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Abstract

The quasi-Cauchy (QC) relation is the weak-secant or weak-quasi-
Newton relation of Dennis and Wolkowicz [3] with the added restriction
that full matrices are replaced by diagonal matrices. The latter are es-
pecially appropriate for scaling a Cauchy (steepest-descent) algorithm,
hence our choice of terminology.

In this article, we explore the QC relation and develop variational
techniques for updating diagonal matrices that satisfy it. Numerical
results are also given to illustrate the use of such updates within a
Cauchy algorithm.

Keywords: Weak-secant, Quasi-Cauchy, diagonal updating, Cauchy
algorithm, steepest-descent.

1 Introduction

We consider the problem of finding a local minimum of a smooth, uncon-
strained nonlinear function, namely,

minimizeyepn f(2). (1)

For a background overview of Newton and Cauchy-type algorithms for solv-
ing (1), see Dennis and Schnabel [2] or the recent landmark book of Bertsekas

[1].
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In the latter reference, we find the following important observation ([1],
p. 67):

Generally, there is a tendency to think that difficult problems should
be addressed with sophisticated methods, such as Newton-like meth-
ods. This is often true, particularly for problems with nonsingular
local minima that are poorly conditioned. However, it is important to
realize that often the reverse is true, namely that for problems with
“difficult” cost functions and singular local minima, it 1s best to use
simple methods such as (perhaps diagonally scaled) steepest descent
with simple stepsize rules such as a constant or a diminishing stepsize.
The reason is that methods that use sophisticated descent directions
and stepsize rules often rely on assumptions that are likely to be vio-
lated on difficult problems.

Our investigation here is very much in the spirit of these remarks. In
particular, we seek effective ways to diagonally scale an algorithm of Cauchy
type.

For purposes of discussion, it is useful to identify a hierarchy of relations
that can be employed within Newton and Cauchy algorithms as follows:

o Secant or Quasi-Newton (QN): Mys = y where the n-dimensional
vectors s = x4 —x and y = g4 — g denote the step and gradient change
corresponding to two different points = and x4 and their associated
gradients ¢ and g4. M, a full n X n matrix that approximates the
Hessian. This notation is used henceforth. Both s and y are available
to the associated QN algorithm and it requires O(n?) storage for the
matrix M.

o Weak-Secant: s"Mys = sTy. This was introduced and studied by
Dennis and Wolkowicz [3]. Again the resulting QN algorithm uses s
and y explicitly and requires O(n?) storage.

o Quasi-Cauchy (QC): s'Dys = sTy where Dy is a diagonal matrix,
i.e., the QC relation is the weak secant with matrices restricted to be
diagonal and s and y are available. The associated Cauchy algorithm
requires only O(n) storage.

o Weak-Quasi-Cauchy: s* Dys = b where Dy is a diagonal matrix and
b=sTg, —s'g=s"yis obtained by directional derivative differences
along s, i.e., the weak QC relation is the QC relation further weakened
so that gradient vectors (hence the vector y ) are not explicitly used.
The notions of QC relations and diagonal updating were originally



introduced in this setting in [12], [13]. The associated QC algorithm
requires O(n) storage and, in addition, only requires approximations
to gradients (quasi-gradients).

We will discuss the general idea of diagonal updating subject to the
QC relation and give numerical results for an implementation of a Cauchy
algorithm that employs such diagonal scaling matrices. A more complete
theory of diagonal updating, including its application to limited-memory
BFGS algorithms and further numerical results, can be found in [16], [17].

2 Diagonal Updating

Suppose D > 0 is a positive definite diagonal matrix and D, is the updated
version of D which is also diagonal. We require that the updated D, satisfy
the QC relation and that the deviation between D and Dy is minimized un-
der some variational principle. We would like the latter to preserve positive
definiteness in a natural way, i.e. we seek well-posed metric problems such
that the solution D4, through the diagonal updating, incorporates available
curvature information from the step and gradient changes as well as that
contained in D. As noted earlier, a diagonal matrix simply needs the same
computer storage as a vector so an algorithm with O(n) storage will be
maintained. We only consider Cauchy algorithms here, but it is clear that
diagonal updating will have wide application to CG and limited memory
QN algorithms as well.
We now focus on two basic forms of the diagonal updates.

