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We consider the general abstract convex program 

(P) minimize [(x), subject to g(x) E - S, 

where f is an extended convex functional on X, g : X ~ Y is S-convex, S is a closed convex 
cone and X and Y are topological linear spaces. We present primal and dual characterizations 
for (P). These characterizations are derived by reducing the problem to a standard Lagrange 
multiplier problem. Examples given include operator constrained problems as well as semi- 
infinite programming problems. 
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1. Introduction 

We cons ider  the abs t rac t  convex  p rogram 

minimize  [ (x) ,  
(P) 

subjec t  to g ( x )  E - S ,  

where  f : X ~ R U {oo} is convex ,  g : X -~ Y, X and Y are real  locally c o n v e x  

(Hausdorff )  spaces ,  S is a c losed c o n v e x  cone  and g is S -convex .  Recent ly  

Ben-Israel  et al. [3] have presen ted  a charac ter iza t ion  of  opt imali ty ,  wi thout  a 

cons t ra in t  qualif ication,  in the case  that  the cons t ra in t  g is g iven by  the finite 

number  of  rea l -valued const ra in ts  g k ( x ) < - O ,  k = 1 . . . . .  m.  T h e y  relied heavi ly on 

the convex i ty  proper t ies  of  the func t ions  and, in part icular,  they  used the cone  

of  direct ions o f  c o n s t a n c y  of  the ' equa l i ty '  constra ints  (see e.g. Abrams  and 
Kerzne r  [1]). 

M a n y  people  have  cons idered  opt imal i ty  criteria for  the abs t rac t  p rogram (P) 

(see e.g. H o l m e s  [14], K u r c y u s z  [15], Z o w e  and K u r c y u s z  [25], Luenbe rge r  [16] 

and Neus t ad t  [17] and the re fe rences  therein).  Their  cri teria required a cons t ra in t  
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qualification. Craven and Zlobec [8] have extended the work in [3] in order to get 
a characterization of optimality for (P) that does not require any constraint 
qualification. They, however, required the following assumptions: (i) the cone S 

has nonempty interior (this automatically guarantees that the dual cone has a 
compact base; thus, when they choose a compact subset of the dual cone, they 
might as well choose a base); (ii) the feasible set contains a relative radial (core) 
point; (iii) continuity and differentiability properties; and (iv) the infimum is 
attained. They also used the cone of constancy of the 'equality' constraints in a 
redundant manner. 

In this paper we give a characterization which avoids the above-mentioned 
assumptions. Rather than attempt to extend the results in [3], our results are 
based on reducing (P) so as to be able to apply the 'Standard Lagrange Multiplier 
theorem'. We then give two classes of optimality criteria. 

The organization of the paper is as follows. Section 2 presents several 
preliminary definitions and results. In particular, Lemma 2.2 finds a 'Slater point' 
for any compact subset of the 'nonequality' constraints; Lemma 2.3 and Corol- 
lary 2.1 characterize the existence of a compact base and Slater's condition; and 
Lemma 2.5 gives a dual relationship between the cone of subgradients and the 
linearizing cone. 

Section 3 presents the 'Standard Lagrange Multiplier theorem' for program (P) 
with the added constraint x E O, where 12 is a convex subset of X (see Theorem 
3.1). Several different types of optimality criteria are given. These criteria use 
directional derivatives, subgradients and the Lagrangian function. 

Section 4 presents the complete characterization of optimality without any 
constraint qualification (see Theorem 4.1 and Corollary 4.1). These results are 
derived using the results in Section 3. Several corollaries are also given, 
including the result which leads to the BBZ conditions [3], (see Corollary 4.2 and 
the following remarks). 

Section 5 contains several examples and applications which illustrate the 
theory developed in the first four sections. 

2. Preliminaries 

In this section we present some preliminary definitions and results needed in 
the sequel. We consider the convex program 

(P) 
minimize /(x),  

subject to g(x )  ~ - S, 

where [ : X  ~ R  U {oo} is convex, g : X  ~ Y,  X and Y are real locally convex 
(Hausdorff) spaces, S is a closed convex cone in Y and g is S-convex, i.e. 
S + S C S, AS C S for all positive ~ and for all x, y in X, 
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g(hx + (1 - h)y) - hg(x) - (1 - h)g(y)  ~ - S  for all 0 < ~, < 1. 
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F = {x E X :  g ( x ) ~ - S }  

denote the feasible set of (P). X* and Y* will denote the topological duals of X 
and Y respect ively,  both equipped with the w*-topology (see e.g. [19]). I f  K c X 

(resp. Y), then 

K 4 = {~b E X* (resp. Y*): ~bk -- 0 for all k ~ K} 

is the polar (cone) of K. When A C X*  (resp. Y*) then its polar  is 

A + = { x  E X  (resp. Y): ~bx --- 0 for  all 4~ CA}. 

The polar is a lways a closed convex  set. Moreover ,  

K 44 = ~ K (2.1) 

and 

,22, 

where cone K denotes  the closure of the convex cone generated by K, K C X 
(or X*) ,  K~ C X are closed convex  cones  and ~ �9 denotes finite sums (see e.g. [6, 
10]). In addition, it is easy to see that  qg(.  ) is a real-valued convex  function for 

each q E S +. 
We now choose  ~ C S 4 so that ~ is a generating set for  S 4, i.e. 

S 4 = ~ ~.  (2.3) 

Note  that (2.3) is equivalent  to ~+ = S. The following l emma is clear. 

Lemma 2.1. Let x E X and Q c S 4. Then 

qg(x) <- 0 for all q E Q, if and only if g(x) E - Q+, (2.4) 

qg(x) <- 0 for all q ~ ~,  if and only if x E F. (2.5) 

Thus ~ may  be considered the indexing set for the (convex) constraints 

gq(x)=qg(x)<-O, q E ~ .  

Furthermore,  we denote the partial feasible sets by 

F ~ = {x E X:  qg(x) <-0 for  all q E Q}. 

The set of binding constraints at a ~ F, with respect  to a set Q c 8 4, is 

Q(a )  = {q E Q: qg(a) = 0}, 

An important  subset  of P, independent  of x, is the equality set 
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= = {q E ~ : qg(x) = 0 for all x ~ F).  

