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Abstract. Given a partial symmetric matrixA with only certain elements specified, the Euclidean distance
matrix completion problem (EDMCP) is to find the unspecified elements ofA that makeA a Euclidean distance
matrix (EDM). In this paper, we follow the successful approach in [20] and solve the EDMCP by generalizing
the completion problem to allow for approximate completions. In particular, we introduce a primal-dual interior-
point algorithm that solves an equivalent (quadratic objective function) semidefinite programming problem (SDP).
Numerical results are included which illustrate the efficiency and robustness of our approach. Our randomly
generated problems consistently resulted in low dimensional solutions when no completion existed.
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Dedication: (Henry) The first time that I came across Olvi’s work was as a graduate student in the 70s when
I studied from his book on Nonlinear Programming (now a SIAM classic) and also used theMangasarian-
Fromovitz constraint qualification. This is the constraint qualification (CQ) in nonlinear programming (NLP),
since it guarantees the existence of Lagrange multipliers and is equivalent to stability of the NLP. This CQ has
since been extended to various generalizations of NLP and plays a crucial role in perturbation theory.

In 1983 I was a visitor at The University of Maryland, College Park, and was teaching a course in the Business
College. While walking through the halls one day I noticed the name Fromovitz on one of the doors. I could not
pass this by and knocked and asked if this wastheFromovitz. The reply was “yes”; and, this is the story of the
now famous CQ. Stan Fromovitz had just received his Ph.D. from Stanford and was working at Shell Development
Company in the Applied Math Dept. Olvi needed a special Theorem of the Alternative for his work on a CQ. Stan
went digging into the Math Library at Berkeley and came up with exactly what was needed: Motzkin’s Theorem
of the Alternative. The end result of this was the MF CQ.

I have followed Olvi’s work very closely throughout my career. His work is marked by many beautiful and
important results in various areas. Some of the ones I am aware of are: condition numbers for nonlinear programs;
generalized convexity; complementarity problems; matrix splittings; solution of large scale linear programs.

It is a pleasure and an honour to be able to contribute to this special issue.
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1. Introduction

Euclidean distance matrices have received a lot of attention in recent years both for their
elegance and for their many important applications. Two other research areas of high interest
currently, are semidefinite programming and interior-point methods. In this paper we solve
the Euclidean distance matrix completion problem by generalizing the completion problem
to allow for approximate completions, i.e., we find a weighted, closest Euclidean distance
matrix. In particular, we introduce a primal-dual interior-point algorithm that solves an
equivalent (quadratic objective) semidefinite programming problem.

An n × n symmetric matrixD= (di j ) with nonnegative elements and zero diagonal is
called apre-distance matrix(or dissimilarity matrix). In addition, if there exist points
x1, x2, . . . , xn in <r such that

di j = ‖xi − x j ‖2, i, j = 1, 2, . . . ,n, (1)

thenD is called aEuclidean distance matrix(EDM). The smallest value ofr is calledthe
embedding dimensionof D. Note thatr is always≤n− 1. Given a partial symmetric ma-
trix A with certain elements specified, the Euclidean distance matrix completion problem
(EDMCP) consists in finding the unspecified elements ofA that makeA a EDM. Alterna-
tively, for the approximate EDMCP, letAbe a pre-distance matrix,H be ann× n symmetric
matrix with nonnegative elements, and let‖A‖F =

√
traceAt A denote theFrobenius norm

of A. Consider the objective function

f (D) := ‖H ◦ (A− D)‖2F ,

where◦ denotesHadamard product, e.g., [19]. The weighted,closest Euclidean distance
matrix problemis

(CDM0) µ∗ := min f (D)

subject to D ∈ E,

whereE denotes the cone of EDMs.
Applications of EDMs abound: e.g., molecular conformation problems in chemistry

[9, 31]; multidimensional scaling and multivariate analysis problems in statistics [25, 26];
genetics, geography, and others [2]. Many of these applications require a low embedding
dimension, e.g.,r = 3.

