Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. OPTIM. (© 2010 Society for Industrial and Applied Mathematics
Vol. 20, No. 5, pp. 2679-2708

EXPLICIT SENSOR NETWORK LOCALIZATION USING
SEMIDEFINITE REPRESENTATIONS AND FACIAL REDUCTIONS*

NATHAN KRISLOCK' AND HENRY WOLKOWICZ!

Abstract. The sensor network localization (SNL) problem in embedding dimension r consists
of locating the positions of wireless sensors, given only the distances between sensors that are within
radio range and the positions of a subset of the sensors (called anchors). Current solution techniques
relax this problem to a weighted, nearest, (positive) semidefinite programming (SDP) completion
problem by using the linear mapping between Euclidean distance matrices (EDM) and semidefinite
matrices. The resulting SDP is solved using primal-dual interior point solvers, yielding an expensive
and inexact solution.

This relaxation is highly degenerate in the sense that the feasible set is restricted to a low
dimensional face of the SDP cone, implying that the Slater constraint qualification fails. Cliques in
the graph of the SNL problem give rise to this degeneracy in the SDP relaxation. In this paper, we
take advantage of the absence of the Slater constraint qualification and derive a technique for the
SNL problem, with exact data, that explicitly solves the corresponding rank restricted SDP problem.
No SDP solvers are used. For randomly generated instances, we are able to efficiently solve many
huge instances of this NP-hard problem to high accuracy by finding a representation of the minimal
face of the SDP cone that contains the SDP matrix representation of the EDM. The main work of
our algorithm consists in repeatedly finding the intersection of subspaces that represent the faces of
the SDP cone that correspond to cliques of the SNL problem.

Key words. sensor network localization, Euclidean distance matrix completions, semidefinite
programming, loss of the Slater constraint qualification

AMS subject classifications. 90C35, 90C22, 90C26, 90C06

DOI. 10.1137/090759392

1. Introduction. The sensor network localization problem (SNL) consists of
locating the positions of n wireless sensors, p; € R", i = 1,...,n, given only the
(squared) Euclidean distances D;; = ||p; — p;||3 between sensors that are within a
given radio range, R > 0, and given the positions of a subset of the sensors, p;,
t=n—m+1,...,n (called anchors); r is the embedding dimension of the problem.
Currently, many solution techniques for this problem use a relaxation to a nearest,
weighted, semidefinite approximation problem

(L1) S min_ [e (K(Y) = D)
where Y = 0 denotes positive semidefiniteness, ¥ € {2 denotes additional linear
constraints, K is a specific linear mapping, and o denotes the Hadamard (elementwise)
product. This approach requires semidefinite programming (SDP) primal-dual interior
point (p-d i-p) techniques; see, for example, [2, 3, 5, 8, 9, 12, 23]. This yields an
expensive and inexact solution.

The SNL problem is a special case of the Euclidean distance matrix (EDM)
completion problem (EDMC). If D is a partial EDM, then the completion prob-
lem consists of finding the missing elements (squared distances) of D. It is shown in

*Received by the editors May 16, 2009; accepted for publication (in revised form) June 2, 2010;
published electronically July 20, 2010. This research was supported by the Natural Sciences Engi-
neering Research Council Canada and a grant from AFOSR.

http://www.siam.org/journals/siopt /20-5/75939.html

TDepartment of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L

3G1, Canada (ngbkrisl@math.uwaterloo.ca, hwolkowiczQuwaterloo.ca).

2679

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2680 N. KRISLOCK AND H. WOLKOWICZ

[13] that there are advantages for handling the SNL problem as an EDMC and ignor-
ing the distinction between the anchors and the other sensors until after the EDMC is
solved. In this paper we use this framework and derive an algorithm that locates the
sensors by exploiting the structure and implicit degeneracy in the SNL problem. In
particular, we solve the SDP problems ezplicitly (exactly) without using any p-d i-p
techniques. We do so by repeatedly viewing SNL in three equivalent forms: as a
graph realization problem, as an EDMC, and as a rank restricted SDP.

A common approach to solving the EDMC problem is to relax the rank con-
straint and solve a weighted, nearest, positive semidefinite completion problem (like
problem (1.1)) using SDP. The resulting SDP is, implicitly, highly degenerate in the
sense that the feasible semidefinite matrices have low rank. In particular, cliques in
the graph of the SNL problem reduce the ranks of these feasible semidefinite matrices.
This means that the Slater constraint qualification (strict feasibility) implicitly fails
for the SDP. Our algorithm is based on exploiting this degeneracy. We characterize
the face of the SDP cone that corresponds to a given clique in the graph, thus reduc-
ing the size of the SDP problem. Then we characterize the intersection of two faces
that correspond to overlapping cliques. This allows us to explicitly grow/increase
the size of the cliques by repeatedly finding the intersection of subspaces that repre-
sent the faces of the SDP cone that correspond to these cliques. Equivalently, this
corresponds to completing overlapping blocks of the EDM. In this way, we further
reduce the dimension of the faces until we get a completion of the entire EDM. The
intersection of the subspaces can be found using a singular value decomposition or
by exploiting the special structure of the subspaces. No SDP solver is used. Thus
we solve the SDP problem in a finite number of steps, where the work of each step
is to find the intersection of two subspaces (or, equivalently, each step is to find the
intersection of two faces of the SDP cone).

Though our results hold for general embedding dimension r, our preliminary
numerical tests involve sensors with embedding dimensions » = 2 and » = 3. The
sensors are in the region [0,1]". There are n sensors, m of which are anchors. The
radio range is R units.

1.1. Related work/applications. The number of applications for distance ge-
ometry problems is large and increasing in number and importance. The particular
case of SNL has applications to environmental monitoring of geographical regions,
as well as tracking of animals and machinery; see, for example, [5, 12]. There have
been many algorithms published recently that solve the SNL problem. Many of these
involve SDP relaxations and use SDP solvers; see, for example, [5, 6, 7, 8, 9, 13] and
more recently [20, 28]. Heuristics are presented in, for example, [11]. SNL is closely
related to the EDMC problem; see, for example, [3, 12] and the survey [2].

Carter, Jin, Saunders, and Ye [10] and Jin [19] propose the SpaseLoc heuristic. It
is limited to r = 2 and uses an SDP solver for small localized subproblems. They then
sew these subproblems together. So and Ye [25] show that the problem of solving a
noiseless SNL that is uniquely localizable! can be phrased as an SDP and thus can be
solved in polynomial time. They also give an efficient criterion for checking whether
a given instance has a unique solution for r = 2.

Two contributions of this paper are as follows: we do not use iterative p-d i-p
techniques to solve the SDP but rather we solve it with a finite number of explicit

LAn SNL problem is uniquely localizable in dimension r if it has a unique solution in R” and it
does not have any solution whose affine span is R?, where h > r; see [25].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2681

solutions; we start with local cliques and expand the cliques. Our algorithm has four
different basic steps. The first basic step takes two cliques for which the intersection
contains at least r + 1 nodes and implicitly completes the corresponding EDM to
form the union of the cliques. The second step does this when one of the cliques is a
single element. Therefore, this provides an extension of the algorithm in [14], where
Eren et al have shown that the family of trilateration graphs® admits a polynomial
time algorithm for computing a realization in a required dimension. Our algorithm
repeatedly finds explicit solutions of an SDP. Other examples of finding explicit
solutions of an SDP are given in [27, 29].

The SNL problem with given embedding dimension r is NP-hard [17, 18, 24].
However, from our numerical tests it appears that random problems that have a
unique solution can be solved very efficiently. This phenomenon fits into the results
in [4, 15].

1.2. Outline. We continue in section 1.3 to present notation and results that will
be used. The facial reduction process is based on the results in section 2. The single
clique facial reduction is given in Theorem 2.3; the reduction of two overlapping cliques
in the rigid and nonrigid cases is presented in Theorems 2.10 and 2.14, respectively;
absorbing nodes into cliques in the rigid and nonrigid cases is given in Corollaries 2.17
and 2.18, respectively. These results are then used in our algorithm in section 3. The
numerical tests appear in sections 3.1 and 3.2. Our concluding remarks are given in
section 4.

1.3. Preliminaries. We work in the vector space of real symmetric k x k ma-
trices, S*, equipped with the trace inner product, (A, B) = trace(AB). We let Sk
and Sf“r + denote the cone of positive semidefinite and positive definite matrices, re-
spectively; A = B and A > B denote the Lowner partial order, A — B € S_’ﬁ and
A—-—Be S_’ﬁ 4, respectively; e denotes the vector of ones of appropriate dimension;
R(L) and N(L) denote the range space and null space of the linear transformation
L, respectively; cone(S) denotes the convex cone generated by the set S. We use the
MATLAB notation 1:n = {1,...,n}.

A subset F' C K is a face of the cone K, denoted F < K, if

(a:,y e K, %(aﬁ—y) € F) = (cone{z,y} C F).

If FF <9 K but is not equal to K, we write F <1 K. If {0} # F < K, then F is a proper
face of K. For S C K, we let face(S) denote the smallest face of K that contains S.
A face F' < K is an exposed face if it is the intersection of K with a hyperplane. The
cone K is facially exposed if every face F' < K is exposed.

The cone St is facially exposed. Moreover, each face F' < S8V is determined
by the range of any matrix S in the relative interior of the face, S € relint F: if
S = UT'UT is the compact spectral decomposition of S with the diagonal matrix of
eigenvalues I € St | then (e.g., [22])

(1.2) F=US'U".

2A graph is a trilateration graph in dimension r if there exists an ordering of the nodes 1,...,r+
1,7 +2,...,n such that the first » + 1 nodes form a clique and each node j > r +1 has at least r+ 1
edges to nodes earlier in the sequence.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2682 N. KRISLOCK AND H. WOLKOWICZ

A matrix D = (D;;) € S™ with nonnegative elements and zero diagonal is called
a predistance matriz. In addition, if there exist points p1,...,p, € R" such that

then D is called a Fuclidean distance matriz, denoted EDM. Note that we work
with squared distances. The smallest value of r such that (1.3) holds is called the
embedding dimension of D. Throughout this paper, we assume that r is given and
fized. The set of EDM matrices forms a closed convex cone in 8™, denoted ™. If we
are given an n x n partial EDM D), let G = (N, E,w) be the corresponding simple
graph on the nodes N = 1:n whose edges E correspond to the known entries of D,
with (D,)i; = wj; for all (i, j) € E.

