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ABSTRACT 

Several new inequalities are obtained for the modulus, the real part, and the 
imaginary part of a linear combination of the ordered eigenvalues of a square 
complex matrix. Included are bounds for the condition number, the spread, and the 
spectral radius. These inequalities involve the trace of a matrix and the trace of its 
square. Necessary and sufficient conditions for equality are given for each inequality. 

1. INTRODUCTION 

The eigenvalues of an n x n complex matrix A are the roots of the 

n&degree polynomial det(A-XI) =O and so are difficult to evaluate in 
general. It is, however, often useful to know the approximate location of the 
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eigenvalues. For example, when solving an equation of the type Ax = b, one 
may use the iterative scheme x,,+ i = TX, + c, where T is a certain matrix 
related to A, and c is a column vector related to both A and b; cf. e.g. [17, 
Chapter 31. This scheme converges for arbitrary xa if and only if all the 
eigenvalues of T lie inside the unit circle in the complex plane. This also 
characterizes the convergence of the geometric series Xr_,,Th to the matrix 
(I-T)-‘. More generally, XF_,,/3hTh converges if and only if all the eigen- 
values of T lie inside the circle of convergence of the scalar series C;P,, 
&zh; cf. [7]. For a Hermitian positive definite matrix, the ratio of the largest 
to the smallest eigenvalue is useful in determining whether the equation 
Ax= b is ill-conditioned or not; cf. e.g. [15, p. 1851. In theory of stability of 
solutions to differential equations, a complex matrix is said to be stable if the 
real parts of all its eigenvalues are negative; cf. e.g. [9, pp. 158-91. If we 
know that the matrix has t eigenvalues with negative real part, then it is 
stable on the eigenspace corresponding to these eigenvalues. Furthermore, if 
the imaginary part of an eigenvalue is not zero, then it is known that the 
solution will spiral; cf. e.g. [6]. 

For certain special types of matrices some information about the eigen- 
values is known beforehand, e.g., a stochastic matrix always has at least one 
eigenvalue equal to 1 and all others lie in or on the unit circle in the complex 
plane; cf. e.g. [9, p. 1331. I n g eneral, though, nothing so specific can be said 
about where the eigenvalues may lie. 

Bounds for eigenvalues have been obtained by many authors over 
roughly the last hundred years; cf. e.g. [9, Chapter III]. Some of these 
bounds involve the sums of absolute values of elements in a row and/or 
column. Following [9, p. 1441, let A= ( akl) be an n X n complex matrix, and 
write 

Let X(A) denote an eigenvalue of A. Then the inequality 

IX(A)] < min(R, C) 0.2) 

was proved by Alfred Brauer in 1946, though anticipated by Oskar Perron in 
1933 (cf. [9, p. 1451). 

Possibly the best-known inequality for eigenvalues, however, was found 
by S. A. GerZgorin in 1931 (cf. e.g. [9, p. 1461): the eigenvalues lie in the 
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closed region of the complex plane consisting of all the discs 

I~-%kl~%-l%kl, , ,...,n. k=l2 0.3) 

In this paper we use traces to obtain various new eigenvalue inequalities. 
An early result of this kind was derived by Issai Schur in 1909; cf. [lo, p. 
3091. Let (cf. [l, p. 1331) 

B=#+A*) and C= :(A-A*)/i, 0.4) 

where A* = (&) is th e conjugate transpose of A = (ukl). Then A = B + iC, with 
B and C Hermitian. Moreover 

Z]h(A)12 < tr(A*A) =X]uJ2, 0.5) 

(1.7) 

Equality in any one of these inequalities implies equality in all three and 
occurs if and only if A is normal, i.e., AA* = A*A. 

More recently, L. Mirsky [ll] in 1956, and A. Brauer and A. C. Mewbom 
[Z] in 1959, have used traces to derive inequalities for the spread, sp(A)= 
A,,(A) -h&(A); cf. Th eorem 2.5. These inequalities follow the work of 
Popoviciu [12] in 1935 on polynomials with real roots. 

