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ABSTRACT

chaalnewlnequuﬁesmobhinedfathemoddus.ﬂleralpm,mdthe
imaglmrypcnofalinurcombimﬁonoftbeudendeigenvalusofasqwe
mplexmmlndudedueboundsfordleeoodiﬁonnumber.thesprud.mdthe.
spectral radius. These inequalities involve the trace of a matrix and the trace of its
square. Necessary and sufficient conditions for equality are given for each inequality.

1. INTRODUCTION

The eigenvalues of an nXn complex matrix A are the roots of the
nth-degree polynomial det(A—AI)=0 and so are difficult to evaluate in
general. It is, however, often useful to know the approximate location of the
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eigenvalues. For example, when solving an equation of the type Ax=b, one
may use the iterative scheme x,,,=Tx, +¢, where T is a certain matrix
related to A, and c is a column vector related to both A and b; cf. e.g. [17,
Chapter 3]. This scheme converges for arbitrary x, if and only if all the
eigenvalues of T lie inside the unit circle in the complex plane. This also
characterizes the convergence of the geometric series 5. ,T* to the matrix
I—T)"%. More genenally, =7, 8,T* converges if and only if all the eigen-
values of T ke inside the circle of convergence of the scalar series 5,
Byz*; cf. [7). For a Hermitian positive definite matrix, the ratio of the largest
to the smallest eigenvalue is useful in determining whether the equation
Ax=b is ill-conditioned or not; cf. e.g. [15, p. 185]. In theory of stability of
solutions to differential equations, a complex matrix is said to be stable if the
real parts of all its eigenvalues are negative; cf. e.g. [9, pp. 158-9). If we
know that the matrix has t eigenvalues with negative real part, then it is
stable on the eigenspace corresponding to these eigenvalues. Furthermore, if
the imaginary part of an eigenvalue is not zero, then it is known that the
solution will spiral; cf. e.g. [6).

For certain special types of matrices some information about the eigen-
values is known beforehand, e.g., a stochastic matrix always has at least one
eigenvalue equal to 1 and all others lie in or on the unit circle in the complex
plane; cf. eg. [9, p. 133]. In general, though, nothing so specific can be said
about where the eigenvalues may lie.

Bounds for eigenvalues have been obtained by many authors over
roughly the last hundred years; cf. e.g. [9, Chapter III]. Some of these
bounds involve the sums of absolute values of elements in a row and/or

column. Following [9, p. 144], let A=(g;;) be an n X n complex matrix, and

write

ReSlal G=3 lad
la=] kwm])
(L1)

RempcR,  C=mixG,

Let-A(A) denote an eigenvalue of A. Then the inequality
@A) <min(R.C) (12)

was proved by Alfred Brauer in 1946, though anticipated by Oskar Perron in
1833 (cf. [9, p. 145)).

Possibly the best-known inequality for eigenvalues, however, was found
by S. A. Gerigorin in 1931 (cf. e.g. [9, p. 146]): the eigenvalues lie in the

an




BOUNDS FOR EIGENVALUES USING TRACES 473
closed region of the complex plane consisting of all the discs
lz=—ay|<R,=|ayl, k=12,...,n (1.3)
In this paper we use traces to obtain various new eigenvalue inequalities.
An early result of this kind was derived by Issai Schur in 1909; cf. [10, p.
309)]. Let (cf. [1, p. 133))
B=}(A+A®*) and C=}(A-A%)/, (1.4)

where A‘-(&) is the eonjugat; transpose of A= (a,;). Then A =B+ iC, with

) B and C Hemmitian. Moreover

ZNA) <tr(A®A) =Z|ayft, (1.5)
Z[ReA(A) ' <trB*=Z|i(ay+ &) (1.6)
Z[ImA(A) P < rCt e 2|1 (ay - &) (1.7)

Equality in any one of these inequalities implies equality in all three and
occurs if and only if A is normal, e, AA®=A°A,

More recently, L. Mirsky [11] in 1956, and A. Braver and A. C. Mewborn
[2] in 1959, bave used traces to derive inequalities for the spread, sp(A)=
Apa(A) A (A); cf. Theorem 2.5. These inequalities follow the work of
Popoviciu [12] in 1935 on polynomials with real roots.

In statistics, G. W. Thomson [16] in 1955 obtained related inequalities for
the range of a set of random variables. The connection between these
inequalities is that the standard deviation of the eigenvalues is a simple
function of the trace of the matrix and the trace of its square; cf. Graybill [4,
P- 227). If the matrix A has real eigenvalues A,,A,, ..., A,, then we may define
their variance to be

K. %[ i A l i N)']-&"%’AM (1.8)

=1 "(:-x

Our results are of the following type. Let A be an nXn complex matrix,
and suppose that its eigenvalues are all real and ordered:

A DAD - DAL (19)
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Then (cf. [18] and (2.3) below)

m+3s/(n=1)"2<\, <m+s(n—-1)""%, (1.10)
where
m= A o %"g;\, )

is the mean of the eigenvalues, while s is their standard deviation, the
positive square root of the variance as defined by (1.8). Equality on the left
of (1.10) occurs if and only if A;=A,=--- =) _,, and on the right if and
only if AgmAym - -+ mA,.

In Sec. 2 we present various inequalities which hold when all the
eigenvalues are real; these results are extended to the more general complex
case in Sec. 3. The paper concludes with a number of examples in Sec. 4.

2. REAL EIGENVALUES

Our inequalities are tightest when all the eigenvalues are real; this
happens for example when the matrix is Hermitian or is the product of two
(semi)definite Hermitian matrices. A diagonable matrix A has all its eigenval-
ues real if and only if there exists a positive definite Hermitian matrix § such
that AS=SA*; cf. [3].

