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Abstract. We consider the projected semidefinite and Euclidean distance cones onto a subset
of the matrix entries. These two sets are precisely the input data defining feasible semidefinite
and Euclidean distance completion problems. We classify when these sets are closed and use the
boundary structure of these two sets to elucidate the Krislock–Wolkowicz facial reduction algorithm.
In particular, we show that under a chordality assumption, the “minimal cones” of these problems
admit combinatorial characterizations. As a by-product, we record a striking relationship between
the complexity of the general facial reduction algorithm (singularity degree) and facial exposedness
of conic images under a linear mapping.
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1. Introduction. To motivate the discussion, consider an undirected graph G =
(V,E) with vertex set V = {1, . . . , n} and edge set E ⊂ V × V possibly containing
self-loops. The classical positive semidefinite (PSD) completion problem asks whether
given a data vector a indexed by E, there exists an n×n positive semidefinite matrix
X completing a, meaning Xij = aij for all ij ∈ E. Similarly, the Euclidean distance
matrix (EDM) completion problem asks whether given such a data vector, there exists
a Euclidean distance matrix completing it. For a survey of these two problems, see for
example [22, 2, 24, 25]. The semidefinite and Euclidean distance completion problems
are often mentioned in the same light due to a number of parallel results; see, e.g.,
[21]. Here, we consider a related construction: projections of the PSD cone Sn

+ and
the EDM cone En onto matrix entries indexed by E. These “coordinate shadows,”
denoted by P(Sn

+) and P(En), respectively, appear naturally: they are precisely the
sets of data vectors that render the corresponding completion problems feasible. We
note that these sets are interesting types of “spectrahedral shadows”—an area of
intensive research in recent years. For a representative sample of recent papers on
spectrahedral shadows, we refer to [25, 11, 15, 16, 3] and references therein.

In this paper, our goal is twofold: we will (1) highlight the geometry of the two
sets P(Sn

+) and P(En) and (2) illustrate how such geometric considerations yield a
much simplified and transparent analysis of an EDM completion algorithm proposed
in [18]. To this end, we begin by asking a basic question: Under what conditions are
the coordinate shadows P(Sn

+) and P(En) closed?
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COORDINATE SHADOWS OF SDP AND EDM 1161

This question sits in a broader context still of deciding if a linear image of a
closed convex set is itself closed—a thoroughly studied topic due to its fundamental
connection to constraint qualifications and strong duality in convex optimization; see,
e.g., [31, 10, 9, 27, 28] and references therein. In contrast to the general setting, a
complete answer to this question in our circumstances is easy to obtain. An elementary
argument1 shows that P(En) is always closed, whereas P(Sn

+) is closed if, and only
if, the set of vertices attached to self-loops L = {i ∈ V : ii ∈ E} is disconnected from
its complement Lc (Theorems 3.1, 3.2). Moreover, whenever there is an edge joining
L and Lc, one can with ease exhibit vectors lying in the closure of P(Sn

+) but not in
the set P(Sn

+) itself, thereby certifying that P(Sn
+) is not closed.

To illustrate the algorithmic significance of the coordinate shadows P(Sn
+) and

P(En), consider first the feasible region of the PSD completion problem:

{X ∈ Sn
+ : Xij = aij for ij ∈ E}.

For this set to be nonempty, the data vector a ∈ R
E must be a partial PSD matrix,

meaning all its principal submatrices are positive semidefinite. This, however, does
not alone guarantee the inclusion a ∈ P(Sn

+), unless the restriction of G to L is chordal
and L is disconnected from Lc (Theorem 2.1, [12, Theorem 7]). On the other hand, the
authors of [18] noticed that even if the feasible set is nonempty, the Slater condition
(i.e., existence of a positive definite completion) will often fail: small perturbations to
any specified principal submatrix of a having deficient rank can render the semidefinite
completion problem infeasible. In other words, in this case the partial matrix a lies
on the boundary of P(Sn

+)—the focus of this paper. An entirely analogous situation
occurs for EDM completions

{X ∈ En : Xij = aij for ij ∈ E},
with the rank of each principal submatrix of a ∈ R

E replaced by its “embedding
dimension.” In [18], the authors propose a preprocessing strategy utilizing the cliques
in the graph G to systematically decrease the size of the EDM completion problem.
Roughly speaking, the authors use each clique to find a face of the EDM cone contain-
ing the entire feasible region, and then iteratively intersect such faces. The numerical
results in [18] were impressive. In the current work, we provide a much simplified and
transparent geometric argument behind their algorithmic idea, with the boundary of
P(En) playing a key role. As a result, (a) we put their techniques in a broader setting
unifying the PSD and EDM cases, and (b) the techniques developed here naturally
lead to a robust variant of the method for noisy (inexact) EDM completion problems
[8]—a more realistic setting. In particular, we show that when G is chordal and all
cliques are considered, the preprocessing technique discovers the minimal face of En

(respectively, Sn
+) containing the feasible region; see Theorems 4.7 and 4.14. This

in part explains the observed success of the method in [18]. Thus in contrast to
general semidefinite programming, the minimal face of the PSD cone containing the
feasible region of the PSD completion problem under a chordality assumption (one
of the simplest semidefinite programming problems) admits a purely combinatorial
description.

As a byproduct, we record a striking relationship between the complexity of the
general facial reduction algorithm (singularity degree) and facial exposedness of conic
images under a linear mapping; see Theorem 4.1. To the best of our knowledge, this
basic relationship either has gone unnoticed or has mostly been forgotten.

1The elementary proofs of Theorem 3.1 and 3.2 were suggested to us by an anonymous referee,
for which we are very grateful. Our original reasoning was based on the more general considerations
in [27]; see also the discussion after Theorem 8 in [28].

D
ow

nl
oa

de
d 

06
/3

0/
15

 to
 1

29
.9

7.
58

.7
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1162 D. DRUSVYATSKIY, G. PATAKI, AND H. WOLKOWICZ

The outline of the manuscript is as follows. In section 2 we record basic results
on convex geometry and PSD and EDM completions. In section 3, we consider when
the coordinate shadows P(Sn

+) and P(En) are closed, while in section 4 we discuss
the aforementioned clique facial reduction strategy.

