
Extending cover inequalities for the quadratic

knapsack problem to relaxations in lifted space

Marcia Fampa
Universidade Federal do Rio de Janeiro, Brazil

fampa@cos.ufrj.br

Daniela Lubke
Universidade Federal do Rio de Janeiro, Brazil

danielalubke@cos.ufrj.br

Fei Wang
Royal Institute of Technology, Sweden.

fewa@kth.se

Henry Wolkowicz
University of Waterloo, Canada

hwolkowicz@uwaterloo.ca

Abstract

We address the binary quadratic knapsack problem (QKP), where the variable x ∈ {0, 1}n
indicates whether an item is selected for the knapsack or not. We consider relaxations of the
QKP in the symmetric matrix space determined by the lifting X := xxT , and present valid
inequalities for them on the matrix variable X, which are obtained by extending the well known
cover inequalities for the knapsack problem.
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1 Introduction

We address the binary quadratic knapsack problem, QKP ,

(QKP )
max xTQx
s.t. wTx ≤ c

x ∈ {0, 1}n,
(1)

where Q ∈ Sn is a symmetric n × n nonnegative integer profit matrix, w ∈ Zn++ is the vector of
positive integer weights for the items, and c ∈ Z++ is the knapsack capacity with c ≥ wi, for all
i ∈ N := {1, . . . , n}. The binary variable x indicates whether an item is chosen for the knapsack
or not, and the inequality in the model, known as a knapsack inequality, ensures that the selection
of items does not exceed the knapsack capacity. We note that any linear costs in the objective



can be included on the diagonal of Q by exploiting the {0, 1} constraints and, therefore, are not
considered.

The QKP was introduced in [? ] and was proved to be NP-Hard in the strong sense by reduction
from the clique problem. The quadratic knapsack problem is a generalization of the knapsack
problem, KP . The KP can be solved in pseudo-polynomial time using dynamic programming
approaches with complexity of O(nc).

The QKP appears in a wide variety of fields, such as biology, logistics, capital budgeting,
telecommunications and graph theory, and has received a lot of attention in the last decades.
Several papers have proposed branch-and-bound algorithms for the QKP and the main difference
between them is the method used to obtain upper bounds for the subproblems [? ? ? ? ?
? ]. The well known trade-off between the strength of the bounds and the computational effort
required to obtain them is intensively discussed in [? ], where semidefinite programming, SDP ,
relaxations proposed in [? ] and [? ] are presented as the strongest relaxations for the QKP.
The linear programming, LP , relaxation proposed in [? ], on the other side, is presented as
the most computationally inexpensive. Both the SDP relaxations and the LP relaxation have a
common feature, they are defined in the symmetric matrix lifted space determined by the equation
X = xxT , and by the replacement of the quadratic objective function in (1) with the linear function
in X, trace(QX). As the constraint X = xxT is nonconvex, it is relaxed by convex constraints on
the relaxations. The well known McCormick inequalities [? ], and also the semidefinite constraint
X − xxT � 0, or equivalently, Y � 0, where

Y :=

[
1 xT

x X

]
, (2)

have been extensively used to relax the nonconvex constraint X = xxT , in relaxations of the QKP.
In this work we present valid inequalities to strengthen relaxations in lifted space for the QKP ,

which are derived from cover inequalities for the KP. Taking advantage of the lifting X := xxT ,
we propose new valid inequalities, which can also be applied to more general relaxations of mixed-
integer linear and nonlinear programs that use the same lifting. We also discuss how cuts for the
relaxations can be obtained by separation algorithms for cover inequalities.

1.1 Preliminaries: knapsack polyhedron and cover inequalities

The knapsack polytope is the convex hull of the feasible points, KF := {x ∈ {0, 1}n : wTx ≤ c}.

Definition 1.1 (zero-one knapsack polytope).

KPol := conv(KF ) = conv{x ∈ {0, 1}n : wTx ≤ c}.

Proposition 1.2. The dimension
dim(KPol) = n,

and KPol is an independence system, i.e.,

x ∈ KPol, y ∈ {0, 1}n, y ≤ x =⇒ y ∈ KPol.