Theoretical properties of EDMs can be found in, e.g., [7, 11, 15, 16, 21, 24, 34]. This
includes characterizations as well as graph theoretic conditions for existence of completions.
More information can be found in the recent survey article by Laurent [24]. (Generalizations
of EDM arise in [36].)

An interesting discussion on algorithms for EDMCP appears in [41]. The point is made
that there is no definitive general algorithm for EDMCP, i.e., one cannot provide an efficient
decision rule for the question of whether a completion exists or not. However, there
are many algorithms that find approximate completions. In [39–41], the author presents
results on finding EDM completions based on spectral decompositions. In particular, the
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computationally hard problem of fixing the rank (the embedding dimension) is discussed.
Some work on finding the closest EDM to a given symmetric matrix appears in [3, 12, 47].
Another approach based on global optimization and allowing for intervals for the distances
is given in [28, 29] and also in [48]. We build a convex (tractable) model by relaxing the
constraint on the embedding dimension (rank).

Semidefinite programming, SDP, is an extension of linear programming where nonneg-
ativity constraints on vector variables is replaced by positive semidefiniteness constraints
on matrix variables. This area has attracted a lot of interest recently because of the many
applications as well as the elegant mathematics involved, see, e.g., the survey papers:
[5, 13, 42, 43]. A lot of the interest in SDP is from the interior-point community who have
completed so much successful work on linear programming. At the moment, interior-point
methods are the most successful algorithms for general SDP problems, see, e.g., the above
survey articles as well as the books [30, 46] and the recent theses [2, 4, 17, 22, 32, 33, 35].
The above references provide some evidence of the current high level of research activity
in these areas.

The main contribution of this paper is a new approach to solving EDMCP. This approach
is different from those in the literature in two ways. First we change the EDMCP into
an approximation problem. This latter problem is a convex problem, i.e., our model is a
tractable (polynomial time) model. Moreover, we further relax the original problem since
we do not fix the embedding dimension. Thus, we do not solve problems that require a given
dimension, though, we hope that this approach could be used as a first approximation to such
problems. (A discussion on reducing the dimension is given in Section 5.) Our randomly
generated tests consistently resulted in optimal solutions with low dimension, e.g.,r ≤ 3,
when a completion did not exist. This is in contrast to the case where completions do exist,
where the interior point method found the completion of maximum rank, since interior-point
methods find optimal solutions in the relative interior of the optimal face. Second, we use a
semidefinite programming formulation and a primal-dual interior-point algorithm to solve
the approximation problem. And, we prove that the Slater constraint qualification holds for
our model if and only if the graph of the matrix of weights is connected, see Corollary 2.
Usually, the lack of the constraint qualification results in numerical difficulties due to
unbounded optimal sets. However, in our case we can take advantage of a disconnected
graph to replace the original problem by two smaller simpler problems.

As a side issue, we point out that our algorithm uses a new search direction for semidefinite
programming introduced in [23]. This search direction is based on applying a Gauss-Newton
approach to the optimality conditions. Our purpose is not to compare different search
directions, and other public domain packages may be used for the problems that we have
solved; though our tests show that our approach is comparable. We use this approach,
rather than the more standard approaches already in the literature, since it is very well
suited for our particular application. And, we think that having a program that is specific
for this problem has many advantages for exploiting structure. Moreover, the details of the
algorithm are self-contained in this paper; and, we provide a MATLAB program for those
interested in our tests. Numerical results are included which illustrate the efficiency and
robustness of the interior-point approach.
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The paper is organized as follows. In Section 2 we introduce the basic results of EDMs.
In Section 3 we present the optimality conditions for the problem. In Section 4 we derive the
algorithm and the Slater constraint qualification result. We conclude with several remarks
and numerical tests in Section 5. In addition, we include Section 5.1 with some technical
details on the SDP algorithm.