2. Preliminaries.

2.1. Basic elements of convex geometry. We begin with some notation,
following closely the classical text [31]. Consider a Euclidean space E with the inner
product 〈·, ·〉. The adjoint of a linear mapping M : E → Y, between two Euclidean
spaces E and Y, is written as M∗, while the range and kernel of M are denoted
by rgeM and kerM, respectively. We denote the closure, boundary, interior, and
relative interior of a set Q in E by clQ, bndQ, intQ, and riQ, respectively. Consider
a convex cone C in E. The linear span and the orthogonal complement of the linear
span of C will be denoted by spanC and C⊥, respectively. For a vector v, we let
v⊥ := {v}⊥. We associate with C the nonnegative polar cone

C∗ = {y ∈ E : 〈y, x〉 ≥ 0 for all x ∈ C}.
The second polar (C∗)∗ coincides with the original C if, and only if, C is closed. A
convex subset F ⊆ C is a face of C, denoted F � C, if F contains any line segment
in C whose relative interior intersects F . The minimal face containing a set S ⊆ C,
denoted face(S,C), is the intersection of all faces of C containing S. When S is itself
a convex set, then face(S,C) is the smallest face of C intersecting the relative interior
of S. A face F of C is an exposed face when there exists a vector v ∈ C∗ satisfying
F = C ∩ v⊥. In this case, we say that v exposes F . The cone C is facially exposed
when all faces of C are exposed. In particular, the cones of positive semidefinite
and Euclidean distance matrices, which we will focus on shortly, are facially exposed.
With any face F � C, we associate a face of the polar C∗, called the conjugate face
F� := C∗ ∩ F⊥. Equivalently, F� is the face of C∗ exposed by any point x ∈ riF ,
that is, F� := C∗∩ x⊥. Thus, in particular, conjugate faces are always exposed. Not
surprisingly then equality (F�)� = F holds if, and only if, F � C is exposed.

2.2. Semidefinite and Euclidean distance matrices. We will focus on two
particular realizations of the Euclidean space E: the n-dimensional vector space R

n

with a fixed basis and the induced dot-product 〈·, ·〉 and the vector space of n×n real
symmetric matrices Sn with the trace inner product 〈A,B〉 := traceAB. The symbols
R+ and R++ will stand for the nonnegative orthant and its interior in R

n, while Sn
+

and Sn
++ will stand for the cones of positive semidefinite and positive definite matrices

in Sn (or PSD and PD for short), respectively. We let e ∈ R
n be the vector of all

ones, and for any vector v ∈ R
n, the symbol Diag(v) will denote the n × n diagonal

matrix with v on the diagonal.
It is well known that all faces of Sn

+ are convex cones that can be expressed as

F =

{
U

[
A 0
0 0

]
UT : A ∈ Sr

+

}

for some orthogonal matrix U and some integer r = 0, 1, . . . , n. Such a face can
equivalently be written as F = {X ∈ Sn

+ : rgeX ⊂ rgeU}, where U is formed from
the first r columns of U . The conjugate face of such a face F is then

F� =

{
U

[
0 0
0 A

]
UT : A ∈ Sn−r

+

}
.
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COORDINATE SHADOWS OF SDP AND EDM 1163

For any convex set Q ⊂ Sn
+, the cone face(Q,Sn

+) coincides with face(X,Sn
+), where

X is any maximal rank matrix in Q.
A matrixD ∈ Sn is an Euclidean distance matrix (or EDM for short) if there exist

n points pi (for i = 1, . . . , n) in some Euclidean space R
k satisfying Dij = ‖pi − pj‖2

for all indices i, j. These points are then said to realize D. The smallest integer k for
which this realization of D by n points is possible is the embedding dimension of D
and will be denoted by embdimD. We let En be the set of n× n Euclidean distance
matrices. There is a close relationship between PSD and EDM. Indeed, En is a closed
convex cone that is linearly isomorphic to Sn−1

+ . To state this precisely, consider the
mapping

K : Sn → Sn

defined by

(2.1) K(X)ij := Xii +Xjj − 2Xij.

Then the adjoint K∗ : Sn → Sn is given by

K∗(D) = 2(Diag(De)−D)

and the equations

(2.2) rgeK = SH , rgeK∗ = Sc

hold, where

(2.3) Sc := {X ∈ Sn : Xe = 0}, SH := {D ∈ Sn : diag(D) = 0}

are the centered and hollow matrices , respectively. It is known that K maps Sn
+ onto

En, and moreover the restricted mapping

(2.4) K : Sc → SH is a linear isomorphism carrying Sc ∩ Sn
+ onto En.

In turn, it is easy to see that Sc ∩ Sn
+ is a face of Sn

+ isomorphic to Sn−1
+ ; see the

discussion after Lemma 4.12 for more details. These and other related results have
appeared in a number of publications; see, for example, [1, 37, 14, 35, 13, 36, 20, 19, 38].

2.3. Semidefinite and Euclidean distance completions. The focus of the
current work is on the PSD and EDM completion problems; see, e.g., [17, Chapter
49]. Throughout the rest of the manuscript, we fix an undirected graph G = (V,E)
with a vertex set V = {1, . . . , n} and an edge set E ⊂ V × V . As usual, we identify
the symbols ij and ji with a single edge. Observe that we allow self-loops. These
loops will play an important role in what follows, and hence we define L to be the set
of all vertices i satisfying ii ∈ E, that is, those vertices that are attached to a loop.

Any vector a = [aij ]ij∈E satisfying aij = aji for all ij ∈ E is called a partial
matrix. We denote the vector space of partial matrices by R

E . Note that for any edge
ij ∈ E with i �= j, the pairs ij and ji index different (but equal in value) coordinates
of any a ∈ R

E . In particular, partial matrices have 2|E| − |L| entries. Define now the
projection map P : Sn → R

E by setting

P(A) = (Aij)ij∈E ,
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1164 D. DRUSVYATSKIY, G. PATAKI, AND H. WOLKOWICZ

that is, P(A) is the vector of all the entries of A indexed by E. The adjoint map
P∗ : RE → Sn is found by setting

(P∗(y))ij =
{
yij if ij ∈ E,
0 otherwise.

Define also the Laplacian operator L : RE → Sn by setting

L(a) := 1

2
(P ◦ K)∗(a) = Diag(P∗(a)e)− P∗(a).

Consider a partial matrix a ∈ R
E whose components are all strictly positive. Classi-

cally, then the Laplacian matrix L(a) is positive semidefinite and moreover the kernel
of L(a) is determined only by the connectivity of the graph G; see, for example, [7],
[17, Chapter 47]. Consequently all partial matrices with strictly positive weights de-
fine the same minimal face of the positive semidefinite cone. In particular, when G is
connected, we have the equalities

(2.5) kerL(a) = span{e} and face(L(a),Sn
+) = Sc ∩ Sn

+.

