Some Necessary and Some Sufficient Trace Inequalities for Euclidean Distance Matrices

A. Y. Alfakih * $\dagger \quad$ Henry Wolkowicz ${ }^{\ddagger}$

May 27, 2006

University of Waterloo
Department of Combinatorics and Optimization
Waterloo, Ontario N2L 3G1, Canada
Research Report CORR \#2005-21

Key Words: Euclidean distance matrices, smallest eigenvalue.
AMS Subject Classification: 15A45, 15A57.

Abstract

In this paper, we use known bounds on the smallest eigenvalue of a symmetric matrix and Schoenberg's Theorem to provide both necessary as well as sufficient trace inequalities that guarantee a matrix D is a Euclidean distance matrix, $\boldsymbol{E D} \boldsymbol{D}$. We also provide necessary and sufficient trace inequalities that guarantee a matrix D is an $\boldsymbol{E} \boldsymbol{D} \boldsymbol{M}$ generated by a regular figure.

1 Introduction

A real, $n \times n$, symmetric matrix $D=\left(d_{i j}\right)$ is called a predistance matrix if it is nonnegative elementwise with zero diagonal. If, in addition, there exist points p^{1}, \ldots, p^{n} in some Euclidean space \Re^{r} such that

$$
d_{i j}=\left\|p^{i}-p^{j}\right\|^{2} \text { for all } i, j=1, \ldots, n,
$$

then D is called a Euclidean distance matrix, $\boldsymbol{E D M}$, and the dimension of the smallest space containing the points p^{1}, \ldots, p^{n} is called the embedding dimension of D. A well-known theorem of Schoenberg [7] states that a predistance matrix D is $\boldsymbol{E D M}$ if and only if D is negative semidefinite on the subspace $M:=e^{\perp}=\left\{x \in \Re^{n}: e^{T} x=0\right\}$, where e is the vector of all ones. This provides a relationship between the convex cone of $\boldsymbol{E D M s}$ and the convex cone of positive semidefinite matrices.

It is well known that a real symmetric $n \times n$ matrix X is positive semidefinite if and only if all the eigenvalues are nonnegative. Therefore, bounds on the smallest nonzero eigenvalue can be

[^0]used to provide both necessary as well as sufficient conditions for positive semidefiniteness. In this paper we use known relationships between $\boldsymbol{E D} \boldsymbol{M} \boldsymbol{s}$ and positive semidefinite matrices and known eigenvalue bounds, to get necessary as well as sufficient inequalities that guarantee a matrix is $\boldsymbol{E D M}$.

In this paper, we let e denote the vector of all ones of appropriate dimension; \mathcal{S}^{n} denotes the space of real, symmetric, $n \times n$ matrices; $D \in \mathcal{S}^{n}$ denotes a nonzero predistance matrix; and for $X \in \mathcal{S}^{n}$, we use $X \succeq 0$ to denote that X is positive semidefinite.

1.1 Known Eigenvalue Bounds

Bounds for eigenvalues of matrices are well known in the literature. A survey of bounds is given in e.g. 5, 4. The following upper and lower bounds on the smallest nonzero eigenvalue of a symmetric matrix follow from the results in [9]. We ouline a proof for completeness.

Theorem 1.1 [9] Suppose that A is an $n \times n$, real symmetric matrix of rank at most $r, r \geq 2$. Let

$$
\begin{equation*}
m:=\frac{\operatorname{trace} A}{r}, \quad s^{2}:=\frac{\operatorname{trace} A^{2}}{r}-\left(\frac{\operatorname{trace} A}{r}\right)^{2} \tag{1.1}
\end{equation*}
$$

Then the smallest nonzero eigenvalue of A, denoted $\lambda_{1}(A)$, satisfies

$$
\begin{equation*}
m-\sqrt{r-1} s \leq \lambda_{1}(A) \leq m-\frac{1}{\sqrt{r-1}} s \tag{1.2}
\end{equation*}
$$