2.1 Updating D

Consider the variational problem:
(P): minimize ||D; — Dl|r

s.t. STD_|_8 =sly

where s # 0, sTy > 0 and D > 0. Let
Dy =D+A, a=s'Ds, b=sTy. (2)
Then the variational problem can be stated as

(P): minimize ||A]|r



st. sTAs=0b—a.

In (P), the objective is strictly convex and the feasible set is convex. There-
fore, there exists a unique solution to (P). Its Lagrangian function is

1
LA, p) = 5‘51’(/&2) + u(sTAs+a—b)

where u is the Lagrange multiplier associated with the constraint and tr
denotes the trace operator. Differentiating with respect to A via the matrix
calculus [6] or differentiating with respect to the diagonal elements, setting
the result to zero and invoking the constraint s’ As = b — a, we have

h—
A=——2
tr(F?)
where s; is the 7’th element of s. When b < a, note that the resulting D,
is not necessarily positive definite. For algorithmic purposes, a safeguard

is needed to ensure D, > 0. This can be easily achieved by checking the
condition

E, E = diag [8%7 8%7 78721] (3)

. (o)
Vi, d; + ()

where d; is the ¢’th diagonal element of D. When the above is violated,

>0 (4)

we can retain the previous diagonal matrix by setting D, = D or use some
simple scheme to generate D such that Dy > 0. An example is to switch to
the basic Oren-Luenberger scaling matrix (used in the L-BFGS algorithm),
namely,
Dy = (sTy/sTs)I

where [ is the identity matrix. It is useful to note that this is precisely the
matrix that would be obtained from the QC relation with the further re-
striction that the diagonal matrix is a scalar multiple of the identity matrix,
i.e., instead of a general diagonal matrix one uses a matrix whose elements
on the diagonal are equal.

An algorithm incorporating these details will be considered in the section
on numerical results later in this paper.

2.2 Updating D'/?

A more efficient way of preserving positive definiteness through diagonal
updating is to update the Cholesky! factor D/2 to the corresponding D}l_/z

lSquare-root’ would be a more precise choice of terminology, but we use ‘Cholesky’ to
retain the connection with the updating of QN triangular factors of full matrices.



with
DY* =D 1 0

and
(FP): minimize ||Q||r
st sT(DY2 4 )% = 5Ty > 0.
The foregoing variational problem is well-posed, being defined over the
closed set of matrices for which the corresponding D is positive-semidefinite.
Further, analogously to the full matrix case in standard QN updating, it al-

ways has a viable solution for which D, is positive definite. This is stated
in the following theorem:

Theorem 2.2.1 Let D > 0 and s # 0, a,b, E are defined in (2) and (3).
There is a unique global solution X of (F'P) which is given by

_J 0 ifb=a
Q—{ —,M*E(I—I-,M*E)_IDI/Q sz#a (5)

where p* is the largest solution of the nonlinear equation F(u) = b for which

2
dZSZ

F(u) € sT(D(I + pE) s = ¥ 0t psh)?

{1:5;#0%}

(6)

Proof. In the process of the proof we will see every expression above is well
defined. First, by some simple transformations, problem (F'P) is equivalent
to

(FP): minimize ||w||? = wlw

s.t. wl Ew + 2wlEr=b—a

where

r=[d)?, 4y, )T

When b = a, the global optimal solution is obviously w = 0, and hence =
0, which implies that D, = D is positive definite. In the following discussion
we assume that b # a. Problem (FP) has a strictly convex objective with
the Hessian F of the constraint being positive semi-definite. By a theorem
in [8] concerning a quadratic objective with a quadratic constraint, (FP)
has a global solution. Differentiating its Lagrangian

Lw, p) = wlw+ p(wl Ew + 20T Er 4+ a — b)



with respect to w, where u is the Lagrangian multiplier, and setting the
result to zero, we have
1/2
pis? di/

=——*1t " 2=1,..
ST M

Substituting these quantities into the constraint equation, we obtain

© ST(DI + pE)2)s

L d;s?
- ; (1 + ps?)?
= ¥ d;
- Fpt(1/s7))

{1:5;#0%} 5
= b

F(p)

Note that F(p) has poles at (=1/s?), i =1,...,n. Let

. 1
] = arg maX{Z»:S#O}(—S—z).