A symmetric matrix A ∈ Sn is a completion of a partial matrix a ∈ R
E if it

satisfies P(A) = a. We say that a completion A ∈ Sn of a partial matrix a ∈ R
E is a

PSD completion if A is a PSD matrix. Thus the image P(Sn
+) is the set of all partial

matrices that are PSD completable. A partial matrix a ∈ R
E is a partial PSD matrix

if all existing principal submatrices, defined by a, are PSD matrices. Finally we call
G itself a PSD completable graph if every partial PSD matrix a ∈ R

E is completable
to a PSD matrix. PD completions , partial PD matrices , and PD completable graphs
are defined similarly.

We call a graph chordal if any cycle of four or more nodes (vertices) has a chord,
i.e., an edge exists joining any two nodes that are not adjacent in the cycle. Before
we proceed, a few comments on completability are in order. In [12, Proposition 1],
the authors claim that G is PSD completable (PD, respectively) if, and only if, the
graph induced on L by G is PSD completable (PD, respectively). In light of this, the
authors then reduce all their arguments to this induced subgraph. It is easy to see
that the statement above does not hold for PSD completability (but is indeed valid

for PD completability). Consider, for example, the partial PSD matrix
[
0 1

1 ?

]
, which

is clearly not PSD completable. Taking this into account, the correct statement of
their main result [12, Theorem 7] is as follows. See also the discussion in [23].

Theorem 2.1 (PSD completable matrices and chordal graphs). The following
are true.

1. The graph G is PD completable if, and only if, the graph induced by G on L
is chordal.

2. The graph G is PSD completable if, and only, if the graph induced by G on
L is chordal and L is disconnected from Lc.

With regard to EDMs, we will always assume L = ∅ for the simple reason that
the diagonal of an EDM is always fixed at zero. With this in mind, we say that a
completion A ∈ Sn of a partial matrix a ∈ R

E is an EDM completion if A is an EDM.
Thus the image P(En) (or equivalently L∗(Sn

+)) is the set of all partial matrices that
are EDM completable. We say that a partial matrix a ∈ R

E is a partial EDM if any
existing principal submatrix, defined by a, is an EDM. Finally we say that G is an
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COORDINATE SHADOWS OF SDP AND EDM 1165

EDM completable graph if any partial EDM is completable to an EDM. The following
theorem is analogous to Theorem 2.1. For a proof, see [4].

Theorem 2.2 (Euclidean distance completability and chordal graphs). The
graph G is EDM completable if, and only if, G is chordal.

3. Closedness of the projected PSD and EDM cones. We begin this sec-
tion by characterizing when the projection of the PSD cone Sn

+ onto some subentries
is closed. To illustrate, consider the simplest setting n = 2, namely,

S2
+ =

{[
x y
y z

]
: x ≥ 0, z ≥ 0, xz ≥ y2

}
.

Abusing notation slightly, one can easily verify

Pz(S2
+) = R+, Py(S2

+)
∼= R, Px,z(S2

+) = R
2
+.

Here ∼= refers to an obvious linear isomorphism. Clearly all these projected sets are
closed. Projecting S2

+ onto a single row (and corresponding column), on the other
hand, yields a set that is not closed:

Px,y(S2
+) = Pz,y(S2

+)
∼= {(0, 0)} ∪ (R++ × R).

In this case, the graph G has two vertices and two edges, and in particular, there are
edges joining L with Lc. As we will now see, this connectivity property is the only
obstacle to P(Sn

+) being closed. The elementary proof of the following two theorems
was suggested to us by one of the anonymous referees, for which we are very grateful.
Our original arguments were based on more general principles; see Remark 3.3.

Theorem 3.1 (closedness of the projected PSD cone). The projected set P(Sn
+) is

closed if, and only if, the vertices in L are disconnected from those in the complement
Lc. Moreover, if the latter condition fails, then for any edge i∗j∗ ∈ E joining a vertex
in L with a vertex in Lc, any partial matrix a ∈ R

E satisfying

ai∗j∗ �= 0 and aij = 0 for all ij ∈ E ∩ (L× L)

lies in
(
clP(Sn

+)
) \ P(Sn

+).
Proof. Without loss of generality, assume L = {1, . . . , r} for some integer r ≥ 0.

Suppose first that the vertices in L are disconnected from those in the complement
Lc. Let {ai} ⊆ R

E be a sequence in P(Sn
+) converging to a partial matrix a ∈ R

E .
We may now write ai = P(Xi) for some matrices Xi ∈ Sn

+. Denoting by Xi[L] the
restriction of Xi to the L × L block, we deduce that the diagonal elements of Xi[L]
are bounded and therefore the matrices Xi[L] are themselves bounded. Hence there
exists a subsequence of Xi[L] converging to some PSD matrix XL. Let Y ∈ S|Lc| now
be any completion of the restriction of a to Lc. Observe that for sufficiently large

values λ the matrix Y + λI is positive definite and hence
[
XL 0

0 Y + λI

]
is a positive

semidefinite completion of a.
Conversely, suppose that L is not disconnected from Lc and consider the vertices

i∗, j∗ and a matrix a specified in the statement of the theorem. Since the block[
0 ai∗j∗

ai∗j∗ ?

]
is not PSD completable, clearly a is not PSD completable. To see the

inclusion a ∈ clP(Sn
+), consider the matrix X := P∗(a) +

[
εI 0

0 λI

]
. Using Schur’s

complement, we deduce that for any fixed ε there exists a sufficiently large λ such
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1166 D. DRUSVYATSKIY, G. PATAKI, AND H. WOLKOWICZ

that X is positive definite. On the other hand, clearly P(X) converges to a as ε tends
to zero. This completes the proof.

We next consider projections of the EDM cone.

Theorem 3.2 (closedness of the projected EDM cone). The projected image
P(En) is always closed.

Proof. First, we can assume without loss of generality that the graph G is con-
nected. To see this, let Gi = (Vi, Ei) for i = 1, . . . , l be the connected components
of G. Then one can easily verify that P(En) coincides with the Cartesian product
PE1(E |V1|) × · · · × PEl

(E |Vl|). Thus if each image PEi(E |Vi|) is closed, then so is the
product P(En). We may therefore assume that G is connected. Now suppose that
for a sequence Di ∈ En the vectors ai = P(Di) converge to some vector a ∈ R

E .
Let xi

1, . . . , x
i
n be the point realizing the matrices Di. Translating the points, we may

assume that one of the points is the origin. Since G is connected, all the points xi
j are

bounded in norm. Passing to a subsequence, we obtain a collection of points realizing
the matrix a.