DEFINITION 1.1. ForY € 8™ and o C 1:n, we let Y[a] denote the corresponding
principal submatrix formed from the rows and columns with indices a.. If, in addition,

la| = k and Y € S* is given, then we define
S"(a,Y):={Y eS8 :Y[a] =Y}, S}(aY):={YeS! Y=Y},

that is, the subset of matrices Y € S™ (Y € S}) with principal submatriz Ya] fized
to Y. For example, the subset of matrices in §™ with the top left k x k block fixed is

(1.4) S"(l:k,Y):{YeS”:Y: [L’f]}

A clique v C 1:n in the graph G corresponds to a subset of sensors for which
the distances w;; = ||p; — pjll2 are known for all ,j € ~; equivalently, the clique
corresponds to the principal submatrix D,[y] of the partial EDM matrix D,, where
all the elements of D,[y] are known.

Suppose that we are given a subset of the (squared) distances from (1.3) in the
form of a partial EDM D,. The EDM completion problem consists of finding the
missing entries of D), to complete the EDM; see Figure 1.1. This completion problem
can be solved by finding a set of points p1, ..., p, € R" satisfying (1.3), where r is the
embedding dimension of the partial EDM, D,. This problem corresponds to the graph
realizability problem with dimension r, which is the problem of finding positions in
R" for the vertices of a graph such that the interdistances of these positions satisfy
the given edge lengths of the graph.

Let Y € M™ be an n X n real matrix and y € R™ be a vector. We let diag(Y")
denote the vector in R™ formed from the diagonal of Y, and we let Diag(y) denote
the diagonal matrix in M"™ with the vector y along its diagonal. Note that diag and
Diag are the adjoint linear transformations of each other: Diag = diag”. The operator
offDiag can then be defined as offDiag(Y’) := Y — Diag(diagY’). For

P — : e M n><r’
where p;, j =1,...,n, are the points used in (1.3), let Y := PP”, and let D be the

corresponding EDM satisfying (1.3). Defining the linear operators K and D, on S™

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2683

Fic. 1.1. Graph of partial EDM with sensors o and anchors .

as follows, we see that
KY) = D.(Y)-2Y
= diag(Y) e +ediag(Y)T —2Y
(1.5) = (pfpi+plp; - 2piij)l,J:1
— 2\
- (sz _pj||2)l'7j:1
= D.

That is, L maps the positive semidefinite matrix Y onto the EDM D. More generally,
we can allow for a general vector v to replace e and define D, (Y) := diag(Y)v? +
vdiag(Y)T. By abuse of notation, we also allow D, to act on a vector; that is,
Dy(y) := yvT +vy?. The adjoint of K is

(1.6) K*(D) = 2(Diag(De)— D).

The linear operator K is a one-to-one and onto mapping between the centered
and hollow subspaces of S™, which are defined as

(1.7) Sc = {YeS":Ye=0} (zero row sums),

' Sy = {De S8":diag(D) =0} = R(offDiag).
Let J := I — LeeT denote the orthogonal projection onto the subspace {e}* and
define the linear operator 7(D) := —1.J offDiag(D).J. Then we have the following
relationships.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2684 N. KRISLOCK AND H. WOLKOWICZ

PROPOSITION 1.2 (see [1]). The linear operator T is the generalized inverse of
the linear operator KC; that is, Kt =T. Moreover:

1.8 R(’C) = SH; N(’C) = R(De)§
(18) ROC)=R(T) =Sci N(K*) = N(T) = R(Diag):
(1.9) S™ = Sy ® R(Diag) = Sc ® R(D.).

THEOREM 1.3 (see [1]). The linear operators T and K are one-to-one and onto
mappings between the cone E™ C Sy and the face of the semidefinite cone St N Sc.
That 1is,

TE =8"NSc and K(ST NSc) = E™.

Remark 1.4. D € & has embedding dimension 7 if and only if K(D) = 0
and rank(K'(D)) = r. In addition, we get KT(D)e = 0. Therefore, we can factor
KT (D) = PPT, for some P € M ™" to recover the (centered) sensors in R” from the
rows in P. Note that rotations of the points in the rows of P do not change the value
Y = PPT since PPT = PQTQP if Q is orthogonal. However, the nullspace of K is
related to translations of the points in P. Let D € £™ with embedding dimension r,
and let Y := K(D) have full rank factorization Y = PPT with P € M ™ ". Then
the translation of points in the rows of P to P := P+ew?, for some w € R", results in
Y := PPT =Y +D.(y) with y := Pw + “’TTwe and K(Y) = K(Y) = D since D,(y) €
N(K). Note that R(Y) = R(P); therefore, y = Pw + #e € R(Y) + cone{e}, as
we will also see in more generality in Lemma 2.1 below.

Let D, € 8" be a partial EDM with embedding dimension r, and let W € 8™ be
the 0-1 matrix corresponding to the known entries of D,,. One can use the substitution
D =K(Y), where Y € 8T NS¢, in the EDM completion problem

Find Deé&n
such that WoD =Wo D,

to obtain the SDP relaxation

Find YeSinSe
such that WoK(Y)=WoD, ’

This relaxation does not restrict the rank of Y and may yield a solution with an em-
bedding dimension that is too large if rank(Y") > r. Moreover, solving SDP problems
with rank restrictions is NP-hard. However, we work on faces of S described by
USEr UT with ¢t < n. In order to find the face with the smallest dimension ¢, we must
have the correct knowledge of the matrix U. In this paper, we obtain information on
U using the cliques in the graph of the partial EDM.

2. Semidefinite facial reduction. We now present several techniques for re-
ducing an EDM completion problem when one or more (possibly intersecting) cliques
are known. This extends the reduction using disjoint cliques presented in [13]. In each
case, we take advantage of the loss of the Slater constraint qualification and project
the problem to a lower dimensional SDP cone.

We first need the following two technical lemmas that exploit the structure of the
SDP cone.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2685

LEMMA 2.1. Let BE€S™, Bu=0,v#0,y € R", andY := B+D,(y). IfY = 0,
then
y € R(B) + cone {v}.

Proof. First we will show that y € R(B) +span{v} = R([B v]). If this is not
the case, then y can be written as the orthogonal decomposition

y= Bu+ fv+7,

where 0 # 5 € R([B v])* =N([B v]"). Note that g satisfies By = 0 and v"y = 0.
To get a contradiction with the assumption that Y > 0, we let

1 v Y
zi= 5 — (L+18) =
2 |lvll? l9l?
and observe that Bz = 0 and vz = 1/2. Then
2TYz2 = 2TD,(y)z
= 2T (va + vyT) z
= yTZ
= 38+7"z
< s(1+18)+9"2
= —5(1+18D)
< 0,

which gives us the desired contradiction. Therefore, y € R(B) + span{v}, so to show
that y € R(B) + cone {v}, we need to show only that if y = Bu + Sv, then 5 > 0.
First note that vTy = SvTv. Then
vTYv = oT (yUT + UyT) v
= 20TyvTv
= 28(vTwv)%

Since Y = 0, we have 23(vTv)? > 0. This implies that 3 > 0 since v # 0. O

If Y € 8%, then we can use the minimal face of S¥ containing Y to find an
expression for the minimal face of ST that contains ST (1:%,Y).

LEMMA 2.2. Let U € M"" with UTU = I,. If face {Y} < US'L UT, then

- - - AT
n . \/ U 0 n—k—+t U 0
(2.1) face S} (1:k,Y) < 0 L] St 0 I._i]
Furthermore, if face {Y} = US, U™, then
(2.2) cest(1:k ¥y = |00 |sprne [0 07
' AR _0 In—k_ - _0 In—k_

_ Proof. Since Y € US' U”, then Y = USUT for some S € S' . Let Y € St (1:
k,Y), and choose V so that [U V] is an orthogonal matrix. Then, with ¥ blocked
appropriately, we evaluate the congruence

o[V 0 TYV 071 [0 V'Y o o
— |10 I, 0 I,x| [|Ya1V Yo | |0 Yao|®

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2686 N. KRISLOCK AND H. WOLKOWICZ

Therefore, Y = 0 implies that VY] = 0. Since N(VT) = R(U), we get V3§ = UX
for some X. Therefore, we can write

y_[0 o][s x][0 o]
L0 Lk [XT Yool |0 Lk
This implies that face S7(1:k,Y) < U‘S'ffk“UT7 where

U o0
U= {0 Ink] .
This proves (2.1). To prove (2.2), note that if face{Y} = US| UT, then Y €
relint (US, UT), so Y = USUT for some S € S, . Letting

v [0 o[o][@ o]
© |0 Infk 0 Infk 0 Infk ’
we see that ¥ € S7(1:k,Y) Nrelint (US} " UT). This implies that there is no
smaller face of 8T containing ST (1:4,Y’), completing the proof. 0

2.1. Single clique facial reduction. If the principal submatrix D € &F is
given for index set « C 1:n with |a| = k, we define

(2.3) E"(a,D):={D€&": D[] =D} .

Similarly, the subset of matrices in £" with the top left k& x k block fixed is

- im0 = {peerp [21}

A fixed principal submatrix D in a partial EDM D corresponds to a clique « in
the graph G of the partial EDM D. Given such a fixed clique defined by the submatrix
D, the following theorem shows that the following set, containing the feasible set of
the corresponding SDP relaxation,

{Y eS8 NnSc: K(Y[a]) =D} =K' (£"(a, D)),

is contained in a proper face of S . This means that the Slater constraint qualification
(strict feasibility) fails, and we can reduce the size of the SDP problem; see [13]. We
expand on this and find an explicit expression for face KT(£"(a, D)) in Theorem 2.3.
For simplicity, here and below, we often work with ordered sets of integers for the two
cliques. This simplification can always be obtained by a permutation of the indices
of the sensors.