Proof. We outline a proof for the lower bound for λ_{1}. The proof of the upper bound is similar but more involved. Let A be a symmetric matrix of rank r and let $\lambda=\left(\lambda_{i}\right)$ be the vector of the nonzero eigenvalues of A. We know that $e^{T} \lambda=\sum_{j=1}^{r} \lambda_{j}=\operatorname{trace} A$ and $\sum_{j=1}^{r} \lambda_{j}^{2}=\operatorname{trace} A^{2}$. Moreover, the Cauchy-Schwartz inequality implies that $r\left(\frac{\operatorname{trace} A}{r}\right)^{2}=\frac{1}{r}\left(e^{T} \lambda\right)^{2} \leq \frac{1}{r}\|e\|^{2}\|\lambda\|^{2}=\operatorname{trace} A^{2}$, with equality if and only if all the eigenvalues are equal to $\frac{1}{r}$ trace A, in which case the lower bound is trivially true. Therefore, we can assume that strict inequality holds, $r\left(\frac{\operatorname{trace} A}{r}\right)^{2}<\operatorname{trace} A^{2}$. Consider the convex program

$$
\begin{aligned}
\min & \lambda_{1} \\
\text { subject to } & \sum_{j=1}^{r} \lambda_{j}=\operatorname{trace} A \\
& \sum_{j=1}^{r} \lambda_{j}^{2} \leq \operatorname{trace} A^{2}
\end{aligned}
$$

By the strict inequality assumption, the generalized Slater constraint qualification holds for this convex program. Therefore, we can apply the (necessary and sufficient) optimality conditions (Karush-Kuhn-Tucker conditions), with Lagrange multipliers α, β :

$$
\left(\begin{array}{c}
1 \\
0 \\
\cdots \\
0
\end{array}\right)+\alpha e+2 \beta \lambda=0, \quad \beta\left(\sum_{j=1}^{r} \lambda_{j}^{2}-\operatorname{trace} B^{2}\right)=0, \quad \beta \geq 0
$$

The optimality conditions are satisfied by $\beta>0$ and $m-\sqrt{r-1} s=\lambda_{1}<\lambda_{2}=\cdots=\lambda_{r}=$ $m+\frac{1}{\sqrt{r-1}} s$.

Note that the bounds get tighter if r can be chosen smaller.

2 Some Necessary and Some Sufficent Trace Inequalities for EDMs

As stated above, it is well known [7] that a predistance matrix D is $\boldsymbol{E D M}$ if and only if D is negative semidefinite on M. Let V be the $n \times n-1$ matrix whose columns form an orthonormal basis for M. Then it immediately follows that a predistance matrix D is $\boldsymbol{E D} \boldsymbol{M}$ if and only if $-V^{T} D V$ is positive semidefinite. Note also that $J:=V V^{T}=I-\frac{1}{n} e e^{T}$ is the orthogonal projection onto M. Now, by applying Theorem 1.1 to the matrix $X=-V^{T} D V$ we obtain the following theorem.

Theorem 2.1 Let $D \neq 0$ be an $n \times n, n \geq 3$, predistance matrix. Then

1. The following is a sufficient condition for D to be an $E D M$

$$
\begin{equation*}
\frac{2}{n} e^{T} D^{2} e-\frac{(n-3)}{n^{2}(n-2)}\left(e^{T} D e\right)^{2} \geq \operatorname{trace} D^{2} . \tag{2.3}
\end{equation*}
$$

2. If D is an $E D M$ then D satisfies

$$
\begin{equation*}
\frac{2}{n} e^{T} D^{2} e \geq \operatorname{trace} D^{2} \tag{2.4}
\end{equation*}
$$

