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In the latter reference, we �nd the following important observation ([1],p. 67):Generally, there is a tendency to think that di�cult problems shouldbe addressed with sophisticated methods, such as Newton-like meth-ods. This is often true, particularly for problems with nonsingularlocal minima that are poorly conditioned. However, it is important torealize that often the reverse is true, namely that for problems with\di�cult" cost functions and singular local minima, it is best to usesimple methods such as (perhaps diagonally scaled) steepest descentwith simple stepsize rules such as a constant or a diminishing stepsize.The reason is that methods that use sophisticated descent directionsand stepsize rules often rely on assumptions that are likely to be vio-lated on di�cult problems.Our investigation here is very much in the spirit of these remarks. Inparticular, we seek e�ective ways to diagonally scale an algorithm of Cauchytype.For purposes of discussion, it is useful to identify a hierarchy of relationsthat can be employed within Newton and Cauchy algorithms as follows:� Secant or Quasi-Newton (QN): M+s = y where the n-dimensionalvectors s = x+�x and y = g+�g denote the step and gradient changecorresponding to two di�erent points x and x+ and their associatedgradients g and g+. M+ a full n � n matrix that approximates theHessian. This notation is used henceforth. Both s and y are availableto the associated QN algorithm and it requires O(n2) storage for thematrix M+.� Weak-Secant: sTM+s = sT y. This was introduced and studied byDennis and Wolkowicz [3]. Again the resulting QN algorithm uses sand y explicitly and requires O(n2) storage.� Quasi-Cauchy (QC): sTD+s = sT y where D+ is a diagonal matrix,i.e., the QC relation is the weak secant with matrices restricted to bediagonal and s and y are available. The associated Cauchy algorithmrequires only O(n) storage.� Weak-Quasi-Cauchy: sTD+s = b where D+ is a diagonal matrix andb � sT g+� sT g = sT y is obtained by directional derivative di�erencesalong s, i.e., the weak QC relation is the QC relation further weakenedso that gradient vectors (hence the vector y ) are not explicitly used.The notions of QC relations and diagonal updating were originally2



introduced in this setting in [12], [13]. The associated QC algorithmrequires O(n) storage and, in addition, only requires approximationsto gradients (quasi-gradients).We will discuss the general idea of diagonal updating subject to theQC relation and give numerical results for an implementation of a Cauchyalgorithm that employs such diagonal scaling matrices. A more completetheory of diagonal updating, including its application to limited-memoryBFGS algorithms and further numerical results, can be found in [16], [17].2 Diagonal UpdatingSuppose D > 0 is a positive de�nite diagonal matrix and D+ is the updatedversion of D which is also diagonal. We require that the updated D+ satisfythe QC relation and that the deviation between D and D+ is minimized un-der some variational principle. We would like the latter to preserve positivede�niteness in a natural way, i.e. we seek well-posed metric problems suchthat the solution D+, through the diagonal updating, incorporates availablecurvature information from the step and gradient changes as well as thatcontained in D. As noted earlier, a diagonal matrix simply needs the samecomputer storage as a vector so an algorithm with O(n) storage will bemaintained. We only consider Cauchy algorithms here, but it is clear thatdiagonal updating will have wide application to CG and limited memoryQN algorithms as well.We now focus on two basic forms of the diagonal updates.2.1 Updating DConsider the variational problem:(P ) : minimize jjD+ �DjjFs:t: sTD+s = sT ywhere s 6= 0, sT y > 0 and D > 0. LetD+ = D + �; a = sTDs; b = sT y: (2)Then the variational problem can be stated as(P ) : minimize jj�jjF3