THEOREM 2.3. Let D € E" with embedding dimension r. Let D := D[1:k] € &F
with embedding dimension t, and let B := K'(D) = UpSUZL, where Up € MExE

ULUp = I, and S € S' . Furthermore, let Ug = [Up ﬁe] e MM gng

U:=[Y 12, and let [V %] e ML be orthogonal. Then
(2.5) face KT (£"(1:k, D)) = (UST *H1UT) N Se = (UV)STHH(UV)T.

Proof. Let Y € KT (E™(1 : k,D)) and Y := Y[l :k]. Then there exists D €
E"(1 : k,D) such that Y = K'(D), implying that X(Y) = D and that K(Y) =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2687

D = K(B). Thus, Y € B+ N(K) = B + R(D.), where the last equality follows from
Proposition 1.2. This implies that Y = B+D,(y) for some 3 € R*. From Theorem 1.3,
we get Y = 0 and Be = 0. Therefore, Lemma 2.1 implies that y = Bu + e for some
u € R*¥ and 8 > 0. This further implies

Y = B+ Buel + eu” B + 28ee” .

From this expression for Y, we can see that R(Y) € R([B e]) = R(Up), where the
last equality follows from the fact that Be = 0. Therefore, Y € U BSiHUg, implying,

by Lemma 2.2, that face ST (1:k,Y) < USfﬁ*kHHUT. Since Y € 87(1:k,Y) and
Ye =0, we have that Y € (USz_kHHUT) N Sc. Therefore, face K'(E"(1:k, D)) <
(USTFH1UT) N Se. Since VIUTe = 0, we have that

(2.6) (USFHHUT)y N Se =Uvsy FyTyT,

To show that face K'(£"(1:k, D)) = (USi7k+t+1UT) N Sc, we need to find

(2.7) A A

Y =UzU" e KV (£"(1:k,D)) with rank(Y)=n—k+t, Ye=0, Z € ST T

To accomplish this, we let Ty = [§ 9]. Then 77 > 0, and

1 D D —
B+ EeeT =UpT\UL = PPT, where P := UBT11/2 € MAX(HD

Let
P | 0
P = 0 Iy EMnX(nikH).
_eTP| —eT

Since P has full-column rank, we see that P also has full-column rank. Moreover,
PTe = (. Therefore,

. ppT | 0 —e
Yy .= PPT = 0 |Ii_p1 —e |e&
—eT —e n—1

satisfies Ye = 0 and rank(Y) = n — k + t. Furthermore, we have that ¥ = UZU7,
where

0

0 —Vk c SnkHttl
k

—eT

where

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2688 N. KRISLOCK AND H. WOLKOWICZ

The eigenvalues of T" are 0, 1, and n, with multiplicities 1, n—k—1, and 1, respectively.
Therefore, rank(7) = n — k, which implies that rank(Z) =n —k +t and Z = 0.
Letting D := KC(Y'), we have that D € £"(1:k, D) since

D[1:k] = K(Y[1:k]) = K(PPT) =K (B + %eeT) = K(B) = D.

Therefore, Y satisfies (2.7), completing the proof. O

Remark 2.4. Theorem 2.3 provides a reduction in the dimension of the
EDM completion problem. Initially, our problem consists of finding ¥ € 8% NS¢
such that the constraint

K(Y[a]) = Dla], a=1:k

holds. After the reduction, we have the smaller dimensional variable Z € Sz_kH;
by construction Y := (UV)Z(UV)T will automatically satisfy the above constraints.
This is a reduction of k —t —1 = (n — 1) — (n — k 4+ t) in the dimension of the

matrix variable. The addition of the vector e to the range of B, Up := [Up ﬁe],

has a geometric interpretation. If B = PPT, P € M**! then the rows of P pro-
vide centered positions for the k sensors in the clique a. However, these sensors
are not necessarily centered once they are combined with the remaining n — k sen-
sors. Therefore, we have to allow for translations, e.g., to P + ev” for some v. The
multiplication (P + evT)(P + ev?)T = PPT + Pve® + ev? PT + evTwvel is included
in the set of matrices that we get after adding e to the range of B. Note that
PveT 4+ ev” PT 4 evTve” = D.(y) for y = Pv + %evTv.

The special case k =1 is of interest.

COROLLARY 2.5. Suppose that the hypotheses of Theorem 2.3 hold but that k = 1
and D=0. Then Ug =1, U =1, and

(2.8) face KT (£"(1:k, D)) = face KT (") =8 NSc = VST VT,
where [V ﬁe] € M™ is orthogonal.
Proof. Since k = 1, necessarily we get t = 0 and we can set Ug = 1. d

2.1.1. Disjoint cliques facial reduction. Theorem 2.3 can be easily extended
to two or more disjoint cliques; see also [13].

COROLLARY 2.6. Let D € E™ with embedding dimension r. Let kg :=1 < k1 <
. <k <n. Fori=1,...,1, let D; :== Dlk;_1:k;] € EFi=Fi-1+L with embedding
dimension t;, B; = ICT(DZ-) = UBI.SU%;, where Up, € ./\/lkXti, UgiUBi =106 S €
St and Up, = [Up, —e] € MF*ETD Lot

Vki
Us, ... 0 0
v | o
0 ... Ug O
0 ... 0 Inog

and [V ﬁ] € M RHAZici it e orthogonal. Then

ﬂlizl face ,CT (5n(/€i—1 kl,Dl)) _ (USZ—kﬁZé:l ti+lUT) NSe
= (V)R EL T gy

Proof. The result follows from noting that the range of U is the intersection of
the ranges of the matrices Up, with appropriate identity blocks added. o

(2.9)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2689

2.2. Two (intersecting) clique facial reduction. The construction (2.6) il-
lustrates how we can find the intersection of two faces. Using this approach, we now
extend Theorem 2.3 to two cliques that (possibly) intersect; see the ordered indices
in (2.10) and the corresponding Venn diagram in Figure 2.1. We also find expressions
for the intersection of the corresponding faces in S ; see (2.12). The key is to find
the intersection of the subspaces that represent the faces, as in condition (2.11).

Fic. 2.1. Venn diagram of the sets of ordered indices, a1 and asg, in Theorem 2.7.

THEOREM 2.7. Let D € E™ with embedding dimension r, and, as in Figure 2.1,
define the sets of positive integers

oy = 13(151 +E2), Q= (El + 1)3(/%1 —|—Eg +E§) C 1:n,
(2.10) ki := |041| =k +]ig, 16'2 ::7|a2| = ko + ks,
k =k + ko+ ks.

Fori=1,2, let D; := D[o;] € E¥ with embedding dimension t; and B; := ICT(Dl-)
s 1

UlSlUZT, where Ul € Mkixm, UlTUl =1, S € Sii_i_; and U; = [Ui \/k_ie] €
MEXETD Lot b and U € MY satisfy
T Ul 0 I]; 0 - rr T rr
o roer ([)ar([E) wnoro i
Let U= [0 ;°,]¢€ M=k ED g [V %] € ML pe orthogonal.
Then
2
(212) (face KT (€™(e, Dy)) = (USFFHHUT) NS = (UV)STHH(UV)T.
i=1
Proof. From Theorem 2.3, we have that
i Ui 0| 0 A
face KT (£"(a1, D1)) = 0 I, | 0 [Symtttd o | 0 NSc
0 0 |Tus 0 0 [L
and, after a permutation of rows and columns in Theorem 2.3,
i L, 0] 0 L, o] o 1"
face KT (€™ (a2, D2)) = 0 Up| 0 |Syktett) 0 U] 0 NSc.
0 0 | Ik 0 O | Iy

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2690 N. KRISLOCK AND H. WOLKOWICZ

The range space condition (2.11) then implies that

Uy 0] 0 I, 0] 0
RWO)=R|| 0 I | © nNR{| 0 U] 0 :
0 0 | Tr 0 0 | Lo

giving us the result (2.12). O

Remark 2.8. Theorem 2.7 provides a reduction in the dimension of the
EDM completion problem. Initially, our problem consists in finding ¥ € & N S¢
such that the two constraints

K(Y[o:]) = Dlew], i=1,2

hold. After the reduction, we want to find the smaller dimensional Z € S_’i*kﬂ; by
construction Y := (UV)Z(UV)T will automatically satisfy the above constraints.

The explicit expression for the intersection of the two faces is given in (2.12) and
uses the matrix U obtained from the intersection of the two ranges in condition (2.11).
Finding a matrix whose range is the intersection of two subspaces can be done using
[16, Algorithm 12.4.3]. However, our subspaces have special structure. We can exploit
this structure to find the intersection; see Lemmas (2.9) and (2.13) below.

The dimension of the face in (2.12) is reduced to n — k + t. However, we can get
a dramatic reduction if we have a common block with embedding dimension r and
a reduction in the case where the common block has embedding dimension r — 1 as
well. This provides an algebraic proof using semidefinite programming of the rigidity
of the union of the two cliques under this intersection assumption.

2.2.1. Nonsingular facial reduction with intersection embedding di-
mension r. We now consider the case when the intersection of the two cliques results
in D[a N ag] having embedding dimension 7; see Figure 2.2. We see that we can ex-
plicitly find the completion of the EDM D|a; Uag]. We first need the following result
on the intersection of two structured subspaces.

F1G. 2.2. Two clique reduction with intersection with embedding dimension r.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2691

LEMMA 2.9. Let

r+1 r+1 T+I1 52
o [UL IR R I
Uy = A U], U = |: Ul], Ui := & Ul 0 s
Lt > 2 s | 0T
S1 r+1
s [I 0
UQ = k 0 Uél
w0 U

be appropriately blocked with U, U} € M full-column rank and R(UY) =
R(UY). Furthermore, let

r+1 r+1

51 U; s | Uj(upHtuy
(213) Ul = k {/ s Ug =k Uél
s | UL(uHtoy 52 U;

Then Uy and Us are full-column rank and satisfy
R(Ul) N R(Ug) =R (Ul) =R (Ug) .