Cover inequalities were originally presented in [? ? ]. These inequalities can be used not only
for knapsack problems, KP, but also for more general mixed-integer linear programs.



Definition 1.3 (cover inequality, CI ). The subset C ⊆ N is a cover if it satisfies∑
j∈C

wj > c.

The (valid) CI is ∑
j∈C

xj ≤ |C| − 1.

The cover inequality is minimal if no proper subset of C is also a cover.

Definition 1.4 (extended CI, ECI ). Let w∗ := maxj∈C wj and define the extension of C as

E(C) := C ∪ {j ∈ N\C : wj ≥ w∗}.

The ECI is ∑
j∈E(C)

xj ≤ |C| − 1.

Definition 1.5 (lifted CI, LCI ). Given any minimal cover C, there exists at least one facet-
defining lifted CI , LCI of the form∑

j∈C
xj +

∑
j∈N\C

αjxj ≤ |C| − 1, (3)

where αj ≥ 0, ∀j ∈ N\C. Moreover, each such LCI dominates the extended CI.

Details about the computational complexity of LCI are presented in [? ]. Algorithm 1.1, from
[? ], shows how to derive a facet-defining LCI from a given minimal cover C.

Algorithm 1.1 Procedure to find LCI

Sort the elements in ascending wi order i ∈ N \ C, defining {i1, i2, . . . , ir}
For: t=1 to r

ζt = max
∑t−1

j=1 αijxij +
∑

i∈C xi
st

∑t−1
j=1wijxij +

∑
i∈C wixi ≤ c− wit

x ∈ {0, 1}|C|+t−1.
(4)

Set αit = |C| − 1− ζt.
End For

2 Valid inequalities

We are now interested in finding valid inequalities to strengthen relaxations of the QKP in the lifted
space determined by the lifting X := xxT . Let us denote by ConvRel, any convex relaxation of the
QKP in the lifted space, where the equation X = xxT was relaxed somehow, by convex constraints.
Let Y be defined as in (2). We initially note that if the inequality

τTx ≤ β (5)



is valid for the QKP, where τ ∈ Zn+ and β ∈ Z+, then, as x is nonnegative and X := xxT ,

Y

(
−β
τ

)
≤ 0 (6)

is a valid inequality for ConvRel.
For simplicity, we will say that the solution Ȳ of ConvRel satisfies (5) if it satisfies the corre-

sponding valid inequality (6).

2.1 Adding cuts to the relaxation

Our first idea is to iteratively obtain a CI , formulated as αTx ≤ eTα − 1, where α ∈ {0, 1}n and
e denotes the ones vector, which is most violated by the current solution Ȳ of ConvRel. More
specifically, we search for the CI that maximizes the maximum violation among the inequalities in
Ȳ cut(α) ≤ 0, where

cut(α) =

(
−eTα+ 1

α

)
.

To obtain such CI , we solve the following linear knapsack problems, for all i = 1, . . . , n+ 1, where
ei denotes the unit vector.

v∗i := max
α
{eTi Ȳ cut(α) : wTα ≥ c+ 1, α ∈ {0, 1}n}. (7)

If v∗ := maxi∈{1,...,n+1}{v∗i } > 0, the CI given by the corresponding solution of (7) is violated
by Ȳ . In this case, we apply Algorithm 1.1 to the CI obtained and lift it to a LCI , which is
formulated as (5). Finally, we add the corresponding valid inequality (6) to ConvRel.

Remark 2.1. It is worth noting that if Y ≥ 0 in ConvRel, then if Y satisfies the constraint (6)
derived from a LCI , Y also satisfies the constraints derived from a CI that can be lifted to the
LCI . Therefore, the dominance relation between LCI and CI is maintained on the corresponding
constraints on the variable Y .

2.2 New valid inequalities in the lifted space

As previously discussed, after finding any valid inequality in the form of (5) for the QKP , we may
add the constraint (6) to ConvRel. We note that besides (6), we can also generate stronger valid
inequalities in the lifted space by taking advantage of the lifting X := xxT . In the following, we
show how the idea can be applied to cover inequalities.

