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ABSTRACT

Several new inequalities are obtained for the modulus, the real part, and the
imaginary part of a linear combination of the ordered eigenvalues of a square
complex matrix. Included are bounds for the condition number, the spread, and the
spectral radius. These inequalities involve the trace of a matrix and the trace of its
square. Necessary and sufficient conditions for equality are given for each inequality.

1. INTRODUCTION

The eigenvalues of an nXn complex matrix A are the roots of the
nth-degree polynomial det(A—AI)=0 and so are difficult to evaluate in
general. It is, however, often useful to know the approximate location of the
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eigenvalues. For example, when solving an equation of the type Ax=b, one
may use the iterative scheme x, ,, =Tx, +c, where T is a certain matrix
related to A, and c is a column vector related to both A and b; cf. e.g. [17,
Chapter 3]. This scheme converges for arbitrary x, if and only if all the
eigenvalues of T lie inside the unit circle in the complex plane. This also
characterizes the convergence of the geometric series S%_oT" to the matrix
(I—T)~*. More generally, £2_, 8, T" converges if and only if all the eigen-
values of T lie inside the circle of convergence of the scalar series Z7°_,
B,z"; cf. [7]. For a Hermitian positive definite matrix, the ratio of the largest
to the smallest eigenvalue is useful in determining whether the equation
Ax=Db is ill-conditioned or not; cf. e.g. [15, p. 185]. In theory of stability of
solutions to differential equations, a complex matrix is said to be stable if the
real parts of all its eigenvalues are negative; cf. e.g. [9, pp. 158-9]. If we
know that the matrix has ¢ eigenvalues with negative real part, then it is
stable on the eigenspace corresponding to these eigenvalues. Furthermore, if
the imaginary part of an eigenvalue is not zero, then it is known that the
solution will spiral; cf. e.g. [6].

For certain special types of matrices some information about the eigen-
values is known beforehand, e.g., a stochastic matrix always has at least one
eigenvalue equal to 1 and all others lie in or on the unit circle in the complex
plane; cf. e.g. [9, p. 133]. In general, though, nothing so specific can be said
about where the eigenvalues may lie.

Bounds for eigenvalues have been obtained by many authors over
roughly the last hundred years; cf. e.g. [9, Chapter III]. Some of these
bounds involve the sums of absolute values of elements in a row and/or
column. Following [9, p. 144], let A=(ay,) be an nXn complex matrix, and
write

n n
R, = 2 lagls G= Z |l
=1 k=1

(1.1)
R=m£1ka, C=mlaxC,.
Let A(A) denote an eigenvalue of A. Then the inequality
|A(A)| < min(R,C) (1.2)

was proved by Alfred Brauer in 1946, though anticipated by Oskar Perron in
1933 (cf. [9, p. 145)).

Possibly the best-known inequality for eigenvalues, however, was found
by S. A. GerSgorin in 1931 (cf. e.g. [9, p. 146]): the eigenvalues lie in the
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closed region of the complex plane consisting of all the discs
|z — ay| <Ri—lagd, k=1,2,...,n. (1.3)

In this paper we use traces to obtain various new eigenvalue inequalities.
An early result of this kind was derived by Issai Schur in 1909; cf. [10, p.
309]. Let (cf. [1, p. 133])

B=3(A+A*) and C=3(A—A%)/i, (1.4)

where A* =(ay) is the conjugate transpose of A=(qy;). Then A=B+ iC, with
B and C Hermitian. Moreover

SIMA)R < tr(A*A) =3|a, %, (L5)
S[ReA(A) P <trBE=3|}(ay+ay) (1.6)
S[ImMA) P <trC? =23 (ay — ay) % (1.7)

Equality in any one of these inequalities implies equality in all three and
occurs if and only if A is normal, i.e., AA*=A*A.

More recently, L. Mirsky [11] in 1956, and A. Brauer and A. C. Mewborn
[2] in 1959, have used traces to derive inequalities for the spread, sp(A)=
ApaxlA) —An(A); of. Theorem 2.5. These inequalities follow the work of
Popoviciu [12] in 1935 on polynomials with real roots.

In statistics, G. W. Thomson [16] in 1955 obtained related inequalities for
the range of a set of random variables. The connection between these
inequalities is that the standard deviation of the eigenvalues is a simple
function of the trace of the matrix and the trace of its square; cf. Graybill [4,
p. 227]. If the matrix A has real eigenvalues A}, A,,...,A,, then we may define
their variance to be

trAZ— (trA)?/n

> (L8)

j=1

a= Bx-1( 28]

Our results are of the following type. Let A be an n X n complex matrix,
and suppose that its eigenvalues are all real and ordered:

ASA> - 2A, (1.9)
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Then (cf. [18] and (2.3) below)
m+s/(n—1)"2<\ <m+s(n—1)"2 (1.10)

where

trA
n

|-

m=

S (L11)
i=1

is the mean of the eigenvalues, while s is their standard deviation, the
positive square root of the variance as defined by (1.8). Equality on the left

of (1.10) occurs if and only if A;=A,=--- =\, _,, and on the right if and
only if A=A =" =],
In Seo 0 we nracant vario inannalitioc which hald whan all +ha

ALL WU \AAYS kll oIt Yaliiv LlD ll.ll/\iuall (S A AAE TN Iy S LV LV Y yviivili aul uio
eigenvalues are real; these results are extended to the more general complex
case in Sec. 3. The paper concludes with a number of examples in Sec. 4.

2. REAL EIGENVALUES

Our inequalities are tightest when all the eigenvalues are real; this
happens for example when the matrix is Hermitian or is the product of two
(semi)definite Hermitian matrices. A diagonable matrix A has all its eigenval-
ues real if and only if there exists a positive definite Hermitian matrix § such
that AS=S8A*; cf. [3].

