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Semidefinite Facial Reduction and Rigid Cluster
Interpolation in Protein Structure Elastic
Network Models

Xiao-Bo Li*, Forbes J. Burkowski, and Henry Wolkowicz

Abstract—Elastic network models have been used to interpolate two conformations of the same protein to create a transition pathway.
This interpolation is called “elastic network interpolation (ENI)”. This procedure can be modified to accommodate rigid clusters, groups
of atoms that move concurrently in a protein. The modified procedure is then referred to as “rigid cluster ENI”. Rank 3 positive
semidefinite (PSD) matrix manifolds have faces that are defined by these rigid clusters. This facial structure strongly suggest these
matrix manifolds are a natural choice for modelling rigid cluster transitions. However, such structure is hidden in the original classical

formulation which does not use the PSD matrix manifold.

Index Terms—coarse grain, elastic network model, Euclidean distance matrix, facial reduction, Gram matrix, positive semidefinite

matrix manifold, protein structure, Riemannian manifold.

1 INTRODUCTION

LASTIC NETWORK models (ENMs) were introduced by
Tirion [21] and Bahar et al. [4], where these authors
demonstrated they are an efficient tool for studying low
frequency protein dynamics. Elastic network interpolation
(ENI) was used by Kim et al. to interpolate a transition path-
way between two protein conformations [12]. It was shown
in [9], [11], [13] how to interpolate between rigid clusters,
groups of atoms that move concurrently. This method is
referred to as rigid cluster ENIL
In this paper, we show rigid cluster ENI can be formu-
lated as a facially reduced semidefinite optimization prob-
lem. In Section 2 we review Kim et al.’s formulation of rigid
cluster ENI. Classically, ENI has used a potential energy that
is a function of distance. However, the Euclidean distance
matrix (EDM) which contains distance-squared values, is
bijectively related to positive semidefinite (PSD) matrices
due to a linear mapping discussed in, for example, [6],
[7], [14]. Rigid clusters allow the PSD matrix representing
the protein’s ENM to be facially reduced [14], [15]; such
geometry is hidden in the classical potential energy defined
using distance. This observation suggests distance-squared
may be the more natural choice when defining the potential
energy. We review the necessary mathematical background
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to facial reduction in Section 3. Finally, in Section 4, we
describe the potential energy for rigid cluster interpolation
on the rank 3 PSD matrix manifold; this potential energy
explicitly shows the face, which is hidden in the classical
formulation by Kim et al..

2 CLAssSICAL RIGID CLUSTSER ELASTIC NET-
WORK MODELS

We now review the rigid cluster ENI method proposed
by Kim et al. [9], [11], [13]. Our discussion assumes we
have a protein structure represented by n a-carbon atoms
distributed among m disjoint rigid clusters C1,...,Cy, such

that
alJ--Utm=1:n M

Consider an arbitrary atom, with coordinates at time ¢
denoted by p,(t) € R3, which belongs to some arbitrary
rigid cluster C;. Let the center of this rigid cluster at time ¢
be denoted by ¢;(t) € R3. Let v;(t) = ¢;(t) —c;(t — 1) denote
the translation of the cluster center, and hence translation of
the entire rigid cluster, between time ¢ and ¢ — 1. Also, let
R(w;(t)), a 3 x 3 rotation matrix, denote the relative rotation
of cluster i at time ¢ from time ¢ — 1, with w; () € R3 a vector
parallel to the axis of rotation. Then, p, (t), can be expressed
by:

Pa(t) = R(wi(?)) (pa(t = 1) — it = 1)) +ei(t = 1) +vi(?)

@
Assuming the rotation is very small, we can approximate
the rotation matrix as:

R(wi(t)) ~ Is + mat(wi(t)) , %)

where I3 is the 3 x 3 identity matrix. mat(-) turns a vector
v = (z,y,2)T € R? to a skew-symmetric matrix:
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0 -z
mat(v) =1 = 0 —x (4)
-y 0

This approximation gives us a new expression for p,(t) for
small rotations :

Pa(t) = po(t —1) —ci(t —1)
+ mat(w;(t))(pa(t — 1) —ci(t — 1))
+ei(t—1) 4 v (t)

=pa(t — 1) + mat(w;(t))(pa(t — 1) — c;(t — 1)) + v;(¢) .