Remark 3.3. Theorems 3.1 and 3.2 are part of a broader theme. Indeed, a
central (and classical) question in convex analysis is when a linear image of a closed
convex cone is itself closed. In a recent paper [27], the author showed that there is
a convenient characterization for “nice cones”—those cones C for which C∗ + F⊥ is
closed for all faces F � C [5, 27]. Reassuringly, most cones which we can efficiently
optimize over are nice; see the discussion in [27]. For example, the cones of positive
semidefinite and Euclidean distance matrices are nice. The results of Theorems 3.1
and 3.2 can be entirely recovered from the more general perspective; originally, the
content of the aforementioned results were noticed exactly in this way. See version 2
of this paper on arxiv.org and the discussion after Theorem 8 in [28].

4. Boundaries of projected sets and facial reduction. To motivate the
discussion, consider the general conic system

(4.1) F := {X ∈ C : M(X) = b},

where C is a proper (closed, with nonempty interior) convex cone in a Euclidean
space E and M : E → R

m is a linear mapping. Classically we say that the Slater
condition holds for this problem whenever there exists X in the interior of C satisfying
the system M(X) = b. In this section, we first relate properties of the image set
M(C) to the facial reduction algorithm of Borwein and Wolkowicz [5, 6], and to more
recent variants [40, 29, 30], and then specialize the discussion to the PSD and EDM
completion problems we have been studying.

When strict feasibility fails, the facial reduction strategy aims to embed the fea-
sibility system in a Euclidean space of smallest possible dimension. The starting
point is the following elementary geometric observation: exactly one of the following
alternatives holds [5, 6, 29, 30].

1. The conic system in (4.1) is strictly feasible.
2. There is a nonzero matrix Y ∈ C∗ so that the orthogonal complement Y ⊥ con-

tains the affine space {X : M(X) = b}.
The matrix Y in the second alternative certifies that the entire feasible region F is
contained in the slice C ∩ Y ⊥. Determining which alternative is valid is yet another
system that needs to be solved, namely, find a vector v satisfying the auxiliary system

0 �= M∗v ∈ C∗ and 〈v, b〉 = 0,
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COORDINATE SHADOWS OF SDP AND EDM 1167

and set Y := M∗v. One can now form an “equivalent” feasible region to (4.1) by
replacing C with C ∩ Y ⊥ and E with the linear span of C ∩ Y ⊥. One then repeats
the procedure on this smaller problem, forming the alternative, and so on and so
forth until strict feasibility holds. The number of steps for the procedure to terminate
depends on the choices of the exposing vectors Y . The minimal number of steps needed
is the singularity degree—an intriguing measure of complexity [34]. In general, the
singularity degree is no greater than n − 1, and there are instances of semidefinite
programming that require exactly n− 1 facial reduction iterations [39, section 2.6].

The following theorem provides an interesting perspective on facial reduction in
terms of the image set M(C). In essence, the minimal face of M(C) containing b
immediately yields the minimal face of C containing the feasible region F , that is, in
principle no auxiliary sequence of problems for determining face(F,C) is needed. The
difficulty is that geometry of M(C) is in general complex and so a simple description
of face(b,M(C)) is unavailable. The auxiliary problem in the facial reduction iteration
instead tries to represent face(b,M(C)) using some dual vector v exposing a face of
M(C) containing b. The singularity degree is then exactly one if, and only if, the
minimal face face(b,M(C)) is exposed. To the best of our knowledge, this relationship
to exposed faces has either been overlooked in the literature or forgotten. In particular,
an immediate consequence is that whenever the image cone M(C) is facially exposed,
the feasibility problem (4.1) has singularity degree at most one for any right-hand-side
vector b, for which the feasible region is nonempty.

Theorem 4.1 (facial reduction and exposed faces). Consider a linear operator
M : E → Y, between two Euclidean spaces E and Y, and let C ⊂ E be a proper convex
cone. Consider a nonempty feasible set

(4.2) F := {X ∈ C : M(X) = b}

for some point b ∈ Y. Then a vector v exposes a proper face of M(C) containing b
if, and only if, v satisfies the auxiliary system

(4.3) 0 �= M∗v ∈ C∗ and 〈v, b〉 = 0.

For notational convenience, define N := face(b,M(C)). Then the following are true:

1. We always have C ∩M−1N = face(F,C).
2. For any vector v ∈ R

m the following equivalence holds:

v exposes N ⇐⇒ M∗v exposes face(F,C).

Consequently whenever the Slater condition fails, the singularity degree of the system
(4.2) is equal to one if, and only if, the minimal face face(b,M(C)) is exposed.

Proof. First suppose that v exposes a proper face of M(C) containing b. Clearly
we have 〈v, b〉 = 0. Observe moreover

〈M∗v,X〉 = 〈v,M(X)〉 ≥ 0 for any X ∈ C,

and hence the inclusion M∗v ∈ C∗ holds. Finally, since v exposes a proper face of
M(C), we deduce v /∈ (rgeM)⊥ = kerM∗. We conclude that v satisfies the auxiliary
system (4.3). The converse follows along the same lines.

We first prove claim 1. To this end, we first verify that C ∩M−1N is a face of
C. Observe for any x, y ∈ C satisfying 1

2X + 1
2Y ∈ C ∩M−1N , we have 1

2M(X) +
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1168 D. DRUSVYATSKIY, G. PATAKI, AND H. WOLKOWICZ

1
2M(Y ) ∈ N . Since N is a face of M(C), we deduce X,Y ∈ C ∩M−1N as claimed.
Now clearly C ∩M−1N contains F . It is easy to verify now the equality

N = M(C ∩M−1N).

Appealing to [31, Theorem 6.6], we deduce

riN = M(ri(C ∩M−1N)).

Thus b can be written as M(X) for some X ∈ ri(C ∩M−1N). We deduce that the
intersection F ∩ ri(C ∩M−1N) is nonempty. Appealing to [26, Proposition 2.2(ii)],
we obtain the claimed equality C ∩M−1N = face(F,C).