TueoreM 2.1.  Let A be an n X n complex matrix with real eigenvalues
AA), and let

m=trA/n, s*=trA%’/n—m> (2.1)

Then
m—s(n—1)"2 <A (A) <m—s/(n—1)"2 (2.2)
m+s/(n—1"Y7 <\, (A) <m+s(n—1)"2 (2.3)

Equality holds on the left (right) of (2.2) if and only if equality holds on the
left (right) of (2.3) if and only if the n—1 largest (smallest) eigenvalues are
equal.
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Notice that when n=2 the two inequality strings (2.2) and (2.3) collapse
to yield

Ann(A)=m—s and A, (A)=m+s. (2.4)

Our inequalities were initially obtained using mathematical programming
techniques. These techniques lead to optimal bounds for eigenvalues in
terms of the trace of A and the trace of A% Once found, however, the

inequalities are more easily proved using a Cauchy-Schwarz type inequality:

LemMma 2.1. Let w and A be real nonnull n X1 vectors, and let
m=Ne/n and s*=XCA/n, (2.5)

where e is the n X 1 vector of ones, the centering matrix C=1—ee’ /n, and €
is the transpose of e. Then

— s(nw'Cw)"/> < WA — mw'e=wCA <s(nwCw)"/%, (2.6)
Equality holds on the left (right) of (2.6) if and only if
A=aw+be (2.7)
for some scalars a and b, where a <0 (a>0).

Proof. The inequality string (2.6) follows at once from the Cauchy-
Schwarz inequality (w'CA)2 < w'Cw-A’CA, since C is symmetric idempotent,
while the equality condition (2.7) is equivalent to CA=aCw for some scalar
a (the scalar b=m —aw'e/n). [ ]

We will also need
Lemma 2.2.  Let A=()\), m and s be defined as in Lemma 2.1, and
A2 2, (2.8)

Then (cf. (2.2) and (2.3))

s <m+ s
(n_l)l/Z (n__l)l/2

A, <m— <A, (2.9)
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Equality holds on the left if and only if Ay=Ay3=--- =\, on the right if
and only if Ay =A,=--- =X _,, and in the center if and only if A\;=A,
=--. =) o s=0.

Proof. We have that

wm=ar=| £ -2 = 2 i-a S B-nn-)

> 3 A= 3 (-t m )

=n[s2+(m—)\")2], (2.10)

from which the left-hand inequality in (2.9) follows immediately. For the
right-hand inequality we expand n*(A, —m)* as we did n®(m—A,)? in (2.10).
Equality holds throughout (2.10) if and only if

2 N =N)A—A) =0, (2.11)
j=k
which holds & A, =A;=--- =), The rest of the lemma follows directly. =

Proof of Theorem 2.1. 1t is easy to see that m and s* defined by (2.1)
and by (2.5) are equivalent; cf. (1.8). We now use Lemma 2.1 with w=e,,
the jth column of the identity matrix I,. Then (2.6) becomes

—s(n—1)""*<A—m< s(n—1)"2, (2.12)

which proves the left-hand side of (2.2) and the right-hand side of (2.3). For
equality on the left (right) set j=n and w=e, (j=1 and w=e,;). The
right-hand side of (2.2) and the left-hand side of (2.3) follow directly from
Lemma 2.2. n

As remarked earlier, if A is positive definite, then A, (A) /A ;,(A) may be
used as a “condition number” of A. From the above Theorem 2.1, it is clear
that if m— s(n—1)/2>0 (or equivalently if tr A>0 and (trAY>/trA®?>n—1)
and if A is Hermitian, then A is positive definite. Therefore, (2.2) and (2.3)
imply:

CoroLLARY 2.1. Let A, m, and s* be defined as in Theorem 2.1.
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(i) If A is positive definite, then

2s/(n—1)"% _ AL.(A)

1+ m—s/(n—1)"* < Amin(A)

(2.13)

When n>2, equality holds if and only if all the eigenvalues of A are equal.
(ii) If A is Hermitian, tr A> 0, and (tr A)2 > (n—1)tr A% then A is positive
definite, (2.13) holds, and

A A _ 1/2
}\““”‘( )<1+ 25(n—1) (2.14)

(A) m—s(n—l)l/z.

When n>2, equality holds if and only if A is a scalar matrix.

The inequalities (2.2) and (2.3) may be extended to linear combinations
of the eigenvalues. Let

ALZA 2 2, (2.15)
be the ordered eigenvalues of A [cf. (1.9)], and let

1

_& A
A(k,l)_ jz:k I—k+1° (216)

which we may call a mid-mean. Notice that
1 n
A(l,n) =m=— 2 }\i, (2.17)
P}

[cf. (1.11)], while
Then

THEOREM 2.2. Let A, m, and s® be defined as in Theorem 2.1, and let
A1y be as in (2.16). Then

k—1 1/2 n—1 1/2
m—-S(m) <7\(k,l)<m+s( ] ) . (2.19)
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When (k,1)=(1,n), the inequality string collapses. When (k,1)%(1,n), then
equality holds on the left of (2.19) if and only if

M=Ag=---=N_; and N=Ny;=-- =), (2.20)
and on the right if and only if
A1=A2=..- =Al arui AI+I=A1+2=". =}\n' (2_21)
Furthermore,
k-1 1/2 n—k 1/2
m—S(m) <>\k<m+s( A ) . (2.22)

Equality holds on the left if and only if (2.20) holds, and on the right if and
only if
M=Ag=-c =X and XN =A=-c =A, (2.23)

Proof. Put w=2'.=ke,/(l-—k+1) in Lemma 2.1. Then we=1 and
wCw=(l—k+1)"'—n~'. Hence

k—1 \1/2 n—1\1/2
m—s(m) <}\(k’,,)<}\(k,,)<}\(1,1)<m+s( ; ) . (224)

It follows directly that equality on the left of (2.19) holds if and only if (2.20),

and on the right of (2.19) if and only if (2.21). [ ]

Mallows and Richter [8] obtained several inequalities for the standard
deviation of a set of numbers; in particular, their (6.1) leads directly to our
Theorem 2.2. Furthermore, their Corollary 6.1 yields a stronger lower bound
than that in (2.19) when (k,I)=(1,1) and a stronger upper bound when
(k,1)=(k,n).