Tuzonrem 2.1. Let A be an n X n complex matrix with real eigenvalues
A(A), ond let :

mmtrA/n, st=trAl/n-mt (2.1)

Then
m = s{n= 1) A (A) Sm=s/(n=1)"", (22)
m+s/(n=1)"2 <A L(A) Sm+s(n-1)""% (2.3)

Equality holds on the left (right) of (2.2) if and only if equality holds on the
:{tw(ldght) of (2.3) if and only if the n—1 largest (smallest) eigenvalues are
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Notice that when n=2 the two inequality strings (2.2) and (2.3) collapse
to yield

Apo(A)=m—s and A (A)=m+s. (24)

Our inequalities were initially obtained using mathematical programming

techniques. These techniques lead to optimal bounds for eigenvalues in

terms of the trace of A and the trace of A%. Once found, however, the

inequalities are more easily proved using a Cauchy-Schwarz type inequality:
Lo 2.1, Let w and A be real nonnull nX 1 vectors, and let

m=A'e/n and s*=ACA/n, (2.5)

where e is the n X 1 vector of ones, the centering matrix C=I—ee’/n, and ¢’
is the transpose of e. Then

= 3(nwCw)!/* < w'A -~ mw'e=w'CA <s(nw'Cw)'/%, (2.6)
Equality holds on the left (right) of (2.6) if and only if
A=aw+be 2.7)
for some scalars a and b, where a <0 (a>0).
Schars inaqualty (NP € won- NCA. s © b oymimeni crmpoeny

while the equality condition (2.7) is equivalent to CA = aCw for some scalar
a (the scalar b= m —agw'e/n). [ ]

We will also need
Lnow 22, Let A=()), m and s be defined as in Lemma 2.1, and
ASDN> DA (28)
Then (cf. (22) and (2.3))

A.<m_(n——'l)—'/’<m+?n+l)v; <A, (2.9)
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Equality holds on the left if and only if Ay=Ay=--- =\, on the right if
and only if AymAge--- =\,_,, and in the center if and only if A,mA,
- m), e gm0,

Proof. 'We have that
nt(m =2\ [ p) (Js—x,)]'- S o-are PANENNEY

>3 0-A)'= 3 (-mem-n)

'-
- n[:’+ (m -A.)'], (2.10)

from which the left-hand inequality in (2.9) follows immediately. For the
right-hand inequality we expand n*(A, = m)? as we did n*(m —A ) in (2.10).
Equality holds throughout (2.10) if and only if

2 A=N)A=A) =0, (2.11)

fmk

which holds ew A, mA;= - - - A, The rest of the lemma follows directly. W

Proof of Theorem 2.1. It is easy to see that m and s® defined By 2.1)
and by (2.5) are equivalent; cf. (1.8). We now use Lemma 2.1 with wme,
the jth column of the identity matrix I,. Then (2.6) becomes

—:(n-l)”'<k,-m< s(n—1)"7%, (2.12)

which proves the left-hand side of (2.2) and the right-hand side of (2.3). For
equality on the left (right) set j=n and w=e, (j=1 and w=e,). The
right-hand side of (2.2) and the left-hand side of (2.3) follow directly from
Lemma 2.2. .

As remarked earlier, if A is positive definite, then A_(A)/A_.,(A) may be
used as & “condition number” of A. From the above Theorem 2.1, it is clear
that if m— s(n—1)!/2>0 (or equivalently if trA>0 and (trA)/trA>n—1)
and if A is Hermitian, then A is positive definite. Therefore, (2.2) and (2.3)

imply:
CoroLLany 2.1. Let A, m, and s* be defined as in Theorem 2.1.
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(i) If A is positive definite, then

2s/(n—1)'*  A..(A)
1+ :n——é(/z:%lﬁ < m . (2.13)

When n> 2, equality holds if and only if all the eigenvalues of A are equal.
(ti) If A is Hermitian, rtA >0, and (trA)* > (n — 1)tr A%, then A is positive
definite, (2.13) holds, and ’ :

Anus(A) 2s(n—1)'
Ad) <1* m::n—l)lﬂ ' ®14

When n>2, equality holds if and only if A is a scalar matrix.

The inequalities (2.2) and (2.3) may be extended to linear combinations
of the eigenvalues. Let

A N> DA (2.15)
be the ordered eigenvalues of A [cf. (1.9)], and let

LA
Aan= "_2* T=ksT’ (?.16)

which we may call a mid-mean. Notice that
1 .
Mg=m=2 S A, (2.17)
=1

[ef. (1.11)], while
AanmN. . (2.18)
Then

Trzorem 2.2, L&A.m,and:’bedeﬁmdasinl‘hmmz.l,mdlet
A("')hﬂ in (2.16)- Then

m—:("—f?*_—l-)l/’<h(u,<m+:(2l-—l)ln. " (219)
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When (k,1)=(1,n), the inequality string collapses. When (k,1)%(1,n), then
equality holds on the left of (2.19) if and only if

| AmAgm oo mA_y and AmA,,=--- =], (2.20)
and on the right if and only if
AymAgem--mA and Ny =Ny gmc--=A, (2.21)
Furthermore, .
- 172 - ) §
m-o(zEi) Aemeo(22)7 (@22)
Equality holds on the left if and only if (2.20) holds, and on the right if and
only if
A,-A.-'"-Al: and Aoy =Nop=- =, (223)

. Put w=2X!_,e/(I-k+1) in Lemma 2. Then we=1 and
wCws (I~ k+1)~!—n~". Hence
-1 \i/2 -]\1/2
m—g(-;:k——k—:i') <A(h.n)<x(&l)<A(l.l)<m+‘("—l') . (2.24)
It follows directly that equality on the left of (2.19) holds if and only if (2.20),
and on the right of (2.19) if and only if (2.21). s

Mallows and Richter {8] obtained several inequalities for the standard
deviation of a set of numbers; in particular, their (6.1) leads directly to our
Theorem 2.2. Furthermore, their Corollary 6.1 yields a stronger lower bound
than that in (2.19) when (k,1)=(1,1) and a stronger upper bound when
(k,1)=(k,n).