Let ∑
j∈Cl

xj ≤ β. (8)

be a valid inequality for KPol .
The inequality (8) can be either a cover inequality, CI , or an extended cover inequality, ECI ,

or a particular lifted cover inequality, LCI , where αj ∈ {0, 1}, ∀j ∈ N\C in (3). Furthermore, given
a general LCI , where αj ∈ Z+, for all j ∈ N\C, a valid inequality of type (8) can be constructed
by replacing each αj with min{αj , 1} in the LCI .



Definition 2.2 (Cover inequality in the lifted space, CILS ). Considering (8), we conclude that at
most

(
β
2

)
products of variables xixj, where i, j ∈ Cl, can be equal to 1. Therefore, we introduce the

following inequality on the lifted variable X, which we denote by CILS.∑
i,j∈Cl,i<j

Xij ≤
(
β

2

)
. (9)

Remark 2.3. When β = 1, the inequality (8) is well known as a clique cut, widely used to model
decision problems, and frequently used as a cut in branch-and-cut algorithms. We note that, if
β = 1, the inequality (9) makes it possible to fix

Xij = 0, for all i, j ∈ Cl, i < j.

Remark 2.4. A similar observation to Remark 2.1, is that, if Y ≥ 0 in ConvRel, then if Y
satisfies a CILS derived from a LCI , Y also satisfies any CILS derived from a CI that can be
lifted to the LCI . Therefore, such CILS derived from a LCI , dominates the CILS derived from
the CI .

Besides defining one cover inequality in the lifted space considering all possible pairs of indexes
in Cl, we can also define a set of cover inequalities in the lifted space, considering in each inequality,
a partition of the indexes in Cl into subsets of cardinality 2. In this case, the right hand side of the
inequalities is never bigger than β/2. The idea is better specified below.

Definition 2.5 (Set of cover inequalities in the lifted space, SCILS). Let Cl be the cover in the
valid inequality (8) for our QKP. Let

• Cls := {(i1, j1), . . . , (ip, jp)} be a partition of Cl, if |Cl| is even.

• Cls := {(i1, j1), . . . , (ip, jp)} be a partition of Cl \ {i0} for each i0 ∈ Cl, if |Cl| is odd and β is
odd.

• Cls := {(i0, i0), (i1, j1), . . . , (ip, jp)}, where {(i1, j1), . . . , (ip, jp)} is a partition of Cl \ {i0}, for
each i0 ∈ Cl, if |Cl| is odd and β is even.

In all cases, ik < jk for all k = 1, . . . , p.
The inequalities in the SCILS corresponding to (8) are given by∑

(i,j)∈Cls

Xij ≤
⌊
β

2

⌋
,

for all partitions Cls defined as above.

Finally, we extend the ideas presented above to the more general case of knapsack inequalities.
We note that the following discussion applies to a general LCI , where αj ∈ Z+, ∀j ∈ N\C.

Let ∑
j∈N

αjxj ≤ β. (10)

be a valid knapsack inequality for KPol , with αj , β ∈ Z+, β ≥ αj , ∀j ∈ N .



Definition 2.6 (Set of knapsack inequalities in the lifted space, SKILS). Let {C1, . . . , Cq} be
the partition of N , such that for every jk ∈ Ck, αjk assumes the same value α̃k in (10), for all
k = 1, . . . , q, i.e., αjr = αjs if jr, js ∈ Ck, for some k, and αjr 6= αjs, otherwise. The knapsack
inequality (10) can then be rewritten as

q∑
k=1

α̃k ∑
j∈Ck

xj

 ≤ β. (11)

Now, for k = 1, . . . , q, let Clk := {(ik1 , jk1), . . . , (ikpk , jkpk )}, where i < j for all (i, j) ∈ Clk , and

• Clk is a partition of Ck, if |Ck| is even.

• Clk is a partition of Ck \ {ik0}, where ik0 ∈ Ck, if |Ck| is odd.

The inequalities in the SKILS corresponding to (10) are given by

q∑
k=1

α̃kXik0 ik0
+ 2α̃k

∑
(i,j)∈Clk

Xij

 ≤ β, (12)

for all partitions Clk , k = 1, . . . , q, defined as above, and for ik0 ∈ Ck \ Clk . (If |Ck| is even,
Ck \ Clk = ∅, and the term in the variable Xik0 ik0

does not exist.)