TueEorREM 2.3. Let A, m, and s® be defined as in Theorem 2.1, and let
A1) be as in (2.16). Then

[ s ,
™ (n—1)"/2 ¥ orsan
Aan>) (2.25)
’ s(n—1) )
e
- kS(k—l) i k<in+l,
Mm<]  (rTEADOD) (2.26)
(km) s
_(n—-l)l/z if k>in+l.
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Equality holds in (2.25) if and only if

A=A=-"+=\,_, when 1<in,
Aj=Ag=---=A,_; or Ag=A;=--- =\, when I=1n, (2.27)
Ag=Ag=-+- =], when 1>;n.

Equality holds in (2.26) if and only if

Ay=Ag=--- =A,_, when k<in+l,
AM=NA=:+-=\_, or \y;=A;=---=X, when k=3in+l, (2.28)
Ag=Ay=--- =}, when k>in+1.

Proof. The inequalities (2.25) and (2.26) follow directly from Corollary
6.1 in [8, p. 1931]. To obtain the conditions’ for equality given by (2.27),
however, we use the following equality, which is straightforward but tedious
to establish:

n(n - l)(A(l,l) - m)2 - ns2

! l
=(n—2l)(n—1)17* ¥ AN+ 2 min(i,f) [ max(i,j) —1]AN

ij=1 ij=1

I n-—-1
r2n-I-1S S i(n— A

i=1j=1+1
n—1
+ 21 [n—max(i,j) ][ n— 1 —min(i,f) ]AN,. (2.29)
ij=l+1
The condition (2.28) is obtained similarly. [ ]

We note that when k=1 (respectively n), the lower (respectively upper)
bound in (2.22) equals m. The bounds from Theorem 2.1,

s s
A, <m-— D <m+ 1) <A, (2.30)

are therefore better whenever s >0.
When n=3, however, we may combine (2.22) and (2.30) to yield the
contiguous bounds

m—sV2 KA &m—5/V2 <A <m+s/V2 <A\, <m+sV2 . (231)
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When n >4 our bounds are, unfortunately, no longer contiguous. From
(2.22) and (2.30) we obtain, when n=4,

m—sV3 <A\, <m—s/V3 <A\, <m+s,

(2.32)
m—s<A;<m+s/V3 <\, <m+sV3.
When n =35, we have
m—2s<)\5<m—§s<)\2<m+s\/§,
m—S\/%— <A <mA+3s<A <m+2s, (2.33)

m-— \/g‘ <A3<m+3\/§.

This suggests that for n=6 our bounds for A; and A, might be contiguous.
However, we obtain

m—sV5 <Ag<m—s5/V5 <A\, <m+sV2,

m—sV2 <A;<m+s/V5 <\, <m+sV5, (2.34)
m—s<A,<m+s/V2,

m—s/V2 <Az <m+s.

Our bounds (2.4), (2.30), (2.32)—(2.34) are plotted in Fig. 1. Each axis is
in units of ¢, where m =+ cs is the bound. The center is at m =0, and the scale
has s=1.

Graybill [4, p. 228] considered a matrix A with real eigenvalues, precisely
t of which are nonzero. Then ¢ >0 if and only if tr A%>0; in this event

(trA)® /tr A2 <t < rankA. (2.35)
The following corollary strengthens this result.

CoRroLLARY 2.2. Let A have real eigenvalues with precisely f being
positive and g negative. Let tr A*>>0.

(i) When trA >0, then
(trA)?/tr A2 > f, (2.36)

with equality if and only if all the positive eigenvalues are equal and all the
nonpositive eigenvalues are equal.
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m-2s m-s m m+s m+2s
B=2
| L Ay |
| Y Y |
n=3
l A ) N l
) | . N | .
i v | -2 177 | vz |
A »< A
3 1
| 3, | — A, I |
% Y /753 | ]
=3
-— N
RE— — A >
AS I <————‘—- XZ———————l—-)
/572 | /273 2 sl v l
A
A
3 A
A > A >
5 1
L i l — e 2 1 | 5. _L - ]
-5 ] -z | -1/v2 145 15 vz § /2 Vs
m-2s m-s m m+s m+2s
Fic. 1. Bounds for eigenvalues, n=2(1)6.
(ii) When trA<O, then
(trA)® /trA®< g, (2.37)

with equality if and only if all the negative eigenvalues are equal and all

the nonnegative eigenvalues are equal.
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Proof. It suffices to prove (i), as (i) then follows by replacing A with
—A. First assume f=n. Then (2.36) is just the Cauchy-Schwarz inequality,
and equality holds if and only if all the eigenvalues are equal. When f<n it
follows that A;,, <0, and using (2.22) with k=f+1, we get m(n—f)"/2<
sf'/2. Squaring both sides leads to (2.36) directly; equality holds if and only
if Ar, ;=0 and [using (2.20) with k=f+1]A;=--- =X and A, ;=" =A,.

The two inequalities (2.36) and (2.37) may be combined as

(trA)?/tr A% < max( f,g) <t < rank A; (2.38)

cf. (2.35).
If A is Hermitian, the inequality (2.36) shows that A is positive definite
when

n—1<(trA)*/trA? and trA>0. (2.39)

The inequality (2.37) gives a similar criterion for negative definiteness.

Another linear combination of the eigenvalues which is of interest is the
difference A, ~A;; when (k,1)=(1,n), then this difference is called the spread
of the matrix A; we will write this as sp(A). In statistics the difference A; — A,
is known as the range, and so A, —A; may be called a mid-range.