Finally we prove 2. To this end, suppose first that a vector v exposes N . Then
by what has already been proved, v satisfies the auxiliary system and therefore C ∩
(M∗v)⊥ is an exposed face of C containing F . It is standard now to verify equality

(4.4) M(C ∩ (M∗v)⊥) = M(C) ∩ v⊥ = N.

Indeed, for any a ∈ M(C) ∩ v⊥, we may write a = M(X) for some X ∈ C and
consequently deduce 〈X,M∗v〉 = 〈a, v〉 = 0. Conversely, for any X ∈ C ∩ (M∗v)⊥,
we have 〈M(X), v〉 = 〈X,M∗v〉 = 0, as claimed.

Combining (4.4) with [31, Theorem 6.6], we deduce

ri(N) = M(ri(C ∩ (M∗v)⊥)).

Thus b can be written as M(X) for some X ∈ ri(C ∩ (M∗v)⊥). We deduce that the
intersection F ∩ ri(C ∩ (M∗v)⊥) is nonempty. Appealing to [26, Proposition 2.2(ii)],
we conclude that C ∩ (M∗v)⊥ is the minimal face of C containing F .

Now conversely suppose that M∗v exposes face(F,C). Then clearly v exposes a
face of M(C) containing b. On the other hand, by claim 1, we have

C ∩M−1N = face(F,C) = C ∩ (M∗v)⊥.

Hence a point M(X) with X ∈ C lies in M(C) ∩ v⊥ if, and only if, it satisfies 0 =
〈v,M(X)〉 = 〈M∗v,X〉, which by the above equation is equivalent to the inclusion
M(X) ∈ N . This completes the proof.

The following example illustrates Theorem 4.1.
Example 4.2 (singularity degree and facially exposed faces). Consider the cone

C := S3
+. Define now the mapping M : S3 → R

2 and the vector b ∈ R
2 to be

M(X) =

(
X11

X33

)
and b =

(
1
0

)
.

Then the singularity degree of the system (4.1), namely,

{X ∈ S3
+ : X11 = 1, X33 = 0},

is one. Indeed v = (0, 1)T is a solution to the auxiliary system, and hence the Slater
condition fails. On the other hand, the feasible matrix X = I − e3e3

T shows that
the maximal solution rank of the system is two. This also follows immediately from
Theorem 4.1 since the image set M(S3

+) = R
2
+ is facially exposed.
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COORDINATE SHADOWS OF SDP AND EDM 1169

We next slightly change this example by adding a coordinate. Namely, define
M : S3 → R

3 and b to be

M(X) =

⎛
⎝ X11

X33

X22 +X13

⎞
⎠ and b =

⎛
⎝1
0
0

⎞
⎠ .

Observe that the singularity degree of the system (4.1) is at most two, since it admits
a rank one feasible solution X = e1e

T
1 . On the other hand, one can see directly from

Theorem 4.1 that the singularity degree is exactly two. Indeed, one easily checks

M(S3
+) = R

3
+ ∪ {(x, y, z) |x ≥ 0, y ≥ 0, z ≤ 0, xy ≥ z2 },

i.e., we obtain M(S3
+) by taking the union of R3

+ with a rotated copy of S2
+. The set

M(S3
+) has a nonexposed face which contains b in its relative interior—this is easy to

see by intersecting M(S3
+) with the hyperplane x = 1 and graphing.

An interesting consequence of Theorem 4.1 above is that it is the lack of facial
exposedness of the image set M(C) that is responsible for a potentially large singular-
ity degree and hence for serious numeric instability, i.e., weak Hölderian error bounds
[34].

Corollary 4.3 (Hölderian error bounds and facial exposedness). Consider a
linear mapping M : Sn → R

m having the property that M(Sn
+) is facially exposed.

For any vector b ∈ R
m, define the affine space

V = {X : M(X) = b}.

Then the intersection Sn
+ ∩ V, when nonempty, admits a 1

2 -Hölder error bound: for
any compact set U , there is a constant c > 0 so that

distSn
+∩V(X) ≤ c ·

√
max

{
distSn

+
(X), distV(X)

}
for all x ∈ U.

Proof. This follows immediately from Theorem 4.1 and [34].

4.1. Facial reduction for completion problems. For those problems with
highly structured constraints, one can hope to solve the auxiliary problems directly.
For example, the following simple idea can be fruitful: fix a subset I ⊂ {1, . . . ,m}
and let MI(X) and bI , respectively, denote restrictions of M(X) and b to coordinates
indexed by I. Consider then the relaxation

FI := {X ∈ C : MI(X) = bI}.

If the index set I is chosen so that the image MI(C) is “simple,” then we may find
the minimal face face(FI , C), as discussed above. Intersecting such faces for varying
index sets I may yield a drastic dimensional decrease. Moreover, observe that this
preprocessing step is entirely parallelizable.

Interpreting this technique in the context of matrix completion problems, we
recover the Krislock–Wolkowicz algorithm [18]. Namely, note that when M is simply
the projection P and we set C = Sn

+ or C = En, we obtain the PSD and EDM
completion problems,

F := {X ∈ C : P(X) = a} = {X ∈ C : Xij = aij for all ij ∈ E},
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1170 D. DRUSVYATSKIY, G. PATAKI, AND H. WOLKOWICZ

where a ∈ R
E is a partial matrix. It is then natural to consider indices I ⊂ E

describing clique edges in the graph since then the images PI(C) are the smaller di-
mensional PSD and EDM cones, respectively—sets that are well understood. This
algorithmic strategy becomes increasingly effective when the rank (for the PSD case)
or the embedding dimension (for the EDM case) of the specified principal minors
are all small. Moreover, we will show that under a chordality assumption, the mini-
mal face of C containing the feasible region is guaranteed to be discovered if all the
maximal cliques were to be considered; see Theorems 4.7 and 4.14. This, in part,
explains why the EDM completion algorithm of [18] works so well. Understanding
the geometry of PI(C) for a wider class of index sets I would yield an even better
preprocessing strategy. We defer to [18] for extensive numerical results and imple-
mentation issues showing that the discussed algorithmic idea is extremely effective for
EDM completions.