The derivative of F(u) is

dF(p) r?
— =2 ! <0
dp {izgo} st + (1/53))°

on the interval
(~ 0 +0)
527

so F(p) is strictly decreasing in the above interval from +oo to 0. Noting
that b > 0, we see that there is a unique solution p* within this interval
such that F(u*) = b. Though the behavior of F(u) is complex in the entire
domain, solutions for F(u) = b except u* are of no interest (note that p*
is the largest solution). This is because a necessary condition [8] of the
solution of (F'P) requires the Hessian of the Lagrangian, namely, I + pF, to
be positive semi-definite. This is equivalent to

1—|—,usZ2 >0, :=1,...,n,

and clearly p* is the unique solution of F(u) = b satisfying the above in-
equalities. A key observation is that I + p*F is positive definite, and thus



p* is the unique global minimizer for (F'P). Returning to the relationship

of w and p, we see that
w* = _H*E(I‘I‘ M*E)_ID_1/2

is the unique solution of (F'P). Note also that Vi = 1,...,n,

42 prsid)? L e

= 0
T R e

so D4 is positive definite. This completes the proof. [ |

The following is a direct result of the theorem.

Corollary 2.2.1 The solution D4 through the diagonal updating problem
(F'P) is positive definite and unique which is given by:

2 ifb=a
D ‘{ (I+WE)?D ifb#a (@)

2.3 Discussion

Suppose n is not large and that evaluating a function/gradient is relatively
expensive (a common assumption in nonlinear optimization). Then the cost
of solving the nonlinear equation F(u) = b, which we call the QC subprob-
lem henceforth, is essentially trivial, even when it is performed by a crude
unidimensional algorithm, for example, bisection. If greater efficiency is
needed, it is useful to exploit a connection? between the QC subproblem
and a scaled trust-region subproblem derived from a reformulation of (#'P)

as follows:
minimize ||D}|_/2 — D'

st. sTDys=0b>0.
Then using the earlier definitions

R 2 2 2
k= dlag [817 $95 +e0 53 Sy ]7

r= a2 dR L AT

2This connection is particularly ironic, because the QC method developed in this arti-
cle is quintessentially metric-based, whereas trust-region techniques are the fundamental
building blocks of model-based approaches—for terminology see Nazareth [11].



and defining the vector z to be the diagonal elements of Di_/z, we can reex-
press the foregoing variational problem as follows:

.. 1
minimize — TTZ + §ZTZ

st. 2T Ez=b

where b > 0. When £ is nonsingular (hence positive definite) and the equal-
ity in the constraint is replaced by a < inequality, one obtains a standard
trust-region subproblem in the metric defined by FE. The QC subproblem
can be viewed as a simple but nonstandard trust region problem®. Thus
many of the techniques used to solve trust-region subproblems—see, in par-
ticular, Rendl and Wolkowicz [15]—can be suitably adapted to solving the
QC subproblem more efficiently. Our purpose in the present article is to
explore the QC approach at a root level and further refinements will be
considered in a subsequent paper including comparison with recent non-
monotonic Cauchy-based algorithms, see Raydan [14].