©)

Note that for vectors v, w € R?,
mat(w)v = —mat(v)w , (6)

Therefore, we can expression equation(5) in matrix form as:

Palt) = palt — 1) — mat(palt — 1) — calt — 1))wi(t) + vi(1)
=pa(t — 1) + Hyi(t — 1)5;(¢) ,
(7)
where H,;(t — 1) is a 3 x 6 matrix:
Hyi(t —1) = (—mat(pa(t —1) —ci(t —1)) I3) , (8)

and d;(t) is a 6 x 1 vector:

() = (wild)
Kim et al. proposes to model the movement of rigid clusters

from a starting protein conformation to an ending confor-
mation using the objective function:

U = 5 (1 palt) = polt) | ~Lan())?

(a,b)eD

(10)

pa(t) and py(t) are functions of 0;(¢) as given by equation
(7). D is a set of pairs of indices that represent pairs of a-
carbons in different rigid clusters that interact, and §(t) =
(1T, 8T € RE™. [4(¢) for 0 < t < 1 is the
linearly interpolated targeted distance at time ¢ between «-
carbons indexed by a and b:

lan(t) = (1=1) [| pa(0) =p5(0) [| +t || pa(1) —pu(1) [, (11)

In order to find the optimal §;(¢) to advance to the next time
step, we take the second order Taylor series expansion of
the potential energy given by equation (10). We now give a
quick review of the needed formulas.

2.1 Second Order Expansion for Distances

Let d € R be a scalar and x € R™ be a vector, and the
function to be expanded be:

1
F@) =5 lz+s] -a) . (12)
The second order expansion is:
f(0) = f(0) + grad f(0)"§ + %6THess f(0)6 . (13)
The constant term f(0) is given by:
1
fO) =5 (=] -d)* . (14)

T2

gradf(0) is an n x 1 vector given by:

gradf(0) = (| = || —d) —

(e
Hess f(0) is an n X n matrix given by, using the product rule
on grad f(0):

T
EAR A
Hessf(0) = (| = || ~d) ( ) Ter

T
:Jn—i(ln—&z) .
|z | |z |

2.2 Second Order Expansion for Rigid Clusters Using
Distance

(15)

(16)

The objective function, equation (10), has the following
second order expansions. Let pqy(t) = po(t) — py(¢), then:

00~y 3 Y @750 (51)

i=1 j=i+1
m—1 m
Gi(t)
#3358 (50) a7
i=1 j=i+1
m—1 m
YY) Gy
i=1 j=i+1
where A;; is a 12 x 12 matrix given by:
gr
Aij= > [7 ﬁT} Aab [Hia — Hjp] (18)
acC; b
bECj
(a,b)eD
g(pap(t — 1))
Aab = IS - lab(t)i (19)
| Pan(t — 1) ||
and g(v) is a function on v € R3 is given by:
T
v
gv) =Iz — 75 (20)
[ v?
and B;; is a 1 x 12 matrix given by:
Bij= Y Bal|Hia(t—1)— Hp(t—1)]  (21)
a€eC;
bECj
(a,b)eD
where:
lab(t) > T
Bb:<1—7 Pap(t — 1 (22)
‘ om0 7)Y
. 1
Cij= > S(lpalt=1) =p(t = 1) [| ~La(t))” (23)
b,
(a,b)eD
Note that in the above formulas,
[Hia(t — 1) — Hpp(t —1)] , (24)
is a block matrix, not a matrix subtraction.
Now define the blocks of A;; as:
(P Qi
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and also define the blocks of B;; as:

Bij = (uij ’Uij) . (26)

Then we define a large 6m x 6m matrix M, where m is the
number of rigid clusters, whose ¢, j-th block is given by:

27
Qij ifi #j @)

and a large 1 x 6m matrix /N, whose i-th block is given by:

M {zz; Sai + X0 Py ifi=

i—1 m
Ni=Y vait+ Y, up (28)
a=1 b=i+1
These matrices allow us to express equation (17) as:
1
5(S(t)TMa(t) +N&(t) + O, (29)

where O = 37" > i1 Cij is a constant. The derivative
of equation (29) is set to zero to find the optimal §(t).

