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1. Introduction. In this paper, we introduce a new efficient bound for the quadratic assignment problem
(QAP). We use the Koopmans-Beckmann trace formulation

�QAP� �∗
QAP �=min

X∈�
traceAXBXT +CXT �

where A, B, and C are n by n real matrices and � denotes the set of n by n permutation matrices. Throughout
this paper, we assume the symmetric case, i.e., that both A and B are symmetric matrices. The QAP is considered
to be one of the hardest NP-hard problems to solve in practice. Many important combinatorial optimization
problems can be formulated as a QAP. Examples include the traveling salesman problem, VLSI design, keyboard
design, and the graph-partitioning problem. The QAP is well-described by the problem of allocating a set of n
facilities to a set of n locations while minimizing the quadratic objective arising from the distance between the
locations in combination with the flow between the facilities. Recent surveys include Pardalos and Wolkowicz
[29], Wolkowicz [34], Zhao et al. [36], Pardalos et al. [30], Karisch et al. [20], Hadley et al. [13, 14, 15], and
Rendl and Wolkowicz [33].
Solving QAP to optimality usually requires a branch-and-bound (B&B) method. Essential for these meth-

ods are strong, inexpensive bounds at each node of the branching tree. In this paper, we study a new bound
obtained from a semidefinite programming (SDP) relaxation. This relaxation uses only O�n2� variables and
O�n2� constraints but yields a bound provably better than the so-called projected eigenvalue bound (PB) (Hadley
et al. [14]), and is competitive with the recently introduced quadratic programming bound (QPB) (Anstreicher
and Brixius [2]).

1.1. Outline. In §1.2, we continue with preliminary results and notation. In §1.3, we review some of the
known bounds in the literature. Our main results appear in §2 where we compare relaxations that use a vector
lifting of the matrix X into the space of n2× n2 matrices with a matrix lifting that remains in � n, the space of
n×n symmetric matrices. We then parameterize and characterize the orthogonal similarity set of B, ��B�, using
majorization results on the eigenvalues of B (see Theorem 2.1). This results in three SDP relaxations, MSDR1
to MSDR3 (see §2.2). We conclude with numerical tests in §3.
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1.2. Notation and preliminaries. For two real m×n matrices A�B ∈�mn, �A�B� = traceAT B is the trace
inner product. �nn =�n denotes the set of n by n square real matrices and � n denotes the space of n × n
symmetric matrices. � n

+ (resp. �
n
++) denotes the cone of positive semidefinite (resp. positive definite) matrices

in � n. We let A	 B (resp. A
 B) denote the Löwner partial order A−B ∈� n
+ (resp. A−B ∈� n

++).
The linear transformation diagM denotes the vector formed from the diagonal of the matrix M and the adjoint

linear transformation is diag∗ v = Diagv, i.e., the diagonal matrix formed from the vector v. We use A⊗ B to
denote the Kronecker product of A and B and use x = vec�X� to denote the vector in �n2 obtained from the
columns of X. Then (see, e.g., Horn and Johnson [19]),

traceAXBXT = �AXB�X� = �vec�AXB��x� = xT �B⊗A�x� (1)

We let � denote the cone of nonnegative (elementwise) matrices � �= �X ∈�n� X ≥ 0�. � denotes the set of
matrices with row and column sums 1, � �= �X ∈�n� Xe =XT e = e�, where e is the vector of ones. E = eeT

is the matrix of ones and � denotes the set of doubly stochastic matrices �= � ∩� . The minimal product of
two vectors is

�x� y�− �=min
���

n∑
i=1

x��i�y��i��

where the minimum is over all permutations, � , �, of the indices �1�2� � � � � n�. Similarly, we define the maximal
product of x, y, �x� y�+ �=max���

∑n
i=1 x��i�y��i�. We denote the vector of eigenvalues of a matrix A by ��A�.

Definition 1.1. Let x� y ∈�n. By abuse of notation, we denote x majorizes y or y is majorized by x with
x 	 y or y � x. Let the components of both vectors be sorted in nonincreasing order, i.e., x��1� ≥ x��2� ≥ · · · ≥
x��n�, y��1� ≥ y��2� ≥ · · · ≥ y��n�. Following, e.g., Marshall and Olkin [23], x 	 y if and only if

p∑
i=1

x��i� ≥
p∑

i=1
y��i�� p= 1�2� � � � � n− 1�

n∑
i=1

x��i� =
n∑

i=1
y��i��

In Marshall and Olkin [23], it is shown that x 	 y if and only if there exists S ∈� with Sx = y. Note that
for fixed y, the constraint x 	 y is not a convex constraint; however, x � y is a convex constraint and it has an
equivalent LP formulation (e.g., Hardy et al. [18]).

