~X(\sigma k+1))

\lambda i( \~X(\sigma k))
, i \in \{ 1, . . . , n\} , k \geq 1.

We use this first ratio to bound maximum rank (Corollary 3.9), forward error (The-
orem 3.11), and singularity degree (Theorem 3.12).

The second plot is an approximation of the ratio of adjacent eigenvalues from
(3.3),

(5.2) RN (i, k) :=
\lambda i( \~X(\sigma k))

\lambda i+1( \~X(\sigma k))
, i \in \{ 1, . . . , n - 1\} , k \geq 1.

This ratio is used to upper bound the maximum rank as in Proposition 3.4 and to
determine the number of different rates of convergence among eigenvalues that vanish.

It is important to note that the only modification we made to our interior point
implementation is a few lines of code to store the ratios RQ(i, k) and RN (i, k). In
principle, just about any interior point implementation can be modified to track these
ratios. Once the ratios have been obtained for k sufficiently large, around 60, we
generate plots of the ratios against k for each i and obtain bounds on maximum rank,
forward error, and singularity degree. The bounds as well as the true values (when
available) are recorded in Table 5.1.

Table 5.1
A record of relevant measures and their bounds for the spectrahedra considered in our analysis.

Here r, \epsilon , and d denote the upper bound on rank, lower bound on forward error, and lower bound on
singularity degree, respectively. The number of different rates of convergence among the eigenvalues
of X(\alpha ) that vanish is denoted by N\lambda .

\scrF \epsilon b(\scrF ) r r \epsilon f (\scrF ) \epsilon sd(\scrF ) d N\lambda 

spec1 6.62\times 10 - 11 7 7 4.36\times 10 - 11 3.10\times 10 - 12 1 1 1
spec2 4.44\times 10 - 13 1 1 4.93\times 10 - 2 3.19\times 10 - 2 4 4 4
spec3 2.47\times 10 - 13 2 2 3.39\times 10 - 2 9.88\times 10 - 3 5 4 5
spec4 1.88\times 10 - 11 5 5 1.35\times 10 - 5 4.16\times 10 - 7 \geq 2 2 2
spec5 2.61\times 10 - 13 2 2 1.22\times 10 - 6 6.96\times 10 - 8 \geq 2 2 2

We denote the first spectrahedron as spec1, and it is taken from the class of
SDPs introduced in [33]. There, the authors present a method to generate SDPs
with specified complementarity gap. By considering the optimal set of one such SDP
with strict complementarity, we obtain a spectrahedron with singularity degree 1. For
details see [28, section 4.5]. The problem we consider has size n = 20, and plots of the
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832 S. SREMAC, H. J. WOERDEMAN, AND H. WOLKOWICZ

ratios RQ(i, k) and RN (i, k) are shown in Figure 5.1. In the left image, there is a clear
distinction between curves that converge to 1 and curves that do not converge to 1.
Moreover, if we disregard the irregularity in the last few values of the curves that do
not converge to 1, we may conclude that those curves converge to the smallest dashed
line located at 0.6. This observation, together with Theorem 4.4, correctly indicates
that the spectrahedron has singularity degree 1. Exactly 13 of the curves converge to
0.6, yielding r = 7, the correct approximation of the maximal rank r. The plot on the
right side of the figure shows that exactly one curve tends to \infty and it is the curve
corresponding to i = 7 = r. This indicates, as expected, two groups of eigenvalues
of X: those that converge to positive values and those that vanish.

The second spectrahedron, denoted spec2, is the classical ``worst case"" problem
as presented in [30, section 2.6], with n = 5 and singularity degree n  - 1 = 4. Plots
of the two ratios are in Figure 5.2. The left image shows 5 distinct rates of Q-
convergence, one for each eigenvalue. All but one of the curves converge to values
that are clearly below 1. This indicates, correctly, that the maximum rank is at most
1. The largest of the curves appears to converge to the highest of the dashed lines.
Thus we may infer that singularity degree is at least 4. Since 4 = n  - 1, the worst
case upper bound, we may conclude that the singularity degree is exactly 4. The row
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Fig. 5.1. Based on these images we obtain the bounds \=r = 7 and d = 1 for spec1. The dashed

lines coincide with the values \sigma 2 - (d - 1)
for d \in \{ 1, . . . , n - 1\} .
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Fig. 5.2. Based on these images we obtain the bounds \=r = 1 and d = 4 for spec2. The dashed

lines coincide with the values \sigma 2 - (d - 1)
for d \in \{ 1, . . . , n - 1\} .
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corresponding to spec2 in Table 5.1 shows a very large discrepancy between forward
error and backward error. Our lower bound is actually quite close to the true forward
error. Now let us consider the image on the right. It may be somewhat speculative to
assert that the two lower curves tend to \infty . Thus, taking the more cautious approach,
we assume that only the two larger curves tend to \infty . Checking the indices of these
curves yields an upper bound of 3 on the maximum rank. We choose the notably
lower estimate of 1 based on the left plot. On the other hand if we are to apply
Corollary 4.8, then we would want an overestimate of the number of different rates of
convergence among the eigenvalues of X(\alpha ) that vanish. For this number we include
the two lower curves, giving a bound of 4.