s:t: sT�s = b� a:In (P ), the objective is strictly convex and the feasible set is convex. There-fore, there exists a unique solution to (P ). Its Lagrangian function isL(�; �) = 12tr(�2) + �(sT�s+ a� b)where � is the Lagrange multiplier associated with the constraint and trdenotes the trace operator. Di�erentiating with respect to � via the matrixcalculus [6] or di�erentiating with respect to the diagonal elements, settingthe result to zero and invoking the constraint sT�s = b� a, we have� = b� atr(E2)E; E = diag [s21; s22; ::: ; s2n ] (3)where si is the i'th element of s. When b < a, note that the resulting D+is not necessarily positive de�nite. For algorithmic purposes, a safeguardis needed to ensure D+ > 0. This can be easily achieved by checking thecondition 8i; di + (b� a)s2itr(E2) > 0 (4)where di is the i'th diagonal element of D. When the above is violated,we can retain the previous diagonal matrix by setting D+ = D or use somesimple scheme to generateD+ such that D+ > 0. An example is to switch tothe basic Oren-Luenberger scaling matrix (used in the L-BFGS algorithm),namely, D+ = (sTy=sT s)Iwhere I is the identity matrix. It is useful to note that this is precisely thematrix that would be obtained from the QC relation with the further re-striction that the diagonal matrix is a scalar multiple of the identity matrix,i.e., instead of a general diagonal matrix one uses a matrix whose elementson the diagonal are equal.An algorithm incorporating these details will be considered in the sectionon numerical results later in this paper.2.2 Updating D1=2A more e�cient way of preserving positive de�niteness through diagonalupdating is to update the Cholesky1 factor D1=2 to the corresponding D1=2+1`Square-root' would be a more precise choice of terminology, but we use `Cholesky' toretain the connection with the updating of QN triangular factors of full matrices.4



with D1=2+ = D1=2 + 
and (FP ) : minimize jj
jjFs:t: sT (D1=2 +
)2s = sT y > 0:The foregoing variational problem is well-posed, being de�ned over theclosed set of matrices for which the correspondingD+ is positive-semide�nite.Further, analogously to the full matrix case in standard QN updating, it al-ways has a viable solution for which D+ is positive de�nite. This is statedin the following theorem:Theorem 2.2.1 Let D > 0 and s 6= 0, a; b; E are de�ned in (2) and (3).There is a unique global solution 
 of (FP ) which is given by
 = ( 0 if b = a���E(I + ��E)�1D1=2 if b 6= a (5)where �� is the largest solution of the nonlinear equation F (�) = b for whichF (�) def= sT (D(I + �E)�2)s = Xfi:si 6=0g dis2i(1 + �s2i )2 (6)Proof. In the process of the proof we will see every expression above is wellde�ned. First, by some simple transformations, problem (FP ) is equivalentto (FP ) : minimize jjwjj22 = wTws:t: wTEw + 2wTEr = b� awhere r = [d1=21 ; d1=22 ; :::; d1=2n ]TWhen b = a, the global optimal solution is obviously w = 0, and hence 
 =0, which implies thatD+ = D is positive de�nite. In the following discussionwe assume that b 6= a. Problem (FP ) has a strictly convex objective withthe Hessian E of the constraint being positive semi-de�nite. By a theoremin [8] concerning a quadratic objective with a quadratic constraint, (FP )has a global solution. Di�erentiating its LagrangianL(w; �) = wTw + �(wTEw+ 2wTEr+ a � b)5