TueoreM 2.4. Let A and s® be defined as in Theorem 2.1. Then

NN <sn2 14— 2 1<k<i<n (2.40)
kA k n-1+1 ’ ) ’

Equality holds if and only if

Al=>\2= PP =Ak’
Mer1=Nesg=:+ =N_;=trA/n, (2.41)
A=Aar=- - <A,

Proof. To prove (2.40) we set w=k~ 12';_ &~ (n—1+1)" 12’;_ € in
(2.6), with k <L. It follows that we=0 and wCw=ww=k 1+ (n—I+1)"%

Hence

(2.42)

1 1/2
n—l+1) ’

1
Ak—kl < )\(l,k)—}\(,’”) <sn1/2(—,: +
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which yields (2.40). Equality on the right of (2.42) holds if and only if

a a a a
={—+b,...,—+b, b,....b, b————,... . b———— .
A (k ’ k n—Il+1 n—l+1)
—_— — o v
k terms I~ k—1 terms n—1I+1 terms

(2.43)

It follows at once that m=e’A/n=>b and a=\,—A,)/[k~ ' +(n—1+1)71],
and so equality holds in (2.40) if and only if (2.41). [ ]

When (k,l)=(1,n) in Theorem 2.4, the inequality (2.40) becomes the
upper bound for the spread sp(A)=A, — A, found by Mirsky in [11]. He used
the second elementary symmetric function

tr,A= Ei}\‘}\,=%[(trA)2'—trA2], (2.44)

so that (cf. [9, p. 167])
sp(A) < {2( 1- %)(trA)2—4tr2A} . (2n)"2s. (2.45)

Corresponding lower bounds for sp(A) were obtained by Brauer and
Mewborn in [2]. We assemble these results in

THEOREM 2.5. Let A and s® be defined as in Theorem 2.1. Then
A=A, < (2n)%s. (2.46)
When n>2, equality holds if and only if
Ag=Ag=---=N_1=1(A,+]). (2.47)
If n=2q is even, then
2s <A —A,, (2.48)
with equality if and only if

}\l=}\2=... =}\q and }‘q+l=)‘q+2="'=>‘~n' (2.49)
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If n=2q %1 is odd, then (2.48) holds, but moreover,

2sn/(n2—1)"2< A=A, (2.50)
with equality if and only if (2.49) holds.

Note that A; /A, =1+ (A, —A,)/A,. Using this fact and the above bounds
for the spread, we obtain the following bounds for the condition number.

CoroLLARY 2.3. Let A be Hermitian positive definite, and let m and s*
be defined as in Theorem 2.1.

(i) When n is even, then

2s Amax(A)
1+ <=, 2.51
m—s/(n—1)"* Amin(A) (251)
When n>2 equality holds if and only if A is a scalar matrix.
(ii) When n is odd, then (2.51) holds, but moreover,

2_1y\1/2
+ 2371/(" 1) < };max(A)

! m—s/(n—l)l/z\ min(A)

(2.52)

When n=3 equality holds in (2.52) if and only if the two smallest
eigenvalues are equal. When n >3 equality holds if and only if A is a scalar
matrix.

CoROLLARY 2.4. Let A be Hermitian, and let m and s* be defined as in
Theorem 2.1. If trA>0 and (trA)®> (n—1)tr A% then A is positive definite,
(2.51) holds, and

Amax(A) (2n)'/%s
Amin(A) < m—s(n—1)"? .

(2.53)

When n>2, equality holds if and only if A is a scalar matrix.

Unfortunately the upper bounds given in (2.14) and (2.53) hold only
when trA>0 and (trAY>> (n—1)trA% This is because we need a positive
lower bound for A,. If, however, we knew that A, > b >0 for some b, then we
could replace m — s(n— 1)'/2 by b in Corollaries 2.1 and 2.4. For example,
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when A is positive definite, then

detA detA S detA
A":: n—1y > n-1” 1/2n-1
2N Age-y) [m+s/(n-1) ]

>0 (254)

by the arithmetic-geometric mean inequality and (2.19). Setting

b= detA (2‘55)

|:m+s/(n—l)l/2:|"_1

yields

COROLLARY 2.5. Suppose that A is Hermitian positive definite. Then

Moac(A) @n)%s[m+s/(n-1)"*]"""

Amin(A) detA

(2.56)

When n>2, equality holds if and only if A is a scalar matrix.

We note that equality holds in (2.54) if and only if A, =A,=--- =}, _;;
but to achieve equality in (2.56) we also need equality in (2.46), and so A
must be a scalar matrix,

It is interesting to compare the inequalities for the condition number
provided by Corollaries 2.1, 2.3, 24, and 2.5. When n>2 and s >0, it is
clear that the bounds in Corollaries 2.3 and 2.4 are strictly better than those
given in Corollary 2.1. These bounds, however, require that

(trA>>(n—1)trA2, (2.57)

which is not necessary for the inequality in Corollary 2.5 to hold. We see
that that inequality is better than the one in Corollary 2.4 if and only if

detA>[m—s(n—1)1/2][m+s/(n—1)1/2]"_1. . (2.58)
Using Theorem 2.1, we see that this is implied by the product

Agr e Ay > [m+s/(n—1)2]" 7% (2.59)
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Considering the three inequalities (2.14), (2.53), and (2.56), we note that
when n>2 equality holds if and only if A is a scalar matrix, and then

trAZ=(trA)*/n, (2.60)

We now present an inequality which can collapse for any pair of values of
trA® and trA which satisfy (2.57). The inequality (2.62) below is, therefore,
always better than (2.14) and (2.53) when n>2 and s >0.