Proof. It is clear that D is $\boldsymbol{E D M}$ if and only if the smallest nonzero eigenvalue of the $(n-1) \times(n-1)$ matrix $X=-V^{T} D V$ is nonnegative. But rank $X \leq n-1$. Let

$$
m=\frac{\operatorname{trace} X}{n-1}=-\frac{1}{n-1} \operatorname{trace} D V V^{T}=-\frac{1}{n-1} \operatorname{trace} D\left(I-\frac{1}{n} e e^{T}\right)=\frac{e^{T} D e}{n(n-1)}
$$

and

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1} \operatorname{trace} X^{2}-m^{2} \\
& =\frac{1}{n-1} \operatorname{trace} D^{2}-\frac{2}{n(n-1)} e^{T} D^{2} e+\frac{(n-2)}{(n-1)^{2} n^{2}}\left(e^{T} D e\right)^{2} .
\end{aligned}
$$

Then, Theorem 1.1 and the fact that $m \geq 0$ imply that the smallest nonzero eigenvalue of X is nonnegative if $m^{2} \geq(n-2) s^{2}$. Note that

$$
(n-1)\left(m^{2}-(n-2) s^{2}\right)=-(n-2) \operatorname{trace} D^{2}+\frac{2(n-2)}{n} e^{T} D^{2} e-\frac{(n-3)}{n^{2}}\left(e^{T} D e\right)^{2} .
$$

Therefore, Condition 1 holds.
The second condition follows from the upper bound on the smallest eigenvalue, i.e. if $m \geq 0$ and $m^{2}-s^{2} /(n-2)<0$, then D is not $\boldsymbol{E} \boldsymbol{D} \boldsymbol{M}$. Therefore, We get the required necessary condition in (2.4) since

$$
(n-1)\left(m^{2}-s^{2} /(n-2)\right)=-\frac{1}{n-2} \operatorname{trace} D^{2}+\frac{2}{n(n-2)} e^{T} D^{2} e .
$$

The following is an immediate corollary of Theorem 2.1

Corollary 2.1 Let D be 3×3 predistance matrix. Then D is $\boldsymbol{E D M}$ if and only if

$$
\begin{equation*}
\frac{2}{3} e^{T} D^{2} e \geq \operatorname{trace} D^{2} \tag{2.5}
\end{equation*}
$$

The results in Theorem [2.1 can be strengthened by weakening the sufficient condition (2.3), if the rank of D is known. Note that the necessary condition in Theorem [2.1 is independent of rank of D. We get the following result.

Theorem 2.2 Let $D \neq 0$ be an $n \times n$, $n \geq 3$, predistance matrix and assume that rank $D=k \leq$ $n-1$. Then the following is a sufficient condition for D to be an EDM

$$
\begin{equation*}
\frac{2}{n} e^{T} D^{2} e-\frac{(k-2)}{n^{2}(k-1)}\left(e^{T} D e\right)^{2} \geq \operatorname{trace} D^{2} . \tag{2.6}
\end{equation*}
$$

Proof. If rank $D=k$ then rank $X=-V^{T} D V \leq k$. Note that $k \geq 2$ since $D \neq 0$ and trace $D=0$. Therefore, in this case

$$
m=\frac{\operatorname{trace} X}{k}=-\frac{1}{k} \operatorname{trace} D V V^{T}=-\frac{1}{k} \operatorname{trace} D\left(I-\frac{1}{n} e e^{T}\right)=\frac{e^{T} D e}{k n} .
$$

and

$$
\begin{aligned}
s^{2} & =\frac{1}{k} \operatorname{trace} X^{2}-m^{2} \\
& =\frac{1}{k} \operatorname{trace} D^{2}-\frac{2}{k n} e^{T} D^{2} e+\frac{(k-1)}{k^{2} n^{2}}\left(e^{T} D e\right)^{2} .
\end{aligned}
$$

The result now follows from a similar argument to that in the proof of Theorem 2.1
A recent, different sufficient condition for a predistance matrix to be an $\boldsymbol{E D} \boldsymbol{M}$ is derived by Bénasséni [2]. This is in the form of a variance inequality equivalent to $\frac{\left(e^{T} D e\right)^{2}}{n^{2}-n-1}>\operatorname{trace} D^{2}$. The condition is derived using a continuity argument on the $\boldsymbol{E D M}$ corresponding to the standard simplex.