The next spectrahedron, spec3, comes from an application in polynomial opti-
mization. The authors of [32] observed strange behavior when attempting to optimize
over it with an interior point method. The dimension is n = 10, and the singularity
degree is proven to be 5. In Table 5.1 we see a large discrepancy between forward
error and backward error. The left image of Figure 5.3 shows six distinct groups of
curves. It is clear, for all but two of the curves, that the limit point is different from
1. Thus we have an upper bound of 2 on the maximum rank. This upper bound gives
quite an accurate lower bound on the forward error. The largest of the curves that
does not converge to 1 appears to converge to a value that is below the fourth dashed
line, indicating a lower bound of 4 on the singularity degree. Unlike the two previous
spectrahedra, here the lower bound on singularity degree is a strict one. The image
on the right shows exactly five different rates of convergence among the eigenvalues of
X(\alpha ) that converge to 0. Moreover the upper bound on maximum rank corresponds
to the one obtained from the left image.

The fourth spectrahedron, spec4, is generated by the algorithm of [33], just as
spec1 is. However, for this instance we require the existence of a complementarity
gap, i.e., strict complementarity does not hold. While we do not know the exact value
of the singularity degree, the lack of strict complementarity gives us a lower bound
of 2. Plots of the ratios RQ(i, k) and RN (i, k) are shown in Figure 5.4. From the
left image we can be quite sure that those curves that converge to the second dashed
line or below do not converge to 1. A closer inspection reveals that there are 10 such
curves, implying an upper bound of 5 on the maximum rank. The corresponding lower
bound on forward error, as recorded in Table 5.1, is indeed a lower bound and more
informative than the reported backward error. We also obtain a lower bound on the
singularity degree that coincides with the theoretical lower bound of 2. The image on

0 10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

3

Fig. 5.3. Based on these images we obtain the bounds \=r = 2 and d = 4 for spec3. The dashed

lines coincide with the values \sigma 2 - (d - 1)
for d \in \{ 1, . . . , n - 1\} .

D
ow

nl
oa

de
d 

07
/1

2/
21

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

834 S. SREMAC, H. J. WOERDEMAN, AND H. WOLKOWICZ

0 10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60

0

1

2

3

4

5

6

7

8

9

Fig. 5.4. Based on these images we obtain the bounds \=r = 5 and d = 2 for spec4. The dashed

lines coincide with the values \sigma 2 - (d - 1)
for d \in \{ 1, . . . , n - 1\} .
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Fig. 5.5. Based on these images we obtain the bounds \=r = 2 and d = 2 for spec5. The dashed

lines coincide with the values \sigma 2 - (d - 1)
for d \in \{ 1, . . . , n - 1\} .

right shows exactly two rates of convergence among eigenvalues of X(\alpha ) that converge
to 0 and, once again, provides the same upper bound on maximum rank as obtained
from the image on left.

The final spectrahedron we consider is taken from an application to Toeplitz cycle
completion problems of the form introduced in [2, Corollary 6]. The specific instance
we consider here is that of [27, Example 4.5] with n = 10. While the singularity degree
for this problem is not known, a lower bound of 2 was proven in [27]. In Figure 5.5, we
find images of plots of the ratios RQ(i, k) and RN (i, k). The left image indicates that
all but two of the eigenvalues of X(\alpha ) converge to 0, yielding an exact approximation
of maximum rank. Moreover, the corresponding eight curves appear to have limits
below the second dashed line. Hence we have a lower bound of 2 on the singularity
degree. The image on the right clearly indicates two curves tending to \infty , confirming
the lower bound of 2 on singularity degree.2

In these case studies we have demonstrated the ability to upper bound maximum
rank quite effectively. The resulting lower bound on forward error is of a much larger

2The link www.math.uwaterloo.ca/\~hwolkowi/henry/reports/sdTestsStefan/ has the codes and
examples.
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magnitude than backward error in all instances with the exception of spec1, where the
singularity degree is 1. We see this feature as quite useful, as it alerts practitioners
that the proposed solution is of substantially lower accuracy than backward error
indicates. For spectrahedra with known singularity degree, we have demonstrated
that the lower bound is quite accurate. In the other cases, the lower bound is in
agreement with the theoretical lower bound. Lastly, for these test cases (as well as
for others we have tested), the value N\lambda seems to be an upper bound on singularity
degree. Proving this, or demonstrating a counterexample, is an interesting topic for
future research.