1.3. Known relaxations for QAP. One of the earliest and least expensive relaxations for QAP is the
Gilmore-Lawler bound (GLB), which is based on a linear programming (LP) formulation (see, e.g., Gilmore
[12], Drezner [9]). Related dual-based LP bounds such as the Karisch-Çela-Clausen-Espersen bound (KCCEB),
are discussed in Karisch et al. [21], Pardalos et al. [31], Drezner [9], and Hahn and Grant [16]. These formu-
lations are currently able to handle problems with moderate size n (approximately 20) (Gilmore [12], Lawler
[22]). Formulations based on nonlinear optimization include eigenvalue and parametric eigenvalue bounds (EB)
(Finke et al. [11], Rendl and Wolkowicz [33]), projected eigenvalue bounds (PB) (Hadley et al. [14], Falkner
et al. [10]), convex quadratic programming (QPB) bounds (Anstreicher and Brixius [2]), and SDP bounds (Rendl
and Sotirov [32], Zhao et al. [36]). For recent numerical results that use these bounds, see, e.g., Anstreicher
and Brixius [2], Rendl and Sotirov [32]. A summary and comparison of many of these bounds is given in
Anstreicher [1].
Note that � = � ∩ � ∩ � , i.e., the addition of the orthogonal constraints changes the doubly stochastic

matrices to permutation matrices. This illustrates the power of nonlinear quadratic constraints for QAP. Using
the quadratic constraints, we can see that SDP arises naturally from Lagrangian relaxation (see, e.g., Nesterov
et al. [27]). Alternatively, one can lift the problem using the positive semidefinite matrix

( 1
vec�X�

)( 1
vec�X�

)T
into

the symmetric matrix space � n2+1. One then obtains deep cuts for the convex hull of the lifted permutation
matrices. However, this vector-lifting SDP relaxation requires O�n4� variables and, hence, is expensive to use.
Problems with n > 25 become impractical for branch-and-bound methods.
It has been proved in Anstreicher and Wolkowicz [3] that strong (Lagrangian) duality holds for the following

quadratic program with orthogonal constraints:

�∗
EB = min

XXT =XT X=I
trace�AXBXT ��
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The optimal value �∗
EB yields the so-called eigenvalue bound, denoted EB. The Lagrangian dual is

�∗
EB = max

S�T∈� n
min
x∈�n2

�trace�S�+ trace�T �+ xT �B⊗A− I ⊗ S − T ⊗ I�x�� (2)

The inner minimization problem results in the hidden semidefinite constraint

B⊗A− I ⊗ S − T ⊗ I 	 0�
Under this constraint, the inner minimization program is attained at x = 0. As a result of strong duality, the
equivalent dual program

�∗
EB = max

S�T∈� n
�trace�S�+ trace�T �� B⊗A− I ⊗ S − T ⊗ I 	 0� (3)

has the same value as the primal program, i.e., both yield the eigenvalue bound EB. One can then add the
constant row and column sum linear constraints Xe = XT e = e to obtain the projected eigenvalue bound PB
in Hadley et al. [14]. In Anstreicher and Brixius [2], the authors strengthen PB to get a (parametric) convex
quadratic programming bound (QPB). This new bound QPB is inexpensive to compute and, under some mild
assumptions, is strictly stronger than PB. QPB is a highly competitive bound if we take into account the trade-off
between the quality of the bound and the expense in the computation. The use of QPB along with the Condor
high-throughput computing system has resulted in the solution for the first time of several large QAP problems
from the QAPLIB library (Burkard et al. [7], Anstreicher and Brixius [2], Anstreicher et al. [4]).
In this paper, we propose a new relaxation for QAP, which has comparable complexity to QPB. Moreover,

our numerical tests show that this new bound usually obtains better bounds than QPB when applied to problem
instances from the QAPLIB library.

2. SDP relaxation and quadratic matrix programming.

2.1. Vector-lifting SDP relaxation (VSDR). Consider the following quadratic constrained quadratic
program:

�QCQP� �∗
QCQP �=min �xT Q0x+ cT

0 x�+#0

s.t. �xT Qjx+ cT
j x�+#j ≤ 0� j = 1� � � � �m�

x ∈�n�

where for all j , we have Qj ∈ � n, cj ∈ �n, and #j ∈ �. To find approximate solutions to QCQP, one can
homogenize the quadratic functions to get the equivalent quadratic forms qj�x� x0�= xT Qjx+cT

j xx0+#jx
2
0 along

with the additional constraint x20 = 1. The homogenized forms can be linearized using the vector
(
x0
x

) ∈ �n+1,
i.e.,

qj�x� x0� =
(

x0

x

)T (
#j

1
2c

T
j

1
2cj Qj

)(
x0

x

)

= trace
(

#j
1
2c

T
j

1
2cj Qj

)(
1 xT

x Y

)
� (4)

where Y represents xxT and the constraint Y = xxT is relaxed to xxT � Y . Equivalently, we can use the Schur
complement and get the lifted linear constraint

Z =
(
1 xT

x Y

)
	 0� (5)

i.e., we can identify y = x. The objective function is now linear:

trace

(
#0

1
2c

T
0

1
2c0 Q0

)
Z
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and the constraints in QCQP are relaxed to linear inequality constraints:

trace

(
#j

1
2c

T
j

1
2cj Qj

)
Z ≤ 0� j = 1� � � � �m�

In this paper, we call this a vector-lifting semidefinite relaxation (VSDR) and we note that the unknown variable
Z ∈� n+1.

2.2. Matrix-lifting SDP relaxation (MSDR). Consider QCQP with matrix variables:

�MQCQP� �∗
MQCQP �=min trace�XT Q0X +C0X

T �+#0

s.t. trace�XT QjX +CjX
T �+#j ≤ 0� j = 1� � � � �m�

X ∈�nr �

Let x �= vec�X�, c �= vec�C�, )ij denote the Kronecker delta, and Eij = eie
T
j ∈�n be the zero matrix except

with one at the �i� j� position. Note that if r = n, then the orthogonality constraint XXT = I is equivalent
to xT �I ⊗ Eij�x = )ij , ∀ i� j . XT X = I is equivalent to xT �Eij ⊗ I�x = )ij , ∀ i� j . Using both of the redundant
constraints XXT = I and XT X = I strengthens the SDP relaxation (see Anstreicher and Wolkowicz [3]). We
can now rewrite QAP using the Kronecker product and see that it is a special case of MQCQP with linear and
quadratic equality constraints and with nonnegativity constraints (recall that �= � ∩� ∩� ).