THEOREM 2.6. Let A be an n X n Hermitian matrix. If trA>0 and

(trA)*
tr A%

p= —(n—1)>0, (2.61)

then A is positive definite and

AmelA) _ 14+(1-p9)""
o < . 2.62
When n>2, equality holds if and only if
AT+
Apg=Ay=--- =N, NN (2.63)
and then
trA?  AT+A2
trA A +A, (2.64)

To prove Theorem 2.6 we use:

Lemma 2.3. Let A be an nXn nonnull matrix with real eigenvalues
A2A > - 2\, Then

(trA)2 n_2+£>\1._+l")_2

—g . 2.65
trA® AT+A2 (2.65)
When n>2, equality holds in (2.65) if and only if A, +X, %0 and
2412
NN . (2.66)

e
I
!
’7
"
__‘>‘
+
e
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Proof. If A, =0, then (2.85) reduces to
(trA)’ < (n—1)trA%, (2.67)

which can be shown to hold by using the Cauchy-Schwarz inequality on the
n—1 real nonzero eigenvalues of A. Moreover, equality then holds in (2.67)

e A =A,=--- =A,_,, which is (2.66) when A,=0. Wheén A,+0 we may
write
k=X;/A; w=N/A, j=2,...,n—L (2.68)
Then (2.65) <
Ktppt e+ +1)° k+1)
7=( 5 M22 ”"21 ) <n—2+£2——)—. (2.69)
Ktps+-o-+ps +1 k“+1

Write f=37_,u /(n—2). Then, using the Cauchy-Schwarz inequality again,
we obtain

pat - +pZo > (n—-2)i (2.70)
Applying (2.70) to the left-hand side of (2.69) yields

[k +1+(n—2))*+(n—2)[ G(x+1)— (x*+1) P/ (x*+1)
K*+1+(n—2)p*

v< , (2.71)

since the second term in the numerator of the right-hand side of (2.71) is
nonnegative. Simplifying (2.71) yields (2.65). Equality holds in (2.65) if and
only if equality holds in (2.70) and ji(x +1)= &>+ 1. Equality holds in (2.70)
if and only if Ag=--- =X _,=A, say, while ji(x+1)=x?+1 simplifies to
A +A,)=AZ+ A% If A, +A, 70, this yields (2.66). If A, +A, =0, then (2.65)
reduces to (trA)? < (n—2)trA% which collapses if and only if A2+A2=0 or
A=0. |

Proof of Theorem 2.6. The inequality (2.65) may be written as

2k
K2+1°

p< (2.72)

where p is defined in (2.61) and « in (2.68). Simplifying (2.72) yields the
quadratic

px:—2k+p <0 (2.73)
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and so (2.62) follows. Equality holds in (2.62) if and only if equality holds in
(2.65) and (2.66) = (2.63). |

To compare (2.62) with (2.53) we may write (2.62) as

A

Am(A) <14 (1=p) 2 [(1+p) 2+ (1-p)"*] |

(2.74)

We may interpret the quantity p defined by (2.61) as follows. Let #
denote the angle between the Hermitian matrix A and the identity matrix in
the space of n X n Hermitian matrices with the inner product {A,B) =trAB.
Then

cos@=trA/(ntrA2)"/? (2.75)

and so # is also the angle between the vector of eigenvalues A,,\,, ..., A, and
the equiangular line. Hence

p=1—nsin’8, (2.76)

and so (2.61) holds, i.e., p >0, if and only if
sin?d <1/n. (2.77)
Moreover {2.76) shows immediately that p <1 and hence (2.62) and (2.74)

are well defined. The variance s® may also be interpreted using this angle 6.
It is easy to see that

2\ i 2 2,2
e (trA 1)181!1 o _ (trA)n:an 0’ (2.78)

and
tanf=s/m. (2.79)

It follows from (2.77) that trA >0 and (trA)®>> (n—1)trA? if and only if

0<B=arccos— 22— <arcsinn V2, (2.80)
(ntrA%)'/?
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TABLE 1
VALUES OF UPPER BOUNDS FOR § AND ASSOCIATED PROBABILITIES
Upper bound Monte Carlo
(deg) Ratio of probability

n (2.80) (2.81) upper bounds of (2.80)

2 45 45 1 1

3 35.26 '54.74 644 835

4 30 60 5 636

5 26.57 63.43 419 482

6 24.09 65.91 .365 310

7 22.21 67.79 328 189

8 20.70 69.30 .299 J24
9 19.47 70.53 276 073
10 18.43 71.57 258 .038

On the other hand, when A is positive definite (2.75) has the lower bound
n~%% and so

1 1/2
0<0<arcsin(1—;) . (2.81)

The range (2.81) exceeds the range (2.80) whenever n > 3; for n=2, how-
ever, the two ranges coincide. If 8 is distributed uniformly over the range
(2.81), then the probability that (2.80) holds is the ratio of the two upper
bounds. Values of these numbers are given in Table 1 for n=2(1)10. Also
given is the Monte Carlo probability that (2.80) holds when the eigenvalues
of A are uniformly distributed on (0, 1), based on a run length of 2000.

The reason why the two sets of probabilities in Table 1 differ is that if §
lies between the two upper bounds, then A is not necessarily positive
definite for n > 3. Only when n =2, however, does the set of positive definite
matrices form a cone, which is completely determined by the angle 4.

3. COMPLEX EIGENVALUES

The inequlities in Sec. 2 may be extended to cover the situation where
the eigenvalues are not necessarily all real. We use the matrices [cf. (1.4)]

=L(A+AY),
(3.1)
C=;(A—A%)/i.
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We call B the Hermitian real part and C the Hermitian imaginary part of A.
Both B and C are Hermitian; cf. [1, p. 133]. Notice also that A=B+ iC.

We again write A(A) for an eigenvalue of A, but order the eigenvalues
now according to

l>‘1| > |}‘2| P&;l (3-2)

This does not necessarily reduce to (2.15) when the eigenvalues are all real.
We also consider the real and imaginary parts of the eigenvalues:

n(A) =ReA(A), v(A)=ImA(A). (3.3)
We order these:
P pe >t 2, P2 2, (3.4)
Notice that
A=y +iy (3.5)

for some values of j, k, and [, not necessarily all equal.

When all the eigenvalues are real, however, the s correspond directly
to the )\,’s of (2.15), but not, of course, necessarily to the )V’S in (3.2).
Summing (3.5) or taking traces in (3.1) yields (cf. [1, p. 135])

n
trB=RetrA= D, My
=1

trC=ImtrA= 2 v
j=1

The eigenvalues of B are called the real singular values of A (cf. [1, p. 134])
and need not equal the p’s; similarly the »’s need not equal the eigenvalues
of C, which are called the imaginary singular values of A. The eigenvalues of
B and C are, however, all real.