Moreover, if e,41 € R™1 s thg (r + 1)st standard unit vector and Uje,4+1 = ;e for
some a; £ 0 fori=1,2, then Use,41 = a;e for z'A: 1,2.
Proof. From the definitions, x € R(U1) N R(Uz) if and only if

I U{Ul w1
_ _ " _ " _|n _|w
x= |z2| = [U{v1| = |Ujws for some v = , W= .
/ V2 w2
T3 V2 Usyws

Note that Uj'v; = Ul ws if and only if wy = (UY)TU{v1; this follows from the facts that
Uy full-column rank implies (U4)TU§ = I and R(U}') = R(UY) implies UY (U3) U} =
Uy. Therefore, x € R(Uy) N R(Uz) if and only if

1 U{’Ul
= |22 = Uy =U,v; for some v;
ULy TU//
T3 2(U3) U

with vy := Us(UY) U} vy, wy := Ujvy, and wq := (UY)TU{ vy, implying that R(Ul) N
R(Uy) = R(Uy); a similar argument shows that R(U1) N R(Us) = R(Us).

Now suppose, for ¢ = 1,2, that Ue,.41 = aye for some «; # 0. Then e €
R(U,) N R(Us), so e € R(Uy), implying that Ujv = e for some vector v. Since
U, = [Ug(U[Z’I)T U{,], we have Ujv = e. Furthermore, since U; has full-column rank, we
conclude that v = ailerﬂ, implying that Uler+1 = aye. Similarly, we can show that
U267~+]_ = (g€. 0

We now state and prove a key result that shows we can complete the distances
in the union of two cliques, provided that their intersection has embedding dimension

equal to r.
THEOREM 2.10. Let the hypotheses of Theorem 2.7 hold. Let

BCaiNay, D:=D[f], B:=K\(D), Uz:=U[s,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2692 N. KRISLOCK AND H. WOLKOWICZ

where U € MUY satisfies (2.11). Let [V %] € M ™ be orthogonal. Let

(2.14) Z = (JUZV)I B((JU3V)NT.

If the embedding dimension for D isr, thent=r, Z € S, is the unique solution of

(2.15) (JUV)Z(JUsV)' = B,
and
(2.16) Dlai Uag] = K ((UV)Z([OV)T).

Proof. Since the embedding dimension of D is r, we have rank(B) = r. Further-
more, we have Be = 0 and B € Sfl, implying that |8] > r 4+ 1. In addition, since
the embedding dimension of D is also r, we conclude that the embedding dimension
of D; is r for i = 1,2. Similarly, the embedding dimension of D[a; N az] is also 7.

Since U € M ¥+ gatisfies (2.11), we have that

i U0 I, 0
ROY=R||U/ o] |nR|[]0 UL
0 I, 0 U

Note that we have partitioned U; = [U; ﬁe] € MFEXHD g6 that U = [0/ ﬁe] €

MleaneeX(r+1) g5 5 — 1 2. Moreover, we have used the fact that the embedding
dimension of D; is r so that t; = for i = 1, 2.

We claim that Uy’ and U4 have full-column rank and that R(U;") = R(UY). First
we let Y := K'(D[a; Uag]). Then Y € Kf (€¥(an, D1)). By Theorem 2.3, there exists

71 € SE_”TH such that

U0 vl ool
v=|ur olz|Uur o
0 I,;g 0 I,;g

Therefore, Y[a; Nao] = U} 0)Z:[U} 0|7 € UySTH(UNT, so
R(Y e Naz]) € R(UY).
Furthermore, since K(Y) = D[y U ag], we have that (Y [aq Nag]) = D[Nas] =
K(KT(D]on N az))), so Yy Nag] € KT (D[a; Nas]) + N(K). Since N(K) = R(D.),
there exists a vector y such that
Y[ai Nag] = KN(D]an Nas]) + De(y) = KT (D[ar Nag)) + yel + ey”.

By Lemma 2.1, y € R([KT(D[a; Nay]) e]). Therefore,

R(Y[o1 Naz)) =R ([KN(Djen Naa]) e]).
Moreover, rank KT (D[a; N ag]) = r and K'(D[a; Nag))e =0, so

r+1=dimR(Y]a1 Nag]) <dimR(UY) <r+1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2693

Therefore, U{" has full-column rank, and R(Uy) = R(Y[a1 N ag]). Similarly, we can
show that U} has full-column rank and that R(UY) = R(Y[a1 Naz]), so we conclude
that R(UY) = R(UY).

We now claim that ¢ = r, where U € M**(*+D gatisfies (2.11). Since U}, UY €
M leanezx(r+) have full-column rank and R(U}') = R(UY), we have by Lemma 2.9
that R(U) = R(U1) = R(Uz), where

. Uy _ uy(uy)tuy
U, = uy and Uj:= Uy
Us(Us)tuy U;

Therefore,
t+1=dimR{U) =dimR(U1) = dimR(U2) =r + 1,

so we have t = r as claimed.

Recall that Y = ICT(D[OQ U Ozg]), soY € Mi=1,2 ICT(gk(Oél,Dl)) Thus, Theo-
rem 2.7 implies that there exists Z € S such that Y = (UV)Z(UV)T. Observe that
K(Y[8]) = D[8] = D. Thus,

K ((UsV)Z(UsV)") = D,
implying that
K'K ((UsV)Z(UsV)T) = B.

Since K K is the projection onto R(K*) = S¢, we have that KT KC(-) = J(-).J. There-
fore, we have that Z satisfies (2.15). It remains to show that (2.15) has a unique
solution. Let A := JUV € MIPIXT - Then AZAT = B and rank(B) = r im-
plies that rank(A) > r, so A has full-column rank. This implies that (2.15) has a
unique solution and that Z = ATB(A")T = Z. Finally, since Y = (UV)Z(UV)T and
Doy Uas] = K(Y), we get (2.16). O

The following result shows that if we know the minimal face of ST containing
KT(D) and we know a small submatrix of D, then we can compute a set of points in
R" that generate D by solving a small equation.

COROLLARY 2.11. Let D € &™ with embedding dimension r, and let 5 C 1:n.
Let U € M™ 0D satisfy

face KT (D) = (US;'UT) N Se,

let Ug :=U|B,:], and let [V ﬁ] € M be orthogonal. If D[B] has embedding
dimension r, then

(JUsV)Z(JUsV)" = K'(D[B])
has a unique solution Z € 8%, and D = K(PPT), where P := UV Z'/? € R"*",

Proof. Apply Theorem 2.10 with a1 = ap = 1:n. O
Remark 2.12. A more efficient way to calculate Z uses the full rank factorization

T
B=QD"?(QD'?), Q'Q=1, DeSs},.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2694 N. KRISLOCK AND H. WOLKOWICZ

Let C = (JUsV)T(QD'?). Then Z in (2.14) can be found from Z = CC”. Note that
our algorithm postpones finding Z until the end, where we can no longer perform any
clique reductions. At each iteration, we compute the matrix U that represents the
face corresponding to the union of two cliques; U is chosen from one of U; for i = 1,2
n (2.13). Moreover, for stability, we maintain UTU = I, Ue, ;| = ae.

For many of our test problems, we can repeatedly apply Theorem 2.10 until there
is only one clique left. Since each repetition reduces the number of cliques by one,
this means that there are at most n such steps.

2.2.2. Singular facial reduction with intersection embedding dimension
r —1. We now show that if the embedding dimension of the intersection is r —1 (i.e.,
deficient), then we can find at most two completions. If exactly one of these two
completions is feasible in the sense that it satisfies the related distance equality con-
straints and, if included, the related lower bound inequality constraints obtained from
the radio range R, then we have identified the unique completion; see Figure 2.3. We
first need the following extension of Lemma 2.9 on the intersection of two structured
subspaces for the case where the common middle blocks are not full rank.

5}

Fic. 2.3. Two clique reduction with intersection having embedding dimension < r.

LEMMA 2.13. Let U;, U;, U; for i = 1,2 be defined and appropriately blocked as
in Lemma 2.9, with U € M having rank r for i =1,2 and R(U}) = R(UY).
Let 0 # u; € N(U!) fori=1,2. If U € MOV satisfies R(U) = R(U1) N R(Us),
thent=r+1 and

) U{ 0) 0
RU) = R uy 0 =R | |1 0
U; (U")TU Ubus Ubus
(2.17) - _ o
(U (UnHtuy Ujuy o [Ulw
U} 0 i | 0]

Moreover, if e,41 € R s thg (r + 1)st standard unit vector and Uje,4+1 = ;e for
some a; # 0 fori=1,2, then Ue,41 = aze fori=1,2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2695

Proof. From the definitions, x € R(U) if and only if

x1 Ujvy w ; "
1 1

(2-18) T = |T2| = {/Ul = Ué”wz for some v = [v } ,W = [w] .
I3 (%) Uéwg 2 2

Since R(U7y) = R(UY) and U/’,i = 1,2 are both rank r, we conclude that zo =
Uj'vy = UYws for some vy, ws if and only if x5 € R(U{') with vy, ws determined by

vy = (U] 3 + aquy for some a; € R, wy = (UYYTU vy + aouy for some ay € R.
In other words, we get

x9 = Uj'vy = Ul wsy for some vy, ws
(2.19) if and only if
xy = Ul'vy for some v with wy = (UY) U{'v; + azus for some as € R.

After substituting for vy with vy = Ubwe = Us((UY)TU{v1 + agus), we conclude that
(2.18) holds if and only if the first equality in (2.17) holds; i.e., (2.18) holds if and
only if

I U{’Ul
r= |1o| = 11 for some v1, ao,
UL(u” TU// U!
z3 5(U3) U1 + aoUjus

where
Vg = Ué(Ué’)TU{I’Ul + OQUéUg, w1 = U{Ul, w9 = (Ué’)TU{/’Ul —+ aous.