�∗
QAP =min xT �B⊗A�x+ cT x

s.t. xT �I ⊗Eij�x = )ij � ∀ i� j�

xT �Eij ⊗ I�x = )ij � ∀ i� j� (6)

Xe=XT e= e�

x ≥ 0�

Note that in the case of QAP, we have r = n and x = vec�X� from (6) is in �n2 . Relaxing the quadratic
objective function and the quadratic orthogonality constraints results in a linearized/lifted constraint (5) and we
end up with Z = (1 xT

x Y

) ∈ � n2+1, a prohibitively large matrix. However, we can use a different approach and
exploit the structure of the problem. We can replace the constraint Y = xxT with the constraint Y = XXT and
then relax it to Y 	 XXT . This is equivalent to the linear semidefinite constraint

(
I XT

X Y

) 	 0. The size of this
constraint is significantly smaller. We call this a matrix-lifting semidefinite relaxation and denote it MSDR. The
relaxation for MQCQP with X ∈�nr is

�MSDR� �∗
MSDR �=min trace�Q0Y +C0X

T �+#0

s.t. trace�QjY +CjX
T �+#j ≤ 0� j = 1� � � � �m�(

I XT

X Y

)
	 0�

X ∈�nr � Y ∈� n�

If r ≤ n and the Slater constraint qualification holds, then MSDR solves MQCQP, �∗
MQCQP =�∗

MSDR (see Beck [5],
Beck and Teboulle [6]). However, the bound from MSDR is not tight in general.
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To apply this to the QAP formulation in (6), we first reformulate it as MQCQP by removing B from the
objective using the constraint R=XB:

�∗
QAP =min trace

(
X

R

)T (
0 1

2A

1
2A 0

)(
X

R

)
+ traceCXT

s.t. R=XB

XXT − I =XT X − I = 0�
Xe=XT e= e�

X ≥ 0� X ∈�n�

(7)

To linearize the objective function, we use

trace

(
X

R

)T (
0 1

2A

1
2A 0

)(
X

R

)
= trace

(
0 1

2A

1
2A 0

)(
X

R

)(
X

R

)T

and the lifting (
X

R

)(
X

R

)T

=
(

XXT XRT

RXT RRT

)
=
(

I Y

Y Z

)
� (8)

This defines the symmetric matrices Y �Z ∈� n, where we see Y = RXT = X�XT R�XT = XBXT ∈� n. We can
then relax this to get the convex quadratic constraint

G�X�R�Y �Z� �=
(

XXT XRT

RXT RRT

)
−
(

I Y

Y Z

)
� 0� (9)

A Schur complement argument shows that the convex quadratic constraint (9) is equivalent to the linear conic
constraint1 


I XT RT

X I Y

R Y Z


	 0� (10)

The above discussion yields the MSDR relaxation for QAP:

�MSDR0� �∗
QAP ≥min traceAY + traceCXT

s.t. R=XB�

Xe=XT e= e�


I XT RT

X I Y

R Y Z


	 0� X ≥ 0�

X�R ∈�n� Y �Z ∈� n�

(11)

where Y represents or approximates RXT = XBXT and Z represents or approximates RRT = XB2XT . Because
X is a permutation matrix, we conclude that the diagonal of Y is the X permutation of the diagonal of B (and,
similarly, for the diagonals of Z and B2):

diag�Y �=X diag�B�� diag�Z�=X diag�B2�� (12)

1 Note that the linearized conic constraint is not onto, which suggests that it is more ill-conditioned than the convex quadratic constraint.
Empirical tests in Ding et al. [8] confirm this.
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Also, given that Xe =XT e = e and Y =XBXT , Z =XB2XT for all X, Y , Z feasible for the original QAP, we
conclude that

Ye=XBe� Ze=XB2e�

We may add these additional constraints to the above MSDR. These constraints essentially replace the orthogo-
nality constraints. We get the first version of our SDP relaxation:

�MSDR1� �∗
MSDR1

�=min traceAY + traceCXT

s.t. Xe=XT e= e�


diag�Y �=X diag�B�

diag�Z�=X diag�B2�

Ye=XBe

Ze=XB2e




�




I XT �XB�T

X I Y

XB Y Z


	 0� X ≥ 0�

X ∈�n� Y �Z ∈� n�

Proposition 2.1. Let B be nonsingular. In addition, suppose that �X�Y �Z� solves MSDR1 and satisfies
Z =XB2XT . Then, X is optimal for QAP.

Proof. Via the Schur complement, we know that the semidefinite constraint in MSDR1 is equivalent to(
I −XXT Y −XBXT

Y −XBXT Z−XB2XT

)
	 0� (13)

Therefore, XXT � I , XT X � I . Moreover, X satisfies Xe = XT e = e, X ≥ 0. Now, multiplying both sides of
diag�Z� = X diag�B2� from the left by eT yields traceZ = traceB2. Because Z = XB2XT , we conclude that
traceZ = traceXB2XT = traceB2, i.e., traceB2�I − XT X� = 0. Because B is nonsingular, we conclude that
B2 
 0. Therefore, I−XT X 	 0 implies that I =XT X. Thus, the optimizer X is orthogonal and doubly stochastic
(X ∈� ∩� ). Hence, X is a permutation matrix.
Moreover, (13) and Z−XB2XT = 0 imply the off-diagonal block Y −XBXT = 0. Thus, we conclude that the

bound �∗
MSDR1 from (MSDR1) is tight. �

Remark 2.1. The assumption that B is nonsingular is made without loss of generality because we could
shift B by a small positive multiple of the identity matrix, say ,I , while simultaneously subtracting ,�traceA�,
i.e.,

trace�AXBXT +CXT � = trace�AX�B+ ,I�XT − ,AXXT +CXT �

= trace�AX�B+ ,I�XT +CXT �− , traceA�

2.2.1. The orthogonal similarity set of B. In this section, we include additional constraints in order to
strengthen MSDR1. Using majorization given in Definition 1.1, we now characterize the convex hull of the
orthogonal similarity set of B, denoted conv��B�.