This is the set of indices q for which the constraint qg(x) vanishes on the entire 
feasible set. The set ~= was used in [1, 3] to characterize optimality for the 
convex program (P), with a finite number  of constraints. It was then used by 
Craven and Zlobec [8] in their optimality criteria for the program (P). 

We now let 

~ < =  ~ \ ~ = .  

We will need the following property of ~<. As mentioned above,  we shall 
assume that Y* has the w*-topology. 

Lemma 2.2. Suppose that K C ~< is compact in Y*. Then there exists ~ E X 
such that 

2 ~ F  and qg(:2)<O for all q ~ K .  

Proof. For x E F, let 

U(x) = {q ~ Y*: qg(x)<0}. 

By continuity of the linear functionals g(x), U(x) is open. Moreover ,  K C 
U x ~  U(x), since K C  ~<. Therefore ,  by compactness,  we can find 

x~, x2 . . . . .  x, E F such that 

K C 0 U(x~). 
i=1 

Let  

- -  X i .  
n = 

Then ~ E F and 

I " 
<-n ~ qg(xi) by convexity,  

< 0  for a l l q E K ,  

since x~ is feasible for  each i and qg(xi)< 0 for at least one i. 

The next  lemma is essentially as given in [24]. We have added extra details for 
our applications. Note  that or(Y*, Y) denotes the w*-topology on Y*; ~-(Y, Y*) 
is the topology on Y of uniform convergence on tr(Y*, Y) compact ,  convex,  
symmetric subsets of Y*; U ~ is the bipolar 

U ~  {y: lyu]--- 1 for all u E U}; 
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and we call Q a base for S § if Q is closed, convex, 0 ~ Q and 

S § U hQ. 
~>_o 

Lemma 2.3. (a) If  0 # Y0 E 1" - int S, then 

Q = S § A yo~{1} 

is a tr-compact (convex) base .for S § 
(b) If  Q is a tr-compact (convex) base for S § and y0 E Y satisfies 

0<Sl -<qy0  for all q E Q, (2.6) 

[or some 8l > O, then 

y0+ ~IQ ~  y0+ U 

is a ,r-neighbourhood of Y0 inside S. In particular, such a y0 always exists. 
Thus S has nonempty ,r-interior if and only if S § has a g-compact  base. 

Proof. (a) Let  s + # 0  lie in S § Since y0 is nonzero and in z - i n t S ,  we get 
s+y0> 0. Thus, since Q is g-closed and convex, it is a base for S § Furthermore, 
if we set V = (y0 - S) fq (S - y0), then V is a T-neighbourhood of 0 and, for q E Q 
and v E V, we get 

- 1 = - q ( y o )  <- q ( v )  <- q ( y o )  = 1. 

Thus, Q c V ~ and the Banach-Alaoglu theorem [19] implies that V ~ and there- 
fore also Q is tr-compact. 

(b) By (2.6), it follows that 

y0+ 61Q~ Q+= S ++= S. 

Moreover, Q~ is a ~--neighbourhood of O. This relies on the fact that the 
symmetric hull of Q is still compact and has the same polar. That such a Y0 
always exists follows since Q is g-compact,  convex and does not contain O. 

We will use the above lemma in the form given in part (a) of the following 
corollary. The (b) part of the corollary is included to emphasize the equivalence 
of Slater's condition (2.8) and the semi-infinite condition (2.7). This has not 
always been clear in the literature [6, 24]. Note that the ~--topology is the 
strongest topology on Y for which Y* is still the topological dual of Y (see [19]). 
Thus, for most purposes, we could have given Y the T-topology from the start. 

Corollary 2.1. Suppose that Q is tr-compact and a generating set for S § i.e. 
S § =c--o--~ Q; and either Q is convex or Y*  is quasicomplete (which holds if Y is 
barrelled). 
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(a) If 

qg(fO < 0 

then .r - int S ~ O and 

(b) 
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for all q E Q, 

- g ( ~ )  E �9 - int  S. 

Conversely, if (2.8) holds and g(~) is nonzero, then 

Q = S + n { q :  q g ( i ) = - l }  

is a g-compact (convex) base for S + for which (2.7) holds. 

(2.7) 

(2,8) 

we define 

Note that every  Banach space and in fact  every Fr6chet  space is barrelled. In 
these cases, Y* is quasicomplete (see e.g. [19; 14, p. 135]). 

Now, suppose that h : X - ~  R U {oo} is a convex function. Following [3], for 
each of the relations 

'relation'  is '= ' ,  ' < ' ,  ' - ' ,  ' < '  or ' - ' ,  

D~elati~ = (d  E X: there exists t~ > 0 with 

h(x + ad) ' relation' h(x) for  all 0 < a -< c~}. 

These are the cones of directions of constancy,  decrease, nonincrease,  increase 
and nondecrease  respectively. For  simplicity of notation, we let 

D'relation'- x 'relation' q iX) = Dqg (x )  f o r  q E Y*, 

D~elation'(x) = n Ltqr"'relati~ for Q c Y*. 
qEQ 

Furthermore,  if Q c S § we let 

go(x) = sup qg(x) 
q~Q 

and set 

D(x) = Dg~=(x). 

- 8  = sup dg(~) = sup qg(fO < O. 
dED qEQ 

In particular, 0 ~ D  and D N{q: q g ( ~ ) = - 8 }  is a tr-compact base for S +. The 
result now follows from Lemma 2.3(b). 

(b) Follows directly from Lemma 2.3(a). 

Proof. (a) Since S § = c ~  Q (and, if Q is not convex,  Y* is cr-quasicomplete), 
we get that D = conv Q is or-compact (see [14, p. 61]); S += ~ D ;  and, by 
(2.7), 
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The following lemma gives several  useful propert ies  of the 'uni form'  function 
go. Note  that dom(h)  denotes the points at which the funct ion h is finite. 