3 Numerical Results

In this section we give some numerical results on the application of diagonal
updating to the Cauchy algorithm. Diagonal updating can be used as a
dynamical scaling at each iteration to the steepest descent direction in the
Cauchy algorithm. The Cauchy direction is ideal when the contours of the
objective f to be minimized are hyperspheres. For a general function which
is not quadratic, a preconditioning can be used to make the transformed
contours closer to hyperspheres such that the the efficiency of the Cauchy
direction in the transformed space is enhanced, see [11]. The diagonal up-
dating is a nonfixed preconditioning which includes the updated curvature
information, and its hereditary positive definiteness is naturally maintained
when the Cholesky factor is updated as shown in the previous section. An

? Simple becanse only diagonal matrices are involved so issues associated with cost of
matrix inversions or factorizations of a more general quadratic objective do not arise. Also,
because all components of r are positive and the eigenvectors associated with the Hessian
of the objective (or any diagonal rescaling of it) are along the coordinate axes, which leads
to theoretical and algorithmic simplifications. In particular, r has a nonzero component
in the eigenspace associated with the smallest eigenvalue. Nonstandard because z = r is
not an acceptable solution of the QC problem when rT Er < b as in the usual inequality
constrained trust-region problem. Also, because F can be singular, in which case the
corresponding components of z are separable and can be set to the components of r.



H Number H Problem Name H

1 Helical valley function

2 Biggs exp6 function

3 Gaussian function

4 Powell badly scaled function

5 Box 3-dimensional function

6 Variably dimensioned function
7 Watson function

8 Penalty function 1

9 Penalty function II

10 Brown badly scaled function
11 Brown and Dennis function

12 Gulf research and development function
13 Trigonometric function

14 Extended Rosenbrock function
15 Extended Powell function

16 Beale function

17 Wood function

18 Chebyquad function

Table 1: Test Problems

expectation that the Cauchy method will be significantly accelerated using
diagonal updating is supported by our numerical results.

Our source code is written in Fortran 90, with double precision algo-
rithmic, running on an ULTRIX DEC Alpha workstation. The numerical
experiment is done within the MINPACK-1 testing environment [10]. Test
functions are the standard unconstrained problems collected in [7], which
we identify by the numbering in Table 1.

We employ a line search (rather than the more simple stepsize choices
mentioned in the quotation at the beginning of this paper) and use a routine
of Moré and Thuente [9] based on cubic interpolation, which satisfies the
Wolfe conditions:

f(x) +arg"d (8)
Bgtd (9)

flzy)
glay)'d

(AVARVAN



where the line search parameters are chosen as [4]: a = 107%, 8 = 0.9. The
stopping criterion is [4]:

llg(2)l| < 10™°max{1.0,||=[} (10)

The methods tested include:

1. Standard Cauchy algorithm of the simple form d = —g at the k’th
iteration.

2. Cauchy with Oren-Luenberger Scaling: this scales the search direction
with the well-known Oren-Luenberger Scaling [5]:

yl's

d=—
yTy

g

for all the iterations after the first step where the initial steepest de-
scent search is employed.

3. Cauchy-DU: Cauchy algorithm with diagonal updating, i.e., at the
current iterate the search direction d is scaled from the steepest descent
as:

d=-U.g
where Uy is updated from U = D!, which corresponds to comple-
mentary diagonal updating:

(C'P): minimize ||Uy —Ul|r

s.t. yTU_|_y =yls
For the details about the complementarity on (P) and (C'P), see [16].
The updated diagonal matrix is given by

b—c
= I = _
Uy =U+ U+tr(G2)G
where
c=y' Uy, G=diag[yl, v3. -, 41 ]
with the safeguarding policy as follows: the above updating is used
only when the condition
(b— o)y

VZ, UZ—|-W>O

10



is satisfied (u; are the diagonal elements of ). Otherwise the constant
diagonal matrix as the basic matrix in the L-BFGS algorithm is used,
ie.

Uy = (yTs/yTy)I (11)
For algorithmic consideration of L-BFGS, see [4] and [16].