The second equality in (2.17) follows similarly. The last statements about U e, 11
follow as in the proof of Lemma 2.9. O

In the rigid case in Theorem 2.10, we use the expression for U from Lemma 2.9
to obtain a unique Z in order to get the completion of D[a; U az]. The Z is unique
because the r + 1 columns of U that represent the new clique oy U ap are linearly
independent, e € R(U), rank(B) = r, and Be = 0. This means that the solution C
of (JUZV)C = QD'? in Remark 2.12 exists and is unique. (Recall that JUZV is
full-column rank.) This also means that the two matrices, U; and Us, that represent
the cliques, a1 and as, respectively, can be replaced by the single matrix U without
actually calculating C; we can use U to represent the clique a; U s and complete all
or part of the partial EDM Doy U ap] only when needed.

We have a similar situation for the singular intersection case following
Lemma 2.13. We have the matrix U to represent the intersection of the two sub-
spaces, where each subspace represents one of the cliques, oy or as. However, this is
not equivalent to uniquely representing the union of the two cliques, oy or as, since
there is an extra column in U compared to the nonsingular case. In addition, since
rank(B) = r—1, then JU3V is not necessarily full-column rank. Therefore, there may
be infinite solutions for C' in Remark 2.12; any C € (JUgV)! (QDY?) + N (JUsV)
will give us a solution. Moreover, these solutions will not necessarily satisfy
K(UC)UC)T) = D[ag U ag]. We now see that we can continue and use the U
to represent a set of cliques rather than just a; U ap. Alternatively, we can use other
relevant distance equality constraints or lower bound constraints from the radio range
R to determine the correct C' in order to get the correct number of columns for U; we

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2696 N. KRISLOCK AND H. WOLKOWICZ

can then get the correct completion of D[y U ag] if exactly one of the two possible
completions with embedding dimension r is feasible.

THEOREM 2.14. Let the hypotheses of Theorem 2.10 hold with the special case
that UiTUi =1, Uery1 = aye for i = 1,2. In addition, let U be defined by one of the
expressions in (2.17) in Lemma 2.13. Fori = 1,2, let 3 C 6; C a; and A; == JUs,V,
where Us, == U(8;,:). Furthermore, let B; := K'(D[8;]), define the linear system

A ZAT = B,

(2.20) AzAT — By

and let Z € S be a particular solution of this system (2.20). If the embedding di-
mensions of D[d1] and D[83] are both r but the embedding dimension of D := D|f] is
r — 1, then the following holds:
1. dimN(A4;) =1 fori=1,2.
2. Fori=1,2, letn; € N(A;), |nill2 = 1, and AZ := nynd +nonT. Then Z is
a solution of the linear system (2.20) if and only if

(2.21) Z=Z+71AZ for someT € R.

3. There are at most two nonzero solutions, 71 and T2, for the generalized eigen-
value problem —AZv = 17Zv, v #0. Set Z; == Z + T%AZ fori=1,2. Then

Dlay U] € {(K(OVZVTUT) i =1,2}.

Proof. We follow a similar proof as in the nonsingular case. For simplicity, we
assume that 6; = «; for i = 1,2 (choosing smaller §; can reduce the cost of solving
the linear systems).

That a particular solution Z exists for the system (2.20) follows from the fact
that U provides a representation for the intersection of the two faces (or the union of
the two cliques).

Since the embedding dimension of D is 7 — 1, we have rank(B) = r — 1. Further-
more, we have Be =0 and B € Sf‘, implying that || > r. Without loss of generality
and for simplicity, we assume that | 3] = r. Therefore, there exists 0 # u; € N(U}’) for
i =1,2. From Lemma 2.13, we can assume that we maintain UiTUi =1, Uier+1 = qe
for some «; # 0 for i = 1,2. Therefore, the action of V is equivalent to removing the
r + 1 column of U;. We can then explicitly use u; to write down n; € N'(4;). By
construction, we now have A;(nynd +nanT)AT =0 fori =1,2.

From the first expression for U in (2.17), we see that the choices for n; and ns
in the first part are in the appropriate nullspaces. The dimensions follow from the
assumptions on the embedding dimensions.

The second part now follows from the definition of the general solution of a linear
system of equations; i.e., the sum of a particular solution with any solution of the
homogeneous equation.

The third part now follows from the role that U plays as a representation for the
union of the two cliques. O

Remark 2.15. As above in the nonsingular case, a more efficient way to calculate
Z uses the full rank factorization

B; = QDY/? (Q-Dl/2)T QTQ;=1,, DieS.., i=12
i i) i Wi — A i 4+ — L4

(We have assumed that both have embedding dimension r, although we need only
one that does.) We solve the equations A;C' = (QiDl-l/Q)Qi, Q:QT =1 fori=1,2 for

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2697

the unknowns C, and Q; for i = 1,2. Then a particular solution Z in (2.20) can be
found from Z = CCT. Note that the additional orthogonal matrices @Q; for i = 1,2
are needed since they still allow A;C(A;C)T = B; for i = 1,2. Also, without loss of
generality, we can assume Q1 = I.

2.3. Clique initialization and node absorption. Using the above clique re-
ductions, we now consider techniques that allow one clique to grow/absorb other
cliques. This applies Theorem 2.10. We first consider an elementary and fast tech-
nique to find some of the existing cliques.

LEMMA 2.16. For each i € {1,...,n}, use half the radio range, and define the
set

C; = {jE {1,...,n}:Dij < (R/Q)Z}

Then each C; corresponds to a clique of sensors that are within radio range of each
other.

Proof. Let j,k € C; for a given ¢ € {1,...,n}. An elementary application of the
triangle inequality shows that \/(Djx) < v/(Dj;) + /(Dri) < R. O

We can now assume that we have a finite set of indices C C Z, corresponding
to a family of cliques, {C;};cc. We can combine cliques using the reductions given
in Theorems 2.10 and 2.14. We now see how a clique can grow further by absorbing
individual sensors; see Figure 2.4.

J
F1a. 2.4. Absorption with intersection having embedding dimension .

COROLLARY 2.17. Let Cy for k € C be a given clique with node l ¢ Cy, B =
{J1,- -, Jr41} € Ck such that the distances Dyj,, for i =1,...,r + 1 are known. If

(2.22) rank KT (D[A]) =,

then 1 can be absorbed by the clique Cy and we can complete the missing elements in
column (row) | of D|Cy U {l}].

Proof. Let a1 := Ck, a2 := {j1,.--,Jr+1,1}, and B := a1 Nag = {j1,. .., Jr+1}-
Then the conditions in Theorem 2.10 are satisfied, and we can recover all the missing
elements in D[C), U {l}]. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2698 N. KRISLOCK AND H. WOLKOWICZ

2.3.1. Node absorption with degenerate intersection. We can apply the
same reasoning as for the clique reduction in the nonsingular case, except now we
apply Theorem 2.14. To obtain a unique completion, we test the feasibility of the two
possible completions against any related distance equality constraints or, if included,
any related lower bound inequality constraints. See Figure 2.5.

J
Fic. 2.5. Degenerate absorption with intersection with embedding dimension less than r.

COROLLARY 2.18. Let Cy for k € C be a given clique with node | ¢ Cy, 5 =
{j1,...jr} € Ck such that the distances Dyj, for i =1,...,r are known. If

(2.23) rank KT(D[F]) = r — 1,

then we can determine two possible completions of the distances. If exactly one of
these two completions is feasible, then I can be absorbed by the clique Cyx. We can also
complete the missing elements in column (row) I of D[C) U {l}].

Proof. Let oy := Ck, ag := {j1,...,4r, 1}, and B := a1 Naa = {j1,...,Jr}
Then the conditions in Theorem 2.14 are satisfied, and we can recover all the missing
elements in D[Cj U {{}]. 0

3. SNLSDPclique facial reduction algorithm and numerical results. Our
SNLSDPclique algorithm starts by forming a clique C; around each sensor ¢. If and
when we use this clique, we find a subspace representation from the r eigenvectors
corresponding to the r nonzero eigenvalues of B = KT (D[Cj]).

The algorithm then grows and combines cliques using Theorems 2.10 and 2.14
and Corollaries 2.17 and 2.18. In particular, we do not complete the EDM each time
we combine or grow cliques; i.e., we do not evaluate the missing distances. Instead,
we use the subspace representations of the corresponding faces of the SDP cone and
then find the intersection of the subspaces that represent the faces. This yields a
subspace representation of the new smaller face representing the union of two cliques.
This is based on Lemmas 2.9 and 2.13 and is therefore inexpensive.

Once we cannot, or need not, grow cliques, we complete the distances using
Corollary 2.11. This is also inexpensive. Finally, we rotate and translate the anchors
to their original positions using the approach outlined in [13]. We have provided an
outline of our facial reduction algorithm SNLSDPclique in Algorithm 1.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2699

ALGORITHM 1: SNLSDPclique A FACIAL REDUCTION ALGORITHM.

input : Partial n x n EDM D,, and anchors A € R™*";
output: X € RI%I*" where C; is the largest final clique that contains the
anchors;

1 Let C:={1,...,n+1};
2 Let {C;}icc be a family of cliques satisfying i € C; for alli =1,...,n; /* For

example, by Lemma 2.16, we could choose C;:={j: (D,);; < (R/2)?}

for i=1,...,n. Alternatively, we could simply choose C;:= {i} for
i=1,...,n. x*/

Let Cpy1:={n—m+1,...,n}; /* Cpy1 is the clique of anchors */
/* GrowCliques */
Choose MAXCLIQUESIZE > r + 1; /* For example,