Amir-Moéz and Fass [1, p. 135] have shown that

Amin(B) < p(A) =ReA(A) <A pu(B),
3.7)

Awin(C) < #(A) =ImA(A) < A,(C).
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We note that if either

A(B)=ReA(A), j=L2,...,n, (3.8)
or

A(C)=ImA(A), j=12...,n, (3.9)

then both sets of equalities hold, and this is possible if and only if A is
normal; cf. (1.6), (1.7).

THEOREM 3.1. Let A be an n X n complex matrix, and let

m=trA/n and s =trA*A/n—|mf. (3.10)

Then
Im|=s,(n=1)"2<|A,| < (trA*A/n)"%, (3.11)
|m| <] <|m|+s,(n—1)"2 (3.12)

Equality holds on the left of (3.11) if and only if A is normal, A=A,
=-...=X,_,, and A\, =cm for some real nonnegative scalar c<1. Equalzty
holds on the right of (3.11) if and only if A is normal and |A||=|Ag|=--- =
|A\ul. Equality holds on the left of (3.12) if and only if A\;=X;=--- =A,.
Equality holds on the right of (3.12) if and only if A is normal, A=A,
=-... =)\, and A, = cm for scalar c > 1.,

We note that when A is real, then the conditions for equality on the left
of (3.11) and throughout (3.12) hold only if the eigenvalues of A are all real.

To prove Theorem 3.1 we use a complex analogue of Lemma 2.1. We
now write

A*CA

1 & 1|a P
= 2_ =
= o g e ; (3.13)

5

Then (2.6) becomes, keeping w real,

[wA—mw'e| =|wCA| <s(nw'Cw)"/%, (3.14)
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with equality if and only if (2.7) holds for some complex scalars a and b. We
then use Schur’s inequality (1.5), so that

s®<trA*A/n—|trA?/n?=s2, (3.15)
with equality if and only if A is normal.

Proof of Theorem 3.1. Put w=e, in (3.14) to obtain

Mo —m| <s(n—1)"%, (3.16)
with equality if and only if A;=A,=---=A,_,. The left of (3.11) then
follows, since

Aal 2 |m| = A, —m|
>|m1——s(n—1)l/2
> |m|—~s,(n—1)"% (3.17)

Equality holds in the first inequality in (3.17) if and only if m—A, =kA, for
some real scalar k > 0. Hence set ¢=1/(k+1). The right-hand side of (3.12)
follows similarly. To prove the right-hand inequality in (3.11) we note that

i/2

ol < SN/ < (SINR/n) /% < (trA®A/n) /2, (318)

using the Cauchy-Schwarz and Schur inequalities. The equality condition
follows at once. The left-hand inequality in (3.12) follows from

Im|=|ZN/n| <ZN|/n <Ay, (3.19)

with equality if and only if

>\,- =cA, >0, (3.20)
Mol =g ="~ =[A,]. (3.21)
These two conditions reduce to A, =A,=--- =\, ]

We now extend Theorem 3.1 to linear combinations of the absolute
values of the eigenvalues.
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Tueorem 3.2. Let A, m, and s? be as in Theorem 3.1. Let

1 i
Man=3-7%57 Ek Al (3.22)
Then

k-1 \/2
[m| “Sa(m) <Ay < (

Equality holds on the left if and only if A is normal,

*A\1/2 _7\1/72
trAA) +%(irq . (329)

A=Ag=--=A_y, and A=A, ,=---=A,=c\, (324

with ¢ real and nonnegative. Equality holds on the right if and only if A is a
scalar matrix.
Furthermore

k—1 \v2
|m]| - S“(—n_—_k—-ﬁ) <l =Py < (

trA*A)1/2+S ( n—k)1/2
a k *

(3.25)

Equality holds on the left if and only if A is normal and (3.24) holds.
Equality holds on the right if and only if A is a scalar matrix.

Proof. Let A@= {\I}, m,=Z\[/n, and 33=2|)\f|2/n -—(El)\fl)z/nz.
Then applying (2.19) yields

ma—sd(;f_k—if)l/2< A1) <ma+sd( nl_l)l/z- (3.26)

Now
m, =Z|N|/n>|ZN/n|=|trA/n|=|m)|, (327)

while

53 <trA*A/n—|SA]/n?

=trA*A/n—|m[*=sZ2. (3.28)
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This proves the left-hand side of (3.23). To prove the right-hand side we use
(3.28) and

m,=E\|/n < (ENP/n)" < (rA*A/n)2, (3.29)
where the first inequality is Cauchy-Schwarz. Equality holds on the left of
(3.23) if and only if equality holds in (3.27), in (3.28), and on the left of
(3.26). This means that, respectively, (3.20) holds,

A is normal, (3.30)
and
P=Rel=--=_y| and N]={hyyl="-- =\l (3.31)
using (2.20). Substituting (3.20) into (3.31) yields (3.24).

Equality holds on the right of (3.23) if and only if equality holds in (3.28),
in (3.29), and on the right of (3.26). This means that (3.20) and (3.30) hold,

A=c. (332)
and

Mal=Pgl=--- =] and  Nuil=yol=---=]A]  (3.33)
[cf. (2.21)] must hold. This can be only if A is a scalar matrix. ]

We notice that putting k=1 on the left of (3.23) and /=n on the right
yields

]m[ < l>\'(1.l)’ l=1,2,...,n, (3.34)

Al my < (trA*A/n)'? k=12,...,n. (3.35)

Equality holds in (3.34) if and only if A, =A,=--- =A, and in (3.35) if and
only if A is normal and A |=|A;|=--- =|A,|.