Lemma 2.4. If Q c S § is compact,  then: 
(a) go is convex and dom(g o) = X (in particular, gq is continuous on lines); 
(b) if in addition g is 'weakly' lower semicontinuous (i.e. qg is lower semicon- 

tinuous for  each q in Q) and X is barrelled, then g is continuous. 

Proof. (a) For  0 <- X -< 1, 

max  qg(Axl + (1 - ~,)x2) -< max(Aqg(xl) + (1 - A)qg(x2)) by convexity,  
Q O 

_< )t max qg(xO + (1 - A) max qg(x2). 
Q O 

This implies that go is convex.  Tha t  dom(go) = X follows from compactness  of  
Q. 

(b) Since each qg( �9 ) is lower semicontinuous,  it follows that go( " ) is lower 

semicontinuous,  as it is the supremum of such functions. The result now follows 

since any lower semicontinuous convex function is continuous at an interior 

point of  its domain,  which in this case is the whole of X (see [9]). 

Following Rockafel lar  [21], we say that a convex  function h : X ~ R  is 

faithfully convex if: h is affine on a line segment only if it is affine on the whole 
line containing that segment. If  X = R", then it follows f rom results in [21], that 

the cone of directions of cons tancy  at x, D~(x), is a subspace  independent of  
x E R" (see e.g. [3]). This has been shown directly for X a locally convex space 

in [23], if h is continuous. If  qg is faithfully convex for each q E Q c S § then it 

is clear that  

Dgq~o~(a) 3 D ~ ( a ) .  

(Note that  if h is analytic, then h is faithfully convex.  Thus,  if g is 'weakly 
analytic '  i.e. qg is analytic for all q E Y*, then qg is faithfully convex for all 
q E S + (see e.g. [21]).) Various examples  of these cones of  constancy are given in 

Section 5. 
For a convex  function h : X ~ R U {oo}, we let 

Vh(x;  d) = lim h(x + t d ) -  h(x) 
t~o t 

denote the directional derivative of h at x in the direction d, while 

ah(x) = {4~ E X*: h(z)  >- h(x) + cb(z - x) for all z E X} 

denotes the subdifferential of h at x. If  h(x) is finite, then Vh(x;  d) exists, for all 
d, although it may  be plus or minus infinity. Moreover ,  if h is continuous at x, 
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then ah(x) is a nonempty,  convex compact  subset of X* and 

Vh(x; d) = max{~bd: ~b E 0h(x)}. (2.9) 

For  two convex functions hi and h2, for  which there is a point at which one is 
finite and the other continuous, we get that 

a(alhl + a2h2)(x) = alahl(X) + a2ah2(x) for all x, (2.10) 

where al and a2 are nonnegative real scalars (see e.g. [14]). 
For Q c S § the linearizing cone at x E F, with respect  to Q, is 

Co(x)={d E X :  r <-0 for all 4~ E aqg(x) and all q U Q}. 

If qg( �9 ) is continuous at x for all q E Q, then (2.9) implies that 

Co(x) = {d E X:  Vqg(x; d) <-:0 for  all q ~ Q}. (2.11) 

The cone o[ subgradients at x is 

Bo(x) = cone U oqg(x). 
q~Q 

In the continuous case, (2.10) implies that 

Bo(x) = cone U aqg(x). (2.12) 
q Econv Q 

The linearizing cone and the cone of subgradients have the following dual 
property.  

Lemma 2.5. Suppose that Q c S +. Then 

BQ(X) = -CO(x). (2.13) 

Proof. Since 

-C~q)(x) = aqg(x) ++ by definition, 

= B{q}(x) by (2.1), 

we conclude, as C{q}(X) is always closed, that 

-C~(x )  = - ~ C~q}(x) by (2.2), 
qEQ 

= BQ(X). 

(Note that ~ �9 denotes finite sums. Moreover ,  we did not require continuity of 
qg(" ).) 

This lemma will provide the link between optimality criteria which use 
subditferentials, and criteria which use directional derivatives. 
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If g has a Gateaux-derivative at x, it is easy to see that the linearizing cone 

Co(x) = {d E X:  Vg(x)d E -Q+}. (2.14) 

This will, of course,  still hold if g only has a one-sided derivative. More 
specifically we have the following characterization of the linearizing cone for 
binding constraints. 

Lemma 2.6. Suppose g is Gateaux differentiable at x and that Q generates S+(x) 
(Q++= S+(x)). Then 

Co(x) = {d E X:  Vg(x)d E - c o n e ( S  + g(x))}. (2.15) 

Proof. Since Q§ = (S§ + it suffices by (2.14) to observe that 

S+(x) = (S + g(x)) +. 

The result then follows on taking polars as in (2.1). 

Note that since S is convex,  

cone(S + g(x)) = T(S,  -g (x ) ) ,  

where T ( S , - g ( x ) )  is the cone of tangent directions to S at - g ( x )  (see e.g. 
[11, 13, 14]). 

3. Characterization of optimality with constraint qualification 

Our results are based on the following 'Standard Lagrange Multiplier 
theorem'.  Recall that if Slater's condition (3.2) below holds, then we can choose 
the 'generating set' ~ compact  and have cone ~ = S + (see Corollary 2.1). 
Moreover,  we then have 

cone ~ ( a )  = S+(a). 

Theorem 3.1. Consider the convex program 

minimize f (x) ,  
(p) 

subject to g(x) C - S a n d x E ~ ,  

where f, g and S are as above and ~ is a convex subset of X. Let F =  
g-~(- S) n ~ denote the feasible set of (P); let 

/~0 = inf{f(x): g(x) E - S  and x E ~} (3.1) 

be the (finite) solution value of (P); and further, suppose that there exists 

E dom f n ~ n g - l ( - i n t  S) (Slater's condition). (3.2) 
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Then, there exists s + ~ S + such that 

/~0 = inf{f(x) + s+g(x): x E O}. (3.3) 

I f  in addition a E F N dom f, then we get the following four  statements (i)-(iv) 
of optimality and their mutual relationships. 