MAXCLIQUESIZE := 3(r + 1) */

5 for i € C do

while (|C;| < MAXCLIQUESIZE) and (3 a node j adjacent to all nodes in

CZ) do
| C,:=C,U{j}
end
9 end
/* ComputeFaces */
10 for i € C do
11 Compute Up, € RIC:*+1) o represent face for clique Cj; /* see
Theorem 2.3 */
/* Alternatively, wait to compute Up, when first needed. This
can be more efficient since Up, is not needed for every
clique. x/
12 end
13 repeat
14 if |C; NCj| >r+1 for some i,j € C, then
15 | RigidCliqueUnion(C;,C;); /* see Algorithm 2 */
16 else if |C; NN ()] > 7+ 1 for some i € C and node j, then
17 | RigidNodeAbsorption(C},j); /* see Algorithm 3 */
18 else if |C; N Cj| =7 for some i,j € C, then
19 | NonRigidCliqueUnion(C;,C}); /* see Algorithm 4 */
20 else if |C; NN (j)| = for some i € C and node j, then
21 | NonRigidNodeAbsorption(C},j5); /* see Algorithm 5 */
22 end
23 until not possible to decrease |C| or increase |C;| for some i € C;

24
25
26

27

28
29
30
31

Let C; be the largest clique that contains the anchors;
if clique C; contains some sensors, then

Compute a point representation P € RIC*" for the clique Cj; /* see
Cor. 2.11 */
Compute positions of sensors X € RUIC:I=)>" iy clique C; by rotating P
to align with anchor positions A € R™*"; /* see Ding et al. [13,
Method 3.2] */
return X;

else

| return X :=0;
end

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2700 N. KRISLOCK AND H. WOLKOWICZ

ALGORITHM 2: RigidCliqueUnion.

input : Cliques C; and Cj such that |C; N Cj| > r+1;

Load Up, € RI% X1 and Up, € RI*("+1) representing the faces
corresponding to the cliques C; and C}, respectively;

Compute U € RICUC X1 ysing one of the two formulas in (2.13) from
Lemma 2.9, where U; = Up,, Uz = Up,, and k = |C; N C}j|; /* see
Theorem 2.7 */

Update C; := C; U Cy;

4 Update Up, := U,
5 Update C:=C\ {j};

ALGORITHM 3: RigidNodeAbsorption.

=

input : Clique C; and node j such that |C; "N (j)] > r + 1;

Load Up, € RICiI*(r+1) representing the face corresponding to clique Cj;

2 if C; NN (j) is not a clique in the original graph, then

Use Up, to compute a point representation P; € RICi1X" of the sensors in
Ci;

/* see Cor. 2.11 */
Use P; to compute the distances between the sensors in C; NN (5);

5 end
6 Use the distances between the sensors in (C; NN (5)) U {j} to compute the

matrix Up, € RUGONOGIFDX(+1) representing the face corresponding to the

clique (C; NN () U{s}; /* see Theorem 2.3 */
Compute U € RUCIHDXH1) ysing one of the two formulas in (2.13) from
Lemma 2.9, where Uy = Up,, Uy = Up,, and k = |C; NN (j)]; /* see

Theorem 2.7 */

8 Update C; := C; U {j};
9 Update Up, :=U,;

ALGORITHM 4: NonRigidCliqueUnion.

input : Cliques C; and Cj; such that |C; N Cj| =;

Load Up, € RICI*(+1) and Us, € RICi 1% (r+1) representing the faces
corresponding to the cliques C; and C}, respectively;
Using Up, and Ug,, find the two point representations of the sensors in
C; U Cj;
/* see Theorem 2.14 */

3 if ezactly one of these two point representations is feasible, then

o N O o«

Use the feasible point representation to compute U € RICiVC; X (r+1)

representing the face corresponding to the clique C; U Cj; /* see
Theorem 2.3 */

Update Ol = CZ U Oj;

Update Up, := U;

Update C :=C\ {j};

end

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2701

ALGORITHM 5: NonRigidNodeAbsorption.
input : Clique C; and node j such that |C; NN (5)| = r;

Load Up, € RICiIX(r+1) representing the face corresponding to clique Cj;
2 if C; NN(j) is not a clique in the original graph, then
Use Up, to compute a point representation P; € RICilxr
Ci;

=

of the sensors in

/* see Cor. 2.11 %/
Use P; to compute the distances between the sensors in C; NN (5);
5 end
6 Use the distances between the sensors in (C; NN (5)) U {j} to compute the
matrix Up; € RUCAN@)I+1)x(r+1) representing the face corresponding to the
clique (C; NN(5) U {j}; /* see Theorem 2.3 */
7 Using Up, and Up,, find the two point representations of the sensors in
Ciu{jh
/* see Theorem 2.14 */
8 if exactly one of these two point representations is feasible, then
Use the feasible point representation to compute U € RIC:VC; X (r+1)
representing the face corresponding to the clique C; U {j}; /* see
Theorem 2.3 */
10 Update C; := C; U{j};
11 Update Up, := U;
12 end

3.1. Numerical tests. Our tests are on problems with sensors and anchors ran-
domly placed in the region [0, 1]” by means of a uniform random distribution. We vary
the number of sensors from 2000 to 10000 in steps of 2000 and the radio range R from
.07 to .04 in steps of —.01. We also include tests on very large problems with 20000
to 100000 sensors. In our tests, we did not use the lower bound inequality constraints
coming from the radio range; we used only the equality constraints coming from the
partial EDM. Our tests were done using the 32-bit version of MATLAB R2009b on a
laptop running Windows XP with a 2.16 GHz Intel Core 2 Duo processor and with 2
GB of RAM. The source code used for running our tests has been released under a GNU
General Public License and has been made available from the authors’ websites.

We, in particular, emphasize the low CPU times and the high accuracy of the
solutions we obtain. Our algorithm compares well with the recent work in [23, 28],
where they use, for example, R = .06 for n = 1000, 2000, R = .035 for n = 4000, and
R = .02 for n = 10000, and they also use 10% of the sensors as anchors and limit the
degree for each node in order to maintain a low sparsity for the graph.

Tables 3.1, 3.2, and 3.3 shown later in this paper contain the results of our tests
on noiseless problems. These tables contain the following information:

1. # sensors, r, # anchors, and R: We use m = (#anchors), n =
(#sensors) + (#anchors), and r to generate ten random instances of
P1,---,Pn € R"; the last m points are taken to be the anchors. For each
of these ten instances and for each value of the radio range R > 0, we gener-
ate the n x n partial EDM D, according to

(Dp)ij = lpi —p;lI*> if |pi — pj|l < R or both p; and p; are anchors,
brw unspecified otherwise.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2702 N. KRISLOCK AND H. WOLKOWICZ

2. # Successful Instances: An instance was called successful if at least some,
if not all, of the sensors could be positioned. If, by the end of the algorithm,
the largest clique containing the anchors did not contain any sensors, then
none of the sensor positions could be determined, making such an instance
unsuccessful.

3. Average Degree: We have found that the average degree of the nodes of a
graph is a good indicator of the percentage of sensors that can be positioned.
In the results reported, we give the average of the average degree over all ten
instances.

4. # Sensors Positioned: We give the average number of sensors that could be
positioned over all ten instances. Note that below we indicate that the error
measurements are computed only over the sensors that could be positioned.

5. CPU Time: This indicates the average running time of SNLSDPclique over
all ten instances. This time does not include the time to generate the random
problems, but it does include all aspects of Algorithm 1, including the time
for GrowCliques and ComputeFaces at the beginning of the algorithm.

6. Max Error: This is the maximum distance between the positions of the
sensors found and the true positions of those sensors. This is defined as

Max Error := max ||p; — pEMEHQ-

i positioned
7. RMSD: This is the root-mean-square deviation (RMSD) of the positions of
the sensors found and the true positions of those sensors. This is defined as

1

1 3
RMSD: = | —— ; — true |2 .
(# positioned Z Ipi — pi |2>

i positioned

We note that for each set of ten random instances, the Max Error and RMSD values
reported are only the average Max Error and average RMSD values over the successful
instances; this is due to the fact that an unsuccessful instance will have no computed
sensor positions to compare with the true sensor positions.
We have three sets of tests on noiseless problems as follows:
1. In Table 3.1 we report the results of using only the RigidCliqueUnion step
(see Figure 2.2) to solve our random problems.
2. In Table 3.2 we report the results of increasing the level of our algorithm to
use both the RigidCliqueUnion and RigidNodeAbsorb steps (see Figures 2.2
and 2.4) to solve the random problems. We see that the number of sensors
localized has increased and that there has been a small, almost insignificant,
increase in the CPU time.
3. In Table 3.3 we report the results of increasing the level of our algorithm to
use steps RigidCliqueUnion, RigidNodeAbsorb, and NonRigidCliqueUnion
(see Figures 2.2, 2.4, and 2.3, respectively) to solve the random problems,
further increasing the class of problems that we can complete.
Testing a version of our algorithm that uses all four steps is still ongoing. From
the above results, we can see that our facial reduction technique works very well for
solving many instances of the SNL problem. We are confident that the results of our
ongoing tests will continue to show that we are able to solve an even larger class of
SNL problems.

3.2. Noisy data and higher dimensional problems. The above algorithm
was derived based on the fact that the SNL had exact data, i.e., for a given clique

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2703

TABLE 3.1
Results of Algorithm 1 on noiseless problems, using step RigidCliqueUnion. The values for
Average Degree, # Sensors Positioned, and CPU Time are averaged over ten random instances.
The values for Max Error and RMSD wvalues are averaged over the successful instances.