Theorem 2.1. Let
S1 �= conv��B�= conv�Y ∈� n� Y =XBXT �X ∈ ���

S2 �= �Y ∈� n� trace ĀY ≥ ���Ā����B��−� ∀ Ā ∈� n��

S3 �= �Y ∈� n� diag�XT YX�� ��B��∀X ∈ ���

S4 �= �Y ∈� n� ��Y �� ��B���

(14)

Then, S1 is the convex hull of the orthogonal similarity set of B, and S1 = S2 = S3 = S4.
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Proof. (i) S1 ⊆ S2: Let Y ∈ S1� Ā ∈� n. Then,

trace ĀY ≥ min
Y∈conv��B�

trace ĀY =min
X∈�
trace ĀXBXT = ���Ā����B��−

by the well-known minimal inner-product result (e.g., Rendl and Wolkowicz [33]), Finke et al. [11].
(ii) S2 ⊆ S3: Let U ∈ �, p ∈ �1�2� � � � � n−1�, and let .p denote the index set corresponding to the p smallest

entries of diag�U T YU�. Define the support vector /p ∈�n of .P by

�/p�i =
{
1 if i ∈ .p�

0 otherwise.

Then, for Ap �=U Diag�/p�U T , we get

�/p�diag�U T YU�� = �Diag�/p��U T YU �
= �U Diag�/p�U T �Y �
= �Ap�Y �
≥ �/p���B��−

by definition of S2. Because choosing Ā=±I implies traceY = traceB, the inclusion follows.
(iii) S3 ⊆ S4: Let Y ∈ S3 and let Y = V Diag���Y ��V T , V ∈ �, be its spectral decomposition. Because U ∈ �

implies that diag�U T YU�� ��B�, we may take U = V and deduce

��Y �= diag�V T Y V �� ��B��

(iv) S4 ⊆ S1: To obtain a contradiction, suppose ���Y � � ��B� but Ŷ � conv��B�. Because � is a compact
set, we conclude that the continuous image ��B�= �Y � Y =XBXT �X ∈ �� is compact. Hence, its convex hull
conv��B� is compact as well. Therefore, a standard hyperplane separation argument implies that there exists
Ā ∈� n such that

�Ā� Ŷ �< min
Y∈conv���B��

�Ā� Y � = min
Y∈��B�

�Ā� Y � = ���Ā����B��−�

As a result,
���Ā����Ŷ ��− ≤ �Ā� Ŷ �< ���Ā����B��−�

Without loss of generality, suppose that the eigenvalues ��·� are in nondecreasing order. Then, the above mini-
mum product inequality could be written as

n∑
i=1

�i�Ā��n−i+1�Ŷ � <
n∑

i=1
�i�Ā��n−i+1�B��

which implies

0>
n∑

i=1
�i�Ā���n−i+1�Ŷ �−�n−i+1�B���

Because �i�Ā�=∑i−1
j=1 ��j+1�Ā�−�j�Ā��+�1�Ā�, we can rewrite the above inequality as

0 >
n∑

i=1

(i−1∑
j=1

��j+1�Ā�−�j�Ā��+�i�Ā�

)
��n−i+1�Ŷ �−�n−i+1�B��

=
n−1∑
j=1

��j+1�Ā�−�j�Ā��
n∑

i=j+1
��n−i+1�Ŷ �−�n−i+1�B��

+�1�Ā�
n∑

i=1
��i�Ŷ �−�i�B���

Notice that ��Ŷ � � ��B� implies eT ��Ŷ � = eT ��B�, so �1�Ā�
∑n

i=1 ��i�Ŷ �−�i�B�� = 0. Thus, we have the
following inequality:

0>
n−1∑
j=1

��j+1�Ā�−�j�Ā��
n∑

i=j+1
��n−i+1�Ŷ �−�n−i+1�B��� (15)
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However, by assumption �j+1�Ā�≥ �j�Ā� and by the definition of ��Ŷ � majorized by ��B�,

n∑
i=j+1

�n−i+1�Ŷ �=
n−j∑
t=1

�t�Ŷ �≥
n−j∑
t=1

�t�B�=
n∑

i=j+1
�n−i+1�B��

which contradicts (15). �

Remark 2.2. Based on our Theorem 2.1,2 Xia [35] recognized that the equivalent sets S1 to S4 in (14) admit
a semidefinite formulation, i.e.,

S1 = S5 �=
{
Y ∈ Sn� Y =

n∑
i=1

�i�B�Yi�
n∑

i=1
Yi = In� traceYi = 1� Yi 	 0� i= 1� � � � � n

}
�

Xia [35] then proposed an orthogonal bound, denoted OB2, from the optimal value of the SDP

�∗
OB2 �= min

X≥0�Xe=XT e=e�Y∈S5

trace�AY +CXT ��

Note that this orthogonal bound OB2 can be applied to the projected version PQAP (given in §2.2.3), and
then it is provably stronger than the convex quadratic programming bound QPB.
We failed to recognize this point in our initial work. Instead, motivated by Theorem 2.1, we now propose an

inexpensive bound that is stronger than QPB for most of the problem instances we tested.