The following is an immediate corollary of Theorem 2.2
Corollary 2.2 Let D be an $n \times n$ predistance matrix of rank 2 . Then D is an $E D M$ if and only if

$$
\begin{equation*}
\frac{2}{n} e^{T} D^{2} e \geq \operatorname{trace} D^{2} \tag{2.7}
\end{equation*}
$$

Theorem 2.3 Let $D \neq 0$ be an $n \times n E D M$. Then D satisfies inequality 2.4 in Theorem 2.1 as an equality if and only if the embedding dimension of D is 1 .
Proof. Let $D \neq 0$ be an $n \times n$ EDM and let $B=-\frac{1}{2} J D J$, where $J=V V^{T}$ is the orthogonal projection on the subspace $M=e^{\perp}$. Then $B \succeq 0$ and the embedding dimension of D is well known to be equal to the rank of B. Furthermore, D can be written in terms of B as

$$
\begin{equation*}
D=\operatorname{diag} B e^{T}+e(\operatorname{diag} B)^{T}-2 B, \tag{2.8}
\end{equation*}
$$

where diag B denotes the vector consisting of the diagonal elements of B.
Using (2.8), it is easy to show that $\frac{2}{n} e^{T} D^{2} e \geq \operatorname{trace} D^{2}$ is equivalent to (trace $\left.B\right)^{2} \geq$ trace B^{2}. Let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of B. Therefore, D satisfies inequality 2.4 in Theorem 2.1 as an equality if and only if $(\operatorname{trace} B)^{2}=\operatorname{trace} B^{2}$ if and only if $\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2}=\sum_{i=1}^{n} \lambda_{i}^{2}$ if and only if $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0$ and $\lambda_{n}>0$ since $B \succeq 0$.

3 Spherical EDMs

An $\boldsymbol{E D M} D$ is said to be a spherical $\boldsymbol{E D M}$ if the points that generate D lie on a hypersphere. If, in addition, this hypersphere is centered at the origin, then, following [3], we say that D is generated by a regular figure 1 The following result is known.

Lemma 3.1 ([6]) Let D be a spherical EDM and let the points that generate D lie on a hypersphere of radius R. Then $\lambda^{*}=2 R^{2}$ is the minimum value of λ such that $\lambda e e^{T}-D \succeq 0$.

Proof. (For completeness we include a proof of this lemma based on a recent characetrization of the rangespace and the nullspace of spherical EDMs [1].) Let D be a spherical EDM of embedding dimension r and let $B=-\frac{1}{2} J D J$. Let B be factorized as $B=P P^{T}$, where P is $n \times r$ of rank r. Furthermore, let Z be a Gale matrix corresponding to D. Z is defined to satisfy

$$
\text { Range } Z:=\text { Nullspace }\left[\begin{array}{c}
P^{T} \\
e^{T}
\end{array}\right], \quad Z \text { full rank. }
$$

Then it was shown in [1] that Range $D=$ Range [$P e e$] and Nullspace $D=$ Range Z.
Define the nonsingular matrix $Q=[P e Z]$. Then $\lambda e e^{T}-D \succeq 0$ if and only if $Q^{T}\left(\lambda e e^{T}-D\right) Q \succeq$ 0 . But

$$
Q^{T}\left(\lambda e e^{T}-D\right) Q=\left(\begin{array}{ccc}
-P^{T} D P & -P^{T} D e & 0 \\
-e^{T} D P & \lambda n^{2}-e^{T} D e & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore, $\lambda e e^{T}-D \succeq 0$ if and only if $\left(\begin{array}{cc}2\left(P^{T} P\right)^{2} & -P^{T} D e \\ -e^{T} D P & \lambda n^{2}-e^{T} D e\end{array}\right) \succeq 0$, if and only if $\lambda n^{2}-e^{T} D e-$ $\frac{1}{2} e^{T} D P\left(P^{T} P\right)^{-2} P^{T} D e \geq 0$. This implies that