Successful | Average | # Sensors

sensors| r | # anchors| R Instances | Degree | Positioned | CPU Time|Max Error| RMSD
2000 2 4 .07 9/10 14.5 1632.3 1ls 6e-13 2e-13
2000 2 4 .06 5/10 10.7 720.0 1ls le-12 4e-13

2000 2 4 .05 0/10 7.5 0.0 1ls - -

2000 2 4 .04 0/10 4.9 0.0 1ls - -
4000 2 4 .07 10/10 29.0 3904.1 2s 2e-13 6e-14
4000 2 4 .06 10/10 21.5 3922.3 2s 6e-13 2e-13
4000 2 4 .05 10/10 15.1 3836.2 2s 4e-13 2e-13
4000 2 4 .04 1/10 9.7 237.8 2s le-13 4e-14
6000 2 4 .07 10/10 43.5 5966.9 4s 3e-13 8e-14
6000 2 4 .06 10/10 32.3 5964.4 4s 2e-13 Te-14
6000 2 4 .05 10/10 22.6 5894.8 3s 3e-13 le-13
6000 2 4 .04 10/10 14.6 5776.9 3s Te-13 2e-13
8000 2 4 .07 10/10 58.1 7969.8 6s 3e-13 8e-14
8000 2 4 .06 10/10 43.0 7980.9 6s 2e-13 8e-14
8000 2 4 .05 10/10 30.1 7953.1 5s 6e-13 2e-13
8000 2 4 .04 10/10 19.5 7891.0 5s 6e-13 2e-13
10000 |2 4 .07 10/10 72.6 9974.6 9s 3e-13 Te-14
10000 |2 4 .06 10/10 53.8 9969.1 8s 9e-13 le-13
10000 |2 4 .05 10/10 37.7 9925.4 7s 5e-13 2e-13
10000 |2 4 .04 10/10 24.3 9907.2 7s 3e-13 le-13
20000 |2 4 .030 10/10 27.6 19853.3 17 s Te-13 2e-13
40000 |2 4 .020 10/10 24.7 39725.2 50 s 2e-12 6e-13
60000 |2 4 .015 10/10 21.0 59461.1 1m52s le-11 8e-13
80000 |2 4 .013 10/10 21.0 79314.1 3m24s 4e-12 le-12
100000 |2 4 .011 10/10 18.8 991744 | 5m42s 2e-10 9e-11

«, we had an exact correspondence between the EDM and the corresponding Gram
matrix B = K'(D[a]). To extend this to the noisy case, we apply a naive, greedy
approach. When the Gram matrix B is needed, then we use the best rank r positive
semidefinite approximation to B using the well-known Eckert—Young result; see, e.g.,
[16, Corollary 2.3.3].

LemMma 3.1. Suppose that B € S™ with spectral decomposition B =
- Nwgul Ay > ... > \,. Then the best positive semidefinite approzimation with
at most rank v is By =Y, (A)+wul, where (A;)+ = max{0, \;}.

We follow the multiplicative noise model in, e.g., [6, 8, 20, 23, 26, 28], i.e., the
noisy (squared) distances D;; are given by

2
Dij = (llpi — p;ll(1 + oeiz))”

where o > 0 is the noise factor and €;; is chosen from the standard normal distribution
N (0,1). We include preliminary test results in Table 3.4 for problems with 0-1%
noise with embedding dimension r = 2, 3. Note that we do not apply the noise to the
distances between the anchors.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2704 N. KRISLOCK AND H. WOLKOWICZ

TABLE 3.2
Results of Algorithm 1 on mnoiseless problems, wusing steps RigidCliqueUnion and
RigidNodeAbsorb. The values for Average Degree, # Sensors Positioned, and CPU Time are aver-
aged over ten random instances. The values for Max Error and RMSD values are averaged over the
successful instances.

Successful | Average| # Sensors
sensors| r |# anchors| R Instances | Degree | Positioned | CPU Time|Max Error| RMSD
2000 2 4 .07 10/10 14.5 2000.0 1ls 6e-13 2e-13
2000 2 4 .06 10/10 10.7 1999.9 1ls 8e-13 3e-13
2000 2 4 .05 10/10 7.5 1996.7 1ls 9e-13 2e-13
2000 2 4 .04 9/10 4.9 1273.8 3s 2e-11 4e-12
4000 2 4 .07 10/10 29.0 4000.0 2s 2e-13 6e-14
4000 2 4 .06 10/10 21.5 4000.0 2s 6e-13 2e-13
4000 2 4 .05 10/10 15.1 3999.9 2s 6e-13 3e-13
4000 2 4 .04 10/10 9.7 3998.2 2s le-12 5e-13
6000 2 4 .07 10/10 43.5 6000.0 4s 3e-13 8e-14
6000 2 4 .06 10/10 32.3 6000.0 4s 2e-13 Te-14
6000 2 4 .05 10/10 22.6 6000.0 3s 3e-13 le-13
6000 2 4 .04 10/10 14.6 5999.4 3s 8e-13 3e-13
8000 2 4 .07 10/10 58.1 8000.0 6s 3e-13 Te-14
8000 2 4 .06 10/10 43.0 8000.0 5s 2e-13 8e-14
8000 2 4 .05 10/10 30.1 8000.0 5s 6e-13 2e-13
8000 2 4 .04 10/10 19.5 8000.0 4s Te-13 2e-13
10000 |2 4 .07 10/10 72.6 10000.0 9s 3e-13 Te-14
10000 |2 4 .06 10/10 53.8 10000.0 8s 3e-13 le-13
10000 |2 4 .05 10/10 37.7 10000.0 7s 5e-13 2e-13
10000 |2 4 .04 10/10 24.3 10000.0 6s 3e-13 le-13
20000 |2 4 .030 10/10 27.6 20000.0 17 s Te-13 2e-13
40000 |2 4 .020 10/10 24.7 40000.0 51s 2e-12 6e-13
60000 |2 4 .015 10/10 21.0 60000.0 1m53s 2e-12 Te-13
80000 |2 4 .013 10/10 21.0 80000.0 3m2ls 4e-12 le-12
100000 |2 4 .011 10/10 18.8 100000.0 | 5m 46 s 2e-10 9e-11
TABLE 3.3

Results of Algorithm 1 on noiseless problems, using steps RigidCliqueUnion, RigidNodeAbsorb,
and NonRigidCliqueUnion. The values for Average Degree, # Sensors Positioned, and CPU Time
are averaged over ten random instances. The values for Max Error and RMSD values are averaged
over the successful instances. The results of the tests with more than 6000 sensors remain the same
as in Table 3.2.

Successful | Average | # Sensors
sensors| r | # anchors| R Instances | Degree | Positioned | CPU Time|Max Error| RMSD
2000 2 4 .07 10/10 14.5 2000.0 ls 6e-13 2e-13
2000 2 4 .06 10/10 10.7 1999.9 1s 8e-13 3e-13
2000 2 4 .05 10/10 7.5 1997.9 ls 9e-13 2e-13
2000 2 4 .04 10/10 4.9 1590.8 5s 2e-11 Te-12
4000 2 4 .07 10/10 29.0 4000.0 2s 2e-13 6e-14
4000 2 4 .06 10/10 21.5 4000.0 2s 6e-13 2e-13
4000 2 4 .05 10/10 15.1 3999.9 2s 6e-13 3e-13
4000 2 4 .04 10/10 9.7 3998.2 3s le-12 5e-13
6000 2 4 .07 10/10 43.5 6000.0 4s 3e-13 8e-14
6000 2 4 .06 10/10 32.3 6000.0 4s 2e-13 Te-14
6000 2 4 .05 10/10 22.6 6000.0 3s 3e-13 le-13
6000 2 4 .04 10/10 14.6 5999.4 3s 8e-13 3e-13

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2705

TABLE 3.4
Results of Algorithm 1 for problems with noise and r = 2,3, using RigidCliqueUnion and
RigidNodeAbsorb. The values for Average Degree, # Sensors Positioned, CPU Time, Max Error,
and RMSD are averaged over ten random instances.

Average | # Sensors
o # sensors | r | # anchors || R | Degree | Positioned | CPU Time | Max Error | RMSD
0 2000 2 4 .08 18.8 2000.0 1ls le-13 3e-14
le-6 2000 2 4 .08 18.8 2000.0 1ls 2e-04 4e-05
le-4 2000 2 4 .08 18.8 2000.0 ls 2e-02 4e-03
le-2 2000 2 4 .08 18.8 2000.0 1ls 2e+01 3e+00
0 6000 2 4 .06 32.3 6000.0 4s 2e-13 Te-14
le-6 6000 2 4 .06 32.3 6000.0 4s 8e-04 3e-04
le-4 6000 2 4 .06 32.3 6000.0 4s 9e-02 3e-02
le-2 6000 2 4 .06 32.3 6000.0 4s 2e+01 3e+00
0 10000 2 4 .04 24.3 10000.0 6s 3e-13 le-13
le-6 10000 2 4 .04 24.3 10000.0 6s 5e-04 2e-04
le-4 10000 2 4 .04 24.3 10000.0 6s 5e-02 2e-02
le-2 10000 2 4 .04 24.3 10000.0 7s 4e4-02 le+02
0 2000 3 5 .20 26.6 2000.0 1ls 3e-13 8e-14
le-6 2000 3 5 .20 26.6 2000.0 1ls Te-04 2e-04
le-4 2000 3 5 .20 26.6 2000.0 1ls 8e-02 2e-02
le-2 2000 3 5 .20 26.6 2000.0 ls 2e+-03 4e+02
0 6000 3 5 .15 35.6 6000.0 5s 3e-13 6e-14
le-6 6000 3 5 .15 35.6 6000.0 5s 1le-03 2e-04
le-4 6000 3 5 .15 35.6 6000.0 5s le-01 2e-02
le-2 6000 3 5 .15 35.6 6000.0 6s 9e+01 9e-+00
0 10000 3 5 .10 18.7 10000.0 9s 3e-12 2e-13
le-6 10000 3 5 .10 18.7 10000.0 10 s 4e-02 2e-03
le-4 10000 3 5 .10 18.7 10000.0 10 s 2e+4-00 8e-02
le-2 10000 3 5 .10 18.7 10000.0 10 s 4e4-02 le+01

3.3. Comparison with existing algorithms. We now compare our running
times and accuracy to the existing SDP-based algorithms. Currently, the Sparse Full
SDP (SFSDP) method of [20, 21] and the Log-barrier Penalty Coordinate Gradient
Descent (LPCGD) method of [23] are the most efficient SDP-based methods available.
Before these methods came out, the Edge-based SDP (ESDP) method from [28] was
the most efficient SDP-based algorithm for solving the sensor network localization
problem.