Tuzonem 2.3. Let A, m, and s* be defined as in Theorem 2.1, and let
_
(n-1)'*
Aan? s(n—-1)
Un-1)"*

[+ if I1<¢n,
| (2:25)
if 1>¢n,

f s(k—1) 1

m- — YY) ‘f k<;n+l.

Aoy (n ‘k+l)(n 1) (2.26)
if k>in+l




BOUNDS FOR EIGENVALUES USING TRACES - 479

Equality holds in (2.25) if and only if
Ajmdgm-ccmd, ' when I<in,
AMmAgm e @A, 0r AgmAym.-- m),  when Im}n, (227)
R , when 1>}n.
Equality holds in (2.26) if and only if
AmAgm-ee A, when k<in+l,
M=Agm-comA ) or AgmAgm-c-mA when kwin+l, (2.28)
Agmhyom -, when k>3n+1.

Proof. The inequalities (2.25) and (2.26) follow directly from Corollary
6.1 in [8, p. 1831]. To obtain the conditions’ for equality given by (2.27),
bowever, we use the following equality, which is straightforward but tedious
to establish: -

'l(ﬂ’l)(xa.')-m)"‘m’
] !
- — bad -2 -
(n=2)n=11 5 AN+ 2 minf) [mas() 1]

n-~]

+2(n-l-1)l"2' > i(n— AN

=] jole]

+ “_ZM[n—mx(i.i)][n—l—mm(i.f)]m. (2.29)
The condition (2.28) is obtained similarly. a

We note that when k=1 (respectively n), the lower (respectively upper)
~ bound in (2.22) equals m. The bounds from Theorem 2.1,

A <m- (n-'l)'/' <m+ (n-‘l)l/' <A, (2.30)
are therefore better whenever s> 0.

When n=3, however, we may combine (2.22) and (2.30) to yield the
contiguous bounds

m-sVE <A <m—3/VE KA <m+3/VE <A <m+sVE . (231)




480 HENRY WOLKOWICZ AND GEORGE P. H. STYAN

When 7> 4 our bounds are, unfortunately, no longer contiguous. From
(2.22) and (2.30) we obtain, when ne=4,

m=—sV3 <A\, <m-2/V3 <\ <m+s,
(2.32)

m—s<\<m+s/V3 <A\, <m+sV3.
When n=35, we have

m—2:<'&<m—§c<h,<m+l“’;-.

m-:ﬁ_ SASm+js<A, <m+2s, (2.33)

m-,\/g' <A,<m+:\/§_.
This suggests that for n =6 our bounds for A, and A, might be contiguous.
However, we obtain

m—sV5 <A <m—-3/V5 <A, <m+sV2 ,
m—sV2 <Ag<m+3/VE <A, <m+sVE, (2.34)
m-s<A, <m+s/V2,

m-s/V2 <A <m+s.

Our bounds (2.4), (2.30), (2.32)~(2.34) are plotted in Fig. 1. Each axis is
in units of c, where m = cs is the bound. The center is at m =0, and the scale
has s=1, '

Craybill [4, p. 228] considered a matrix A with real eigenvalues, precisely
t of which are nonzero. Then ¢>0 if and only if trA*>0; in this event

(A’ /e A* <t <rankA. (2.35)
The following corollary strengthens this result.

CoroLrary 2.2. utAhaoemleige;anuacddlprecbelyfbeing-
positive and g negative. Let tr A®>0.

(i) When trA >0, then
(TA)l/rAt>S, (2.36)
with qummqmwwmagmmmwmw the
nonpositive eigenvalues are equal.
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Fic. 1. Bounds for eigenvalues, n=2(1)6.

() When trA <0, then

(tA) /A< g, (2.37)

with equality if and only if all the negative eigenvalues are equal and all
the nonnegative eigenvalues are equal.
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Proof. It suffices to prove (i), as (ii) then follows by replacing A with
—A. First assume f=n. Then (2.36) is just the Cauchy-Schwarz inequality,
and equality holds if and only if all the eigenvalues are equal. When f<n it
follows that A, , <0, and using (2.92) with k=f+1, we get m{n— 1)/t <
sf'/%, Squaring both sides leads to (2.36) directly; equality holds if and only
if A, =0 and [using (2.20) with k=f+1]A,=--- =) and Ay, = -- mA,

a

The two inequalities (2.36) and (2.37) may be combined as
iuA)'/uA’ <max(f,¢g) é: <rankA; (2.38)

of. (2.35).
If A is Hermitian, the inequality (2.36) shows that A is positive definite

when
n—1<(trA)*/trA* and trA>0. (2.39)

The inequality (2.37) gives a similar criterion for negative definiteness.

Another linear combination of the eigenvalues which is of interest is the
difference A, — A;; when (k,!)= (1,n), then this difference is called the spread
of the matrix A; we will write this as sp(A). In statistics the difference A, —A,
is known as the range, and 30 A, —A; may be called a mid-range.

TuEonEM 24. Let A and s* be defined as in Theorem 2.1. Then |

A=A <!/ %-l»;rli-;—l-)v‘. 1<k<i<n. (2.40)
Equality holds i ond ondy if
AI-AC- e -M’
Ae1™Neg™ - mA_ =trA/n, (2.41)
&-&01-“' -N.