with respect to w, where � is the Lagrangian multiplier, and setting theresult to zero, we have w = � �s2i d1=2i(1 + �s2i ) ; i = 1; :::; nSubstituting these quantities into the constraint equation, we obtainF (�) def= sT (D(I + �E)�2)s= nXi=1 dis2i(1 + �s2i )2= Xfi:si 6=0g dis2i (�+ (1=s2i ))2= bNote that F (�) has poles at (�1=s2i ), i = 1; :::; n. Letj = arg maxfi:si 6=0g(� 1s2i ):The derivative of F (�) isdF (�)d� = �2 Xfi:si 6=0g r2is2i (�+ (1=s2i ))3 < 0on the interval (� 1s2j ;+1)so F (�) is strictly decreasing in the above interval from +1 to 0. Notingthat b > 0, we see that there is a unique solution �� within this intervalsuch that F (��) = b. Though the behavior of F (�) is complex in the entiredomain, solutions for F (�) = b except �� are of no interest (note that ��is the largest solution). This is because a necessary condition [8] of thesolution of (FP ) requires the Hessian of the Lagrangian, namely, I+�E, tobe positive semi-de�nite. This is equivalent to1 + �s2i � 0; i = 1; :::; n;and clearly �� is the unique solution of F (�) = b satisfying the above in-equalities. A key observation is that I + ��E is positive de�nite, and thus6



�� is the unique global minimizer for (FP ). Returning to the relationshipof w and �, we see thatw� = ���E(I + ��E)�1D�1=2is the unique solution of (FP ). Note also that 8i = 1; :::; n,d1=2i � ��s2i d1=2i(1 + ��s2i ) = 11 + ��s2i d1=2i 6= 0so D+ is positive de�nite. This completes the proof.The following is a direct result of the theorem.Corollary 2.2.1 The solution D+ through the diagonal updating problem(FP ) is positive de�nite and unique which is given by:D+ = ( D if b = a(I + ��E)�2D if b 6= a (7)2.3 DiscussionSuppose n is not large and that evaluating a function/gradient is relativelyexpensive (a common assumption in nonlinear optimization). Then the costof solving the nonlinear equation F (�) = b, which we call the QC subprob-lem henceforth, is essentially trivial, even when it is performed by a crudeunidimensional algorithm, for example, bisection. If greater e�ciency isneeded, it is useful to exploit a connection2 between the QC subproblemand a scaled trust-region subproblem derived from a reformulation of (FP )as follows: minimize jjD1=2+ �D1=2jjFs:t: sTD+s = b > 0:Then using the earlier de�nitionsE = diag [s21; s22; ::: ; s2n ];r = [d1=21 ; d1=22 ; :::; d1=2n ]T ;2This connection is particularly ironic, because the QC method developed in this arti-cle is quintessentially metric-based, whereas trust-region techniques are the fundamentalbuilding blocks of model-based approaches|for terminology see Nazareth [11].7



and de�ning the vector z to be the diagonal elements of D1=2+ , we can reex-press the foregoing variational problem as follows:minimize � rTz + 12zT zs:t: zTEz = bwhere b > 0. When E is nonsingular (hence positive de�nite) and the equal-ity in the constraint is replaced by a � inequality, one obtains a standardtrust-region subproblem in the metric de�ned by E. The QC subproblemcan be viewed as a simple but nonstandard trust region problem3. Thusmany of the techniques used to solve trust-region subproblems|see, in par-ticular, Rendl and Wolkowicz [15]|can be suitably adapted to solving theQC subproblem more e�ciently. Our purpose in the present article is toexplore the QC approach at a root level and further re�nements will beconsidered in a subsequent paper including comparison with recent non-monotonic Cauchy-based algorithms, see Raydan [14].3 Numerical ResultsIn this section we give some numerical results on the application of diagonalupdating to the Cauchy algorithm. Diagonal updating can be used as adynamical scaling at each iteration to the steepest descent direction in theCauchy algorithm. The Cauchy direction is ideal when the contours of theobjective f to be minimized are hyperspheres. For a general function whichis not quadratic, a preconditioning can be used to make the transformedcontours closer to hyperspheres such that the the e�ciency of the Cauchydirection in the transformed space is enhanced, see [11]. The diagonal up-dating is a non�xed preconditioning which includes the updated curvatureinformation, and its hereditary positive de�niteness is naturally maintainedwhen the Cholesky factor is updated as shown in the previous section. An3Simple because only diagonal matrices are involved so issues associated with cost ofmatrix inversions or factorizations of a more general quadratic objective do not arise. Also,because all components of r are positive and the eigenvectors associated with the Hessianof the objective (or any diagonal rescaling of it) are along the coordinate axes, which leadsto theoretical and algorithmic simpli�cations. In particular, r has a nonzero componentin the eigenspace associated with the smallest eigenvalue. Nonstandard because z = r isnot an acceptable solution of the QC problem when rTEr < b as in the usual inequalityconstrained trust-region problem. Also, because E can be singular, in which case thecorresponding components of z are separable and can be set to the components of r.8