We presented “better” bounds for the real case in Theorem 2.3. In [19]
we strengthen (3.34) and (3.35) using Theorem 2.3 and the trace of (AA* —
A*A),
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Unfortunately the lower bound in (3.25) for |\,| may be negative. This
bound will be positive if and only if

k-1 k-1 trA*A
|m|2>( - )Sf=(n—k+l)[ n —|m|2}, (3.36)

which reduces to
[trAP*> (k—1)trA*A. (3.37)
We therefore get the following

CoroLLARY 3.1.  Let A be a nonnull n X n complex matrix with exactly
k nonzero eigenvalues. Then

[tr A2 /tr A*A <k < rankA. (3.38)

Equality holds on the left if and only if A is normal and |\ ||=Ag|=--- =
[Ac|. Equality holds on the right if and only if rank A=rankAZ i.e., A has
“index” 1.

We will now find analogous results for the real and imaginary parts of
the eigenvalues. To ease the notation, let

A,(")=]}\,|, )\,‘b’=p4f, and }\,(c)=v,. for j=1,2,...,n, (3.39)

where 1, and # are as in (3.3) and (3.4).

TueorEM 3.3. Let A be an n X n complex matrix. Let B and C be as in
(3.1) and

m,=RetrA/n=trB/n, m,=ImtrA/n=trC/n,
sg=trB%n—m;, $2=trC¥n—m?. (3.40)
Then, for t=b or c,

m,—s,(n—1)"2 <AO(A) <m, +5,(n—1)"2 (3.41)
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Moreover, for t=b,c
m,— s,(n—1)/2=AP(A)  (342)
if and only if A is normal and
A(A)=A(A) = - =ALLL(A), (3.43)
while
AO(A)=m, +s,(n—1)"/2 (3.44)
if and only if A is normal and
A(A) =AP(A) =+ =A(A) (3.45)

Furthermore, if A is normal, then

mn(A) <m,— St/(" - 1)1/2’ (3'46)
m,+s,/(n—1)"2 <Al (A). (3.47)

Equality holds in (3.46) (in (3.47)) if and only if the n—1 smallest (largest)
AP are equal.

The proofs of Theorem 3.3 and the subsequent results in this section
follow our proofs for real eigenvalues, with AY, t=a,b,c, replacing the
vector A of real eigenvalues. The variance of the A cannot, however, in
general be computed in terms of traces; to obtain our inequalities we use

Lapp—(LoNo) <ot t=abe (3.48)
n n t s y Uy G 0

For t=b,c equality in (3.48) holds if and only if A is normal [cf. (1.6), (1.7)],
while for ¢ = a equality holds if and only if A is normal and A; = ¢\, for some
nonnegative scalars ¢;, j=2,...,n [cf. (1.5), (3.20)].

As remarked earlier, a matrix is stable if and only if the real parts of its
eigenvalues are all less than zero. By the above Theorem 3.3, this will occur
if my, <0 and sZ(n— 1) <m. This reduces to

RetrA/n=trB/n<0 and (n—1)trB®<(trB)%
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We summarize this in

CoroLLARY 3.2. Let A=(ay) be an nXn complex matrix. Then A is
stable if RetrA <0 and

(n—1)Z|2(ay + @) P < (RetrA)>. (3.49)

Let us now define the real and imaginary mid-means [cf. (3.39)]

1 l

1
k,1) I—k+1 oy 1 I—k+1 S i

We then get

THeorem 3.4. Let A, m,, and s, for t=b,c be as in Theorem 3.3. Then
for t=b,c,

_ (_k_‘l_
M= 5 n—k+1

(3.51)

1/2 __n\1/72
) <}\é,2,)<m,+s,(n l) .

l

When (k,I)=(1,n) the inequality string collapses. When (k,1)#(1,n), then
equality holds on the left if and only if A is normal and

AD=AD = =A® | and AP=AP,=--- =AY, (3.52)

Equality holds on the right if and only if A is normal and

M=M= =X and AP, =N, =AY (359
Furthermore, for t=b,c,
k—1 12 n 1/2
m,—s,(m) <)\§:) <mt+S,(i - 1) . (3.54)

Equality holds on the left if and only if A is normal and (3.52) holds.
Equality holds on the right if and only if A is normal,

AO=AD= .. =X and AP, =AW, =--- =AP.  (3.55)
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TueoreM 3.5. Let A, m,, and s, for t=Db,c be as in Theorem 3.3. If A is
normal, then for t=D0b,c,

St

; 1
AT
N> (356
' L Gl I
‘ (n— 1)1/2 2
k-1
m,— kSt( ) 7 if k<in+],
R 657
. S i 1
m, (n—l)l/z if k>zn+1
Equality holds in (3.56) if and only if
A= D= =D, when [<in,
}\gt).:}\ét)_—_ v =>\$1t)—1 or Aét)=}\:(;t)= e =)\$1') when l=%n’
}‘;t)=)\§t)=... = when 1> in.
(3.58)
Equality holds in (3.57) if and only if
A=A = =AP when k<jin+1,
A&')=>\§t)="' =AY, or Aét)=>\£t)=... =A#  when k=§n+1,
AP =AP = =AW when k>in+1.
(3.59)

We note the similarity between Theorems 3.5 and 2.3. The difference is
the need for normality. This is due to the fact that equality occurs in (3.48)
for t=b,c if and only if A is normal.

As mentioned in the introduction, a matrix is stable on the eigenspace
corresponding to those eigenvalues with negative real parts. Furthermore,
the solutions to the ordinary differential equation x= Ax will be spirals along
the eigenvectors in the phase plane corresponding to those eigenvalues with
nonzero imaginary parts.
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We conclude this section with the following inequalities on differences
(cf. Theorem 2.4).