Proof. To prove (2.40) we set w-k"ﬁf_,a,-(n—l-bi)"Z“_,e, in
(2.6), with k<L, It follows that w'e=0 and wCw=w'we= k-4 (n— 1+1)-1.
Hence

1,1 y»
e A e ) @)
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which yields (2.40). Equality on the right of (2.42) bolds if and only if

a a a a ,
A-(:k.*’b'""-k.*.b: b,....b, Lb—m,....b—m‘).
& torms 1= k=1 torms n=1+1 terms

(2.43)

It follows at once that m=e’A/n=b and a=QA, = A)/[k~ +(n=1+1)"1),
and so equality holds in (2.40) if and ounly if (2.41). ]

When (k,l)=(1,n) in Theorem 2.4, the inequality (2.40) becomes the
upper bound for the spread sp(A)=A, — A, found by Mirsky in [11]. He used
the second elementary symmetric function

A= ‘E'A‘A’-i[(u-A)"-uA’], | (2.44)
s0 that (cf. [9, p. 167))

sp(A) < { 2(1 - %)(u)'—w,.«} YA e 2n) s, (2.45)

nding lower bounds for sp(A) were obtained by Brauer and
Mewbom in {2]. We assemble these results in

Tuzoren 2.5. LaAmdc’bedcﬁtwdasmmz.l.M

A A < (2n)' %, (2.46)
When n>2, equality holds if and only if
AgmAgem - -J\.-:-%(A.f&.)- (247)
If n=2q is even, then
2<A A, (2.48)
with equality if and only if

Mehgmomh ond Ayg=AggmcccmA. (249)
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If n=2q=+1 is odd, then k2.48)holdc, but moreover,

2en/(n~1)2GA -A,, (2.50)

with equality if and only if (2.49) holds.

Note that A, /A, =1+, ~A,)/A,. Using this fact and the above bounds
forthespmd.weobuinthefolloﬁngbmmdsforthecondiﬁonnmnber.

ComoLLaxy 2.3, Le!AbeHmitianpo.ﬁﬁce definite, and let m and s*
be defined as in Theorem 2.1.

() When n is even, then

2s Anu(A)
A @) @1

When n>2 equality holds if and only if A is a scalar matrix.
(i) When n is odd, then (2.51) holds, but moreover,

2en/(n*-1)'* A__(A)
1+ m—s/(n-1)"/% < Amal(A) (252)

Whenn-3¢qualltyholdsh(2.52)ifandonlyifthemmllat
dgmvalmmaqual.Whenn>3¢qualityholdsifmdonlythisawalar
matrix.

ConoLrary 2.4.  Let A be Hermitian, and let m and s® be defined as in
Theorem 2.1. If trA>0 and (trA)*> (n~ 1)trAS, then A is positive definite,
(2.51) holds, and

Aai(A) (2n)/%s ‘
A <_l+ L (2.53)

Whenn>2.cqualityholdﬂfmdaulyifAi:aacahrmaﬂix.

Unfortunately the bounds given in (2.14) and (2.53) hold only
when trA>0 and (rA) > (n—-1)tr A%, This is because we need a positive
lower bound for A,. I, bowever, we knew that A, > b > 0 for some b, then we
could replace m—s(n—1)'/* by b in Corollaries 2.1 and 2.4. For example,
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when A is positive definite, then

detA detA detA
- > >0 (2~54)
M b > Aga-n)™™! [m+s/(n-1)*]"""

by the arithmetic-geometric mean inequality and (2.19). Setting

- detA 2.55)
b [m-!-:/(ﬂ—l)'/']".l (

yields
CoroLLARY 2.5.  Suppose that A is Hermitian positive definite. Then

As(A) (2,.)1/8'["”,‘/("_ l)l/l]n-l
Amal®) <! detA : (2.56)

When n > 2, equality holds if and only if A is a scalar matrix.

We note that equality holds in (2.54) if and only if A;sAge .- =A,_,;
but to achieve equality in (2.56) we also need equality in (2.46), andso A
must be a scalar matrix.

It is interesting to compare the inequalities for the condition number
- provided by Corollaries 2.1, 2.3, 2.4, and 2.5. When n>2 and >0, it is
clear that the bounds in Corollaries 2.3 and 2.4 are strictly better than those
given in Corollary 2.1. These bounds, however, require that

(rA)*>(n—1)trA?, (2.57)

which'isnotneeesuxyfortheinequnlityinCorollaryz.Stohold.Wesee
that that inequality is better than the one in Corollary 2.4 if and only if

detA> [m—:(n-l)"'][m+:/(n—l)”’]"'l. . (258)
Using Theorem 2.1, we see that this is implied by the product

Mo Aoy > [mta/(n=1)]" (2.59)
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Considering the three inequalities (2.14), (2.53), and (2.56), we note that
when n>>2 equality bolds if and only if A is a scalar matrix, and then

trAt=(trA)*/n. (2.60)

Wenowptuentmlnequnhtywhicbmeoﬂapseformypdrofvalusof
trA* and trA which satisfy (2.57). The inequality (2.62) below is, therefore,
always better than (2.14) and (2.53) when n>2 and #>0.

Tuzonzx 2.6. Let A be an n X n Hermitian matrix. If trA>0 and

Al
P-%,L-(n-lb& (2.61) -
then A is positive definite and
— nt)i/2 '
—t((:)) ‘_L“(l,, g (2.62)
When n>2, equality holds if and only if
Al+al
A’-A’-...-L°l-m' | (2.63)
and then
trA?  AM+Al
ﬁ"ﬁ' (2.64)
To prove Theorem 2.6 we use:
Loon 23. Let A be an nXn nonnull with real eigenvalues
A P73 - 3. Then _
s 2 '
!:—':’L<n'-2+-(-:‘:—:t%. (2.65)