Number Problem Name1 Helical valley function2 Biggs exp6 function3 Gaussian function4 Powell badly scaled function5 Box 3-dimensional function6 Variably dimensioned function7 Watson function8 Penalty function I9 Penalty function II10 Brown badly scaled function11 Brown and Dennis function12 Gulf research and development function13 Trigonometric function14 Extended Rosenbrock function15 Extended Powell function16 Beale function17 Wood function18 Chebyquad functionTable 1: Test Problemsexpectation that the Cauchy method will be signi�cantly accelerated usingdiagonal updating is supported by our numerical results.Our source code is written in Fortran 90, with double precision algo-rithmic, running on an ULTRIX DEC Alpha workstation. The numericalexperiment is done within the MINPACK-1 testing environment [10]. Testfunctions are the standard unconstrained problems collected in [7], whichwe identify by the numbering in Table 1.We employ a line search (rather than the more simple stepsize choicesmentioned in the quotation at the beginning of this paper) and use a routineof Mor�e and Thuente [9] based on cubic interpolation, which satis�es theWolfe conditions: f(x+) � f(x) + ��gTd (8)g(x+)Td � �gTd (9)9



where the line search parameters are chosen as [4]: � = 10�4; � = 0:9. Thestopping criterion is [4]:jjg(x)jj � 10�5maxf1:0; jjxjjg (10)The methods tested include:1. Standard Cauchy algorithm of the simple form d = �g at the k'thiteration.2. Cauchy with Oren-Luenberger Scaling: this scales the search directionwith the well-known Oren-Luenberger Scaling [5]:d = �yT syT y gfor all the iterations after the �rst step where the initial steepest de-scent search is employed.3. Cauchy-DU: Cauchy algorithm with diagonal updating, i.e., at thecurrent iterate the search direction d is scaled from the steepest descentas: d = �U+gwhere U+ is updated from U = D�1, which corresponds to comple-mentary diagonal updating:(CP ) : minimize jjU+ � U jjFs:t: yTU+y = yT sFor the details about the complementarity on (P ) and (CP ), see [16].The updated diagonal matrix is given byU+ = U + � = U + b� ctr(G2)Gwhere c = yTUy; G = diag [ y21 ; y22 ; :::; y2n ]with the safeguarding policy as follows: the above updating is usedonly when the condition8i; ui + (b� c)y2itr(G2) > 010



is satis�ed (ui are the diagonal elements of U). Otherwise the constantdiagonal matrix as the basic matrix in the L-BFGS algorithm is used,i.e. U+ = (yTs=yTy)I (11)For algorithmic consideration of L-BFGS, see [4] and [16].4. Cauchy-Cholesky: Cauchy algorithm with the diagonal updating forthe Cholesky factor U1=2, where again considering the complementaryproblem we have U+ = ( U if b = c(I + ��G)�2U if b 6= c (12)where �� is the largest solution for H(�) = b for whichH(�) def= yT (U(I + �G)�2)y = Xfi:yi 6=0g uiy2i(1 + �y2i )2In our numerical implementation, �� is obtained by either a Newtonalgorithm for a unidimensional function, or a simple bisectional search-ing within the interval from the largest pole of the function H(�) tosome large number in the axis such that the initial bisection conditionof the endpoints is satis�ed. Note that H(0) = c, thus if b > c, thenthe solution �� < 0; if b < c, then �� > 0. And hence the intervalfor the bisection is actually reduced with one endpoint being 0 in eachcase. Also a Newton step for searching for the solution of H(�) = balways starts from zero. (Note that more e�cient reformulations andtechniques for solving the QC subproblem are possible as discussed inSection 2.3.)The numerical comparative results are given in the following tables. In allthe tables we give the nitr=nfg as the number of iterations and e�ective callsfor function and gradient evaluation. The symbol � in the table indicatesthat the method takes too many iterations and is regarded as having failedto converge. The �rst and second columns in the tables are the numbersstanding for the test problems and the problem dimensions, respectively.The remaining columns are the results for the corresponding methods.From the above results we see the Cauchy algorithms using diagonal up-dating are much faster than the standard Cauchy. And in most problems thediagonal updating for the Cholesky factor performs better than the ad hoc11