In statistics, G. W. Thomson [16] in 1955 obtained related inequalities for 
the range of a set of random variables. The connection between these 
inequalities is that the standard deviation of the eigenvalues is a simple 
function of the trace of the matrix and the trace of its square; cf. Graybill [4, 
p. 2271. If the matrix A has real eigenvalues h,,X2,. . . ,A,,, then we may define 
their variance to be 

Our results are of the following type Let A be an n X n complex matrix, 
and suppose that its eigenvalues are all real and ordered: 
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Then (cf. [la] and (2.3) below) 

where 

(1.10) 

(1.11) 

is the mean of the eigenvalues, while s is their standard deviation, the 
positive square root of the variance as defined by (1.8). Equality on the left 
of (1.10) occurs if and only if X,=X,= * *. =A,,_l, and on the right if and 
only if X,=X,=. . . -&. 

In Sec. 2 we present various inequalities which hold when all the 
eigenvalues are real; these results are extended to the more general complex 
case in Sec. 3. The paper concludes with a number of examples in Sec. 4. 

2. REAL EIGENVALUES 

Our inequalities are tightest when all the eigenvalues are real; this 
happens for example when the matrix is Hermitian or is the product of two 
(semi)definite Hermitian matrices. A diagonable matrix A has all its eigenval- 
ues real if and only if there exists a positive definite Hermitian matrix S such 
that AS = SA*; cf. [3]. 

THEOREM 2.1. Let A be an n x n complex m&ix with real eigenvalues 
X(A), and let 

m=trA/n, s2=trA2/n-m2. (2.1) 

Then 

m-s(n-l)“2<X,i,(A) Gm-s/(n-1)1’2, (2.2) 

m + s/( n - 1)“2 f X,,(A) <m + s( n - 1)“2. (2.3) 

Equality holds on the left (right) of (2.2) if and only if equality holds on the 
left (right) of (2.3) if and only if the n - 1 largest (smallest) eigenvalues are 
equal. 
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Notice that when n = 2 the two inequality strings (2.2) and (2.3) collapse 
to yield 

&,(A) = m - s and X,(A) = m + s. (24 

Our inequalities were initially obtained using mathematical programming 
techniques. These techniques lead to optimal bounds for eigenvalues in 
terms of the trace of A and the trace of A2. Once found, however, the 
inequalities are more easily proved using a Cauchy-Schwarz type inequality: 

LEMMA 2.1. Let w and X be real rwnnull n X 1 vectors, and let 

m=h’e/n and s2=h’CX/n, (2.5) 

where e is the n X 1 vector of ones, the centering matrix. C =I -eel/n, and e’ 
is the transpose of e. Then 

- s( nw'Cw) 1’2 < w’X - mw’e = w’CX < s( nw’Cw) 1’2. (2.6) 

Equality holds on the k$i (right) of (2.6) if and only if 

X=aw+be (2.7) 

fm some scalars a and b, where a < 0 (a > 0). 

Proof. The inequality string (2.6) follows at once from the Cauchy- 
Schwarz inequality (w’CX)~ < W’CW * X’CX, since C is symmetric idempotent, 
while the equality condition (2.7) is equivalent to CX = aCw for some scalar 
a (the scalar b = m - aw’e/n). W 

We will also need 

LEMMA 2.2. Let x = (T$), m and s be &fined as in Lemmu 2.1, and 

Then (cf. (2.2) and (2.3)) 

(2.9) 



476 HENRY WOLKOWICZ AND GEORGE P. H. STYAN 

Equality holds on the left if and only if A, =A, = * . * = A,,, on the right if 
and only if A,=&=. . . =&_-l, and in the center if and only if A, =A, 
= . . . =A, M s=o. 

Proof. We have that 

n2(m-U2= 2 (+-a, 2= 5(+-U2+ i~kPj-ux,-a, 
L-1 1 

> jgl(Ai-AJ2= i: (Aj--m+m--h,)2 
j=l 

=n[s2+(m-a)‘], (2.10) 

from which the left-hand inequality in (2.9) follows immediately. For the 
right-hand inequality we expand n2(A, - m)” as we did n”(m -&)2 in (2.10). 
Equality holds throughout (2.10) if and only if 

Ix hj-hJ(~k-a)=Q 
ifk 

(2.11) 

which holds w&=X3=. . . = a. The rest of the lemma follows directly. n 

Proof of Theorem 2.1. It is easy to see that m and s2 defined by (2.1) 
and by (2.5) are equivalent; cf. (1.8). We now use Lemma 2.1 with w =ei, 
the jth column of the identity matrix I,. Then (2.6) becomes 