3 FAcIAL REDUCTION
3.1 The PSD Matrix Manifold

For an arbitrary time ¢, define the n x 3 matrix P, which
contains all n a-carbon coordinates of a protein:

pi(t)

P, = (30)

n(t)
The Gram matrix, a rank 3 PSD matrix is given by F;
multiplied by its transpose:

Xt == PtPtT (31)

The set of points py(¢),...,pn(t) also has a Euclidean dis-
tance matrix (EDM). This is the matrix of distance-squared
between points. The Gram matrix X; is related to the EDM
D, via the following linear operator

D; = K(X;) = diag(X;)e” + ediag(X;)? —2X;  (32)

diag(-) is a linear operator extracting the diagonal of the
matrix. Centered Gram matrices have points all centered
at the origin, this condition can be expressed as Xe = 0,
where e is an n x 1 vector of ones. The mapping k() is a
bijective linear mapping between EDMs and centered Gram
matrices. Krislock provides a more indepth discussion of
this mapping [14]. This bijection means the choice to use
distance-squared is equivalent to the choice to use Gram
matrices to model protein dynamics.

Certain mathematical properties of the Gram matrix sug-
gests they are a more natural choice for modelling ENMs.

For example, X; is invariant to rotation. For a rotation
matrix Q, PtQQTPtT = PtPtT.

Classical dynamics defines a potential energy as a func-
tion on a Riemannian manifold [3], [5]. The set of rank 3
PSD matrices is a Riemannian manifold [10], [18], [19], [22],
it has many geometries, see [22]. However, the rotational
invariance of the Gram matrix means the quotient geometry

3

seen in [10], [19], and Section 6.62 of [22] is the geometry rel-
evant to ENMs. Under this geometry, F; is usually specified,
rather than the entire X;.

In classical ENI, the potential energy is a function of
distance. Such potential energy thus does not involve the
mapping K(-) and is not a function of the PSD Gram matrix.
It is a function of a vector of all the atomic coordinates,
which does not have the rotational invariance property
of Gram matrices; the set of such vectors is called the
linear manifold [1]. The rank 3 PSD matrix manifold is an
alternative choice to the linear manifold.

Secondly, the set of n x n EDMs, ignoring the rank
constraint of the points, is a convex cone because of the
bijective mapping with the convex cone of PSD matrices;
see Section 2.5 page 25 of Krislock [14] . ENI requires the
targeted distance to be interpolated, but the set of n x n
distance matrices is not convex for n > 3, see a discussion
in [8].

Finally, the strongest evidence Gram matrices, and EDMs
are the natural choice for modelling ENMs is the property
that rigid clusters within a protein structure describe faces of
the PSD cone.

3.2 A Face of the PSD Cone

From Proposition 2.15 of Krislock [14], we have that a face
of the n X n PSD cone is a convex cone given by:

F=usktu”, (33)

where U has orthonormal columns and Sff_ isthesetof k x k
PSD matrices, where k is known after U is known.
Facial reduction is the process of finding the face matrix

U.

3.3 A Motivation for Facial Reduction

We now provide an intuitive description for what facial
reduction does.

Consider a rigid cluster C containing points py,...,px €
R? and place these points in an k x 3 matrix Py
pi
P=| (34)
T
k

If we wish to model the rotation and translation of these
points to arrive at a new configuration F;, we would form
the following expression:

P, = PyQ; +ev T, (35)

Where (); is a 3 X 3 rotation matrix, and v; is a 3 x 1
translation vector, so v; T is 1 x 3; e is an n x 1 vector of all
ones. Py can be assumed to be centered at the origin, with P;
moving relative to I. Expressing equation (35) using block

matrices gives:
_ Q1
P=(PR e (vtT .

Let Vp = (PO e) and S; = <§%) We can then write the
t

(36)

Gram matrix concisely as:

X = RP" =SS Vol = VoR Vo 37)
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Equation (37) illustrates the facially reduced smaller Gram
matrix R; = StStT contains information about what needs
to change to arrive at the new configuration. That which
does not need to change has been factored out into the face
Vb. In other words, we only need to determine the smaller
rank 3 PSD matrix R;.

3.4 Theorems for Facial Reduction

We now formally show how to construct the face of a single
rigid cluster, and the face of disjoint rigid clusters. The
construction for a single rigid cluster makes use of Kris-
lock Theorem 4.1 (Single Clique Facial Reduction Theorem)
[14]; the construction for disjoint rigid clusters make use
of Krislock Theorem 4.5 (Disjoint Subsets Facial Reduction
Theorem) [14].