Prob Dim Cauchy Cauchy-OL Cauchy-DU Cauchy-Cholesky1 3 2552/5229 431/756 378/708 370/6882 6 24041/45488 2221/4353 2977/5762 1165/21203 3 2/4 2/6 2/6 2/64 2 * * 238/1649 238/16495 3 32535/65075 225/428 474/914 165/3006 6 446/1001 574/877 120/254 157/2746 8 981/2318 269/415 184/332 229/4277 2 14/35 15/20 22/26 15/208 4 46282/46295 491/1386 783/2327 491/13869 4 63/128 40/61 84/93 49/6610 2 * 147/998 * 147/99811 4 * 126/892 121/617 198/38712 3 * 988/2506 1776/4530 *13 4 76/93 35/46 40/53 67/8513 8 134/169 109/156 75/99 80/12014 2 1109/2248 242/558 408/995 289/70115 4 70638/159377 2853/5081 1040/2157 428/82716 2 188/377 315/471 186/276 104/16717 4 2879/5795 1755/2347 2022/3714 525/100318 4 11/25 16/21 18/22 16/2018 8 118/253 82/128 64/94 67/98Table 2: Numerical Results for Diagonal Updating12



diagonal updating strategy with the safeguard policy for positive de�nite-ness. The DU-Cauchy is competitive with the Cholesky form because theformer can be implemented very simply whereas the latter incurs an over-head for computing the optimal � for a highly nonlinear one-dimensionalequation. But from a wider perspective, the Cholesky form of diagonalupdating is very successful in accelerating the Cauchy algorithm and theexpense of solving � is a relatively minor portion of the total algorithmitself. The Cauchy-OL is competitive due to its simple formulation, andindeed there are some cases in the table for which it requires fewer itera-tions and function/gradient calls than diagonal updating. But it is clearthat globally the Cauchy-Cholesky is best. In comparison, the results forOren-Luenberger scaling 
uctuate greatly. This variability of performancehas already been observed in the literature including [5] where even forthe simple BFGS algorithm, the Oren-Luenberger scaling for the Hessianmatrix, namely (sT y=sTs)I , does not consistently reduce the iteration andfunction/gradient calls vis-a-vis the pure BFGS method. Hence, the aboveresults show that diagonal updating could be a more stable scaling in prac-tice.4 ConclusionDiagonal updating is a fascinating theory whose appeal arises from its sim-plicity, elegant solutions and the similarity of the variational metrics em-ployed to those of Quasi-Newton methods, e.g., BFGS, SR1 and LPD. Athorough exploration of both theoretical and practical aspects is ongoing,and further results, in particular, the use of diagonal updating within theL-BFGS algorithm, can be found in [16] and [17].References[1] Bertsekas, D.P. (1995), Nonlinear Programming, Athena Scienti�c, Bel-mont, Massachusetts.[2] Dennis, J.E. and Schnabel, R.B. (1983), Numerical Methods for Un-constrained Optimization and Nonlinear Equations, Prentice-Hall, NewJersey. 13
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