if 
(i) a solves (P), 

then 
(ii) there exists s + E S + such that 

f (a )  = inf{f(x)+ s+g(x): x E O} (3.4) 

s + g(a) = 0 (complementary slackness); (3.5) 

which implies 
(iii) (a) that there exists s + E S+(a) such that the system 

V f ( a ; d ) < 0 ,  Vs+g(a;d)-<O, d E c o n e ( ~ - a ) ,  (3.6) 

is inconsistent, 

or equivalently (with Slater' s condition), 

(b) the system 

V f ( a ; d ) < 0 ,  Vs+g(a;d)<-O f o r a l l s + ~ S + ( a ) ,  d E c o n e ( O - a ) ,  

is inconsistent, 

or equivalently (with Slater's condition, cone ~ ( a ) =  S+(a), and q g ( . )  con- 

tinuous at a for  each q E ~(a)) ,  

(c) 

Dr(a)  n C~a~(a) n cone(O - a) = ~, (3.7) 

which then entails 
(iv) (with qg( . ) continuous at a for  each q E ~ ( a )  and f continuous at a) 

(a) (with cone ~ ( a ) =  S+(a)) 

af(a)  n (-B~,(,~(a) + (l~ - a) § # fJ, 

or equivalently 

(b) 

OE af (a)+ as+g(a)-(12 - a) § for  some s+E S+(a). (3.8) 

Conversely, without Slater's condition in the hypothesis, we have that (iv) 
implies both (iii) and (ii), each of  which then imply (i). Hence, when Slater's 
condition holds and both f and g are continuous at a, we get that (i) through (iv) 

are equivalent. 

Proot. The proof  of (3.3) and of (i) implies (ii) follows from [16, p. 217], with 
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implies a optimal Lagrangian Directional derivatives subdifferentials 
implied 
by (i) (ii) (iii)(a) (iii)(b) (iii)(r (iv)(a) (iv)(b) 

(i) 
Slater's Slater's Slater's Slater's Slater's Slater's 

qg cont. qg cont. qg cont. 
c ~ q  = S f cont. [ cont. 

c ~ a  = S 

(ii) qg cont. 
c ~ a  = S 

Slater's 
(iii)(a) gq cont. 

c g a  = S 

Slater's Slater's 
(iii)(b) gq cont. 

Slater's Slater's 
(iii)(c) 

(iv)(a) qg cont. 
c ~ a  = S 

(iv)(b) 

qg cont. qg cont. 
f cont. f cont. 
c ~ a  = S 

Slater's Slater's 
qg cont. qg cont. 
f cont. f cont. 
c ~ a  = S 

Slater's Slater's 
qg cont. qgcont ,  qg cont. 

f cont. f cont. 
c ~ a  = S c ~ a  = S 

c8~a = S 

Slater's Slater's 
qg cont. qg cont. 
f cont. f cont. 
c ~ a  = S 

qg cont. 
c ~ a  = S 

Sla ter ' s :  S la t e r ' s  c o n d i t i o n  
qg  cont . :  q g (  �9 ) c o n t i n u o u s  at  a, for  all  q E ~ ( a )  

f cont . :  f c o n t i n u o u s  at  a. 
c ~ a  = S: c o n e  ~ ( a )  = S + ( a ) .  

12 t-1 dom f replacing 12. Note that the proof is valid if we consider Y with the 
z-topology, since its topological dual remains unchanged. 

Table 1 gives the hypotheses required in the proof of Theorem 3.1. 
(ii) ~ (iii)(a): Suppose that d E cone(12-  a). Then there exists [ > 0  such that 

a + td E 12, for all 0 < t -< t-. Therefore, (3.4) implies that 

t-l[f(a + t d ) -  f(a)] + t-l[s+g(a + t d ) -  s§ >-O, 

for all 0 < t -< {. Now 

and 

lim t-~[f(a + t d ) -  f(a)]  = Vf(a;  d) 
tJ, o 

lira t-l[s + g(a + t d ) -  s +g(a)] = Vs + g(a; d) 
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both exist since p~ = f (a)  and s+g(a) are finite. Thus 

~Tf(a ; d) + Vs + g(a; d) >>- 0 

(with the proviso that - ~  + ~-> 0). We now conclude that (3.6) is inconsistent. 
(Note that s § ~ S§ by (3.5).) 

(iii)(a) ~ (iii)(b): Obvious. 
(iii)(b) ~ (iii)(c): Let  us first show that 

C~a~(a) = Cs+~a~(a). (3.12) 

Recall that S+(a)= cone ~(a) .  That Cs+(a}(a) C C~(a~(a) is clear. To prove the 
converse, suppose that d~C~a~(a)  and s + E S + ( a ) = c o n e ~ ( a ) .  Then s += 
~,~=1 aiqi for some ai -> 0 and qi E ~ ( a )  and 

Vs+g(a; d) = sup{~bd: ~b ~ as+g(a)} by (2.9), 

= sup{~bd: ~b c 0  ~ a,q,g(a)} 

sup{~bd: ~b E ~ aicgq,g(o)} by (2.10), 

-< ~ ai sup{~bid: rki ~ aqig(a)} 

= ~, aiVqig(a ; d) <- O. 

This implies that Ceone~(a)(a)3 C~a>(a). The result now follows since 

D?(a) ={d:  Vf(a; d ) < 0 }  (see e.g. [5]). 

(iii)(c)ff (iii)(a): Suppose that (3.7) holds but a is not optimal. Then there 
exists a feasible point x such that f (x )  < f(a) .  Thus 

d = x - a E D~(a) t3 C~t~(a) N cone(O - a), (3.13) 

which is a contradiction. Therefore a solves (P). We have seen that this, with 
Slater's condition, implies part (a). 

(iii) ~ (iv)(b): From the above proof,  we have that (iii) f f  (i) ~ (ii). Therefore,  
there exists s + E S§ such that 

f (a )  =/~0 = inf{f(x) + s + g(x): x E O} 

and Pshenichnii 's condition [14, p. 87] implies that 

0 E O(f + s+g)(a) - ( 0  - a) +, 

which by (2.10) yields part (b). Note  that if D = X, then f need not be assumed 
continuous. 

