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Abstract

In this paper, we use known bounds on the smallest eigenvalue of a symmetric matrix and
Schoenberg’s Theorem to provide both necessary as well as sufficient trace inequalities that
guarantee a matrix D is a Euclidean distance matrix, EDM. We also provide necessary and
sufficient trace inequalities that guarantee a matrix D is an EDM generated by a regular figure.

1 Introduction

A real, n × n, symmetric matrix D = (dij) is called a predistance matrix if it is nonnegative
elementwise with zero diagonal. If, in addition, there exist points p1, . . . , pn in some Euclidean
space <r such that

dij = ||pi − pj||2 for all i, j = 1, . . . , n,

then D is called a Euclidean distance matrix, EDM, and the dimension of the smallest space
containing the points p1, . . . , pn is called the embedding dimension of D. A well-known theorem of
Schoenberg [7] states that a predistance matrix D is EDM if and only if D is negative semidefinite
on the subspace M := e⊥ = {x ∈ <n : eT x = 0}, where e is the vector of all ones. This provides
a relationship between the convex cone of EDMs and the convex cone of positive semidefinite
matrices.

It is well known that a real symmetric n × n matrix X is positive semidefinite if and only if
all the eigenvalues are nonnegative. Therefore, bounds on the smallest nonzero eigenvalue can be
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used to provide both necessary as well as sufficient conditions for positive semidefiniteness. In this
paper we use known relationships between EDMs and positive semidefinite matrices and known
eigenvalue bounds, to get necessary as well as sufficient inequalities that guarantee a matrix is
EDM .

In this paper, we let e denote the vector of all ones of appropriate dimension; S n denotes the
space of real, symmetric, n × n matrices; D ∈ Sn denotes a nonzero predistance matrix; and for
X ∈ Sn, we use X � 0 to denote that X is positive semidefinite.

1.1 Known Eigenvalue Bounds

Bounds for eigenvalues of matrices are well known in the literature. A survey of bounds is given in
e.g. [5, 4]. The following upper and lower bounds on the smallest nonzero eigenvalue of a symmetric
matrix follow from the results in [9]. We ouline a proof for completeness.

Theorem 1.1 [9] Suppose that A is an n × n, real symmetric matrix of rank at most r, r ≥ 2.
Let

m :=
trace A

r
, s2 :=

trace A2

r
−

(

trace A

r

)2

. (1.1)

Then the smallest nonzero eigenvalue of A, denoted λ1(A), satisfies

m−
√

r − 1 s ≤ λ1(A) ≤ m− 1√
r − 1

s. (1.2)

Proof. We outline a proof for the lower bound for λ1. The proof of the upper bound is similar but
more involved. Let A be a symmetric matrix of rank r and let λ = (λi) be the vector of the nonzero
eigenvalues of A. We know that eT λ =

∑r
j=1

λj = trace A and
∑r

j=1
λ2

j = trace A2. Moreover,

the Cauchy-Schwartz inequality implies that r
(

trace A
r

)

2

= 1

r
(eT λ)2 ≤ 1

r
‖e‖2‖λ‖2 = trace A2, with

equality if and only if all the eigenvalues are equal to 1

r
trace A, in which case the lower bound

is trivially true. Therefore, we can assume that strict inequality holds, r
(

trace A
r

)

2

< trace A2.

Consider the convex program

min λ1

subject to
∑r

j=1
λj = trace A

∑r
j=1

λ2

j ≤ trace A2.

By the strict inequality assumption, the generalized Slater constraint qualification holds for this
convex program. Therefore, we can apply the (necessary and sufficient) optimality conditions
(Karush-Kuhn-Tucker conditions), with Lagrange multipliers α, β:









1
0
. . .
0









+ αe + 2βλ = 0, β (
r

∑

j=1

λ2

j − trace B2) = 0, β ≥ 0.

The optimality conditions are satisfied by β > 0 and m −
√

r − 1 s = λ1 < λ2 = · · · = λr =
m + 1√

r−1
s.

Note that the bounds get tighter if r can be chosen smaller.
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2 Some Necessary and Some Sufficent Trace Inequalities for EDMs

As stated above, it is well known [7] that a predistance matrix D is EDM if and only if D is
negative semidefinite on M . Let V be the n × n − 1 matrix whose columns form an orthonormal
basis for M . Then it immediately follows that a predistance matrix D is EDM if and only if
−V T DV is positive semidefinite. Note also that J := V V T = I− 1

n
eeT is the orthogonal projection

onto M . Now, by applying Theorem 1.1 to the matrix X = −V T DV we obtain the following
theorem.