3.5 Single Rigid Cluster Face Construction

Consider a protein with n a-carbon coordinates represented
by p1,...,pn € R? embedded in r dimensions. Let the in-
dices of the one rigid cluster be denoted by thesetC C 1 : n.
Form the n x 3 matrix P:

P=": (38)
P
Let P[C, ] denote the rows of P indexed by C. Ensure P[C, ]
is centered at the origin. Then the centered Gram matrix of
the rigid cluster is given by X¢ = PI[C,:|P[C,:]*. Perform
singular value decomposition (SVD), or eigendecomposi-
tion of X¢, to find a |C| x r orthogonal matrix U such that
range(X¢) = range(Uc). Then, the face for these C points is
given by the |C| x (r + 1) matrix:

P- (e %)

where e is a vector of |C| 1’s and division by v/k ensures V
is orthogonal.

The rest of the points, which are not indexed by C, do
not belong to any clique in this current construction. They
receive the trivial face, an 1 x 1 matrix with one entry
equal to 1. In light of the motivation from Section 3.3, this
is equivalent to these points having only a translational
variation. This is consistent with hybrid ENMs modelling
point masses (single atoms) as rigid clusters with a trivial
(no) rotation, see [9], [11], [13].

Therefore, the face of the entire protein with n a-carbon
atoms, and one rigid cluster indexed by C is the matrix given
by:

(39)

r+1 n—|C|
_lc

v 0
V‘n—|€|< 0 I )

Without loss of generality, we have assumed indices in C
are the first |C| rows of V; if this is not so, the rows may be
permutated to those positions.

This completes the construction of the face for an n a-
carbon protein with one rigid cluster. The matrix P can now
be expressed as the factorization:

P=VS

(40)

(41)

4

Any problem requiring P to be determined can now be re-
duced to determining S. If we known P, the corresponding
S can be found by:

vip=vivs=1,5=S5 (42)

3.6 Disjoint Clique Face Reduction

We now show how to construct the face matrix for a
protein with more than one, disjoint, rigid cluster. If the
rigid clusters are not disjoint, the intersection must be non-
rigid, because rigid intersections will not allow the two
rigid clusters to move relative to each other, which is the
modelling goal. Non-rigid intersections in three-dimensions
will have at most two atoms in common. The intersection
can be treated as disjoint by absorbing the two atoms simul-
taneously into one of the rigid clusters, chosen arbitrarily.
See Krislock Section 4.7-4.9 [14] for a discussion of rigid and
non-rigid intersections.

Let Cq,...,C € 1 : n be the index set of disjoint
rigid cluster a-carbon atoms, with embedding dimensions
T1,...,Tm . Assume without loss of generality that these
index sets are consecutive, so their union has indices 1 : |C|.

c=|Jc=1:c| (43)
=1

Let there be n — |C| remaining atoms not associated with
any rigid cluster. Finally, let V; denote the face of rigid
cluster C;, constructed as described in Section 3.5 given by
equation(39). The face for all n a-carbon atoms is given by:

r1+1 rm+1 n—|C|
|C1] | B 0 0
U = 7 (44)
|Con] 0 m 0
n—|C| 0 0 I

4 FacliALLY REDUCED POSITIVE SEMIDEFINITE
ELASTIC NETWORK MODELS

4.1 Facial Reduction and Rigid Cluster ENI

We now show that rigid cluster ENMs are in fact using
facially reduced Gram matrices, and thus rigid cluster ENI
can be formulated as a facially reduced rank 3 PSD matrix
manifold optimization problem.

Consider the transpose of equation (5):

Palt)” =palt — 1) (45)

+ (Pa(t — 1) — ci(t = 1)) "mat(wi (1) +vi(t)" .
For all atoms that belong to one rigid cluster, they are
rotated by the same matrix mat(w;(t))? and translated by
the same vector v;(¢). Let rigid cluster C; have m/(i) atoms.
We can thus place all m(i) equations for each rigid cluster
into a matrix as follows:
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pi(t)" p(t—1)7"
m (1) (t)T Pm (i) (t - 1)T
(p1t—1) —c(t—1)" 1
. . (mat(wi(t))T)
Pyt —1) —ci(t=1))" 1
(46)
Consider the matrix:
(p1(t—1)—c(t—1)T 1
V; = : (47)
(Pm@y(t = 1) —ci(t = 1)" 1
V) is actually the point representation of the face of this rigid
cluster. See Section 4.12 of Krislock [14] for a discussion of

point representations of faces. This point representation was
also used in equation (36). Define:

_ (mat(wi(t)"
Az - ( Ui(t)T . (48)
Then equation (46) can be written more concisely as:

Pi(t) = P;(t — 1) + ViA; (49)

The matrix A; is what needs to change to arrive at the new
time ¢ P;(¢), the matrix V; does not change. If we can further
factorize P;(t — 1) = V;S;_1, then we see equation (49) is:

Pz(t) = ‘/;‘St,1 + V;Az = ‘/i(Stfl + AZ) (50)
The facially reduced Gram matrix for P;(t) is thus:
Ry = (Si—1 4+ A)(Se—1 + A)7T (51)

Thus, rigid cluster ENI is perturbing the facially reduced
coordinates.