(iv)(b) ~ (iv)(a): It is sufficient to show that 

Os + g(a) C B ~ ( a ) .  (3.14) 
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This is clear since s+~ S+(a)= cone ~ ( a )  and qg( .  ) is continuous at a for  all 

q E ~ ( a ) .  
(iv)(a) ~ (iv)(b): Let  ~b E B ~ ) ( a ) .  It is sufficient to show that 

cb E ~s§ g(a) for some s § E S+(a). 

Now ~b = ~/~=1 ai4~i for some ai >- O, ~pi E apig(a) and pi E ~ ( a ) .  Therefore  

4~i(x - a) <- pig(x) - pig(a) 

for all x ~ X and all i = 1 . . . . .  k. This implies that 

~_, ai6i(x - a) <-- ~'~ otipi(g(x) - g(a)),  

i.e. ~ ai~.bi ~- O(~, aipi)g(a). ~Ve can now choose s + = ~ aipi. 
(iv)(b) f f  (ii): This follows f rom the Pshenichnii  condition. 

(iii) ~ (i): See the proof  of (iii)(c) ~ (iii)(a). 

4. Characterization of optimality without constraint qualification 

Recall that ~ is a generating set for S + and ~ = ~= U ~<.  We now divide up 
the set ~ <  so that we can apply the 'Standard Lagrange Multiplier theorem' .  

Choose the set 

Q c ~ <  (4.1) 

compact  in Y* and let ~ be a remainder ,  i.e. 

S + ~ ~ 3 ~<\Q.  (4.2) 

In order to apply Corollary 2.1, we will assume throughout  that either Q is 

convex  or Y is barrelled and (cone Q)(a)  = cone(Q(a)) .  The notion of dividing up 
the indexing set of constraints  was previously used in [7, 81. Recall that,  for Y/C ~ ,  

we denote the 'partial feasible sets" 

F a = {x E X :  qg(x) -<0  for all q E O} 

and the 'uni form'  funct ion 

gn(x) = s u p  qg(x). 
OEFI 

Note that if ga(x) = 0, then 

D~a(a ) = cone(F  ~ - a). (4.3) 

The following theorem and corol lary character ize optimali ty for (P), without  
any constraint  qualification. One may  of course choose  ~ convex and closed. 

Under  our assumptions  conv Q is still compac t  and contained in ~<.  Thus,  to 
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simplify reading the theorem and its p roof ,  the reader  may  assume that  bo th  

and Q are convex  and thus delete conv  and replace cone  by  cone.  If  Q is finite 

dimensional ,  the s i tuat ion is even simpler  since conv  Q is a lways  compac t .  

Theorem 4.1. Consider the original convex program (~).  Let  the sets Q and ~t be 
as above. Let 

/x0 = inf{f(x): g(x ) ~ - S} ~ oo (4.4) 

be the (finite) solution value of  (P) and assume that dom F ~ F. Then there 
exists q E cone Q such that 

/~0 = inf{f(x) + qg(x): x E F ~ n F ~ } .  

I f  in addition a E F n dom f (and for simplicity qg( �9 ) is continuous at a for 

each q ~ Q(a) ;  and f (  . ) is continuous at a),  then the following four  statements 
(i)-(iv) are equivalent: 

(iii) 

(i) 

(ii) 

a solves (P); 

there exists q ~ cone  Q such that 

f ( a )  = inf{f(x) + qg(x): x E F ~ n F ~ } ,  

qg(a) = 0; 

(iii) (a) there exists q ~ cone Q(a) such that 
the system 

V f ( a ; d ) ~ O ,  Vqg(a;d)<-O,  d E D ( a )  n c o n e ( F  ~ - a )  

is inconsistent, 
or equivalently 

(b) the system 

V f ( a ;  d) ~ O, Vqg(a ; d) <- 0 for  all q ~ cone(Q(a ) ) ,  
d E D ( a )  N c o n e ( F  ~ - a)  

is inconsistent, 
or equivalently 

(c) 

D~(a) n C . . . .  (o(a))(a) n D(a)  N c o n e ( F  ~ - a)  -- 0; 

(iv) (a) 

af(a) n (-Bconvto(a))(a) + (D(a) n c o n e ( F  ~ - a)) § ~ 0, 

or equivalently 

(b) 

0 ~ Of(a) + Oqg(a) - (D(a) n c o n e ( F  ~ - a)) § for some q ~ cone  Q(a). 
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Proof. By L e m m a  2.1, we can rewrite (P) as: 

minimize / (x) ,  qg(x)<-O for all q ~ Q, 

subject  to qg(x) <- 0 for all q ~ ~ ,  

qg(x)<-O for a l l q E ~ = .  

This is equivalent  to 

minimize 

subject  to 

(4.5) 

Now let 

go(~) < 0. (4.10) 

x A = , ~ x + ( 1 - X ) ~  f o r 0 - < ~ , < l .  

Then, by convexi ty ,  xA E /F  ~- n F ~ and 

go(x~) < 0 for small ~, > 0 

(see L e m m a  2.4(a)). Thus x, E F for  small ~, > 0, which implies that g~-(x,) = 0 

f(x) ,  

g(x)c:_-Q+ and x E F ~~ n F ~. 

This problem now satisfies all the conditions of the 'Standard Lagrange Multi- 

plier theorem' ,  i.e. g is Q*-convex since S = S +* c Q*, F ~- n F ~ is convex since 
S C ~+ and S C ~=+; and L e m m a  2.2 and Corollary 2.1 imply that there exists 

E F n dom f with 0 ~ g(~) E - int(Q+). We can now apply Theorem 3.1 with 

f~ = F ~ - N F ~ ;  S replaced by  Q+; and S + replaced by cone Q. (Note that 
0 ~ c o n v Q  by L e m m a  2.2; c o n e c o n v Q  is closed; and c o n e ( Q ( a ) ) =  
(cone Q)(a).)  It  only remains to show that 

(D(a) n cone(F  ~ - a)) § = ((F ~- n F ~) - a) +. (4.6) 

In fact,  let us show the stronger s ta tement  

D ( a )  O cone (F  ~ - a)  = D g ~ ( a )  n cone(F  ~ - a)  

= cone( (F  ~~ n F ~) - a). (4.7) 