$$
\begin{align*}
\lambda^{*} & =\frac{e^{T} D e}{n^{2}}-\frac{e^{T} D P\left(P^{T} P\right)^{-2} P^{T} D e}{2 n^{2}} \tag{3.9}\\
& =\quad \frac{e^{T} D e}{n^{2}}-\frac{e^{T} D B^{\dagger} D e}{2 n^{2}},
\end{align*}
$$

where B^{\dagger} denotes the Moore-Penrose inverse of B. But the center of the hypersphere containing the points that generate D is given by $a=\left(P^{T} P\right)^{-1} P^{T} D e / 2 n$. Hence, $\lambda^{*}=e^{T} D e / n^{2}+2 a^{T} a=$ $2 R^{2}$.

Corollary 3.1 Let D be an $n \times n$ predistance matrix. Then D is a spherical EDM if and only if $\lambda^{*} e e^{T}-D \succeq 0$, where λ^{*} is given in (3.9).

Corollary 3.2 ([3]) Let D be an $n \times n$ predistance matrix. Then D is a spherical EDM generated by a regular figure if and only if $\lambda^{*} e e^{T}-D \succeq 0$, where

$$
\begin{equation*}
\lambda^{*}=\frac{e^{T} D e}{n^{2}} \tag{3.10}
\end{equation*}
$$

[^1]
4 Sufficent and Necessary Trace Inequalities for EDMs Generated by Regular Figures

Since λ^{*} given by (3.10) is easy to compute, in the section we present sufficient and necessary trace inequalities for a predistance matrix to be an EDM generated by a regular figure.

Theorem 4.1 Let D be an $n \times n, n \geq 3$ predistance matrix. Then

1. The following is a sufficient condition for D to be an EDM generated by a regular figure.

$$
\begin{equation*}
\frac{n-1}{n-2} \frac{\left(e^{T} D e\right)^{2}}{n^{2}} \geq \operatorname{trace} D^{2} \tag{4.11}
\end{equation*}
$$

2. If D is an $E D M$ generated by a regular figure then

$$
\begin{equation*}
2 \frac{\left(e^{T} D e\right)^{2}}{n^{2}} \geq \operatorname{trace} D^{2} \tag{4.12}
\end{equation*}
$$

Proof. Let $A=\lambda^{*} e e^{T}-D$ then rank $A \leq n-1$. Let

$$
m=\frac{\operatorname{trace} A}{n-1}=\frac{n}{n-1} \lambda^{*} .
$$

and

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1} \operatorname{trace} A^{2}-m^{2} \\
& =\frac{1}{n-1} \operatorname{trace} D^{2}-\frac{2 \lambda^{*}}{n-1} e^{T} D e+\frac{n^{2}(n-2)}{(n-1)^{2}} \lambda^{* 2}, \\
& =\frac{1}{n-1} \operatorname{trace} D^{2}-\frac{1}{n(n-1)^{2}}\left(e^{T} D e\right)^{2} .
\end{aligned}
$$

Then, Theorem 1.1]implies that the smallest eigenvalue of A is nonnegative if $m^{2} \geq(n-2) s^{2}$. But

$$
(n-1)\left(m^{2}-(n-2) s^{2}\right)=-(n-2) \operatorname{trace} D^{2}+\frac{(n-1)}{n^{2}}\left(e^{T} D e\right)^{2} .
$$