When n>2, equality holds in (2.65) if end only if A, +A, %0 and

Af+Al
A’-... -A._l- A:'f-k . (2%)
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Proof. 1f A, =0, then (2.65) reduces to
(trA)*<(n—1)trA%, (2.67)

which can be shown to hold by using the Cauchy-Schwarz inequality on the
n —1 real nonzero eigenvalues of A. Moreover, equality then bolds in (2.67)
o A\ =)A= .- =) _,, which is (2.66) when A, =0. Whén A,,-vﬁ(_) we may

write
t-x;/Kﬁ “I-Al/&' i-ﬁ,...,n-l, (258)
Then (2.65) e
-(‘+”’+“'+“ﬁ-l+1)' _ K"’l’
Y B plt -+ 41 <n 2+5—L“,+l . (2.69)

Write i= 272} /(n—2). Then, using the Cauchy-Schwarz inequality again,
we obtain

mB+eee+pd 1> (n-2)a% (2.70)
Applying (2.70) to the left-hand side of (2.60) yields

,< [.+1+(u-2),7]'+(n-2)[ﬁ(g+1)-(x'+1)]’/(x*+1)

?+14+(n-2)i* . @71

since the second term in the numerator of the right-hand side of (2.71) is
nonnegative. Simplifying (2.71) yields (2.65). Equality bolds in (2.65) if and
only if equality holds in (2.70) and i(x +1)=«*+ 1. Equality holds in (2.70)
if and only if Agm--- mA _ =], say, while #(x+1)=x*+1 simplifies to
A, +A)=AS4+AL If A, + A, 90, this yields (2.66). If A, +A, =0, then (2.65)
reduces to (trA)* < (n —2)tr A%, which collapses if and only if A} +A2=0 or
A=), [}

~ Proof of Theorem 2.6. The inequality (2.65) may be written as

2x
< ,
P 2+1

where p is defined in (2.61) and « in (2.68). Simplifying (2.72) yields the
quadratic

(2.72)

pct-2x+p<0 (2.73)
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and so (2.62) follows. Equality holds in (2.62) f and only if equality holds in
(2.65) and (2.86) = (2.63). ]

To compare (2.62) with (2.53) we may write (2.62) as

Y 12, 1y 1/
——::((:))<1+‘l P) [(“": *a-p 7] (2.74)

We may interpret the quantity p defined by (2.61) as follows. Let ¢
denote the angle between the Hermitian matrix A and the identity matrix in
the space of n X n Hermitian matrices with the inner product (A,B> =trAB.

Then

cosf=trA/(ntrA%)'/3, (2.75)

and 50 @ is also the angle between the vector of eigenvalues A}, A,,...,A, and
the equiangular line, Hence

p=1-~nsin®4, (2.76)

and 5o (2.61) bolds, i.e., p>0, if and only if
sin*4<1/n. 2.77)
Moreover (2.76) shows immediately that P <1 and hence (2.62) and (2.74)
arewellde{ined.'I‘hevarianees’mydsobeinterpretedusingthismgleo.

It is easy to see that
2,002

tan é (2.78)

PCIVE T ICTY
n nd

tanf=gs/m. . (2.79)

It follows from (2.77) that trA >0 and (trA)*> (n—1)trA? if and only if

0<#=arccos—=A <arcsinn=1/3, (2.80)
(ntrAt)}/?
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TABLE 1
VALUES OF UPPER BOUNDS FOR § AND ASSOCIATED PROBABILITIES
Upper bound Monte Carlo

' (deg) Ratio of probability
n (2.80) (2.81) upper bounds of (2.80)

g 4 e 1 1

3 3528 5474 L 835

4 0 60 5 838

s 257 . &4 A19 482

6 24.00 65.91 265 310

7 2291 &) 328 189

8 £0.70 00.30 209 124

9 1947 7053 276 073
10 1843 757 258 038

Onl;ﬂ:eotberhlnd.whenAispodﬁvedeﬁnite&?S)basthelowerbound
=4/% and s0

o<0<msm(1— -)m (2.81)

The range (2.81) exceeds the range (2.80) whenever n > 3; for n=2, how-
ever, the two ranges coincide. If # is distributed uniformly over the range
(2.81), then the probability that (2.80) holds is the ratio of the two upper
bounds. Values of these numbers are given in Table 1 for n=2(1)10. Also
given is the Monte Carlo probability that (2.80) holds when the eigenvalues
of A are uniformly distributed on (0, 1), based on a run length of 2000.

The reason why the two sets of probabilities in Table 1 differ is that if 8
lies between the two upper bounds, then A is not necessarily positive
definite for n > 3. Only when n =2, however, does the set of positive definite
matrices form a cone, which is completely determined by the angle 4.

3. COMFLEX EIGENVALUES : ‘

The inequlities in Sec. 2 may be extended to cover the situation where
the eigenvalues are not necessarily all real. We use the matrices [cf. (1.4)]

B=i(A+Av),

(3.1)
C=}{(A~A")/i. ,
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WeaﬂltheHmiﬁmrnlpmtdetheHemuﬁmhmglmymofA.
Both B and C are Hermitian; cf. [1, p. 133]. Notice also that A=B + iC.
We again write A(A) for an eigenvalue of A, but order the eigenvalues

now according to
UAES R RRER 3 WE (32)

This does not necessarily reduce to (2.15) when the eigenvalues are all real.
We also consider the real and imaginary parts of the eigenvalues:

r(A) =ReA(A), »(A)=ImA(A). (3.3)
We order these:
p,>p,A> R T TR XTI, (3.4)
Notice that
A= +in @33)

for some values of , k, and /, not necessarily all equal.
When all the eigenvalues are real, however, the p's correspond directly
to the A’s of (2.15), but not, of course, necessarily to the A's in (3.2).
Summing (3.5) or taking traces in (3.1) yields (cf. [1, p- 135)) ,
wB=RetrA= 3 u,
=1 (3.6)

»
trCe=ImtrA= 3 ”.
f=1

Amu(B) < p(A)=ReA(A) <A (B),
(3.7)

Amia(C) €»(A) =ImA(A) KA, (C).
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We note that if either

A(B)=ReA(A), j=L12,...,n, (3.8)
« :

A(C)=ImA(A), j=1.2...,n, (3.9)

then both sets of equalities hold, and this is possible if and only if A is
normal; cf. (1.6), (1.7).