6. Conclusion. In this paper we studied the lower bounding of forward error for
semidefinite programming and its relationship to the singularity degree. We showed
that a large singularity degree is an indicator for slow convergence of the class of
algorithms we looked at. Therefore, it provides an indication for practitioners that
the obtained solution is of substantially lower accuracy than a measure of backward
error indicates.

Currently we have not come across high singularity degree in practice in the
literature, except in a theoretical context. We think that this will prove more and
more important in solving SDP problems and cone optimization problems in the
future. Note that though full rank for matrices is generic, singular and ill-conditioned
linear systems of equations are clearly important and not ignored. And, in fact, low
rank problems have become greatly desired for, e.g., data recovery problems. Similarly,
Rademacher's theorem guarantees that locally Lipschitz functions are differentiable
almost everywhere. Yet, nonsmooth problems arise in optimization and are currently
a very important area of study. Also, application of Sard's theorem implies that
optimality conditions are generic in a sense, e.g., [26]. However, in practice many
problems suffer from degeneracies such as the ones discussed in our paper.

That singularity degree is at most one is in a sense generic is shown in [10]. A
discussion for matrix completion where high singularity degree appears is given in [27].
Like the examples of rank, differentiability, optimality conditions, we think that high
singularity degree will be an important issue in the future and one we are working on.

Acknowledgments. We would like to thank the associate editor and the anony-
mous referees for carefully reading the paper and providing constructive and helpful
recommendations.

REFERENCES

[1] F. Alizadeh, J-P.A. Haeberly, and M.L. Overton, Complementarity and nondegeneracy in
semidefinite programming, Math. Program., 77 (1997), pp. 111--128.

[2] W. Barrett, C.R. Johnson, and P. Tarazaga, The real positive definite completion problem
for a simple cycle, Linear Algebra Appl., 192 (1993), pp. 3--31.

[3] J.M. Borwein and H. Wolkowicz, Characterization of optimality for the abstract convex
program with finite-dimensional range, J. Aust. Math. Soc. Ser. A, 30 (1980), pp. 390--411.

[4] J.M. Borwein and H. Wolkowicz, Facial reduction for a cone-convex programming problem,
J. Aust. Math. Soc. Ser. A, 30 (1980), pp. 369--380.

[5] J.M. Borwein and H. Wolkowicz, Regularizing the abstract convex program, J. Math. Anal.
Appl., 83 (1981), pp. 495--530.

[6] Y-L. Cheung, S. Schurr, and H. Wolkowicz, Preprocessing and regularization for degen-
erate semidefinite programs, in Computational and Analytical Mathematics, in Honor of
Jonathan Borwein's 60th Birthday, D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan,
M. Thera, J. Vanderwerff, and H. Wolkowicz, eds., Springer Proc. Math. Stat. 50, Springer,
Cham, 2013, pp. 225--276.

D
ow

nl
oa

de
d 

07
/1

2/
21

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

836 S. SREMAC, H. J. WOERDEMAN, AND H. WOLKOWICZ

[7] E. de Klerk, C. Roos, and T. Terlaky, Initialization in semidefinite programming via a
self-dual skew-symmetric embedding, Oper. Res. Lett., 20 (1997), pp. 213--221.

[8] E. de Klerk, C. Roos, and T. Terlaky, Infeasible-start semidefinite programming algorithms
via self-dual embeddings, in Topics in Semidefinite and Interior-Point Methods, Fields Inst.
Commun. 18, American Mathematical Society, Providence, RI, 1998, pp. 215--236.

[9] X.V. Doan, S. Kruk, and H. Wolkowicz, A robust algorithm for semidefinite programming,
Optim. Methods Softw., 27 (2012), pp. 667--693.

[10] D. Drusvyatskiy, G. Li, and H. Wolkowicz, A note on alternating projections for ill-posed
semidefinite feasibility problems, Math. Program., 162, (2017), pp. 537--548.

[11] D. Drusvyatskiy and H. Wolkowicz, The many faces of degeneracy in conic optimization,
Found. Trends Optim., 3 (2017), pp. 77--170.

[12] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations ii, Proc. Natl.
Acad. Sci. USA, 36 (1950), pp. 31--35.

[13] N.I.M. Gould, D.P. Robinson, and H. Sue Thorne, On solving trust-region and other reg-
ularised subproblems in optimization, Math. Program. Comput., 2 (2010), pp. 21--57.