2. Distance geometry

It is well known, e.g., [15, 16, 34, 38], that a pre-distance matrixD is a EDM if and only
if D is negative semidefinite on

M := {x ∈ <n : xte= 0},

the orthogonal complement ofe, wheree is the vector of all ones. Thus the set of all EDMs
is a convex cone, which we denote byE . We exploit this result to translate the coneE to
the cone of semidefinite matrices inSn−1, the space of symmetric matrices of ordern− 1.

Define then× n orthogonal matrix

Q :=
[

1√
n

e|V
]
, Qt Q = I . (2)

ThusVte= 0 and Vt V = I . Moreover, the subspaceM can be represented as the range
of then× (n− 1) matrix V and

J := V Vt = I − eet

n
(3)

is the orthogonal projection ontoM .
Now define thecenteredandhollowsubspaces ofSn

SC := {B ∈ Sn : Be= 0},
SH := {D ∈ Sn : diag(D) = 0}, (4)

where diag(D) denotes the column vector formed from the diagonal ofD. Following [10],
we define the two linear operators acting onSn

K(B) := diag(B) et + ediag(B)t − 2B, (5)

and

T (D) := −1

2
JDJ. (6)

The operator−2T is an orthogonal projection ontoSC; thus it is a self-adjoint idempotent.
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Theorem 1. The linear operators satisfy

K(SC) = SH ,

T (SH ) = SC,

andK|SC andT|SH are inverses of each other.

Proof: See [15, 21]. 2

It can easily be verified that

K∗(D) = 2(Diag(De)− D) (7)

is the adjoint operator ofK, where Diag(De) denotes the diagonal matrix formed from the
vector De. In addition, a hollow matrixD is EDM if and only if B= T (D) is positive
semidefinite, denoted byB º 0. (We denote positive definiteness byB Â 0.) Equivalently,
D is EDM if and only if D=K(B), for someB with Be= 0 and Bº 0. In this case
the embedding dimensionr is given by the rank ofB. Moreover, if B = X Xt , then the
coordinates of the pointsx1, x2, . . . , xn that generateD are given by the rows ofX and,
sinceBe = 0, it follows that the origin coincides with the centroid of these points. For
these and other basic results on EDM see [15, 16, 21, 24, 34].

We now introduce the composite operators

KV (X) := K(VXVt ), (8)

and

TV (D) := VtT (D)V = −1

2
Vt DV, (9)

whereV is defined in (2).

Lemma 1.

KV (Sn−1) = SH ,

TV (SH ) = Sn−1,

andKV andTV are inverses of each other on these two spaces.

Proof: This immediately follows from Theorem 1 and the definition ofV. 2

From (7), we get that

K∗V (D) = VtK∗(D)V (10)
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is the adjoint operator ofKV . The following corollary summarizes the relationships between
E , the cone of Euclidean distance matrices of ordern, andP, the cone of positive semidefinite
matrices of ordern− 1, which we will need for our model problem.

Corollary 1. Suppose that V is defined as in(2). Then:

KV (P) = E,
TV (E) = P.

Proof: We saw earlier thatD is EDM if and only if D = K(B) with Be= 0 andB º 0.
Let X = Vt BV, then sinceBe= 0 we haveB = VXVt . Therefore,VXVt º 0 if and only
if X º 0; and the result follows using (8) and Lemma 1. 2

Note that then× (n− 1) matrix V as defined in (2) is not unique. In our code we use

V :=



y y . . . y

1+ x x . . . x

x 1+ x . . . x

· · · · · · . . . · · ·
x x . . . 1+ x


, (11)

wherex = −1
n+√n

and y = −1√
n
. With this choice, it can be easily verified thatVte = 0,

Vt V = I , andVVt = J as required by (2).