That  the inclusion C holds above is clear since D ( a )  C cone (F  ~'" - a),  (4.3) holds 
and since for  convex  sets A~, A2 containing a, c o n e ( A ~ - a ) n c o n e ( A 2 - a )  
agrees with c o n e ( A t O A 2 - a ) .  To prove  the converse ,  suppose that d E  

cone((F ~; n F ~) - a). Then d E cone (F  ~ - a)  = Dg~~ and we need only show 

that 

d E D(a). (4.8) 

Let  x = a + a d  E F ~" N F ~, ot > 0, and choose ~ to satisfy 

E F and g(~) E - i n t  Q+. (4.9) 

This ~ always exists by L e m m a  2.2 and Corollary 2.1 and moreove r  satisfies 
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for small A > 0. Now,  since g~=(xx) <- 0 for  all 0 <- )t -< 1, and g~,~ is convex,  we 
must have g~:(xx) = 0 for all 0 -< h -< 1. This means that g~:(x) = 0 and d ~ D(a). 

Corollary 4.1. The above theorem holds if we relax the restrictions on the 
multipliers, i.e. if, in the statements (ii), (iii), (iv), cone Q is replaced by S* and 
both cone Q(a) and conv Q(a) are replaced by S§ 

Proof. Existence of q ~ cone Q implies existence of q E S § since Q c ~. The 
converse follows since the statements (ii), (iii), (iv), after the replacements,  still 
imply (i). 

The above theorem and corollary characterize optimality for the convex 
program (P) without using any constraint qualification. Craven and Zlobec [8] 
have presented similar optimality conditions for  (P). They did not,  however,  use 
a reduction to Slater's condition and required that the infimum be attained, 
int S~  ~b and F posses a 'radial point ' ,  i.e. that the intrinsic core of F be 
nonempty.  Moreover ,  the set D(a) is redundant  in their optimality conditions. 

In the following corollary we ~ee that the set ~ may become redundant.  We 
shall see that this leads to the so-called BBZ conditions in the case that S is 
polyhedral. 

Corollary 4.2. In the above theorem (and corollary), suppose that 

a E i n t d o m g ~  and g ~ ( a ) < 0 ,  (4.11) 
or  

C cone (~  ~ U Q). (4.12) 

Then ~ (and also F ~ and cone(F  ~ -  a)) can be omitted, thus simplifying the 
optimality criteria. (Note that any subset of ~ that satisfies (4.11) or (4.12) may 
similarly be omitted in the previous result.) 

Proof. Only (4.12) requires proof. Since 

x ~ F  if and only if g(x) E - ~ +  by Lemma 2.1, 

if and only if g(x) ~ - ( ~ =  U Q)§ by hypothesis,  

we see that ~ is redundant  in (4.5) and thus redundant  in the rest  of the proof  of 
Theorem 4.1. 

Corollary 4.3. 

D(a) n c one (F  ~ - a) = {d: there exists ~ > 0 with qg(a + ad) = (or <-) 
qg(a) for all q E ~ =  and all O<a<-d~}n 
cone (F  a - a) (4.13) 

and is a convex set. Moreover, 
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D(a)  is convex if ~ can be omitted (4.14) 

ProoL Let  us call the first cone on the right-hand side of (4.13) D"(a).  It is 
immediate that  

D"(a)  C Dg~=(a). 

Conversely,  if d lies in Dg, o (a )n  cone (F  ~ -  a),  an examinat ion of the proof  of 
Theorem 4.1 shows that the point xx constructed below (4.10) is feasible and 
hence satisfies 

qg(xA)=O, x ~ = h ( a + a d ) + ( 1 - h ) ~  

for all q in ~=.  Exact ly  as before  it follows that qg(a + ad) = 0 for all a in ~= 

and d lies in D~(a). Since d lies in cone (F  ~ -  a) by (4.7) we have the desired 
equality. Moreover ,  (4.14) follows f rom (4.7) since D~=(a )  is convex.  

Thus we can modify  the uniformity of the directions of  constancy (or 
nonincrease).  In the case that q g ( . )  is faithfully convex,  for  all but a finite 
number  of q E ~= ,  we see that (4.13) implies that 

D(a)  n cone (F  ~ - a) = D ~ ( a )  n cone(F  ~ - a),  (4.15) 

i.e. we can replace the uniform directions of cons tancy  over  ~= by the 
intersection of the directions of constancy.  

Now,  in the case of a finite number  of constraints gk(x) <- O, k = 1 . . . . .  m, we 
may choose S = R~,  the nonnegative or thant  in R m, and g(x) = (gk(x)). We may 

now set the generating set ~ = {ei}?=l, the set of unit vectors  in R m. The sets ~= 
and ~<  are therefore  finite and so compact .  Moreover ,  by Corollary 4.2, we may 
choose Q = ~ <  and ~ = 0, since ~ = ~ U ~<.  First, we note that  by (4.14) and 
(4.15), 

D ~ ( a )  = D~=(a) is convex.  

(The set conv D~=(a) was needlessly considered in [3,4].) Next ,  our Theorem 
4.1 reduces to the so-called BBZ conditions [1, 3, 5]: 

a (feasible) is optimal if and only if af(a) n (-B~<(~)(a) + D(a)  § ~ O. 

In addition, in the case that the infimum may not be attained, we get that 

tzo = inf{f(x) + hg(x): x E F ~=} for s o m e h ~ R 2 .  

Another  situation which is easily handled is the case of two cone constraints,  
in two spaces,  

g l ( x ) ~ - S i C  Y1, g 2 ( x ) ~ - - S 2 C  "112, 

where there exists a (feasible) Slater point ~ for the first constraint:  

gl(x) E - i n t  S .  g2(x) • - $2 ,  
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while the second cone $2 is polyhedral,  i.e. is the intersection of a finite number 

of half-spaces 

$2 = {d E Y2: hid >- O, i = 1, 2 . . . . .  m}. 

Then the cone ST has a compact  base say ~t  while ~2 = {hi}~"=t is a compact  base 
for S +2. Furthermore,  ~T = 0 and ~2  = {hi: higE(x) = 0 for all feasible x}. Thus the 
abstract program (P) has 

S = S~x S2C Y = Y~x Y2 

and the generating set for  S § = S~ x S~ is 

= (~', u {o}) x ( ~  u {o}). 