[14] A.J. Hoffman and H.W. Wielandt, The variation of the spectrum of a normal matrix, Duke
Math., 20 (1953), pp. 37--39.

[15] S. Kruk, M. Muramatsu, F. Rendl, R.J. Vanderbei, and H. Wolkowicz, The Gauss-
Newton direction in semidefinite programming, Optim. Methods Softw., 15 (2001), pp. 1--
28.

[16] Z-Q. Luo, J.F. Sturm, and S. Zhang, Conic convex programming and self-dual embedding,
Optim. Methods Softw., 14 (2000), pp. 169--218.

[17] A. Mohammad-Nezhad and T. Terlaky, On the identification of the optimal partition for
semidefinite optimization, INFOR Inf. Syst. Oper. Res., 58 (2020), pp. 225--263.

[18] R.D.C. Monteiro and M.J. Todd, Path-following methods, in Handbook of Semidefinite
Programming, Kluwer Academic Publishers, Boston, MA, 2000, pp. 267--306.

[19] Y. Nesterov and B.T. Polyak, Cubic regularization of Newton method and its global perfor-
mance, Math. Program., 108 (2006), pp. 177--205.

[20] Y.E. Nesterov, M.J. Todd, and Y. Ye, Infeasible-start primal-dual methods and infeasibility
detectors for nonlinear programming problems, Math. Program., 84 (1999), pp. 227--267.

[21] G. Pataki, Strong duality in conic linear programming: Facial reduction and extended duals,
in Computational and Analytical Mathematics, D. Bailey, H.H. Bauschke, F. Garvan,
M. Thera, J. D. Vanderwerff, and H. Wolkowicz, eds., Springer Proc. Math. Stat. 50,
Springer, New York, 2013, pp. 613--634.

[22] F. Permenter, H. Friberg, and E. Andersen, Solving conic optimization problems via self-
dual embedding and facial reduction: A unified approach, SIAM J. Optim., 27 (2017),
pp. 1257--1282.

[23] F. Permenter and P. Parrilo, Partial facial reduction: Simplified, equivalent SDPs via
approximations of the PSD cone, Math. Program., 171 (2018), pp. 1--54.

[24] F.A. Potra and R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point
algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), pp. 1007--1028.

[25] R.T. Rockafellar, Convex Analysis, Princeton Math. Ser. 28 Princeton University Press,
Princeton, NJ, 1970.

[26] J.E. Spingarn and R.T. Rockafellar, The generic nature of optimality conditions in non-
linear programming, Math. Oper. Res., 4 (1979), pp. 425--430.

[27] S. Sremac, H.J. Woerdeman, and H. Wolkowicz, Maximum determinant positive definite
Toeplitz completions, in Operator Theory, Analysis and the State Space Approach: In
Honor of Rien Kaashoek, Birkh\"auser/Springer, Cham, 2018, pp. 421--441.

[28] S. Sremac, Error Bounds and Singularity Degree in Semidefinite Programming, UWSpace,
2020, http://hdl.handle.net/10012/15583.

[29] J.F. Sturm, Error bounds for linear matrix inequalities, SIAM J. Optim., 10 (2000), pp. 1228--
1248.

[30] L. Tun\c cel, Polyhedral and Semidefinite Programming Methods in Combinatorial Optimiza-
tion, Fields Inst. Monogr. 27, American Mathematical Society, Providence, RI, 2010.

[31] H. Waki and M. Muramatsu, Facial reduction algorithms for conic optimization problems, J.
Optim. Theory Appl., 158 (2013), pp. 188--215.

[32] H. Waki, M. Nakata, and M. Muramatsu, Strange behaviors of interior-point methods for
solving semidefinite programming problems in polynomial optimization, Comput. Optim.
Appl., 53 (2012), pp. 823--844.

[33] H. Wei and H. Wolkowicz, Generating and measuring instances of hard semidefinite pro-
grams, Math. Program., 125 (2010), pp. 31--45.

[34] H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Handbook of Semidefinite Program-
ming, Internat. Ser. Oper. Res. Management Sci. 27. Kluwer Academic Publishers, Boston,
MA, 2000.

D
ow

nl
oa

de
d 

07
/1

2/
21

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

http://hdl.handle.net/10012/15583

	Introduction
	Notation and background
	Facial reduction for SDPs
	Singularity degree and the bounds of Sturm

	Bounds on maximum rank, forward error, and singularity degree
	A bound on maximum rank
	Bounds on forward error and singularity degree

	Singularity degree as a measure of hardness
	Analysis of a family of central paths
	On singularity degree and slow convergence

	Numerical case studies
	Conclusion
	References