-s(n-1)“2<+-m< s(n-1)“2, (2.12) 

which proves the left-hand side of (2.2) and the right-hand side of (2.3). For 
equality on the left (right) set j = n and w =e,, ( i = 1 and w = eJ. The 
right-hand side of (2.2) and the left-hand side of (2.3) follow directly from 
Lemma 2.2. w 

As remarked earlier, if A is positive definite, then A_(A)&,(A) may be 
used as a “condition number” of A. From the above Theorem 2.1, it is clear 
that if m-s(n-1) ‘/’ > 0 (or equivalently if trA>O and (trA)2/trA2>n- 1) 
and if A is Hermitian, then A is positive definite. Therefore, (2.2) and (2.3) 
imply: 

COROLLARY 2.1. Let A, m, and s2 be defined as in Theorem 2.1. 
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(i) Zf A i.s positive definite, then 

l  + 2s/(n - lY2 
m-s/(n-1)“2 

( L%AA) 
&in(A) * 

(2.13) 

When n > 2, equality holds if and only if all the eigenvalues of A are equal. 
(ii) Zf A is Hermitian, tr A > 0, and (tr A)2 > (n - 1) tr A2, then A is positive 

definite, (2.13) holds, and 

h,(A)<1+ 2s(n - 1)1’2 

LliJA) m-s(n-1)“2 * 
(2.14) 

When n > 2, equality holds if and only if A is a scalar matrix. 

The inequalities (2.2) and (2.3) may be extended to lineax combinations 
of the eigenvalues. Let 

x,>x,b’~- >h, (2.15) 

be the ordered eigenvalues of A [cf. (1.9)], and let 

1 

h&l)= - 2 xi i=k 1-k+l’ 

which we may call a mid-mean. Notice that 

(2.16) 

(2.17) 

[cf. (l.ll)], while 

x (k,k) =A,. (2.18) 

Then 

THEOREM 2.2. Let A, m, and s2 be de$ned as in Theorem 2.1, and let 
hCk,lj be as in (2.16). Then 

m-s( nkk:l)1’2<h(~,l~<m+s(~)1’2. (2.19) 
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When (k,Z)=(l,n), th e inequality string collapses. When (k, I) #( 1, n), then 
equality holds on the left of (2.19) if and only if 

AI=&=... =hk_l and hk=Ak+I=... =&, (2.20) 

and on the right if and only if 

A,=&=**. =A, and A,+1=h,+2=.+. =a. (2.21) 

Furthermore, 

,-,( n~;~l)1’2<Ak<m+s(~)1’2. (2.22) 

Equality holds on the left if and only if (2.20) holds, and on the right if and 
only if 

A,=h2=..+ =X, and Ak+l=Ak+2=.** =a. (2.23) 

Proof. Put w=$,,e/( - I k+l) in Lemma 2.1. Then w’e=l and 
w’Cw=(E-k+l)-l-n-‘. Hence 

It follows directly that equality on the left of (2.19) holds if and only if (2.20), 
and on the right of (2.19) if and only if (2.21). n 

Mallows and Richter [8] obtained several inequalities for the standard 
deviation of a set of numbers; in particular, their (6.1) leads directly to our 
Theorem 2.2. Furthermore, their Corollary 6.1 yields a stronger lower bound 
than that in (2.19) when (k, I) = (1, I) and a stronger upper bound when 
(k,l)=(k,n). 

THEOREM 2.3. Let A, m, and s2 be defined as in Theorem 2.1, and let 
Xtk,lj be as in (2.16). Then 

~(1.Z) 2 1 m+ (n_;)l,2 if +n, 

m+ s(n-I) 

Z(n - 1)“2 
if l>+n, 

(2*N 

s(k-1) 

%k, n) ( 

m- (n_k+l)(n_1)‘/2 if k=++l, 

m - cn -:)W 

(2.26) 
if k>$n+l. 
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Equality holds in (2.25) ij and only if 

&-_A,=. . . =&_l when l<&n, 

X1=&= *. - =j& or &E&C.. . =A, w&n l=tn, (2.27) 

&3X3=. . . =x, when l>in. 

Equality holds in (2.26) if and only if 

h1=A2=. . . =&_1 when k<in+l, 

~,=~s=... =a_, or &=X3=... =X, when k=in+l, (2.28) 

&,=A,=. -. =a when k>in+l. 