(Note that the set ~ t  x ~2 is not a generating set for S § since it does not contain 
{0} x $2 nor St x {0}.) Corollary 4.1 now yields the characterization: 

a (feasible) is optimal if and only if Of(a)N ( -Be( , )+  D(a)  § ~ O, 

if and only if 

0 E af(a)  + 3sTgl(a) + Os~g2(a) - D(a)  § 
s~ ~ S~(a), 

where 

D(a)  = D~=(a) = ie~- D~2(a)" 

for some s~fES~(a)  and 

Remark 4.1. To derive our characterizations of optimality in the above, we 
divided up the constraint  set into three distinct parts, i.e. 

~ c ~ = u Q u ~ ,  

where Q c ~<, ~<\Q c ~ and Q is chosen compact  in Y*. Corollary 4.2 further 
showed that we could throw away part (if not all) of ~ which satisfied (4.11) or 
(4.12). This led to the BBZ conditions in the case S was polyhedral  and, in 
addition, gave a Lagrange multiplier relation in the case that the infimum may 
not be attained. If is also possible to throw away part (if not all) of ~=. This 
leads to 'stronger '  optimality criteria as well as 'weakest  constraint 
qualifications'. For  instance, this covers  situations where a Lagrange multiplier 
exists but ~ = ~  0, i.e. Slater's condition fails. The details are given in [7]. The 
special case S = R~ is treated in [23]. Moreover ,  the case that S is a convex 
cone (not necessarily closed) in R '~ leads to very elegent characterizations of 
optimality without constraint qualification. These characterizations use the 
' faces '  of the cone S. These results are presented in a forthcoming paper. 
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5. Examples 

In this section we present  several  examples  to illustrate the theory presented 

above. 

Example 5.1. This example first illustrates the fact  that D ~ ( a ) r  D(a)  in 

general. (Recall that D~=(a) = i") q ~ -  D~g(a) while D(a)  = Dg~=(a).) We then see 
that choosing the generating set ~ in different ways can yield simpler results. In 
addition, the K u h n - T u c k e r  conditions fail here, but we character ize optimality 

using Theorem 4.1 (see Fig. 1). 
Consider the semi-infinite program 

minimize f ( x )  = - x ,  
(5.1) 

subject  to h(x, t) = max2(0, tx - t 2) --< 0 for all t E [0, 1]. 

For each x E R, g(x)  = h(x, �9 ) is a convex  continuous (differentiable) function on 

[0, 1], i.e. g(x)  E C[O, 1]. Now,  let Y = C[0, 1] and set 

S = {nonnegative functions in Y}. 

can rewrite the above semi-infinite program as the abstract  convex 

minimize - x ,  
(P) 

subject  to g(x) E - S .  

Let  us choose the generating set 

= {~t : 0 ~ t -< 1}, (5.2) 

the set of point measures  in Y*, where Y* is the space of all Borel measures ,  
i.e. 

~,g(x) = h(x, t). 

Then cone ~ = S + and moreover ,  Slater 's  condition fails. In fact  

since s+g(x) --- 0, for  all x E F and all (nonnegative) measures  s + ~ S +. We now 

h(x,t) 
t = l  

$ 7 - " . /  ,=o 
F, feasible set O, optimum 

Fig. 1. 

Then we 

program 
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see that D ( 0 ) =  D(0) += R_, the negative real half-line, while D~3=(0)= R, the 
whole real line. Fur thermore ,  our optimality conditions (Theorem 4.1) hold at the 
optimal point 0: 

0 E a.f(0) + as +g(0) - (D(0)) § = - 1 - R_, (5.3) 

where we have chosen the multiplier s § = 0. 
Le t  us now change our choice of the generating set ~. The functional  y0--- 1 is 

in int S. Therefore ,  L e m m a  2.3 implies that  

= S + f3 yo~{1} = {probability measures} 

is a compact  (convex) base for S +. (Note  that  ~ = conv{~t: 0-< t-< 1}, by the 
Kre in-Milman theorem [14].) Then we actually have cone 9 = S + and, as before,  

f9 = = ~. But now 

D(0) = D~=(0) = R_, 

since Lebesgue measu re /x ( t )  is in ~= and DS,>(0) = R_. Note  that  the optimality 

condition 

0 E Of(O) - D(0) + 

still holds although the Kuhn-Tucke r  condit ions fail, i.e. 

0 ~  a f (0)+  as+gO) for any s + ~  S+(0), (5.4) 

since a f (0 )=  {-1} while as+g(O)= {0} for  all s + E  S +. 

Example 5.2. This example  uses a linear opera tor  constraint  to illustrate that the 

K u h n - T u c k e r  conditions may still hold at the opt imum even though Slater 's  
condition fails. 

Now suppose that T is a bounded linear opera tor  be tween the Banach spaces 
X and Y. Let  y #  0 be in ~ ( T * ) ,  the closure of the range of the adjoint of T in 
the w*-topology,  and consider the program 

minimize f (x )  = yx, 
(5.5) 

subject  to T x = b ,  x E X ,  

where b E ~ ( T ) .  If  we let g(x )  = Tx  - b and S = {0}, then the above  program is 
equivalent to the abs t rac t  convex program 

minimize yx, 
(P) 

subject  to g(x )  ~ - S .  

Since int S = ~, we see that  Slater 's condition fails here. Moreover ,  S + = Y*. We 
now choose the generating set 

= B the unit ball in Y*. 
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Then cone ~ = S + and ~ = = ~, since the feasible set F = ~ + N(T) ,  where ~ is 
any particular solution of Tx = b and JV(T) denotes the nullspace of T. 
Moreover,  D(~) = 2((T) and B~(~)(~) = {y*T I Y* ~ Y*} = ~ ( T * )  as T is its own 
Fr6chet  derivative. Therefore ,  Corollary 4.1 implies that ~ is optimal if and only 
if 

0 e af(~) + B~(~(~) - D(~) + = y + ~ ( T * )  - Y ( T )  + 

= y + ~ ( T * ) ,  

by the Fredholm alternative. This is a special case of (2.13). Thus every feasible 
point ~ is optimal, since we have assumed y E ~ (T* ) .  