Tuzonrex 3.1. Let A be an n X n complex matrix, and let

metrA/n ond sd=trA®A/n-|mp. (3.10)

Then
Imi=a,(n= 1)< ]\L] < (trA°A/m)2, (3.10)
Im] < Pyf < [m]+ g,(n = 1)%, (3.12)

Equality holds on the left of (3.11) if and only if A is normal, A\, =),
... mA,_y, ond A, =cm for some real nonnegative scalor ¢ <1. Equality
holds on the right of (3.11) if and only if A is normal and |\,|=[Ag|=--- =
I\l Equality holds on the left of (3.12) if and only if Ay=Ag=--- =,
Equality holds on the right of (3.12) if and only if A is nommal, A, =),
w.-.mA,and Ay=cm forscalarc>1.

We note that when A is resl, then the conditions for equality on the left
of (3.11) and throughout (3.12) hold only if the eigenvalues of A are all real.

To prove Theorem 3.1 we use a complex analogue of Lemma 2.1. We
DOwW write

MCA 18 108,[ ~
= » -;'gl py]’—? ,glx,l . (3.13)
Then (2.6) becomes, keeping w real,

[wA—mwe|=|w'CA| < s(nw'Cw)'/%, (3.14)
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with equality if and only if (2.7).holds for some complex scalars g and b. We
then use Schur’s inequality (1.5), so that-

$#<tA®A/n~|rAl/nt=st, (3.15)
with equality if and oaly ff A is normal.
Proof of nm_u. Put wse, in (3.14) to obtain
A= m| <s(n-1)'%, (3.16)

with equality if and only if A, mAge--- = _,. The left of (3.11) then
follows, since

> |m| = A, = m|
> |m| = g(n—1)"/*
> |m|-s,(n-1)"2 (3.17)
Equality holds in the first inequality in (3.17) if and only if m — A, = kA, for

some real scalar k > 0. Hence set c=1/(k+1). The right-hand side of (3.12)
follows similarly. To prove the right-hand inequality in (3.11) we note that

AI<SZNI/n< (2[4\|’/n)v'<(trA‘A/n)'/’, (3.is)

using the Cauchy-Schwarz and Schur inequalities. The equality condition
follows at once. The left-hand inequality in (3.12) follows from

Im|=[ZN/n| <ZN|/n <Ay, (3.19)
with equality if and only if
A=ch >0, (320)
Pl Paf oo - =7 L. (321)
These two conditions reduce to A, =l = - - - =), ]

We now extend Theorem 3.1 to linear combinations of the absolute
values of the eigenvalues.
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Tuxonmu 32. Let A, m, and 2 be as in Theorem 3.1. Let

]
Moo= 1=i77 S M (3.22)

imi=o 72a) " <Man<(Z22) "o (2F) " 02

Equality holds on the left if and only if A is normal,
Mehgmoocmhy, and A=Agg=--=Amch,  (324)
with ¢ real and nonnegative. Equality holds on the right if and only if Ais a

scalar matrix.
Furthermore

()Pl < (2] "o 2]

(3.25)

Eqwl(tyholdsonﬂwkftifmdouly{fAisnmmImd(&%)halds
Equality holds on the right if and only if A is a scalar matrix.

. Let A= m,=2 n, and st=3 n-—
“m g 219) yik (D NI/ s=Z\P/n-EAD/nt

m, "d(:'t:;_l,,—f)v’< Py <m, + 'd("_;{ )l/!' (326)
Now .
my=Z\|/n > [ZN/n|=[trA/n|=|m]|, (327)

s <tA*A/n—[EA[/n®

=trA*A/n—|m*=st. (3.28)
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This proves the left-hand side of (3.23). To prove the right-hand side we use
(3.28) and o

m,=Z|/n < (ZRPE/n)" < (rasA/n) 2, (3.29)
where the first inequality is Cauchy-Schwarz. Equality holds on the left of
(3.23) I and cnly if equality bolds in (3.27), in (3.28), and on the left of
(3.26). This means that, respectively, (3.20) holds,

A is normal, (3.30)
and
Pyl=Pglm---=p )| and PJ=Ppsyf=--o=L  (3.31)
' using (2.20). Substituting (3.20) into (3.31) yields (3.24).

Equality holds on the right of (3.23) if and only if equality holds in (3.28),
in (3.29), and on the right of (3.26). This means that (3.20) and (3.30) hold,

Al=c, (3.32)

and -
Pul=Agl=--- =N| and Pryj|=Nggf=--- =]\  (3.33)
[cf. (2.21)) must hold. This can be only if A is a scalar matrix. =

We notice that putting k=1 on the left of (3.23) and /= n on the right
yields

Im|<Nap,  I=12,...n, . (3.34)

Pl < (rA*A/n)'2,  k=12,...n. (3.35)

Equality holds in (3.34) if and only if A, mA = - .- =) and in (3.35) if and
only if A is normal and [A;|=[Agje= .- - =7 ]

We presented “better” bounds for the real case in Theorem 2.3. In [19]
wes)t’rengthen (3.34) and (3.35) using Theorem 2.3 and the trace of (AA*—
A*A), '
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Unfortunately the lower bound in (3.25) for |A,| may be negative. This
bound will be positive if and only if

Imi*> (u-’::-x)': '(nf:-lu)[ = """"]’ (3.36)

which reduces to

AR>S (k—1)trA®A. (3.37)
We therefore get the following

ConoLLARY 3.1. Let A be a nonnull n X n complex matrix with exactly
k nonzero eigenvalues. Then -

[trAf*/trA®A <k < rankA. (3.38)

Equality holds on the left if and only if A is normal and |\,|=[Ag|= - - =
Mul- Equality holds on the right if and only if rank A=rankA® i.e., A has
“index” 1.