Theorem 2.1 Let D 6= 0 be an n× n, n ≥ 3, predistance matrix. Then

1. The following is a sufficient condition for D to be an EDM

2

n
eT D2e− (n− 3)

n2(n− 2)
(eT De)2 ≥ trace D2. (2.3)

2. If D is an EDM then D satisfies

2

n
eT D2e ≥ trace D2. (2.4)

Proof. It is clear that D is EDM if and only if the smallest nonzero eigenvalue of the
(n− 1)× (n− 1) matrix X = −V T DV is nonnegative. But rank X ≤ n− 1. Let

m =
trace X

n− 1
= − 1

n− 1
trace DV V T = − 1

n− 1
trace D(I − 1

n
eeT ) =

eT De

n(n− 1)

and

s2 =
1

n− 1
trace X2 −m2

=
1

n− 1
trace D2 − 2

n(n− 1)
eT D2e +

(n− 2)

(n− 1)2n2
(eT De)2.

Then, Theorem 1.1 and the fact that m ≥ 0 imply that the smallest nonzero eigenvalue of X is
nonnegative if m2 ≥ (n− 2)s2. Note that

(n− 1)(m2 − (n− 2)s2) = −(n− 2) trace D2 +
2(n− 2)

n
eT D2e− (n− 3)

n2
(eT De)2.

Therefore, Condition 1 holds.
The second condition follows from the upper bound on the smallest eigenvalue, i.e. if m ≥ 0

and m2−s2/(n−2) < 0, then D is not EDM . Therefore, We get the required necessary condition
in (2.4) since

(n− 1)(m2 − s2/(n− 2)) = − 1

n− 2
trace D2 +

2

n(n− 2)
eT D2e.

The following is an immediate corollary of Theorem 2.1
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Corollary 2.1 Let D be 3× 3 predistance matrix. Then D is EDM if and only if

2

3
eT D2e ≥ trace D2. (2.5)

The results in Theorem 2.1 can be strengthened by weakening the sufficient condition (2.3), if the
rank of D is known. Note that the necessary condition in Theorem 2.1 is independent of rank of
D. We get the following result.

Theorem 2.2 Let D 6= 0 be an n× n, n ≥ 3, predistance matrix and assume that rank D = k ≤
n− 1. Then the following is a sufficient condition for D to be an EDM

2

n
eT D2e− (k − 2)

n2(k − 1)
(eT De)2 ≥ trace D2. (2.6)

Proof. If rank D = k then rank X = −V T DV ≤ k. Note that k ≥ 2 since D 6= 0 and
trace D = 0. Therefore, in this case

m =
trace X

k
= −1

k
trace DV V T = −1

k
trace D(I − 1

n
eeT ) =

eT De

kn
.

and

s2 =
1

k
trace X2 −m2

=
1

k
trace D2 − 2

kn
eT D2e +

(k − 1)

k2n2
(eT De)2.

The result now follows from a similar argument to that in the proof of Theorem 2.1.

A recent, different sufficient condition for a predistance matrix to be an EDM is derived

by Bénasséni [2]. This is in the form of a variance inequality equivalent to
(eT De)

2

n2−n−1
> trace D2.

The condition is derived using a continuity argument on the EDM corresponding to the standard
simplex.

The following is an immediate corollary of Theorem 2.2

Corollary 2.2 Let D be an n×n predistance matrix of rank 2. Then D is an EDM if and only if

2

n
eT D2e ≥ trace D2. (2.7)

Theorem 2.3 Let D 6= 0 be an n×n EDM. Then D satisfies inequality 2.4 in Theorem 2.1 as an
equality if and only if the embedding dimension of D is 1.

Proof. Let D 6= 0 be an n× n EDM and let B = − 1

2
JDJ , where J = V V T is the orthogonal

projection on the subspace M = e⊥. Then B � 0 and the embedding dimension of D is well known
to be equal to the rank of B. Furthermore, D can be written in terms of B as

D = diag BeT + e(diag B)T − 2B, (2.8)

where diag B denotes the vector consisting of the diagonal elements of B.
Using (2.8), it is easy to show that 2

n
eT D2e ≥ trace D2 is equivalent to (trace B)2 ≥ trace B2.

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of B. Therefore, D satisfies inequality 2.4 in Theorem
2.1 as an equality if and only if (trace B)2 = trace B2 if and only if (

∑n
i=1

λi)
2 =

∑n
i=1

λ2

i if and
only if λ1 = λ2 = · · · = λn−1 = 0 and λn > 0 since B � 0.
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3 Spherical EDMs

An EDM D is said to be a spherical EDM if the points that generate D lie on a hypersphere.
If, in addition, this hypersphere is centered at the origin, then, following [3], we say that D is
generated by a regular figure.1 The following result is known.

Lemma 3.1 ([6]) Let D be a spherical EDM and let the points that generate D lie on a hypersphere
of radius R. Then λ∗ = 2R2 is the minimum value of λ such that λeeT −D � 0.