Proo$ The inequalities (2.25) and (2.26) follow directly from Corollary 
6.1 in [8, p. 19311. To obtain the conditions’ for equality given by (2.27), 
however, we use the following equality, which is straightforward but tedious 
to establish: 

n( n - l)(Ac,,Ij - m)’ - ns2 

=(n-22)(n-l)E-’ i iih,++ $ min(i,i)[max(i,j)-l]A& 
i,i=l &f-l 

+2(n-W+Il jY$~li(~-ih+ 

n-l 

+ i,j_~+l[n-max(iyj)][n-l-min(i,i)]~~. (2.29) 

The condition (2.28) is obtained similarly. n 

We note that when k = 1 (respectively n), the lower (respectively upper) 
bound in (2.22) equals m. The bounds from Theorem 2.1, 

(2.30) 

are therefore .better whenever s > 0. 
When n ‘3, however, we may combine (2.22) and (2.30) to yield the 

contiguous bounds 

m-sV3 <A,S;m-s/V3 <A,<m+s/VX <X,<m+sV%. (2.31) 
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When n > 4 our bounds are, unfortunately, no longer contiguous. From 
(2.22) and (2.30) we obtain, when n=4, 

m-sti <h,<m-s/V3 <h,<m+s, 

(2.32) 

m-s<&<m+s/fi <A,<m+sfl. 

When n =5, we have 

m-s 
If 

g <X,<m+$s<h,fm+2s, 

m-s 
f 

3 <h,<m+s 
T 

t , 

(2-W 

This suggests that for n =6 our bounds for h, and ?Q might be contiguous. 
However, we obtain 

m-s* <A,Gm-s/V5 <X,<m+s*, 

m-sti <A,<m+s/ti <A,<m+sti, (23 

m-s<AA,<m+s/d5, 

m-s/ti <h,<m+s. 

Our bounds (2.4), (2.30), (2.32)-(2.34) are plotted in Fig. 1. Each axis is 
in units of c, where m + cs is the bound. The center is at m = 0, and the scale 
has s=l. 

Graybill [4, p. 2281 considered a matrix A with real eigenvalues, precisely 
t of which are nonzero. Then t > 0 if and only if tr A2 > 0; in this event 

(trA)‘/trA2 f t < rankA. (2.35) 

The following corollary strengthens this result. 

COROLLARY 2.2. Let A have real eigenvalues with precisely f being 

positive and g negative. Let ti A2 > 0. 

(i) When tr A > 0, then 

(tr A)2/tr A2 >f, (2.36) 

with equality if and only if all the positive eigenvalues are equal and all the 

nonpositive eigenvalues are equal. 
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m-2s In-5 m IO+5 m+2s 

a 

2 1 

I 

I 

Y Y 

(ii) When trA<O, then 

(trA)‘/trA’ < g, (2.37) 

with equality if and only if all the negative eigenvalues are equal and all 
the nonnegative eigenvahm are equal. 
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Proof. It suffices to prove (i), as (ii) then follows by replacing A with 
-A. First assume f = n. Then (2.36) is just the Cauchy-Schwarz inequality, 
and equality holds if and only if all the eigenvalues are equal. When f <n it 
follows that $+ r < 0, and using (2.22) with k= f + 1, we get m(n - f)“” < 
sf ‘/‘. Squaring both sides leads to (2.36) directly; equality holds if and only 
ifXf+l=Oand[using(2.20)withk=f+l]A,=...=Xfandhf+,=...=~. 

W 
The two inequalities (2.36) and (2.37) may be combined as 

(trA)‘/trA2 < max( f,g) <t Q rankh; (2.36) 

cf. (2.35). 
If A is Hermitian, the inequality (2.36) shows that A is positive definite 

when 

n-1<(trA)2/trA2 and trA>O. (2.39) 

The inequality (2.37) g,i ves a similar criterion for negative definiteness. 
Another linear combination of the eigenvalues which is of interest is the 

difference & --A,; when (k, I) = (l,n), then this difference is called the spread 
of the matrix A; we will write this as sp(A). In statistics the difference X, - & 
is known as the runge, and so X, --A, may be called a mid-range. 

THEOREM 2.4. Let A and s2 be defined as in Theorem 2.1. Then 

Ak-xph”2 ; + n_;+l)1’2, 1 <k<l<n. (2.40) 

Equality holds if and only if 

A,=h,=. . . ZAk, 

x -x k+i- k+a=“’ =Xl_i=trA/n, 

T!r=A,+r= * *- =&. 