2.1. Program formulations

Since diag(A) = diag(D) = 0, we can assume without loss of generality that diag(H ) = 0.
Note thatHi j = 0 means thatDi j is free, whileHi j > 0 forcesDi j to be approximately
equal toAi j , i.e., Ai j is approximately fixed. If we wantDi j = Ai j exactly, then we can
add a linear constraint to the program (see below). Recall that the graph ofH is connected
if for all indices i 6= j there is apathof indicesi1, i2, . . . , i k such thatHi,i1 6= 0, Hi1,i2 6=
0, . . . , Hik−1,i k 6= 0, Hik, j 6= 0, see [8]. Thus, we can assume that the graph ofH is connected
or the problem can be solved more simply as two smaller problems, see Lemma 3. In
particular, we can assume thatH does not have a row (hence a column) of all zeros;
otherwise the corresponding row and column inA and D are free (independent) and the
problem can be posed in a lower dimensional space.

By abuse of notation, let the function

f (X) := ‖H ◦ (A−KV (X))‖2F = ‖H ◦KV (B− X)‖2F ,

whereB = TV (A). We now apply Corollary 1 and get the following problem, equivalent
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to (CDM0).

(CDM) µ∗ := min f (X)

subject to AX = b

X º 0.

We allow for an additional constraint using the linear operatorA :Sn−1→<m, i.e.,b ∈ <m.

The addition of this linear operator could represent some of the fixed elements in the given
matrix A, e.g., adding the constraint(KV (X))i j = Ai j fixes thei j element ofD. Also, note
that X ∈ Sn−1. It is in this lower dimensional space that we solve the problem. We can
recover the optimal distance matrix using the optimalX and the relation

D = KV (X).

Using finite precision, we can never solve the approximation problem exactly. In addition,
we need to calculate the embedding dimension. The following lemma shows we lose little
in the objective function if we choose a small embedding dimension using a numerical
rank approach, i.e., if we only discard very small eigenvalues, then the objective function
changes very little.

Lemma 2. Suppose that X∗ solves(CDM). Let X̄ be the closest symmetric matrix to X∗

with rank k, i.e.,we set the smallest n−k eigenvalues of X∗ to 0, λk+1 = . . . λn = 0. Then,

√
f (X̄) ≤

√
f (X∗)+ 2γ (

√
n+ 1)

√√√√ n∑
i=k+1

λ2
i , (12)

whereγ := maxi j Hi j .

Proof: By the Cauchy-Schwartz inequality,

√
f (X̄) ≤

√
f (X∗)+ γ ‖K(V(X∗ − X̄)Vt )‖F .

The result now follows from the definition ofK. More precisely, letB = V(X∗ − X̄)Vt .

Then

‖K(V(X∗ − X̄)Vt )‖F = ‖K(B)‖F

≤ 2‖B‖F + 2‖diag(B)et‖F

≤ 2‖B‖F + 2
√

n‖B‖F . 2
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3. Duality and optimality

We now derive the optimality conditions and duality theory needed for a primal-dual interior-
point approach.

For3 ∈ Sn−1 andy ∈ Rm, let

L(X, y,3) = f (X)+ 〈y, b−A(X)〉 − trace3X (13)

denote theLagrangianof (CDM). It is easy to see that the primal program (CDM) is
equivalent to

µ∗ = min
X

max
y

3º0

L(X, y,3) = min
Xº0

max
y

3º0

L(X, y,3). (14)

We assume that the generalized Slater’s constraint qualification,

∃X Â 0 withA(X) = b,

holds for (CDM). Slater’s condition implies that strong duality holds, i.e.,

µ∗ = max
y

3º0

min
X

L(X, y,3) = max
y

3º0

min
Xº0

L(X, y,3), (15)

andµ∗ is attained for somey and3 º 0, see [44]. Since the semidefinite constraint on
X can be treated as redundant, the inner minimization of the convex, inX, Lagrangian is
unconstrained and we can differentiate to get the equivalent problem

µ∗ = max
∇ f (X)−A∗ y=3

3º0

f (X)+ 〈y, b−A(X)〉 − trace3X. (16)

We can now state the dual problem

(DCDM ) µ∗ := max f (X)+ 〈y, b−A(X)〉 − trace3X

subject to ∇ f (X)−A∗y−3 = 0

3 º 0, (X º 0).