In what follows, by the term “clique χ in G” we will mean a collection of k pairwise
connected vertices of G. The symbol |χ| will indicate the cardinality of χ (i.e., the
number of vertices), while E(χ) will denote the edge set in the subgraph induced by
G on χ. For a partial matrix a ∈ R

E , the symbol aχ will mean the restriction of a
to E(χ), whereas Pχ will be the projection of Sn onto E(χ). The symbol Sχ will
indicate the set of |χ| × |χ| symmetric matrices whose rows and columns are indexed
by χ. Similar notation will be reserved for Sχ

+. If χ is contained in L, then we may

equivalently think of aχ as a vector lying in R
E(χ) or as a matrix lying in Sχ. Thus

the adjoint P∗
χ assigns to a partial matrix aχ ∈ Sχ an n × n matrix whose principal

submatrix indexed by χ coincides with aχ and whose all other entries are zero.
Theorem 4.4 (clique facial reduction for PSD completions). Let χ ⊆ L be any

k-clique in the graph G. Let a ∈ R
E be a partial PSD matrix and define

Fχ := {X ∈ Sn
+ : Xij = aij for all ij ∈ E(χ)}.

Then for any matrix vχ exposing face(aχ,Sχ
+), the matrix

P∗
χvχ exposes face(Fχ,Sn

+).

Proof. Simply apply Theorem 4.1 with C = Sn
+, M = Pχ, and b = aχ.

Theorem 4.4 is transparent and easy. Consequently it is natural to ask whether
the minimal face of Sn

+ containing the feasible region of a PSD completion problem
can be found using solely faces arising from cliques, that is those faces described
in Theorem 4.4. The answer is no in general: the following example exhibits a PSD
completion problem that fails the Slater condition but for which all specified principal
submatrices are definite, and hence all faces arising from Theorem 4.4 are trivial.

Example 4.5 (Slater condition and nonchordal graphs). Let G = (V,E) be a
cycle on four vertices with each vertex attached to a loop, that is, V = {1, 2, 3, 4} and
E = {12, 23, 34, 14}∪ {11, 22, 33, 44}. Define the following PSD completion problems
C(ε), parametrized by ε ≥ 0:

C(ε) :

⎡
⎢⎢⎣
1 + ε 1 ? −1
1 1 + ε 1 ?
? 1 1 + ε 1
−1 ? 1 1 + ε

⎤
⎥⎥⎦ .

Let a(ε) ∈ R
E denote the corresponding partial matrices. According to [12, Lemma

6] there is a unique positive semidefinite matrix A satisfying Aij = 1 for all |i−j| ≤ 1,
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namely, the matrix of all 1’s. (We will prove a generalization of this result shortly
in Corollary 4.11.) Hence the PSD completion problem C(0) is infeasible, that is,
a(0) lies outside of P(S4

+). On the other hand, for all sufficiently large ε, the partial
matrices a(ε) do lie in P(S4

+) due to the diagonal dominance. Taking into account
that P(S4

+) is closed (by Theorem 3.1), we deduce that there exists ε̂ > 0, so that a(ε̂)
lies on the boundary of P(S4

+), that is, the Slater condition fails for the completion
problem C(ε̂). On the other hand, a(ε) are clearly partial PD matrices for all ε > 0.
Hence a(ε̂) is a partial PD matrix and the faces arising from Theorem 4.4 are trivial.
In light of this observation, consider solving the semidefinite program

(4.5)

min ε

s.t.

⎡
⎢⎢⎣
1 + ε 1 α −1
1 1 + ε 1 β
α 1 1 + ε 1
−1 β 1 1 + ε

⎤
⎥⎥⎦ � 0.

Doing so, we deduce that ε̂ =
√
2 − 1, α̂ = β̂ = 0 is optimal. Formally, we can verify

this by finding the dual of (4.5) and checking feasibility and complementary slackness

for the primal-dual optimal pair X̂ and Ẑ,

X̂ =

⎡
⎢⎢⎣
√
2 1 0 −1

1
√
2 1 0

0 1
√
2 1

−1 0 1
√
2

⎤
⎥⎥⎦ , Ẑ =

1

4

⎡
⎢⎢⎢⎣

1 − 1√
2

0 1√
2

− 1√
2

1 − 1√
2

0

0 − 1√
2

1 − 1√
2

1√
2

0 − 1√
2

1

⎤
⎥⎥⎥⎦ .

Despite this pathological example, we now show that at least for chordal graphs,
the minimal face of the PSD completion problem can be found solely from faces
corresponding to cliques in the graph. We begin with the following simple lemma.

Lemma 4.6 (maximal rank completions). Suppose without loss of generality
L = {1, . . . , r} and let GL := (L,EL) be the graph induced on L by G. Let a ∈ R

E

be a partial matrix and aEL the restriction of a to EL. Suppose that XL ∈ Sr
+ is a

maximum rank PSD completion of aEL and

X =

[
A B
BT C

]

is an arbitrary PSD completion of a. Then

Xμ :=

[
XL B
BT C + μI

]

is a maximal rank PSD completion of a ∈ R
E for all sufficiently large μ.

Proof. We construct the maximal rank PSD completion from the arbitrary PSD
completion X by moving from A to XL and from C to C + μI while staying in the
same minimal face for the completions. To this end, define the sets

F =
{
X ∈ Sn

+ : Xij = aij for all ij ∈ E
}
,

FL =
{
X ∈ Sr

+ : Xij = aij for all ij ∈ EL

}
,

F̂ = {X ∈ Sn
+ : Xij = aij for all ij ∈ EL}.

Then XL is a maximum rank PSD matrix in FL. Observe that the rank of any PSD

matrix
[

P Q

QT R

]
is bounded by rankP + rankR. Consequently the rank of any PSD
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matrix in F and also in F̂ is bounded by rankXL + (n− r), and the matrix

X̄ =

[
XL 0
0 I

]

has maximal rank in F̂ , i.e.,

(4.6) X̄ ∈ ri(F̂ ).

Let U be a matrix of eigenvectors of XL, with eigenvectors corresponding to 0 eigen-
values coming first. Then

UTXLU =

[
0 0
0 Λ

]
,

where 0 ≺ Λ ∈ Sk
+ is a diagonal matrix with all positive diagonal elements.

Define

Q =

[
U 0
0 I

]
.