Therefore, Condition 1 holds.
Condition 2 follows from the upper bound on the smallest eigenvalue of A, i.e. if D is an EDM generated by a regular figure then $m^{2}-s^{2} /(n-2) \geq 0$. We get

$$
(n-1)\left(m^{2}-s^{2} /(n-2)\right)=-\frac{1}{(n-2)} \operatorname{trace} D^{2}+\frac{2}{n^{2}(n-2)}\left(e^{T} D e\right)^{2} .
$$

As was the case in Theorem [2.2] the sufficient condition in Theorem 4.1] can be weakened if the rank of D is known. Hence, we have the following theorem

Theorem 4.2 Let $D \neq 0$ be an $n \times n, n \geq 3$ predistance matrix of rank $k \leq n-1$. Then the following is a sufficient condition for D to be an EDM generated by a regular figure.

$$
\begin{equation*}
\frac{k}{k-1} \frac{\left(e^{T} D e\right)^{2}}{n^{2}} \geq \operatorname{trace} D^{2} \tag{4.13}
\end{equation*}
$$

Proof. let D be an EDM generated by a regular figure of rank $k \leq n-1, k \geq 2$ since $D \neq 0$ and trace $D=0$. then rank $V^{T} D V \leq k$. Consequently, rank $A=\lambda^{*} e e^{T}-D \leq k$. Let

$$
m=\frac{\operatorname{trace} A}{k}=\frac{n}{k} \lambda^{*} .
$$

and

$$
\begin{aligned}
s^{2} & =\frac{1}{k} \operatorname{trace} A^{2}-m^{2} \\
& =\frac{1}{k} \operatorname{trace} D^{2}-\frac{2 \lambda^{*}}{k} e^{T} D e+\frac{n^{2}(k-1)}{k^{2}} \lambda^{* 2}, \\
& =\frac{1}{k} \operatorname{trace} D^{2}-\frac{(k+1)}{k^{2} n^{2}}\left(e^{T} D e\right)^{2},
\end{aligned}
$$

and the result follows by a similar argument as in the proof of Theorem 4.1.

References

[1] A.Y. ALFAKIH. On the nullspace, the rangespace and the charactersitic polynomial of euclidean distance matrices. Submitted, Dept. of Math. and Stats., University of Windsor, 2005.
[2] J. BÉNASSÉNI. A variance inequality ensuring that a predistance matrix is Euclidean. Technical report, Univ. de Haute Bretagne, Rennes, France, 2005.
[3] T.L. HAYDEN and P. TARAZAGA. Distance matrices and regular figures. Linear Algebra Appl., 195:9-16, 1993.
[4] R. KUMAR. Bounds for eigenvalues. Master's thesis, University of Alberta, 1984.
[5] M. MARCUS and H. MINC. A Survey of Matrix Theory and Matrix Inequalities. Dover Publications Inc., New York, 1992. Reprint of the 1969 edition.
[6] A. NEUMAIER. Distance matrices, dimension and conference graphs. Nederl. Akad. Wetensch. Indag. Math., 43:385-391, 1981.
[7] I.J. SCHOENBERG. Remarks to Maurice Frechet's article: Sur la definition axiomatique d'une classe d'espaces vectoriels distancies applicables vectoriellement sur l'espace de Hilbert. Ann. Math., 36:724-732, 1935.
[8] P. TARAZAGA, T.L. HAYDEN, and J. WELLS. Circum-Euclidean distance matrices and faces. Linear Algebra Appl., 232:77-96, 1996.
[9] H. WOLKOWICZ and G.P.H. STYAN. Bounds for eigenvalues using traces. Linear Algebra Appl., 29:471-506, 1980.

[^0]: *University of Windsor, Department of Mathematics and Statistics, Windsor, Ontario, N9B 3P4, Canada
 ${ }^{\dagger}$ Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS. E-mail alfakih@uwindsor.ca
 ${ }^{\ddagger}$ Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS. E-mail hwolkowicz@uwaterloo.ca

[^1]: ${ }^{1}$ Some authors refer to these as $\boldsymbol{E D} \boldsymbol{D} \boldsymbol{s}$ of strength one, 6