(17)

We keep the semidefinite constraint onX in brackets to emphasize that it is a hidden
constraint in the dual, though it is a given constraint in the primal. The above pair of
primal and dual programs, (CDM) and (DCDM), provide an optimality criteria in terms
of feasibility and complementary slackness. This provides the basis for many algorithms
including primal-dual interior-point algorithms. In particular, we see that the duality gap, in
the case of primal and dual feasibility, is given by the complementary slackness condition:

traceX
(
2K∗V

(
H (2) ◦KV (X̄ − B)

)−A∗ ȳ) = 0, (18)
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or equivalently

X
(
2K∗V

(
H (2) ◦KV (X̄ − B)

)−A∗ ȳ) = 0,

whereH (2) = H ◦ H.

Theorem 2. Suppose that Slater’s condition holds. Then̄X º 0, and ȳ, 3̄ º 0 solve
(CDM) and(DCDM), respectively, if and only if the following three equations hold.

A(X̄) = b primal feasibility

2K∗V
(
H (2) ◦KV (X̄ − B)

)−A∗ ȳ− 3̄ = 0 dual feasibility

trace3̄X̄ = 0 complementary slackness

In the case that there is no linear operatorA, we get a simplified variational principle.
The statement that no feasible direction is a descent direction translates into the following
characterization of an optimal solution̄X of (CDM):

∇ f (X̄) ∈ (P − X̄)+, (19)

whereP is the cone of positive semidefinite matrices and

S+ = {P : traceQP≥ 0, ∀Q ∈ S}

is thepolar coneof the setS. This yields the following characterization of optimality.

Theorem 3. Suppose that(CDM) has no linear constraintA. The matrixX̄ º 0 solves
(CDM) if and only if

traceK∗V
(
H (2) ◦KV (X̄ − B)

)
(X − X̄) ≥ 0, ∀X º 0. (20)

Proof: Note that the gradient acting on the symmetric matrixh, is

〈∇ f (X), h〉 = 2 trace
(
H (2) ◦KV (X̄ − B)

)
KV (h)

= 2 traceK∗V
(
H (2) ◦KV (X̄ − B)

)
h. (21)

Therefore, the gradient of the objective function is

∇ f (X) = 2K∗V
(
H (2) ◦KV (X̄ − B)

)
. (22)

The result follows upon replacingh by the directionX − X̄, for X º 0, and applying the
so-called Pshenichnyi condition (19). 2
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4. Primal-dual interior-point algorithm

We now derive a primal-dual interior point method using the log-barrier approach [18]. This
is an alternative way of deriving the optimality conditions in Theorem 2. For simplicity,
we treat the unconstrained problem, i.e., we consider (CDM) without the linear equality
constraintAX = b. In this case, the Slater constraint qualification holds for both primal
and dual problems, as can be seen from the following lemma. (In the case that some of the
elements ofA are definitely fixed, then one needs to rederive the algorithm and include the
constraintAX = b.)

Lemma 3. Let H be an n×n symmetric matrix with nonnegative elements and0 diagonal
such that the graph of H is connected. Then

K∗V
(
H (2) ◦KV (I )

) Â 0,

where I∈ Sn−1 is the identity matrix.

Proof: A simple calculation shows thatKV (I ) = 2(eet− I ). ThusH (2) ◦KV (I ) = 2H (2)

andK∗V (H (2) ◦ KV (I )) = 4Vt (Diag(H (2)e) − H (2))V . Note thate is an eigenvector of
Diag(H (2)e)− H (2) with zero eigenvalue. We show that 0 is a simple eigenvalue. Assume
to the contrary that there exists another nonzero eigenvectoru, i.e.,u is not a multiple ofe.
Then

ut
(
Diag

(
H (2)e

)− H (2)
)
u =

∑
i< j

H2
i j (ui − u j )

2 = 0.