Let X be as in the statement of the lemma; then clearly X ∈ F̂ and we deduce using
(4.6) that

X̄ ± ε(X̄ −X) ∈ Sn
+ ⇔ QT X̄Q± εQT (X̄ −X)Q ∈ Sn

+(4.7)

for some small ε > 0. We now have

QT X̄Q =

[
UTXLU 0

0 I

]
=

⎡
⎣0 0 0
0 Λ 0
0 0 I

⎤
⎦ ,

QTXQ =

[
UTAU UTB
BTU C

]
=

⎡
⎣V11 V12 V13

V T
12 V22 V23

V T
13 V T

23 V33

⎤
⎦ ,

where V11 ∈ Sr−k, V22 ∈ Sk, V33 ∈ Sn−r. From (4.7) we deduce V11 = 0, V12 =
0, V13 = 0. Therefore

QTXμQ =

[
UTXLU UTB
BTU μI + C

]
=

⎡
⎣0 0 0
0 Λ V23

0 V T
23 μI + C

⎤
⎦ .

By the Schur complement condition for positive semidefiniteness we have that for
sufficiently large μ the matrix Xμ is PSD, and rankXμ = rankXL +(n− r); hence it
is a maximal rank PSD matrix in F.

Theorem 4.7 (finding the minimal face on chordal graphs). Suppose that the
graph induced by G on L is chordal. Consider a partial PSD matrix a ∈ R

E and the
region

F = {X ∈ Sn
+ : Xij = aij for all ij ∈ E}.

Then the equality

face(F,Sn
+) =

⋂
χ∈Θ

face(Fχ,Sn
+) holds,
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COORDINATE SHADOWS OF SDP AND EDM 1173

where Θ denotes the set of all maximal cliques in the restriction of G to L, and for
each χ ∈ Θ we define the relaxation

Fχ := {X ∈ Sn
+ : Xij = aij for all ij ∈ E(χ)}.

Proof. For brevity, set

H =
⋂
χ∈Θ

face(Fχ,Sn
+).

We first prove the theorem under the assumption that L is disconnected from Lc. To
this end, for each clique χ ∈ Θ, let vχ ∈ Sχ

+ denote the exposing vector of face(aχ,
Sχ
+). Then by Theorem 4.4, we have

face(Fχ,Sn
+) = Sn

+ ∩ (P∗
χvχ)

⊥.

It is straightforward to see that P∗
χvχ is simply the n × n matrix whose principal

submatrix indexed by χ coincides with vχ and whose other entries are all zero. Let-
ting Y [χ] denote the principal submatrix indexed by χ of any matrix Y ∈ Sn

+, we
successively deduce

P(H) = P
(
{Y � 0 : Y [χ] ∈ v⊥χ for all χ ∈ Θ}

)
= P(Sn

+) ∩ {b ∈ R
E : bχ ∈ v⊥χ for all χ ∈ Θ}.

On the other hand, since the restriction of G to L is chordal and L is disconnected from
Lc, Theorem 2.1 implies that G is PSD completable. Hence we have the representation
P(Sn

+) = {b ∈ R
E : bχ ∈ Sχ

+ for all χ ∈ Θ}. Combining this with the equations above,
we obtain

P(H) = {b ∈ R
E : bχ ∈ Sχ

+ ∩ v⊥χ for all χ ∈ Θ}
= {b ∈ R

E : bχ ∈ face(aχ,Sχ
+) for all χ ∈ Θ}

=
⋂
χ∈Θ

{b ∈ R
E : bχ ∈ face(aχ,Sχ

+)}.

Clearly a lies in the relative interior of each set {b ∈ R
E : bχ ∈ face(aχ,Sχ

+)}. Using
[31, Theorems 6.5, 6.6], we deduce

a ∈ riP(H) = P(riH).

Thus the intersection F ∩ riH is nonempty. Taking into account that F is contained
in H, and appealing to [26, Proposition 2.2(ii)], we conclude that H is the minimal
face of Sn

+ containing F , as claimed.
We now prove the theorem in full generality, that is, when there may exist an

edge joining L and Lc. To this end, let ĜL = (V,EL) be the graph obtained from

G by deleting all edges adjacent to Lc. Clearly, L and Lc are disconnected in ĜL.
Applying the special case of the theorem that we have just proved, we deduce that in
terms of the set

F̂ = {X ∈ Sn
+ : Xij = aij for all ij ∈ EL},

we have

face(F̂ ,Sn
+) = H.
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The Xμ matrix of Lemma 4.6 is a maximum rank PSD matrix in F, and also in

F̂ . Since F ⊆ F̂ , we deduce face(F,Sn
+) = face(F̂ ,Sn

+), and this completes the
proof.

Remark 4.8 (finding maximal cliques on chordal graphs). In light of the theorem
above, it is noteworthy that finding maximal cliques on chordal graphs is polynomially
solvable; see, e.g., [23] or more generally [32].

The following is an immediate consequence.
Corollary 4.9 (singularity degree of chordal completions). If the restriction of

G to L is chordal, then the PSD completion problem has singularity degree at most
one.

Proof. In the notation of Theorem 4.7, the sum Y :=
∑

χ∈Θ P∗
χvχ exposes the

minimal face face(F,S+
n ). If the Slater condition fails, then Y is feasible for the first

auxiliary problem in the facial reduction sequence.
Example 4.10 (finding the minimal face on chordal graphs). Let Ω consist of all

matrices X ∈ S4
+ solving the PSD completion problem⎡

⎢⎢⎣
1 1 ? ?
1 1 1 ?
? 1 1 −1
? ? −1 2

⎤
⎥⎥⎦ .

There are three nontrivial cliques in the graph. Observe that the minimal face of S2
+

containing the matrix [
1 1
1 1

]
=

[− 1
2

1
2

1
2

1
2

] [
0 0
0 4

] [− 1
2

1
2

1
2

1
2

]

is exposed by [− 1
2

1
2

1
2

1
2

] [
4 0
0 0

] [− 1
2

1
2

1
2

1
2

]
=

[
1 −1
−1 1

]
.

Moreover, the matrix
[

1 −1
−1 2

]
is definite and hence the minimal face of S2

+ containing

this matrix is exposed by the all-zero matrix.
Classically, an intersection of exposed faces is exposed by the sum of their exposing

vectors. Using Theorem 4.7, we deduce that the minimal face of S4
+ containing Ω is

the one exposed by the sum⎡
⎢⎢⎣

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Diagonalizing this matrix, we obtain

face(Ω,S4
+) =

⎡
⎢⎢⎣
0 1
0 1
0 1
3 0

⎤
⎥⎥⎦S2

+

⎡
⎢⎢⎣
0 1
0 1
0 1
3 0

⎤
⎥⎥⎦
T

.
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The following is an interesting consequence of Theorem 4.4, generalizing [12,
Lemma 6]. The latter was already used in Example 4.5, and here we give an elementary
and self-contained proof using the developed techniques.