We will now find analogous results for the real and imaginary parts of
the eigenvalues. To ease the notation, let

A=\, AVey, and Af=y  for j=12..,n, - (3.39)

where g, and », are as in (3.3) and (3.4).

Trzorem 3.3. Let A be an n X n complex matrix. Let B and C be as in
(3.1) and

my=RetrA/n=trB/n, m=ImtrA/n=aC/n,
$=trBtn—ms, $=trC¥n—md. (3.40)
Then, for t=b or c,

m,~—s(n- 1)'*<AO(A) Sy + 5, (n~ 1)!72, (3.41)
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Moreover, for t=b,c

m,— a(n~1)" = AL (A) (342)
if and only if A is normal and
AA) =MLY A) = - - - mALL (A), (3.43)
while
AYA)=m, +s,(n—1)"% (3.44)
if and only if A is normal and
MO(A)=A{I(A) = - - =AL(A). (3.45)

Furthermore, if A is normal, then
AN (A)<m, -3, /(n~1)'", (3.46)
m,+5,/(n—1)"* < ALL(A). ' (347)

Equality holds in (3.46) (in (3.47)) if and only if the n—1 smallest (largest)
A" are equal.

The proofs of Theorem 3.3 and the subsequent results in this section
follow our proofs for real eigenvalues, with A", t=g,b,c, replacing the
vector A of real eigenvalues. The variance of the A cannot, however, in
general be computed in terms of traces; to obtain our inequalities we use

% Z(A}'))’- ( _1': wt))' < ,‘2,_ t=ga,b,c. (3.48)

For t= b,c equality in (3.48) holds if and only if A is normal [cf. (1.6), (1.7)],
‘while for ¢t= a equality holds if and only if A is normal and A, = ¢\, for some
nonnegative scalars ¢, {=2,...,n [cf. (1.5), (3.20)).

As remarked earlier, a matrix is stable if and only if the real parts of its
eigenvalues are all less than zero. By the above Theorem 3.3, this will occur
if my <0 and sf(n — 1) <m{. This reduces to

RetrA/n=trB/n<0 end (n-1)trB*<(trB)’.




BOUNDS FOR EIGENVALUES USING TRACES - . 497

‘We summarize this in

ConoLrary 32. Let A=(a,) be an nXn complex matrix. Then A is
stable if RetrA <0 and

(n=1)Z}}(ay+3,)E <(RetrA)*. (3.49)

Let us now define the real and imaginary mid-means [cf. (3.39)]

' 1 4 1 d
At I-k+1 E,,A’ I-k+1 E,‘"”

1 <
€) | e () - 50
NEn l-k+1,§,}‘; z-k+1,§."' (3.:0)

We then get

TuzoreM 3.4. Let A, m,, and s, for t=>b,c be as in Theorem 3.3. Then
fortmb,c, .

/2 n—1\1/2
m, - "(a-k+1) <A{2,,<m,+:,(T) . (3.51)

When (k,l)=(1,n) the inequality string collapses. When (k, l)#(l n), then
. equality holds on the left if and only if A is normal and

Ag')-&')- ees -A{‘).l md A{‘)-A{')’I- css am ('). (352)
Equality holds on the right if and only if A is normal and

AmA ... =X and Al @Al =...=A0, (3.53)
Furthermore, for t=b,c,

M._-c.(":il)’ <A <m,+:,(—-1)m. (3.54).

Equality holds on the left if and only if A is normal and (3.52) holds.
Equality holds on the right if and only if A is normal,

A{‘)-&“)- cee om (#) a.d A{”Ql -Ai‘)*’ e W (‘). (3.$)
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TuEorEM 3.5. Let A, m,, and s, for t=Db,c be as in Theorem 3.3. If A is
normal, then for t=b,c,

"‘+(T—-‘l;)7 v l(%ﬂ.
N> s(n-1) (3.56)
m,+ W V 1> %ﬂ,
N s(k-1) )
- if k<in+l,
ge| B R
m, - (T——;)T/; if k>%n+ L
Equality holds in (3.56) if and only if
AmA - Al when 1<in,
A;')-A")-... -A")—l or A;"-A;‘)--.. -“‘) 'M l-%n’
APeAN e ... =)D when 1> in.
(3.58)
Equality holds in (357) if and only if
AffmAflm ... mp®) | when k<in+1,
Ai')-“')- ces mm “’-l or M"-Ay’---- -A(.‘) when k-%n-{»l‘
AmAfm ... mAl when k>jn+l.
(3.59)

We note the similarity between Theorems 3.5 and 2.3. The difference is
the need for normality. This is due to the fact that equality occurs in (3.48)
for t= b,c if and only if A is normal. :

As mentioned in the introduction, a matrix is stable on the eigenspace
corresponding to those eigenvalues with negative real parts. Furthermore,
the solutions to the ordinary differential equation &= Ax will be spirals along
the eigenvectors in the phase plane corresponding to those eigenvalues with
nonzero imaginary parts.
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We conclude this section with'the following inequalities on differences
(cf. Theorem 2.4).