From this and since the graph ofH is connected, it follows immediately thatui = constant
for all i, a contradiction. SinceV is full column rank andVte= 0, we conclude that the
columns ofV form a basis for the range of (Diag(H (2)e)− H (2)), i.e., 4Vt (Diag(H (2)e)−
H (2))V is full rank. 2

Strict primal feasibility follows since everyX º 0 is feasible. Strict dual feasibility, i.e.,
3 Â 0, follows in the case of a connected graph, sinceα > 0 can be chosen such that

X = B+ α I Â 0; (23)

we can then apply Lemma 3 to get

K∗V
(
H (2) ◦KV (X − B)

) Â 0. (24)

Corollary 2. Slater’s constraint qualification holds for the dual problem(17) if and only
if the graph of H is connected.

Proof: Sufficiency follows directly from Lemma 3.
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To prove necessity, suppose that the graph is not connected. Then (CDM) can be solved
as two smaller disconnected problems where the distances joining points for these two
smaller problems are completely free, i.e., the set of optimal distances matrices for (CDM0)
is unbounded. Therefore, the set of optimal solutionsX of (CDM) is unbounded. This
implies that Slater’s condition cannot hold in the dual, see, e.g., the proof of [14], Theorem 4
or [27]. In our case, it is rather simple to prove this result and we include it for completeness,
i.e., we prove that Slater’s condition for the dual implies that the optimal set for the primal
is bounded.

Suppose that Slater’s condition holds for the dual, i.e., there exists3̄ Â 0 and X̄ º 0
such that∇ f (X̄) − 3̄ = 0. Equivalently, this means that∇ f (X̄) Â 0. Let X∗ be optimal
for (CDM). Then convexity off implies that

〈∇ f (X̄), X∗ − X̄〉 ≤ 0.

Therefore, we get

〈∇ f (X̄), X̄〉 ≥ 〈∇ f (X̄), X∗〉
≥ λmin(∇ f (X̄))traceX∗

≥ λmin(∇ f (X̄))λmax(X∗),

i.e., the norm ofX∗ is bounded by n
λmin(∇ f (X̄))

〈∇ f (X̄), X̄〉. 2

The log-barrier problem for (CDM) is

min
XÂ0

Bµ(X) := f (X)− µ log det(X),

whereµ ↓ 0. For eachµ > 0 we take one Newton step for solving the stationarity condition

∇Bµ(X) = 2K∗V
(
H (2) ◦KV (X − B)

)− µX−1 = 0. (25)

Let

C := 2K∗V
(
H (2) ◦KV (B)

) = 2K∗V
(
H (2) ◦ A

)
. (26)

Then the stationarity condition is equivalent to

∇Bµ(X) = 2K∗V
(
H (2) ◦KV (X)

)− C − µX−1 = 0. (27)

By equating3 = µX−1, and multiplying through byX,we get the optimality conditions,
F := ( Fd

Fc
)= 0,

Fd := 2K∗V
(
H (2) ◦KV (X)

)− C −3 = 0 dual feas.

Fc := 3X − µI = 0 perturbed compl. slack.,
(28)
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and the estimate of the barrier parameter

µ = 1

n− 1
trace3X. (29)

Following, we present the p-d i-p framework we used. This is a common framework for
both linear and semidefinite programming, see [45]. We include a centering parameter
σk (rather than the customary predictor-corrector approach) and letF 0 denote the set of
strictly feasible primal-dual points;F ′ denotes the derivative of the function of optimality
conditions.

Algorithm 1 (p-d i-p framework ).