First we note that most of the tests run in [21] and [23] have 10% of the nodes in
the network as anchors and 90% as sensors. The reason for having so many anchors
is that SDP-based methods typically require the sensors to be in the convex hull of
the anchors in order to return good solutions. If the anchors are chosen randomly,
this requirement can be met by having many anchors. However, we found that our
SNLSDPclique algorithm is capable of returning very good solutions even with only
a few randomly placed anchor nodes. Indeed, we ran the SFSDP code on random
instances like those in our tests and found that sensors far away from the convex hull
of the anchors were very poorly localized. Therefore, a side-by-side comparison is
difficult since the SFSDP method requires many anchors, whereas we need only a few
anchors.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2706 N. KRISLOCK AND H. WOLKOWICZ

Another major difference between the SFSDP and LPCGD methods and our
SNLSDPclique algorithm is that they require very sparse problems in order to run
efficiently (for example, edge-sparsification heuristics are used in [21] and [23] to speed
up their computations), whereas we are able to handle problems with many distance
constraints quite efficiently. In fact, we can see from Table 3.3 that having too few
distance constraints can be a problem for us since we may not be able to localize all
the sensors in the network. Again, this fact makes a side-by-side comparison of our
algorithm with the SFSDP and LPCGD methods difficult.

From the results in [23], we see that the best variant of the LPCGD method
requires about twice as much CPU time as the times reported in Table 3.2 for problems
with up to 10, 000 nodes; moreover, the LPCGD method can attain RMSD values only
on the order of le-3 for noiseless problems. However, we see in Table 3.2 that our
SNLSDPclique algorithm attains RMSD values on the order of le-13 for noiseless
problems, regardless of problem size. For noisy problems with a 1% noise factor, the
LPCGD method again attains RMSD values on the order of 1e-3 (see [23]); however,
from Table 3.4 we see that our SNLSDPclique algorithm can attain RMSD values only
on the order of 1 to 100 for problems with a 1% noise factor.

From the latest results in [21], we see that the SFSDP method is able to attain
RMSD values on the order of le-3 for two-dimensional problems with noise factors
from 1-20%; however, the computation times are roughly six minutes for a problem
with 6000 nodes with four anchors at the corners of [0, 1]%, three minutes for a prob-
lem with 9000 sensors and 1000 randomly placed anchors, and nine minutes for a
problem with 18000 sensors and 2000 randomly placed anchors. The CPU times we
obtain for the SNLSDPclique algorithm in Table 3.2 are orders of magnitude smaller
than the running times for the SFSDP method, although the RMSD values we obtain
for noisy problems in Table 3.4 are much larger than those reported in [21] for the
SFSDP method, unless the noise factor is very small, say, less than le-6.

In conclusion, we find that our SNLSDPclique algorithm clearly outperforms the
existing methods in terms of CPU time and accuracy on problems with very low noise.
However, our method currently does not do anything special to handle noisy problems
(for example, no refinement technique was used in our tests), and at this time we find
that it is not competitive with the existing methods for accurately solving problems
with medium to high noise. We feel confident that combining our facial reduction
algorithm together with techniques for handling noise will produce a code that will
be highly competitive in terms of both CPU time and solution accuracy.

4. Conclusion. The SDP relaxation of SNL is highly (implicitly) degenerate
since the feasible set of this SDP is restricted to a low dimensional face of the
SDP cone, resulting in the failure of the Slater constraint qualification (strict fea-
sibility). We take advantage of this degeneracy by finding explicit representations of
intersections of faces of the SDP cone corresponding to unions of intersecting cliques.
In addition, from these representations we force further degeneracy in order to find
the minimal face that contains the optimal solution. In many cases, we can efficiently
compute the exact solution to the SDP relaxation without using any SDP solver.

In some cases it is not possible to reduce the problem down to a single clique. How-
ever, in these cases, the intersection of the remaining faces returned by SNLSDPclique
will produce a face containing the feasible region of the original problem. This face
can then be used to reduce the problem before passing the problem to an SDP solver,
where, for example, the trace of the semidefinite matrix can be maximized [7] to try
to keep the embedding dimension small. As an example, if the problem is composed

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPLICIT SNL USING SEMIDEFINITE FACIAL REDUCTIONS 2707

of disjoint cliques, then Corollary 2.6 can be used to significantly reduce the problem
size. This reduction can transform a large intractable problem into a much smaller
problem that can be solved efficiently via an SDP solver.

[1]

2]

[4]

[5]

[6]

[7]

(8]

[10]

[11]
[12]
[13]

[14]

ool S

M.

0w oW oo o

REFERENCES

. AL-HoMIDAN AND H. WOLKOWICZ, Approximate and exact completion problems for Eu-

clidean distance matrices using semidefinite programming, Linear Algebra Appl., 406
(2005), pp. 109-141.

. AvLrakiH, M. F. ANjos, V. PicciaLni, AND H. WoLkowicz, Fuclidean distance matrices,

semidefinite programming, and sensor network localization, Port. Math., to appear.

. ALFAKIH, A. KHANDANI, AND H. WOLKOWICZ, Solving FEuclidean distance matriz completion

problems via semidefinite programming, Comput. Optim. Appl., 12 (1999), pp. 13-30.

. AMES AND S. A. VAvAsis, Nuclear Norm Minimization for the Planted Clique and Biclique

Problems, available online from http://arxiv.org/abs/0901.3348.

. Biswas, Semidefinite Programming Approaches to Distance Geometry Problems, Ph.D. the-

sis, Stanford University, Stanford, CA, 2007.

. Biswas, T.-C. LianGg, K.-C. ToH, T.-C. WANG, AND Y. YE, Semidefinite programming

approaches for sensor network localization with noisy distance measurements, IEEE Trans.
Autom. Sci. Eng., 3 (2006), pp. 360-371.

. Biswas, K.-C. ToH, AND Y. YE, A distributed SDP approach for large-scale noisy anchor-

free graph reailzation with applications to molecular conformation, SIAM J. Sci. Comput.,
30 (2008), pp. 1251-1277.

. Biswas, T.-C. L1aN, T.-C. WANG, AND Y. YE, Semidefinite programming for ad hoc wireless

sensor network localization, ACM Trans. Sen. Netw., 2 (2006), pp. 188-220.

. Biswas AND Y. YE, A distributed method for solving semidefinite programs arising from ad

hoc wireless sensor network localization, in Multiscale Optimization Methods and Appli-
cations, Nonconvex Optim. Appl. 82, Springer, New York, 2006, pp. 69-84.

W. CARTER, H. H. JIN, M. A. SAUNDERS, AND Y. YE, SpaseLoc: An adaptive subproblem
algorithm for scalable wireless sensor network localization, SIAM J. Optim., 17 (2006),
pp. 1102-1128.

. CassioL1, Global Optimization of Highly Multimodal Problems, Ph.D. thesis, Universita di

Firenze, Firenze, Italy, 2008.

. DATTORRO, Convex Optimization € Euclidean Distance Geometry, Meboo Publishing, Palo

Alto, CA, 2005.

. DiNGg, N. KRISLOCK, J. QIAN, AND H. WOLKOWICZ, Sensor network localization, Euclidean

distance matriz completions, and graph realization, Optim. Eng., 11 (2010), pp. 45-66.

. EREN, D. K. GOLDENBERG, W. WHITELEY, Y. R. YANG, A. S. MORSE, B. D. O. ANDERSON,

AND P. N. BELHUMEUR, Rigidity, computation, and randomization in network localization, in
IEEE INFOCOM 2004—The Conference on Computer Communications, 23rd Annual Joint
Conference of the IEEE Computer and Communications Societies, 4 (2004), pp. 2673—-2684.

. FEIGE AND R KRAUTHGAMER, Finding and certifying a large hidden clique in a semi-random

graph, Random Structures Algorithms, 16 (2000), pp. 195-202.
H. GorLuB AND C. F. VAN LoAN, Matriz Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

. HENDRICKSON, The Molecule Problem: Determining Conformation from Pairwise Dis-

tances, Ph.D. thesis, Cornell University, Ithaca, NY, 1991.

. HENDRICKSON, Conditions for unique graph realizations, SIAM J. Comput., 21 (1992),

pp. 65-84.

. JIN, Scalable Sensor Localization Algorithms for Wireless Sensor Networks, Ph.D. thesis,

Toronto University, Toronto, Ontario, Canada, 2005.

. KM, M. KoJima, AND H. WAKI, Ezploiting sparsity in SDP relazation for sensor network

localization, SIAM J. Optim., 20 (2009), pp. 192-215.

. KM, M. Kosima, H. WAKI, AND M. YAMASHITA, A Sparse Version of Full Semidefinite

Programming Relazation for Sensor Network Localization Problems, Technical Report B-
457, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo, 2009.

. PATAKI, Geometry of semidefinite programming, in Handbook of Semidefinite Programming:

Theory, Algorithms, and Applications, H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds.,
Kluwer Academic Publishers, Boston, MA, 2000.

. PoNG AND P. TSENG, (Robust) Edge-based semidefinite programming relazation of sensor

network localization, Math. Program., published online (2010).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 10/24/12 to 129.97.58.73. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2708 N. KRISLOCK AND H. WOLKOWICZ

J. B. SAXE, Embeddability of weighted graphs in k-space is strongly NP-hard, in Proceedings
of the 17th Allerton Conference on Communications, Control, and Computing, University
of Illinois at Urbana-Champaign, 1979, pp. 480-489.

A. M.-C. So AND Y. YE, Theory of semidefinite programming for sensor network localization,
Math. Program., 109 (2007), pp. 367-384.

P. TSENG, Second-order cone programming relazation of sensor network localization, STAM J.
Optim., 18 (2007), pp. 156-185.

R. J. VANDERBEI AND Y. BING, The simplest semidefinite programs are trivial, Math. Oper.
Res., 20 (1995), pp. 590-596.

Z. WANG, S. ZHENG, Y. YE, AND S. BOYD, Further relaxations of the semidefinite programming
approach to sensor network localization, SIAM J. Optim., 19 (2008), pp. 655-673.

H. WorLkowicz, Ezplicit solutions for interval semidefinite linear programs, Linear Algebra
Appl., 236 (1996), pp. 95-104.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