Trzorem 3.6. Let A and s, be as in Theorem 33. If 1<k<I<n, then
fortmag, b, orc,

1, 1y
N e I (200)

Equality holds if and only if A is normal and
A= D
Af)ﬂ-l -A{tl. -eoe -A;‘ll =m, (3.61)
M=, = oo =D,

where m, =Z|\|/n, and for t=a,

A=c), =2...n, (3.62)
for some nonnegative scalars 3. f=2,...n.
Furthermore, if A is and n=2q is even, then for t=b or c,
25, A=Al (3.63)
with equality if and only if

'&t)-)‘g}- oo mA® and A"l,-l.‘,’l,- coe mAW), (3.64)

If, however, n=2q =1 is odd, then (3.63) holds, but moreover,

2a,n/(n~ 1) <A{Y AL (3.85)
with equality if and only if (3.64) holds.
Wen?u&atifAisném(nguhrandwmaLtben
maxA(A)] (3.60)

minfA(A)]
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may be used as a condition number of A. We may now follow the approach
in Sec. 2 and obtain upper and lower bounds for (3.66). We use Theorems

3.1 and 3.6 to see that

4. EXAMPLES

%, maMA)
* aAA/a) 7 < mip(A)]” (@67)

{rAE> (n—1)trA®A, (3.68)
maxA(A)| (2n)'%s,
mio\A) <! =g (- 177 (369)

To fllustrate our bounds for eigenvalues we present five numerical

examples.

Examrre 1. In his recent paper Scheffold [14] obtained bounds for the
subdominant eigenvalues of a matrix with nonnegative elements. To
illustrate his findings, he considered the matrix

and found

Our bounds (3.25), however, yield

6 0 0
[1 3 1]. (4.1)
2 4 0
Phal. A <5. ' (4.2)
3</A,<9.89,
0.89< \,| <731, (4.3)

0< Ayl <4.73.
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We observe, moreover, that the eigenvalues of (4.1) are A; =6 and the two
eigenvalues of (3 1), and 50 all the efgenvalues must be real. Applying

(2.31) to (4.1) then olds

~116<A,<0.92<A,<5.08< ), <7.16. (4.4)

It is easily seen that the subdominant eigenvalues of (4.1) are A;=4 and
Ay= -1 -

Examrre 2. In their book [9, p. 158] Marcus and Minc compared
various bounds for the dominant eigenvalue of a matrix with positive

elements:
1 1 2
2 1 3} (4.5)
2 3 6§
Their best bounds are
5.162 <\, <9.359. ‘ (4.6)
Our bounds (3.25) yield
2.33< A, <9.67,
0< Ay <7.04, (47)
0< A,| <4.40.

The matrix in (4.5) is, however, singular; hence all its eigenvalues are real.
Applying (2.31) yields

—287<A < =027 <A, <4.93<A, <754 (4.8)

The nonzero eigenvalues are 3j=} V85, or approximately 7.531 and
-0.531.

ExamrLz 3. Marcus and Minc [9, p. 148] also consider the complex
matrix

T+3i -—4-6i —4
A=|-1-6i 7 -2-6i|. (4.9)
2 4-6i 13-3i :
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Using results due to Hirsch [5], they obtain
A(A)] <40.03,
[ReA(A)] < 39, (4.10)
[ImA(A)] < 20.12,
while Gerigorin’s discs are
" |Jz=7-3i| <1121,
|z—7| < 12.40, (4.11)
[z-13+3i|<9.21.
Applying (3.25) yields
9<AM <2546,
2.64 <AL < 19.09, (4.12)

0<A<12.73,
while (3.54) yields
9<A¥ <14.20,
6.40< A" < 11.60, (4.13)

381<A® <9

0<A{<11.62,
-581<A”<5.81, (4.14)

-11.62<A9<0. |

Recall that \“), t=ga,b,c, and {=1,2,3 are the ordered modulus, real part,

and imaginary part, respectively.
The bounds (4.13) and (4.14) define the rectangle [cf. (3.41)]

3.81 CRe)(A) < 14.20,
-11.62<ImA(A)<1162, (4.15)
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=154 First disc (4.11)
Our rectangle (4.15)

2

Second disc
(4.11)

Third disc
(a.11)

Fic. 2. Gerigorin discs (4.11) and our bounds (4.15) for Example 3.

which sits almost entirely within the union of the three GerSgorin discs as
given by (4.11); cf. an 2. the eigenvalues are 9, 8+9i, 9—-94, with
Al =1273,

Examrir 4. To illustrate our bound (2.62) for the condition number we
consider the symmetric matrix

(4.. 16)

WO
- OMWnMo
[-X- X-N )
- O W
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Our bounds (2.32) yield

7.158 <A, < 10.475,
3.842<), <8372, (4.17)
2.828 <A, <7.158,
0.525 <A, <3.842.
We find that [cf. (2.61)]
p=0.1429 (4.18)

and so #=27.57° <30°; cf. Table 1. Thus (4.16) is positive definite. More-
over [cf. (2.62)]

x < 13.928. (4.19)

Frobenius’ theorem [9, p. 152] indicates that A, must lie between the
smallest and largest row sums, ie.,

6<A, <11, (4.20)

while from the separation theorem [13, p. 64), using the top left 2><2 and
bottom right 2 X2 submatrices of (4.16), we obtain

7<A,
6<A,,
A, <5, 4.21)
A <4
The eigenvalues are 9.376, 6.423, 4.775, and 1.426, and so x =6.575.

Examrre 5. Our last example is the symmetric matrix

(4.22)

10 19+ =
[y’ Y
bt ) Pt e
el b e 0D
00 bt bt bt DO
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Our bounds (2.33) yield
7449 <A, <11.797,
4551 <A, <9550,
3.834 <Ay <8.366, (4.23)
2450 <A, <7449,
0203 <A, <4.551.

Moreover [cf. (2.61))
p=0.05¢]1. (4.24)

Furthermore §=25.78° <26.57°; of. Table 1. Thus (4.22) is positive definite.
And 0 [cf. (2.62)]

x < 36.973. (4.25)
Frobenius’ theorem [cf. (4.20)] bere gives
9<A, <13, T (4.26)

The eigenvalues of (4.22) are 11.171, 6.527, 5.434, 4.296, and 2.571, and so
x=4.345,

The authors wish to thank Patricia J. Babecki for suggesting Examples 4
and 5, and Paul J. Brockman for drawing Fig, 2.
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