If y ~  3~(T*), then the problem is unbounded.  If y ~ ~ ( T * ) ,  then the Kuhn-  
Tucker conditions hold at the optimum: 

0 E af(2) + B~(~)(2) = y + ~ ( T * ) ,  

while if y E 3~(T*) \~(T*) ,  then the Kuhn-Tucker  conditions fail. 
Note that even the Fritz John conditions: 

0 ~ O)tf(~) + Os+g(~) (5.6) 

for some h - >0  and s+E S+(a) not both zero, may fail at the optimum. For 
suppose y E ~ ( T * ) \ ~ ( T * )  and ~ ( T )  = Y. (In the Banach space setting ~ ( T )  is 
closed exactly when ~ ( T * )  is (weak*) closed and so such a y exists exactly 
when T is 1-1 with dense nonsurject ive range. Consider (Tx) ,  = x,/n in 12 and 
take y = (I /n)  as a specific example.) Then the Fritz John condit ions fail if ,~ > 0, 
since the Kuhn-Tucke r  conditions fail. This implies that necessarily h = 0. But 

Os+g(~)={s+T}~{O} for  a l l s + # 0 i n  Y*, (5.7) 

since ~ ( T ) =  X, i.e. since T* is 1-1. Note  that the Fritz John conditions do 
hold when T* is not 1-1, since we can then choose s + ~ 0 in N(T*) .  

Example 5.3. This example shows that one should be careful when choosing the 
generating set ~. More precisely, we see that the assumption cone ~ ( a )  = S+(a) 

is needed in Theorem 3.1. We again consider a semi-infinite program 

minimize f ( x )  = x, 

subject  to h ( x , t ) = t x  2 - t - x < - O  for all t E [0,1], 

and let g ( x ) =  h(x, .) so as to formulate an abstract convex program (P). (See 
Example 5.1 for  the definitions of X, Y, S, etc.) Note that Slater's condition i s  
satisfied: 

g(1) = - 1 E int - S  

and 0 is the optimal point. We first choose the generating set 

= { 6 t :  O< t < 1}. 
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Then ~ ( 0 ) =  ~ and the optimality conditions in Theorem 3.1(iv) fail at the 
optimal point 0, even though Slater's condition is satisfied. Note  that cone P = 
S § but ~ = cone ~(0)  ~ S+(0). However ,  if we choose 

= {c5,: 0 --< t -< 1}, 

then ~(0) = {0}, B~(0)(O) = R_ and the Kuhn-Tucke r  conditions hold at O: 

0 ~ 0f(0) + B~,(0)(0) = {1} + R_. 

Example 5.4. This example shows that part (iii) of Theorem 3.1 may characterize 
optimality when parts (ii) and (iv) fail to, i.e. the conditions involving directional 
derivatives are weaker  than those involving subdifferentials. The directional 
derivatives here coincide with the homogeneous  constraint and objective func- 
tions. Let  

K = {~b = (~bi) ~ R2: (bE+ (qb2- 1)2-- < 1}, 

g(x) = sup{6x: 4) E K} = N / ~ +  x2, 

S~R+.  

Consider the program 

minimize 
(e )  

subject to 

f (x )  = xt, 

g(x) E - S .  

Then the point 0 solves (P) and Slater's condition fails since g(x)>-O, for all 
x ~ R:. Now, Theorem 4.1 yields the optimality condition: 

D~(O) N C~(o)(O) = ~. 

However ,  

O~ Of(O)+ 3s+g(O) for any s § ~ S+(0), 

since 0f(0) = (1, 0) while as+g(O) = s§ This shows that part (iii) of Theorem 3.1 
characterizes optimality while parts (iii) and (iv) fail to. The reason for this is 
that the cone of subgradients B~(0)(0) is not closed and thus not equal to 

- ( C ~ ( o ) ( O ) )  +. 

Example 5.5 This example illustrates Corollary 4.1. Consider the semi-infinite 
program (see Fig. 2) 

minimize 

subject to 

where 

f ( x )  = - x ,  

h ( x , t ) < - O  for  a l l t E { 1 , � 8 9  . . . .  }, 

h ( x , t ) = ( ~  tx if 0 -<x-<  l + t ,  
- 2 t 2 - 2 t  if l+ t -<x .  
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h(x,t) 

t= l  
~ F, feasible set _ ~ ~ ~ ~  t=1/2 

Fig. 2. 

F o r  each  x E R, g (x )  = h(x, �9 ) is a s e q u e n c e  in l> So,  let  Y = 12 and set  

S = {nonnega t ive  s e q u e n c e s  in Y}. 

W e  can  now r ewr i t e  the  a b o v e  p r o g r a m  in the  a b s t r a c t  f o r m u l a t i o n  

m i n i m i z e  y(x) ,  
(P) 

s u b j e c t  to g ( x ) E - S .  

L e t  us c h o o s e  the  gene ra t ing  set  

~ = { e i : i  = 1 , 2 , 3  . . . .  }, 

the set  of  c o o r d i n a t e  func t ions  in 12. Then  cone  ~ = S §  S. N o t e  tha t  S l a t e r ' s  

cond i t i on  fai ls ,  s ince  int  S = ~, bu t  N = =  tt. To  app ly  C o r o l l a r y  4.1, we mus t  

c h o o s e  the  c o m p a c t  se t  

Q = { e i : i  = 1,2 . . . . .  k } K  ~ < =  ~ ,  

whi le  the  r e m a i n d e r  

~ = { e i : i = k + l , l + 2  . . . .  }. 

Thus  

( F  ~ - 1) + = c o n e ( F  ~ - 1) -- R_ 

and our  o p t i m a l i t y  cond i t i ons  y ie ld :  

0 E 0f(1) + Os+g(1) - (F  ~ - 1) + = { -  1 } -  R_, 

s ince  S+(1) = {0}, as the re  are  no b ind ing  cons t r a in t s .  
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