2.2.2. Strengthened MSDR bound. Suppose that A=UADiag���A��U T
A denotes the orthogonal diagonal-

ization of A with the vector of eigenvalues ��A� in nonincreasing order. We assume that the vector of eigenvalues
��B� is in nondecreasing order. Let

)p �= �

p︷ ︸︸ ︷
1�1� � � � �1�0�0� � � � �0�� p= 1�2� � � � � n− 1�

We add the following cuts to MSDR1:

�)p�diag�U T
A YUA�� ≥ �)p���B��� p= 1�2� � � � � n− 1� (16)

These are valid cuts because �)p�diag�U T
A YUA�� ≥ �)p�diag�U T

A YUA��− ≥ �)p���B��−, for Y ∈ S1 by part (ii)
of the proof of Theorem 2.1.
Hence, we get the following relaxation:

�MSDR2� �∗
MSDR2

�=min �A�Y �+ �C�X�
s.t. Xe=XT e= e

diag�Y �=X diag�B�

diag�Z�=X diag�B2�

Ye=XBe

Ze=XB2e

�)p�diag�U T
A YUA�� ≥ �)p���B��� p= 1�2� � � � � n− 1


I XT BT XT

X I Y

XB Y Z


	 0� X ≥ 0

X ∈�n� Y �Z ∈� n�

The cuts (16) approximate the majorization constraint

diag�U T
A YUA�� ��B� (17)

and yield a comparison between the bounds MSDR2 and EB.

2 Xia [35] references our Theorem 2.1 from an earlier version of our paper.
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Lemma 2.1. The bound from MSDR2 is stronger than the eigenvalue bound EB, i.e.,

�∗
MSDR2

≥ ���A����B��− + min
Xe=XT e=e�X≥0

�C�X��

Proof. It is enough to show that the first terms on both sides of the inequality satisfy

�A�Y � ≥ ���A����B��−
for any Y feasible in MSDR2. Note that

�A�Y � = �UADiag���A��U T
A �Y � = ���A��diag�U T

A YUA���
Because ��A� is a nonincreasing vector and ��B� is nondecreasing, we have ���B����A�� = ���B����A��−.
Also,

��A�=
n−1∑
p=1

��p�A�−�p+1�A��)p +�n�A�e�

Therefore, because diag�Y �=X diag�B� and eT X = eT , we have

�A�Y � =
n−1∑
p=1

��p�A�−�p+1�A���)p�diag�U T
A YUA��+�n�A��e���B���

Because �)p�diag�U T
A YUA�� ≥ �)p���B�� holds for any feasible Y , we have

�A�Y � ≥
n−1∑
p=1

(
�p�A�−�p+1�A�

)�)p���B��+�n�A��e���B��

=
n−1∑
p=1

((
�p�A�−�p+1�A�

) p∑
i=1

�i�B�

)
+�n�A�

n∑
i=1

�i�B�

=
n∑

i=1
�i�B�

(n−1∑
p=i

(
�p�A�−�p+1�A�

)+�n�A�

)

=
n∑

i=1
�i�B��i�A�

= ���B����A��−� �

2.2.3. Projected bound. The row and column sum equality constraints of QAP, � = �X ∈ �n�
Xe = XT e = e�, can be eliminated using a nullspace method. (In the following proposition, � refers to the
orthogonal matrices of appropriate dimension.)

Proposition 2.2 (Hadley et al. [14]). Let V ∈ �n�n−1 be full column rank and satisfy V T e = 0. Then,
X ∈� ∩� if and only if

X = 1
n
E +V �XV T for some �X ∈ �� �

After substituting for X and using �A= V T AV , �B = V T BV , the QAP can now be reformulated as the projected
version

�PQAP� min trace
(
�A�X �B �XT + 1

n
�A�X �BE + 1

n
�AE �B �XT + 1

n2
�AE �BE

)
s.t. �X �XT = �XT �X = I�

X� �X�= 1
n
E +V �XV T ≥ 0�

We now define �Y = �X �B �XT and �Z = �Y �Y = �X �B �B �XT and we replace X with �1/n�E + V �XV T . Then, the two
terms XBX and XBVV T BXT admit the representations

XBXT = V �X �B �XT V T + 1
n
EBV �XT V T + 1

n
V �XV T BE + 1

n2
E �BE
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and
XBVV T BXT = V �ZV T + 1

n
EBVV T BVXT V T + 1

n
VXV T BVV T BE + 1

n2
EBVV T BE�

respectively. In MSDR2, we use Y to represent/approximate XBXT and use Z to represent/approximate XBBXT .
However, XBBXT cannot be represented with �X and �Y . Therefore, in the projected version we have to let Z
represent XBVV T BXT instead of XBBXT , and we replace the corresponding diagonal constraint with diag�Z�=
X diag�BVV T B�.
Based on these definitions, PQAP has the following quadratic matrix programming formulation:

min trace�AY +CXT �

s.t. diagY =X diag�B��

diagZ =X diag�BVV T B��

X� �X�= V �XV T + 1
n
E�

Y � �X� �Y �= V �YV T + 1
n
EBV �XT V T + 1

n
V �XV T BE + 1

n2
E �BE�

(18)
Z� �X� �Z�= V �ZV T + 1

n
EBVV T BVXT V T + 1

n
VXV T BVV T BE + 1

n2
EBVV T BE�

�R= �X �B�(
I �Y
�Y �Z

)
=
( �X �XT �X �RT

�R�XT �R �RT

)
�

X� �X�≥ 0�
�X� �R ∈�n−1� �Y � �Z ∈ Sn−1�

We can now relax the quadratic constraint(
I �Y
�Y �Z

)
=
( �X �XT �X �RT

�R�XT �R �RT

)

with the convex constraint 


I �XT �RT

�X I �Y
�R �Y �Z


	 0�

As in MSDR2, we now add the following cuts for �Y ∈ conv�� �X�:

�)p�diag�U T
�A �YU �A�� ≥ �)p��� �B��� p= 1�2� � � � � n− 2�

where �A=U �ADiag��� �A��UT
�A is the spectral decomposition of

�A and �1� �A�≤ �2� �A�≤ · · · ≤ �n−1� �A�. )p follows
the definition in §2.2.1, i.e., )p ∈Rn−1� )p = �0�0� � � � �0�1� � � � �1�. Our final projected relaxation MSDR3 is

�MSDR3� �∗
MSDR3

�=min �A�Y � �X� �Y ��+ �C�X� �X��
s.t. diag�Y � �X� �Y ��=X� �X�diag�B��

diag�Z� �X� �Z��=X� �X�diag�BVV T B��

�)p�diag�U T
�A �YU �A�� ≥ �)p��� �B��� p= 1�2� � � � � n− 2�

X� �X�≥ 0�


I �XT �BT �XT

�X I �Y
�X �B �Y �Z


	 0�

�X ∈�n−1� �Y � �Z ∈ Sn−1�
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where

X� �X�= 1
n
E +V �XV T �

Y � �X� �Y �= V �YV T + 1
n
EBV �XT V T + 1

n
V �XV T BE + 1

n2
E �BE�

Z� �X� �Z�= V �ZV T + 1
n
EBVV T BVXT V T + 1

n
VXV T BVV T BE + 1

n2
EBVV T BE�

Note that the constraints Ye=XBe, Ze=XB2e are no longer needed in MSDR3.
In MSDR3, all the constraints act on the lower dimensional space obtained after the projection. The strategy

of adding cuts after the projection has been successfully used in the projected eigenvalue bound PB and the
quadratic programming bound QPB. For this reason, we propose MSDR3 instead of MSDR2.

Lemma 2.2. Let �∗
PB denote the projected eigenvalue bound. Then,

�∗
MSDR3

≥�∗
PB�

Proof. Because MSDR3 has constraints

�)p�diag�U T
�A �YU �A�� ≥ �)p��� �B��� p= 1�2� � � � � n− 2�

we need only prove that trace �A�Y ≥ ��� �A���� �B��−. This proof is the same as the proof for traceAY ≥
���A����B��− in Lemma 2.1. �

Remark 2.3. Every feasible solution to the original QAP satisfies Y = XBXT �X ∈ �. This implies that
Y could be obtained from a permutation of the entries of B. Moreover, the diagonal entries of B remain on
the diagonal after a permutation. Denote the off-diagonal entries of B by 0ffDiag�B�. We see that, for each
i� j = 1�2� � � � � n� i �= j , the following cuts are valid for any feasible Y :

min50ffDiag�B�6≤ Yij ≤max50ffDiag�B�6� (19)

It is easy to verify that if the elements of 0ffDiag�B� are all equal, then QAP can be solved by MSDR1, MSDR2,
or MSDR3 using the constraints in (19).
If B is diagonally dominant, than for any permutation X, we have that Y = XBXT is diagonally dominant.

This property generates another series of cuts. These results could be used to add cuts for Z =XB2XT as well.

3. Numerical results.

3.1. QAPLIB problems. In Table 1, we present a comparison of MSDR3 with several other bounds applied
to instances from QAPLIB (Burkard et al. [7]). The first column (OPT) denotes the exact optimal value. The
following columns contain the Gilmore-Lawler bound (GLB) (Gilmore [12]); dual linear programming bound
(KCCEB) (Karisch et al. [21], Hahn and Grant [16], Hahn and Grant [17]); projected eigenvalue bound (PB)
(Hadley et al. [14]); convex quadratic programming bound (QPB) (Anstreicher and Brixius [2]); and the vector-
lifting semidefinite relaxation bounds (SDR1, SDR2, and SDR3) (Zhao et al. [36]) computed by the bundle
method (Rendl and Sotirov [32]). The last column is our MSDR3 bound. All output values are rounded up to
the nearest integer.
To solve QAP, the minimization of traceAXBXT and traceBXAXT are equivalent. However, in terms of the

relaxation MSDR3, exchanging the roles of A and B results in two different formulations and bounds. In our
tests, we use the maximum of the two formulations for MSDR3. When considering branching, we stay with the
better formulation throughout to avoid doubling the computational work.
From Table 1, we see that the relative performance of the various bounds can vary on different instances. The

average performance of the bounds can be ranked as follows:

PB<QPB<MSDR3 ≈ SDR1< SDR2< SDR3�

In Table 2, we present the number of variables and constraints used in each of the relaxations. Our bound
MSDR3 uses only O�n2� variables and only O�n2� constraints. If we solve MSDR3 with an interior point method,
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Table 1. Comparison of bounds for QAPLIB instances.