Given (X0,30) ∈ F 0

for k = 0, 1, 2, . . .
solvefor the search direction(in a least squares sense)

F ′(Xk,3k)

(
δXk

δ3k

)
=
(

−Fd

3k Xk + σkµk I

)

whereσk centering, µk = traceXk3k/(n− 1)

(Xk+1,3k+1) = (Xk,3k)+ αk(δXk, δ3k), αk > 0,

so that(Xk+1,3k+1) Â 0

end (for).

We use two approaches for solving the least squares problem. First we solve the large least
squares problem; we call this the Gauss-Newton (GN) method. In the second approach,
we restrict dual feasibility and substitute forδ3k in the second equation; we call this
the restricted Gauss-Newton (RGN) method. The numerical tests show that the second
approach is significantly more efficient.

5. Conclusion and computational results

In this paper we have presented an interior-point algorithm for finding the weighted, closest
Euclidean distance matrix; this provides a solution for the approximate Euclidean distance
matrix completion problem. The algorithm has been extensively tested and has proven to
be efficient and very robust, i.e., it has not failed on any of our test problems. In addition,
an important observation is that the ranks of the optimal solutionsX, for sparse problems
where no completion existed, were typically between 1 and 3, i.e., a very small embedding
dimension was obtained without any original rank restrictions.
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Table 1. Data for closest distance matrix: dimension; tolerance for duality gap; density of nonzeros inH ; rank
of optimalX; number of iterations; cpu-time for one least squares solution of the GN and restricted GN directions.

lss cpu-time

dim toler H dens. rank(X) Iterations GN RGN

8 10−13 0.8 2 25 0.16 0.1

9 10−13 0.8 2 23 0.24 0.13

10 10−13 0.8 3 25 0.34 0.18

12 10−9 0.5 3 17 0.73 0.32

15 10−9 0.5 2 20 2.13 0.79

18 10−9 0.5 4 20 6.15 1.9

20 10−9 0.3 2 20 11.35 3.3

24 10−9 0.3 2 20 34.45 8.4

30 10−9 0.3 4 20 138.0 31.5

35 10−9 0.2 3 19 373.0 77.0

38 10−9 0.2 3 19 634.0 127

40 10−8 0.1 2 20 845.9 181.7

42 10−8 0.1 4 18 1118.0 232.02

However, when a completion existed, then typically the embedding dimension was high.
In this case, we can apply the technique presented in [1] to “purify”, i.e., to iteratively move
to an optimal solution of smaller rank on the optimal face (see also Pataki [32]).

We discuss more details of the Gauss-Newton approach in Section 5.1. The program
was written in MATLAB. The tests were done on randomly generated problems; we used
s SPARC 20 with 64 megs of RAM and SPECint 65.3, SPECfp 53.1. The documented
MATLAB code, as well as ongoing test results, can be obtained with URL (or anonymous
ftp)

ftp://orion.math.uwaterloo.ca/pub/henry/software/distance.d, or
http://orion.math.uwaterloo.ca/˜hwolkowi/henry/software/distance.d.

In Table 1 we present a sample of test results. These results include problems with matrices
up to dimensionn = 42. We would like to emphasize that these are just preliminary test
results. For example, we do not use a predictor-corrector approach, which has become the
standard approach in interior-point methods, but rather use a centering parameter. Using
the predictor-corrector approach should reduce the number of iterations from 20 to 30%.
Tests with larger sized matrices are in progress.

We conclude with a specific example and its graph: the dimension is 11 generated with
sparsity 0.5; the optimal value is 0.9256; the rank ofX is 3; and the number of iterations
is 25 to get 13 decimals accuracy. The matricesH and A and the optimal distance matrix
D corresponding to the graph in figure 1 are, respectively:
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Figure 1. Approximate completion problem.