TueoREM 3.6. Let A and s, be as in Theorem 3.3. If 1 <k<l<n, then
fort=a, b, orc,

1 1 1/2
AP —A@ <s,n1/2(z + m) (3.60)
Equality holds if and only if A is normal and
)\§t)=}\ét)= e =)\’((t)
A=A = =0 =m, (3.61)
)\y):)\;tll =... =7,
where m,=Z[\|/n, and for t=a,
A=A, j=2,...,n, (3.62)

for some nonnegative scalars ¢, j=2,...,n.
Furthermore, if A is normal and n=2q is even, then for t=b or c,

2s, <A =AY (3.63)
with equality if and only if
AO=AD = =AW and A, =AU,=-- =AY (364)
If, however, n=2q * 1 is odd, then (3.63) holds, but moreover,
2s,n/(n2—1)"2 AP -AY (3.65)
with equality if and only if (3.64) holds.
We note that if A is nonsingular and normal, then

max|A(A)|

minfA(A)] (3.66)
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may be used as a condition number of A. We may now follow the approach
in Sec. 2 and obtain upper and lower bounds for (3.66). We use Theorems

3.1 and 3.6 to see that

25, _ max]A(A)

1+ o < — : 3.67
(trA*A/n)"/? ~ min|A(A)] (367)
Furthermore, if
[trA2> (n—1)trA*A, (3.68)
then
o) /2
max Ay, @20 % (3.69)
min|A(A)] |m|—s,(n—1)"
4. EXAMPLES

To illustrate our bounds for eigenvalues we present five numerical
examples.

ExampLE 1. In his recent paper Scheffold [14] obtained bounds for the
subdominant eigenvalues of a matrix with nonnegative elements. To
illustrate his findings, he considered the matrix

6 0 O
1 3 14, (4.1)
2 4 0
and found
Azl 5] €5. (4.2)

Our bounds (3.25), however, yield

3<|A|<9.89,
0.89 < A, €7.31, (4.3)

0< Ay <4.73.
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We observe, moreover, that the eigenvalues of (4.1) are A; =6 and the two
eigenvalues of (3 1), and so all the eigenvalues must be real. Applying

(2.31) to (4.1) then yields
—116<A;<0.92< A, <5.08< A, <7.16. (4.4)

It is easily seen that the subdominant eigenvalues of (4.1) are A,=4 and
=-1.
3

ExampLE 2. In their book [9, p. 158] Marcus and Minc compared
various bounds for the dominant eigenvalue of a matrix with positive

elements:
1 1 2
2 1 3 (4.5)
2 3 5
Their best bounds are
5.162 <A, <9.359. (4.6)
Our bounds (3.25) yield
2.33< |\, €9.67,
0< Ay £7.04, (4.7)
0< [Ay| <4.40. ‘

The matrix in (4.5) is, however, singular; hence all its eigenvalues are real.
Applying (2.31) yields

~2.87<A < —0.27 <A, <493 <A, <7.54. (4.8)

The nonzero eigenvalues are 3;+3V65, or approximately 7.531 and
—0.531.

ExampLE 3. Marcus and Minc [9, p. 148] also consider the complex
matrix

T+3i —4-6i —4
A=| -1-6i 7 —2-6i|. (4.9)
2 4-6i 13-3i
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Using results due to Hirsch [5], they obtain
|A(A)] < 40.03,
|ReA(A)| <39, (4.10)
ImA(A)| <20.12,
while Gersgorin’s discs are
|z—7—3i| <1121,
|z—7] < 12.40, (4.11)
|z—13+3i| <9.21.
Applying (3.25) yields
9< A <2546,
2.64 <AL <19.09, (4.12)
0 <A <1273,
while (3.54) yields
9<A{ <14.20,

6.40 <A{Y <11.60, (4.13)

3.81<A<9
and

0<AP <1162,
~581< AP <581, (4.14)

—11.62 <A <0.

Recall that )\,.('), t=a,b,c, and j=1,2,3 are the ordered modulus, real part,
and imaginary part, respectively.
The bounds (4.13) and (4.14) define the rectangle [cf. (3.41)]

3.81 <ReA(A) < 14.20,

~11.62 <ImA(A) < 1162, (4.15)
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154 First disc (4.11)
Our rectangle (4.15)

=91 Al O}
61
31
A
1 1 l_ 2y 1 J ]
-6 -3 6

Second disc
(4.11)

Third disc
(4.11)

Fic. 2. GerSgorin discs (4.11) and our bounds (4.15) for Example 3.

which sits almost entirely within the union of the three GerSgorin discs as
given by (4.11); cf. Fig. 2. the eigenvalues are 9, 9+9i, 9—9i, with
AP =12.73.

ExampLE 4. To illustrate our bound (2.62) for the condition number we
consider the symmetric matrix

(4.16)

(RECY-I'N
—o wo
cocnow
O~
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Our bounds (2.32) yield

7.158 <A, < 10.475,

3.842 <A, <8.372, (4.17)
2.628 <A;<7.158,
0.525 <A, <3.842.
We find that [cf. (2.61)]
p=0.1429 (4.18)

and so #=27.57° <30°; cf. Table 1. Thus (4.16) is positive definite. More-
over [cf. (2.62)]

K < 13.928. (4.19)

Frobenius’ theorem {9, p. 152] indicates that A; must lie between the
smallest and largest row sums, i.e.,

6<A, <11, (4.20)

while from the separation theorem [13, p. 64], using the top left 2X2 and
bottom right 2 X2 submatrices of (4.16), we obtain

T<A,
6<A,,
A, <5,
A, <4

(4.21)

The eigenvalues are 9.376, 6.423, 4.775, and 1.426, and so xk=6.575.

ExampLE 5. OQur last example is the symmetric matrix

(4.22)

DO DD e e
el L B ]
et et D
pt =1 = = DO
QO = = DO
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Our bounds (2.33) yield

7.449 <A, <11.797,

4.551 < A, €9.550,
3.634 <A; < 8.366, (4.23)
2.450 <A, < 7.449,
0.203 < A5 <4.551.
Moreover [cf. (2.61)]
p=0.0541. (4.24)

Furthermore 8 =25.78° <26.57°; cf. Table 1. Thus (4.22) is positive definite.
And so [cf. (2.62)]

k <36.973. (4.25)
Frobenius’ theorem [cf. (4.20)] here gives
9<A, <13, (4.26)

The eigenvalues of (4.22) are 11.171, 6.527, 5.434, 4.296, and 2.571, and so
Kk =4.345.

The authors wish to thank Patricia J. Babecki for suggesting Examples 4
and 5, and Paul J. Brockman for drawing Fig, 2.
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