Proposition 2.7. .

• If inequality (8) is valid for QKP, then CILS and the inequalities in SCILS are valid for
ConvRel .

• If inequality (10) is valid for QKP, then inequalities in SKILS are valid for ConvRel .

3 Example

Let us now illustrate the application of the cuts proposed in this work, to two instances of the
QKP, with 6 candidate items to be selected (N = {1, . . . , 6}). The instances were constructed
with the purpose of showing situations where our proposed cuts CILS and SCILS are both effective
if used separately, and are even stronger if used together. Furthermore, we aim to show through
the instances that, when the cuts are used separately, each one of them may be stronger than the
other.

For the first instance (Instance 1) we consider Qjj = 1, for j ∈ N , Q12 = Q13 = Q56 = Q21 =
Q31 = Q65 = 100, and all other elements in the matrix Q equal to 2. We also consider wj = 1, for
all j ∈ N , and c = 3. For the second instance (Instance 2), we only change the following elements
of the matrix Q: Q14 = Q15 = Q41 = Q51 = 60. The remaining data is kept as it is for Instance
1. An optimal solution for both instances is obtained by the selection of items 1, 2, 3, with value
z∗ = 407.



We consider the simple initial convex relaxation of the QKP as the following linear program in
the lifted space:

(ConvRel )

max trace(QX)
s.t. wTx ≤ c

X − xxT � 0
x ∈ [0, 1]n

X ∈ [0, 1]n×n

(13)

The optimal solution of ConvRel is given by the sum of all elements in Q, as X can be taken as a
matrix of all ones and x is a vector of zeros. Now we consider, for both instances, the lifted cover
inequality, LCI : ∑

j∈N
xj ≤ 3,

the corresponding CILS : ∑
i,j∈N,i<j

Xij ≤ 3, (14)

and the corresponding 15 inequalities in the SCILS , corresponding to each partition of N :

X12 +X34 +X56 ≤ 1,
...

X16 +X25 +X34 ≤ 1.

(15)

In Table 1, we show the impact on the objective function of the convex relaxation of the QKP,
given by the addition of the proposed valid inequalities derived from an LCI .

Inst z∗ Cuts added to ConvRel
None CILS SCILS CILS +SCILS

1 407 654 606 418 410
2 407 886 606 650 526

Table 1: Upper bound given by ConvRel with addition of cuts

Finally, we present a similar analysis, but considering a stronger initial convex relaxation
ConvRel+, where we add to ConvRel the valid inequalities Xjj = xj , for all j ∈ N , and
wTX ≤ cxT . The results are presented in Table 2

Inst z∗ Cuts added to ConvRel+

None CILS SCILS CILS +SCILS

1 407 603 603 407 407
2 407 603 603 431 431

Table 2: Upper bound given by ConvRel+ with addition of cuts

We see from the results in Table 2 that, although the cuts CILS cannot tight the bound given
by the stronger relaxation ConvRel+ , for these small instances, the set of inequalities SCILS is
very effective.



4 Conclusions

We present in this work new valid inequalities for convex relaxations of the binary quadratic knap-
sack problem, QKP, defined in the lifted space determined by the equation X = xxT , where x is
a binary vector. The inequalities can be also applied to more general binary quadratic programs,
or even more general mixed binary programs that are relaxed in this lifted space. Two different
ideas are proposed to construct valid inequalities from a cover inequality for the knapsack problem.
The first idea leads to a single valid inequality, denoted in this work by cover inequality in the
lifted space, CILS. The second idea leads to a set of valid inequalities denoted by set of cover
inequalities in the lifted space, SCILS. Through two small instances of the problem, we illustrate
the application of these inequalities and show that neither of them dominates the other, and that
when used together, they may be stronger than when used separately. Finally, we show how the
idea in SCILS can be generalized to construct valid inequalities from knapsack constraints.

References


	Introduction
	Preliminaries: knapsack polyhedron and cover inequalities

	Valid inequalities
	Adding cuts to the relaxation
	New valid inequalities in the lifted space

	Example
	Conclusions