matrix H =

0 0 0 0 0 5 2 5 0 7 0

0 0 0 3 4 4 0 0 1 0 5

0 0 0 0 0 0 1 0 0 0 2

0 3 0 0 0 1 0 0 3 0 3

0 4 0 0 0 2 7 0 3 0 0

5 4 0 1 2 0 2 0 0 0 7

2 0 1 0 7 2 0 6 0 1 2

5 0 0 0 0 0 6 0 0 0 0

0 1 0 3 3 0 0 0 0 3 0

7 0 0 0 0 0 1 0 3 0 0

0 5 2 3 0 7 2 0 0 0 0

matrix A =

0 0 0 0 0 4 0 0 6 6 2

0 0 0 8 4 0 2 0 0 0 0

0 0 0 5 6 0 6 0 0 0 7

0 8 5 0 0 4 1 4 5 4 0

0 4 6 0 0 0 0 0 5 0 0
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4 0 0 4 0 0 1 0 0 0 0

0 2 6 1 0 1 0 0 0 0 3

0 0 0 4 0 0 0 0 0 0 0

6 0 0 5 5 0 0 0 0 0 0

6 0 0 4 0 0 0 0 0 0 0

2 0 7 0 0 0 3 0 0 0 0

matrix D =
Columns 1 through 7

0 6.9200 7.2655 6.9713 0.7190 3.9912 0.5989

6.9200 0 8.1310 6.6123 3.8224 0.6523 3.5381

7.2655 8.1310 0 9.3511 5.9827 6.4399 6.0000

6.9713 6.6123 9.3511 0 3.7085 3.6117 4.7459

0.7190 3.8224 5.9827 3.7085 0 1.4994 0.0775

3.9912 0.6523 6.4399 3.6117 1.4994 0 1.4981

0.5989 3.5381 6.0000 4.7459 0.0775 1.4981 0

0.1684 4.9773 6.4452 5.6419 0.2296 2.5198 0.1321

8.9782 0.4804 9.0262 5.0302 4.8968 0.9976 4.9394

5.9737 0.3183 7.3517 4.0355 2.7767 0.1996 2.7897

5.2815 1.0844 7.0000 2.3417 2.1414 0.2465 2.3892

Columns 8 through 11

0.1684 8.9782 5.9737 5.2815

4.9773 0.4804 0.3183 1.0844

6.4452 9.0262 7.3517 7.0000

5.6419 5.0302 4.0355 2.3417

0.2296 4.8968 2.7767 2.1414

2.5198 0.9976 0.1996 0.2465

0.1321 4.9394 2.7897 2.3892

0 6.6871 4.1359 3.5984

6.6871 0 0.3050 0.7459

4.1359 0.3050 0 0.2315

3.5984 0.7459 0.2315 0



28 ALFAKIH, KHANDANI AND WOLKOWICZ

5.1. Gauss-Newton direction

The linear system for the search direction in Algorithm 1 is overdetermined. Therefore, it is
not clear what is meant by solving this system. There are many different search directions
that have been used for SDP, see [37]. Our problem is not a standard SDP since it has a
quadratic objective and no constraints. Therefore, the standard public domain packages
do not apply directly.2 In our approach we use the Gauss-Newton direction introduced in
[23], i.e., we linearize (28) and find the least squares solution of the resulting overdeter-
mined linear system. This direction has many good properties, e.g.: it always exists; the
linear systems for both GN and RGN are nonsingular at each iteration and in the limit;
quadratic convergence steps are expected since the optimal value of the nonlinear least
squares problems are 0. (For the details of these and other properties see [23].)

Notes

1. This report is available by anonymous ftp at orion.math.uwaterloo.ca in the directory pub/henry/reports
or with URLs: ftp://orion.uwaterloo.ca/pub/henry/reports/distmat.ps.gz or http://orion.math.uwaterloo.ca:80/
˜hwolkowi/henry/reports/distmat.ps.gz.

2. It has been pointed out to us that the package SDPpack [6], will solve our problem if we replace our original
objective function with the variablet and add a constraint‖W‖F ≤ t, whereW represents the appropriate
quantity in our original objective function. The numerical tests with this approach appear to be comparable to
our approach. We thank Mike Overton for this observation.
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