Problem OPT GLB KCCEB PB QPB SDR1 SDR2 SDR3 MSDR3

Esc16a 68 38 41 47 55 47 49 59 50
Esc16b 292 220 274 250 250 250 275 288 276
Esc16c 160 83 91 95 95 95 111 142 123
Esc16d 16 3 4 −19 −19 −19 −13 8 1
Esc16e 28 12 12 6 6 6 11 23 14
Esc16g 26 12 12 9 9 9 10 20 13
Esc16h 996 625 704 708 708 708 905 970 906
Esc16i 14 0 0 −25 −25 −25 −22 9 0
Esc16j 8 1 2 −6 −6 −6 −5 7 0

Had12 1�652 1�536 1�619 1�573 1�592 1�604 1�639 1�643 1�595
Had14 2�724 2�492 2�661 2�609 2�630 2�651 2�707 2�715 2�634
Had16 3�720 3�358 3�553 3�560 3�594 3�612 3�675 3�699 3�587
Had18 5�358 4�776 5�078 5�104 5�141 5�174 5�282 5�317 5�153
Had20 692 6�166 6�567 6�625 6�674 6�713 6�843 6�885 6�681

Kra30a 88�900 68�360 75�566 63�717 68�257 69�736 68�526 77�647 72�480
Kra30b 91�420 69�065 76�235 63�818 68�400 70�324 71�429 81�156 73�155

Nug12 578 493 521 472 482 486 528 557 502
Nug14 1�014 852 N/a 871 891 903 958 992 918
Nug15 1�150 963 1�033 973 994 1�009 1�069 1�122 1�016
Nug16a 1�610 1�314 1�419 1�403 1�441 1�461 1�526 1�570 1�460
Nug16b 1�240 1�022 1�082 1�046 1�070 1�082 1�136 1�188 1�082
Nug17 1�732 1�388 1�498 1�487 1�523 1�548 1�619 1�669 1�549
Nug18 1�930 1�554 1�656 1�663 1�700 1�723 1�798 1�852 1�726
Nug20 2�570 2�057 2�173 2�196 2�252 2�281 2�380 2�451 2�291
Nug21 2�438 1�833 2�008 1�979 2�046 2�090 2�244 2�323 2�099
Nug22 3�596 2�483 2�834 2�966 3�049 3�140 3�372 3�440 3�137
Nug24 3�488 2�676 2�857 2�960 3�025 3�068 3�217 3�310 3�061
Nug25 3�744 2�869 3�064 3�190 3�268 3�305 3�438 3�535 3�300
Nug27 5�234 3�701 N/a 4�493 N/a N/a 4�887 4�965 4�621
Nug30 6�124 4�539 4�785 5�266 5�362 5�413 5�651 5�803 5�446

Rou12 235�528 202�272 223�543 200�024 205�461 208�685 219�018 223�680 207�445
Rou15 354�210 298�548 323�589 296�705 303�487 306�833 320�567 333�287 303�456
Rou20 725�522 599�948 641�425 597�045 607�362 615�549 641�577 663�833 609�102

Scr12 31�410 27�858 29�538 4�727 8�223 11�117 23�844 29�321 18�803
Scr15 51�140 44�737 48�547 10�355 12�401 17�046 41�881 48�836 39�399
Scr20 110�030 86�766 94�489 16�113 23�480 28�535 82�106 94�998 50�548

Tai12a 224�416 195�918 220�804 193�124 199�378 203�595 215�241 222�784 202�134
Tai15a 388�214 327�501 351�938 325�019 330�205 333�437 349�179 364�761 331�956
Tai17a 491�812 412�722 441�501 408�910 415�576 419�619 440�333 451�317 418�356
Tai20a 703�482 580�674 616�644 575�831 584�938 591�994 617�630 637�300 587�266
Tai25a 1�167�256 962�417 1�005�978 956�657 981�870 974�004 908�248 1�041�337 970�788
Tai30a 1�818�146 1�504�688 1�565�313 1�500�407 1�517�829 1�529�135 1�573�580 1�652�186 1�521�368

Tho30 149�936 90�578 99�855 119�254 124�286 125�972 134�368 136�059 122�778

the complexity of computing the Newton direction in each iteration is O�n6� and the number of iterations of
an interior point method is bounded by O�n ln�1/,�� (Monteiro and Todd [26]). Therefore, the complexity of
computing MSDR3 with an interior point method is O�n7 ln�1/,��. Note that the computational complexity for
the most expensive SDP formulation, SDR3, is O�n14 ln�1/,�� where , is the desired accuracy. Thus, MSDR3 is
significantly less expensive than SDR3. Though QPB is less expensive than MSDR3 in practice the complexity
as a function of n is the same.

Table 2. Complexity of relaxations.

7 Methods GLB KCCEB PB QPB SDR1 SDR2 SDR3 MSDR3

Variables O�n4� O�n2� O�n2� O�n2� O�n4� O�n4� O�n4� O�n2�

Constraints O�n2� O�n2� O�n2� O�n2� O�n2� O�n3� O�n4� O�n2�
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Table 3. CPU time and iterations for computing MSDR3 on the Nugent problems.

Instances Nug12 Nug15 Nug18 Nug20 Nug25 Nug27 Nug30

CPU time(s) 15�1 57�6 203�9 534�9 3�236�4 5�211�3 12�206�0
Number of iterations 18 19 22 26 27 25 29

Table 3 lists the CPU time (in seconds) for MSDR3 for several of the Nugent instances (Nugent et al. [28]).
(We used a SUN SPARC 10 and the SeDuMi3 SDP package. For a rough comparison, note that the results in
Anstreicher et al. [4] were done on a C3000 computer and took 3.2 CPU seconds for the Nug20 instance and 9
CPU seconds for the Nug25 instance for the QPB bound.)