4.2 The Facially Reduced Positive Semidefinite Poten-
tial Energy

We now introduce the facially reduced potential energy for
ENI on the rank 3 PSD matrix manifold. This potential
energy has already been used in semidefinite optimization
problems as objective functions, see [2], [18], [19]

Let P, be the matrix containing all n «-carbons of a
protein structure, as defined in equation (30). Suppose there
are m disjoint rigid clusters, and their face is denoted V,
constructed as described in Section 3.6. Then, using facial
reduction:

Pt = VSt 5 (52)

Following the same argument as in Section 4.1, we can show
to arrive at P; from P,_;, we only need to perturb the
facially reduced Gram matrix as follows. Since:

Py =V(Si-1+A4A) (53)
The perturbed Gram matrix is thus:
PP =V (Si—1 4+ A)(Si—1 + A)TVT (54)

We now define the potential energy in terms of equation
(54).

5

Firstly, note that squaring the distance in the classical
ENI potential energy given by equation (10) gives the fol-
lowing potential energy:

1

f(P)=">" 5 ((Pa(t) — o ()T (Pa(t) — (1)) — dap(1))?
(a,b)eD
- ¥ %((ea )PP (e — e) — dup(t))? .
(a,b)eD

(55)
Equation (55) is summed over pairs in D, which are all the
interactions between different rigid clusters, the same set as
used in equation (10). e, € R™ isan n x 1 vector with a 1 at
the a-th position. dy;(t) is given by:

dap(t) = (1 = 1) | pa(0) = p6(0) I* +¢ | pa(1) — pu(1) |I* ,
(56)
Whereas in equation (11) we interpolated distance, we now
interpolate between distance-squared. Equation (56) can be
expressed explicitly as an interpolated EDM in the following
equivalent expression using the K(-) map given by equation
(32):

[(P) = ¢ | Ho (KPR ~DW) 3 . 67

|| - |lF is the Frobenius norm. H is a matrix whose entries

are defined as:
1 if(a,b) €D
Hy={! HlebeD (58)
0 otherwise

o is element-wise multiplication. D(t) has entries dg(t)
given by equation (56); this matrix can be written explicitly
as a convex combination of elements from a convex set:

D(t)=(1-t)D(0)+tD(1), (59)

where the entries of D(0) are du,(0) =|| pa(0) — py(0) ||?
and the entries of D(1) are dy,(1) =|| pa(1) — pp(1) ||

The interpolated EDM D(t) may not represent points
in 3 dimensions, this is because the rank constraint is not
convex. However, the potential energy is finding the best
set of points in 3 dimensions because it is only searching
over the set of rank 3 Gram matrices.

The objective function introduced by equation (55) is
the same form as that presented in Section 6.3.1 of [18].
The equivalent matrix expression given by equation (57)
was introduced in [2]. Both functions are objective functions
for solving the EDM completion problem. These objective
functions show ENI can be formulated as a semidefinite
optimization problem. To accommodate rigid clusters in the
protein, we substitute equation (52) into these equation. For
example, with equation (57), we have:

fo(S0) = 5 Il H o (K(VS.S"VT) — Do) [

: 2 (60)
=5 I H o (Ky(SiSt) = D)) Il -
where we have defined the operator Ky (-) as:
Kv(X)=K(WVXVT), (61)

This operator was first used in [2] to show how facial reduc-
tion can be incorporated into EDM completion problems.
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Similarly, we can substitute equation (52) into equation (55)

frsy= % %((ea—eb)TVStStTVT(ea—eb)—dab(t))Q.
(a,b)eD
(62)
Equations (53) and (54) then show we are searching for the
optimal perturbation to go from S;_; to the current time ¢
Si.