Corollary 4.11 (tridiagonal matrices with rank one blocks). Consider a path
G = (V,E) with a loop attached to every vertex, that is, E = {ij : |i−j| ≤ 1}. Fix any
partial PSD matrix a ∈ R

E, with each specified principal submatrix having rank one,
and satisfying aii �= 0 for each index i. Then a ∈ R

E has a unique PSD completion,
which must also have rank one.

Proof. Fix a partial PSD matrix a ∈ R
E satisfying the assumed properties. Con-

sider the 2 × 2 specified principal submatrix of a given by a(k) :=
[

ak,k ak,k+1

ak,k+1 ak+1,k+1

]
.

Since this matrix has rank one, there is a vector 0 �= vk ∈ R
2 such that a(k) ∈ (vkv

T
k )

⊥.
Define now the matrix

Vk :=

⎡
⎣0 0 0
0 vkv

T
k 0

0 0 0

⎤
⎦ ,

with the upper left diagonal block of order k − 1. By Theorem 4.4 all the PSD com-
pletions of a lie in the face of Sn

+ exposed by Vk. Since a has no zeros on the diagonal,
both coordinates of vk are nonzero. In particular, this implies that for each index k
the vector [0, vTk , 0]

T , in which the length of the first 0 block is k, lies outside of the

range of the sum
∑k−1

i=1 Vi. By induction then we deduce that the sum V =
∑n−1

k=1 Vk

has rank n− 1. Since all PSD completions of a lie in the face of Sn
+ exposed by V , we

conclude that there is a unique completion of a and it has rank one, as claimed.
We now turn to an analogous development for the EDM completion problem. To

this end, recall from (2.4) that the mapping K : Sn → Sn restricts to an isomorphism
K : Sc → SH carrying Sc ∩ Sn

+ onto En. Moreover, it turns out that the Moore–
Penrose pseudoinverse K† restricts to the inverse of this isomorphism K† : SH → Sc.
As a result, it is convenient to study the faces of En using the faces of Sc ∩ Sn

+. This
is elucidated by the following standard result.

Lemma 4.12 (faces under isomorphism). Consider a linear isomorphism M : E →
Y between linear spaces E and Y, and let C ⊂ E be a closed convex cone. Then the
following are true:

1. F � C ⇐⇒ MF �MC.
2. (MC)∗ = (M−1)∗C∗.
3. For any face F � C, we have (MF )� = (M−1)∗F�.

In turn, it is easy to see that Sc ∩ Sn
+ is a face of Sn

+ isomorphic to Sn−1
+ . More

specifically, for any n× n orthogonal matrix
[

1√
n
e U

]
, we have the representation

Sc ∩ Sn
+ = USn−1

+ U.

Consequently, with respect to the ambient space Sc, the cone Sc ∩Sn
+ is self-dual and

for any face F � Sn−1
+ we have

UFUT � Sc ∩ Sn
+ and (UFUT )� = UF�UT .

As a result of these observations, we make the following important convention: the
ambient spaces of Sc ∩Sn

+ and of En will always be taken as Sc and SH , respectively.
Thus the facial conjugacy operations of these two cones will always be taken with
respect to these ambient spaces and not with respect to the entire Sn.
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Given a clique χ in G, we let Eχ denote the set of |χ| × |χ| Euclidean distance
matrices indexed by χ. In what follows, given a partial matrix a ∈ R

E , the restriction
aχ can then be thought of either as a vector in R

E(χ) or as a hollow matrix in Sχ.
We will also use the symbol Kχ : Sχ → Sχ to indicate the mapping K acting on Sχ.

Theorem 4.13 (clique facial reduction for EDM completions). Let χ be any
k-clique in the graph G. Let a ∈ R

E be a partial EDM and define

Fχ := {X ∈ Sn
+ ∩ Sc : [K(X)]ij = aij for all ij ∈ E(χ)}.

Then for any matrix vχ exposing face
(K†(aχ),Sχ

+ ∩ Sc

)
, the matrix

P∗
χvχ exposes face(F,Sn

+ ∩ Sc).

Proof. The proof proceeds by applying Theorem 4.1 with

C := Sn
+ ∩ Sc, M := Pχ ◦ K, b := aχ.

To this end, first observe M(C) = (Pχ ◦ K)(Sn
+ ∩ Sc) = Eχ. By Lemma 4.12, the

matrix K†∗
χ (vχ) exposes face(aχ, Eχ). Thus the minimal face of Sn

+ ∩ Sc containing F
is the one exposed by the matrix

(Pχ ◦ K)∗(K†∗
χ (vχ)) = K∗P ∗

χK†∗
χ (vχ) = P ∗

χK∗
χK†∗

χ (vχ) = P ∗
χvχ.

The result follows.
Theorem 4.14 (clique facial reduction for EDM is sufficient). Suppose that G

is chordal, and consider a partial EDM a ∈ R
E and the region

F := {X ∈ Sc ∩ Sn
+ : [K(X)]ij = aij for all ij ∈ E}.

Let Θ denote the set of all maximal cliques in G, and for each χ ∈ Θ define

Fχ := {X ∈ Sc ∩ Sn
+ : [K(X)]ij = aij for all ij ∈ E(χ)}.

Then the equality

face(F,Sc ∩ Sn
+) =

⋂
χ∈Θ

face(Fχ,Sc ∩ Sn
+) holds.

Proof. The proof follows entirely along the same lines as the first part of the proof
of Theorem 4.7. We omit the details for the sake of brevity.

Corollary 4.15 (singularity degree of chordal completions). If the graph G =
(V,E) is chordal, then the EDM completion problem has singularity degree at most
one, when feasible.

Conclusion. In this manuscript, we considered properties of the coordinate shad-
ows of the PSD and EDM cones: P(Sn

+) and P(E). We characterized when these sets
are closed, related their boundary structure to a facial reduction algorithm of [18],
and explained that the nonexposed faces of these sets directly impact the complexity
of the facial reduction algorithm. In particular, under a chordality assumption, the
“minimal face” of the feasible region admits a combinatorial description, the singular-
ity degree of the completion problems are at most one, and the coordinate shadows,
P(Sn

+) and P(E), are facially exposed. This brings up an intriguing follow-up research
agenda:

Classify graphs G for which the images P(Sn
+) and P(E) are facially

exposed, or equivalently those for which the corresponding comple-
tion formulations have singularity degree at most one irrespective of
the known matrix entries.
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