3.2. MSDR3 in a branch-and-bound framework. When solving general discrete optimization problems
using B&B methods, one rarely has advance knowledge that helps in branching decisions. We now see that
MSDR3 helps in choosing a row and/or column for branching in our B&B approach for solving QAP.
If X is a permutation matrix, then the diagonal entries diag�Z� = X diag�BVV T B� are a permutation of the

diagonal entries of BVV T B. In fact, the converse is true under a mild assumption.

Proposition 3.1. Assume the n entries of diag�BVV T B� are all distinct. If �X∗� Y ∗�Z∗� is an optimal
solution to MSDR3 that satisfies diag�Z

∗� = P diag�BVV T B� for some P ∈ �, then �X∗� Y ∗�Z∗� solves QAP
exactly.

Proof. Without loss of generality, assume the entries of b �= diag�BVV T B� are strictly increasing, i.e., b1 <
b2 < · · ·< bn. By the feasibility of X∗, Z∗, we have diag�Z∗�= X∗b. Also, we know diag�Z∗�= Pb for some
P ∈�. Therefore, X∗b = Pb holds as well. Now, assume Pi1 = 1. Then,

∑n
j=1X

∗
ijbj = b1. Because

∑n
j=1X

∗
ij = 1

and X∗
ij ≥ 0� j = 1�2� � � � � n, we conclude that b1 is a convex combination of b1� b2� � � � � bn. However, b1 is

the strict minimum in b1� b2� � � � � bn. This implies that X∗
i1 = 1. The conclusion follows for P = X∗ by finite

induction after we delete column one and row i of X. �

As a consequence of Proposition 3.1, we may consider the original QAP problem in order to determine
an optimal assignment of entries of diag�BVV T B� to diag�Z�, where each entry of diag�BVV T B� requires a
branch-and-bound process to determine its assigned position. For entries with a large difference from the mean
of diag�BVV T B�, the assignments are particularly important because a change of their assigned positions usually
leads to significant differences in the corresponding objective value. Therefore, in order to fathom more nodes
early, our B&B strategy first processes those entries with large differences from the mean of diag�BVV T B�.

Branch-and-Bound Strategy 3.1. Let b �= diag�BVV T B�. Branch on the ith column of X where i cor-
responds to the element bi that has the largest deviation from the mean of the elements of b. (If this strategy
results in several elements close in value, then we randomly pick one of them.)

For example, Nug12 yields

diag�BVV T B�T = ( 23 14 14 23 17�67 8�67 8�67 17�67 23 14 14 23
)
�

Therefore, the sixth or seventh entry has value 8�67; this has the largest difference from the mean value 16�72.
Table 4 presents the MSDR3 bounds in the first level of the branching tree for Nug12. The first and second
columns of Table 4 present the results for branching on elements from the sixth column of X first. The other
columns provide a comparison with branching from other columns first. On average, branching with the sixth
column of X first generates tighter bounds and should lead to descendant nodes in the branch-and-bound tree
that was fathomed earlier.

4. Conclusion. We have presented new bounds for QAP that are based on a matrix-lifting (rather than a
vector-lifting) semidefinite relaxation. By exploiting the special doubly stochastic and orthogonality structure
of the constraints, we obtained a series of cuts to further strengthen the relaxation. The resulting relaxation
MSDR3 is provably stronger than the projected eigenvalue bound PB and is comparable with the SDR1 bound
and the quadratic programming bound QPB in our empirical tests. Moreover, due to the matrix-lifting property
of the bound, it only uses O�n2� variables and O�n2� constraints. Hence, the complexity is comparable with that
of QPB.

3 Information is available at http://sedumi.ie.lehigh.edu.
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Table 4. Results for the first level branching for Nug12.

Nodes Bounds Nodes Bounds Nodes Bounds

X1�6 = 1 523 X1�1 = 1 508 X1�2 = 1 512
X2�6 = 1 528 X2�1 = 1 509 X2�2 = 1 513
X3�6 = 1 520 X3�1 = 1 507 X3�2 = 1 508
X4�6 = 1 517 X4�1 = 1 515 X4�2 = 1 510
X5�6 = 1 537 X5�1 = 1 512 X5�2 = 1 519
X6�6 = 1 529 X6�1 = 1 517 X6�2 = 1 513
X7�6 = 1 507 X7�1 = 1 516 X7�2 = 1 507
X8�6 = 1 519 X8�1 = 1 524 X8�2 = 1 513
X9�6 = 1 522 X9�1 = 1 524 X9�2 = 1 514
X10�6 = 1 527 X10�1 = 1 514 X10�2 = 1 513
X11�6 = 1 506 X11�1 = 1 527 X11�2 = 1 510
X12�6 = 1 504 X12�1 = 1 510 X12�2 = 1 516
Mean 519�9 Mean 515�3 Mean 512�3

Subsequent work has shown that our MSDR3 relaxation and bound are particularly efficient for matrices with
special structures, for example, if B is a Hamming distance matrix of a hypercube or a Manhattan distance
matrix from rectangular grids (see, e.g., Mittelmann and Peng [24]). Additional new relaxations based on our
work have been proposed (see, e.g., the bound OB2 in Xia [35]). Another recent application is decoding in
multiple antenna systems (see Mobasher and Khandani [25]).

Acknowledgments. The authors are indebted to the associate editor and two anonymous referees for helping
make numerous significant improvements to the paper.
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