Proof. (For completeness we include a proof of this lemma based on a recent characetrization
of the rangespace and the nullspace of spherical EDMs [1].) Let D be a spherical EDM of embedding
dimension r and let B = − 1

2
JDJ . Let B be factorized as B = PP T , where P is n × r of rank r.

Furthermore, let Z be a Gale matrix corresponding to D. Z is defined to satisfy

Range Z := Nullspace

[

P T

eT

]

, Z full rank.

Then it was shown in [1] that Range D = Range [ P e ] and Nullspace D = Range Z.
Define the nonsingular matrix Q = [ P e Z ]. Then λeeT−D � 0 if and only if QT (λeeT−D)Q �

0. But

QT (λeeT −D)Q =





−P TDP −P TDe 0
−eT DP λn2 − eT De 0

0 0 0



 .

Therefore, λeeT −D � 0 if and only if

(

2(P T P )2 −P T De
−eT DP λn2 − eT De

)

� 0, if and only if λn2− eT De−
1

2
eT DP (P T P )−2P T De ≥ 0. This implies that

λ∗ =
eT De

n2
− eT DP (P T P )−2P T De

2n2

=
eT De

n2
− eT DB†De

2n2
,

(3.9)

where B† denotes the Moore-Penrose inverse of B. But the center of the hypersphere containing
the points that generate D is given by a = (P T P )−1P T De/2n. Hence, λ∗ = eT De/n2 + 2aT a =
2R2.

Corollary 3.1 Let D be an n× n predistance matrix. Then D is a spherical EDM if and only if
λ∗eeT −D � 0, where λ∗ is given in (3.9).

Corollary 3.2 ([3]) Let D be an n×n predistance matrix. Then D is a spherical EDM generated
by a regular figure if and only if λ∗eeT −D � 0, where

λ∗ =
eT De

n2
. (3.10)

1Some authors refer to these as EDMs of strength one, [6]

5



4 Sufficent and Necessary Trace Inequalities for EDMs Generated

by Regular Figures

Since λ∗ given by (3.10) is easy to compute , in the section we present sufficient and necessary trace
inequalities for a predistance matrix to be an EDM generated by a regular figure.

Theorem 4.1 Let D be an n× n, n ≥ 3 predistance matrix. Then

1. The following is a sufficient condition for D to be an EDM generated by a regular figure.

n− 1

n− 2

(eT De)2

n2
≥ trace D2 (4.11)

2. If D is an EDM generated by a regular figure then

2
(eT De)2

n2
≥ trace D2. (4.12)

Proof. Let A = λ∗eeT −D then rank A ≤ n− 1. Let

m =
trace A

n− 1
=

n

n− 1
λ∗.

and

s2 =
1

n− 1
trace A2 −m2

=
1

n− 1
trace D2 − 2λ∗

n− 1
eT De +

n2 (n− 2)

(n− 1)2
λ∗2,

=
1

n− 1
trace D2 − 1

n (n− 1)2
(eT De)2.

Then, Theorem 1.1 implies that the smallest eigenvalue of A is nonnegative if m2 ≥ (n− 2)s2. But

(n− 1)(m2 − (n− 2) s2) = −(n− 2) trace D2 +
(n− 1)

n2
(eT De)2.

Therefore, Condition 1 holds.
Condition 2 follows from the upper bound on the smallest eigenvalue of A, i.e. if D is an EDM

generated by a regular figure then m2 − s2/(n− 2) ≥ 0. We get

(n− 1)(m2 − s2/(n− 2)) = − 1

(n− 2)
trace D2 +

2

n2 (n− 2)
(eT De)2.

As was the case in Theorem 2.2, the sufficient condition in Theorem 4.1 can be weakened if the
rank of D is known. Hence, we have the following theorem

Theorem 4.2 Let D 6= 0 be an n × n, n ≥ 3 predistance matrix of rank k ≤ n − 1. Then the
following is a sufficient condition for D to be an EDM generated by a regular figure.

k

k − 1

(eT De)2

n2
≥ trace D2 (4.13)
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Proof. let D be an EDM generated by a regular figure of rank k ≤ n− 1, k ≥ 2 since D 6= 0
and trace D = 0. then rank V T DV ≤ k. Consequently, rank A = λ∗eeT −D ≤ k. Let

m =
trace A

k
=

n

k
λ∗.

and

s2 =
1

k
trace A2 −m2

=
1

k
trace D2 − 2λ∗

k
eT De +

n2 (k − 1)

k2
λ∗2,

=
1

k
trace D2 − (k + 1)

k2 n2
(eT De)2,

and the result follows by a similar argument as in the proof of Theorem 4.1.
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