4.3 Finding the Optimal Perturbation

Equation (53) shows we need to perturbed the reduced coor-
dinates to get the new Gram matrix. In Kim’s formulation of
ENI, a second order approximation of the potential energy
is minimized to find the optimal pertubration [9], [11], [12],
[13]. We follow a similar approach here. However, since
we are using the quotient geometry for the rank 3 PSD
matrix manifold, we use the tCG algorithm adopted to this
geometry [1]; the gradient and Hessian used here have been
discussed in [16], [18], [19]

The second order Taylor series expansion for a stepsize
7 to arrive at S; from S;_; given by:

Jv(St) = fv(Si—1 +n)

~ fv(Si-1) + (n, grad fy (S¢-1)) + %(n,HeSSfV(St—l)[nD ;
(63)
where (£,1) = tr(¢1'n) is the Riemannian metric defined on
the tangent space at .S;. The 1 in equation (63) is a matrix in
the tangent space centered at S;_;. Since the expansion is for
time ¢, the targeted distance in all the above fy (-) functions
is dup(t), and not dgp(t — 1).

As shown by Meyer [18], the gradient, gradfy (S;—1),
and the Hessian, Hess fy (S;—1)[n], in equation (63) can be
expressed as the product of sparse matrices. These are con-
venient for implementation. We modify Meyer’s formulas

to accommodate the face V. For gradient, this is:
gradfy(S;_1) = 2(VTESETV)S; . (64)

E is an n x|D| sparse matrix with columns given by (e, —e;)
for all (a,b) € D. eq,ep € R™ have a 1 in the a-th and b-th
position respectively, and zero elsewhere. ¥ is the |D| x |D|
diagonal matrix whose diagonal entries are the errors:

Dy = (dab(t - 1) - dab(t)) ) ‘ID| ;

For the Hessian, we have:

i=1,... (65)

Hessfv (S;—1)[n] = 2P (VT ESETVn+VTESETVS, ,) ,

~ (66)
where ¥ is a diagonal matrix, whose diagonal are the dot
products given by:

diag(S) = 2diag(B"V S, )" VTE))  (67)

ng _, s a projection operator that maps tangent vectors in
the total space onto the horizontal space [1], [18], [19]. It is
given by:

P& () =n—-QS1. (68)

7 is a matrix on the tangent space, and 2 solves the Sylvester
equation:

QS 7S 1+ 8T8 =8 1" —nTS1  (69)

4.4 Sample Interpolation: Lactoferrin

In this section, we use lactoferrin to demonstrate the facially
reduced interpolation process. Lactoferrin has 3 disjoint
rigid clusters. The “head”: Gly321 ~ Lys691, the left lobe:
His91 ~ Val 250, and the right lobe: Gly1 ~ Thr90, Pro251 ~
Leu320. We implemented the tCG algorithm in the python
environment provided by UCSF Chimera [20]. Although an
interpolation of only the a-carbons is enough to generate the
transition, we found that Chimera required more atoms to
render the a-helices correctly; therefore, all atoms common
to both structures, modulo amino acid mutation, were in-
terpolated. Figure 1 presents the result of interpolation from
1LFG to 1LFH. A smooth transition is observed, and at time
t = 1 the interpolated structure can be seen to align closely
with the targeted structure in black. Figure 1 is consistent
with the interpolation presented by Kim et al. in [11], [13].

4.5 Discussion

The range of motion between the two lactoferrin confor-
mations is small, and in this case, a geodesic connecting
the matrix S; would also produce a realistic transition, this
was done in our previous publication [17]. We discussed
in [16] that using a geodesic to connect the beginning and
ending Sy and S; matrices and interpolating these matrices
directly (range interpolation), both may lead to degeneracy
problems; Kim [11] had also discussed this degeneracy
problem. ENI, formulated using both distance and distance-
squared, is able to overcome this degeneracy problem.

In [16], we observed some anomalies when interpolating
lattice structures using the matlab code provided by Kim .
When we implemented Kim's formulation in python, those
anomalies were not seen, or were not as severe. Thus, those
anomalies may be due to the linear algebra libraries used,
and not caused by using distance in the potential energy.

5 CONCLUSION

Rigid cluster ENI is an efficient method for generating
transitional conformations for proteins with rigid clusters.
Rigid clusters in a protein restrict the protein to a certain
face of the PSD cone. Due to the bijective mapping between
PSD Gram matrices and EDMs, this face is explicit in the
potential energy when distance-squared is used to formulate
ENI. The use of distance in the potential energy hides
the facial structure of the rigid clusters. This observation
suggests distance-squared may be a more natural choice
than distance when modelling rigid cluster transitions.
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Fig. 1. 1LFG (light gray) is interpolated to 1LFH (black).
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