. Cauchy-Cholesky: Cauchy algorithm with the diagonal updating for
the Cholesky factor U'/2, where again considering the complementary
problem we have

U ifb=c
U+_{(I+V%ﬂ4U if b# c (12)

where v* is the largest solution for H(v) = b for which

2
def - uy;

HO) =y WUI+v& = 3 G0
(im0} Y

In our numerical implementation, v* is obtained by either a Newton
algorithm for a unidimensional function, or a simple bisectional search-
ing within the interval from the largest pole of the function H(v) to
some large number in the axis such that the initial bisection condition
of the endpoints is satisfied. Note that H(0) = ¢, thus if b > ¢, then
the solution v* < 0; if b < ¢, then v* > 0. And hence the interval
for the bisection is actually reduced with one endpoint being 0 in each
case. Also a Newton step for searching for the solution of H(v) = b
always starts from zero. (Note that more efficient reformulations and
techniques for solving the QC subproblem are possible as discussed in
Section 2.3.)

The numerical comparative results are given in the following tables. In all

the tables we give the nitr/n fg as the number of iterations and effective calls
for function and gradient evaluation. The symbol % in the table indicates
that the method takes too many iterations and is regarded as having failed
to converge. The first and second columns in the tables are the numbers
standing for the test problems and the problem dimensions, respectively.
The remaining columns are the results for the corresponding methods.

From the above results we see the Cauchy algorithms using diagonal up-

dating are much faster than the standard Cauchy. And in most problems the
diagonal updating for the Cholesky factor performs better than the ad hoc

11



H Prob H]Dhn ‘ Cauchy ‘ Cauchy-OL ‘Cbuchy—DII‘ Cauchy-Cholesky H
1 3 2552/5229 431/756 378/708 370/688
2 6 24041/45488 | 2221/4353 | 2977/5762 1165/2120
3 3 2/4 2/6 2/6 2/6
4 2 * * 238/1649 238/1649
5 3 32535/65075 225/428 474/914 165/300
6 6 446/1001 574/877 120/254 157/274
6 8 981/2318 269/415 184/332 229/427
7 2 14/35 15/20 22/26 15/20
8 4 46282/46295 | 491/1386 783/2327 491/1386
9 4 63/128 40/61 84/93 49/66
10 2 * 147/998 * 147/998
11 4 * 126/892 121/617 198/387
12 3 * 988 /2506 1776/4530 *

13 4 76/93 35/46 40/53 67/85
13 8 134/169 109/156 75/99 80/120
14 2 1109/2248 242/558 408/995 289/701
15 4 70638/159377 | 2853/5081 | 1040/2157 428/827
16 2 188/377 315/471 186/276 104/167
17 4 2879/5795 1755/2347 | 2022/3714 525/1003
18 4 11/25 16/21 18/22 16/20
18 8 118/253 82/128 64/94 67/98

Table 2: Numerical Results for Diagonal Updating

12




diagonal updating strategy with the safeguard policy for positive definite-
ness. The DU-Cauchy is competitive with the Cholesky form because the
former can be implemented very simply whereas the latter incurs an over-
head for computing the optimal v for a highly nonlinear one-dimensional
equation. But from a wider perspective, the Cholesky form of diagonal
updating is very successful in accelerating the Cauchy algorithm and the
expense of solving v is a relatively minor portion of the total algorithm
itself. The Cauchy-OL is competitive due to its simple formulation, and
indeed there are some cases in the table for which it requires fewer itera-
tions and function/gradient calls than diagonal updating. But it is clear
that globally the Cauchy-Cholesky is best. In comparison, the results for
Oren-Luenberger scaling fluctuate greatly. This variability of performance
has already been observed in the literature including [5] where even for
the simple BFGS algorithm, the Oren-Luenberger scaling for the Hessian
matrix, namely (sTy/sTs)I, does not consistently reduce the iteration and
function/gradient calls vis-a-vis the pure BFGS method. Hence, the above
results show that diagonal updating could be a more stable scaling in prac-
tice.

4 Conclusion

Diagonal updating is a fascinating theory whose appeal arises from its sim-
plicity, elegant solutions and the similarity of the variational metrics em-
ployed to those of Quasi-Newton methods, e.g., BFGS, SR1 and LPD. A
thorough exploration of both theoretical and practical aspects is ongoing,

and further results, in particular, the use of diagonal updating within the
L-BFGS algorithm, can be found in [16] and [17].
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