(2.41) 

Proof. To prove (2.40) we set w= k-lZ;_lei - (n - I+ l)-‘X~,Ie~ in 
(2.6), with k < 1. It follows that w’e =Oandw’Cw=w’w=k-‘+(n-2+1)-i. 
Hence 
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which yields (2.40). Equality on the right of (2.42) holds if and only if 

A- ;+b ,.a., ;+b, b ,..., b, b- a n-l+l ‘...’ b- a 
,I n-z+1 

I. 

_V’ 
k terms l-k-l terms n-l+lterms 

(2.W 

It follows at once that m=e’X/n=b and a=(hi-&)/[k-‘+(n-Z+l)-‘I, 
and so equality holds in (2.40) if and only if (2.41). n 

When (k,Z)=(l, ) n in Theorem 2.4, the inequality (2.40) becomes the 
upper bound for the spread sp(A) = A, -h, found by MirskJ in [ll]. He used 
the second elementary symmetric function 

so that (cf. [9, p. 1671) 

sp(A) < (2( l- i)(trA)2-4tr2A) 1’2= (2n)‘12s. (2.6) 

Corresponding lower bounds for sp(A) were 
Mewbom in [2]. We assemble these results in 

obtained by Brauer and 

THEOREM 2.5. Let A and s2 be defined as in Theorem 2.1. Then 

A, -h, < (2n)“2s. 

When n > 2, equality holds if and only if 

A2z’&“. . . =&-l=;(A,+AJ. 

If n=2q is even, then 

2s<X,-a, 

with equulity if and only if 

X1=&=... =a and h,+l=A,+2=+ 

(2.46) 

(2.47) 

(2.46) 

.- -a* (2.49) 
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Zf n = 2q 2 1 is odd, then (2.48) holds, but moreover, 

2sn/(n2- 1)“2 < x, -A*, (2.50) 

with equality if and only if (2.49) holds. 

Note that A,/& = 1 +(A, -a)/&. Using this fact and the above bounds 
for the spread, we obtain the following bounds for the condition number. 

COROLLARY 2.3. Let A be Hermitian positive definite, and let m and s2 
be defined as in Theorem 2.1. 

(i) When n is even, then 

1+ 
2s 

m-s/(n-1)“’ 

< Lax(A) 

Xrnin(A) ’ 

When n > 2 equality holds if and only if A is a scalar matrix. 
(ii) When n is odd, then (2.51) holds, but moreover, 

1 + 2sn/( n2 - 1)“2 

m-s/(n-1)“2 

< Lx(A) 

LinCA) * 

(2.51) 

(2.52) 

When n =3 equality holds in (2.52) if and only if the two smallest 
eigenvalues are equul. When n > 3 equulity holds if and only if A is a scalar 
matrix. 

COROLLARY 2.4. Let A be Hermitian, and let m and s2 be defined as in 
Theorem 2.1. Zf trA>O and (trA)2>(n- l)trA2, then A is positive definite, 

(2.51) holds, and 

h,(A)<1+ (2n)“2s 

&n(A) m-s(n- 1)1’2 * 
(2.54 

When n > 2, equality holds if and only if A is a scalar matrix. 

Unfortunately the upper bounds given in (2.14) and (2.53) hold only 
when trA > 0 and (tr A)2 > (n - 1) tr A2. This is because we need a positive 
lower bound for h,, If, however, we knew that X, > b > 0 for some b, then we 
could replace m - s(n - 1)‘12 by b in Corollaries 2.1 and 2.4. For example, 
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when A is positive definite, then 

43 =detA> detA , detA 

El!& (A~l,n-l))n-l 

, 
[m+s/(n_1)'/2]"-1 >O (2Jw 

by the arithmetic-geometric mean inequality and (2.19). Setting 

b= 
detA 

[m+s/(n-1)“2]“-1 

yields 

(2-W 

COROLLARY 2.5. Suppose that A is Hermitian positive definite. Then 

?!E&<1+ (2n)'j2s[ m+ s/(n - 1)“2]“-1 
hnin(A) detA 

(2.56) 

When n > 2, equality holds if and only if A is a scalar matrix. 

We note that equality holds in (2.54) if and only if h, =A, = * . * =A,,_l; 
but to achieve equality in (2.56) we also need equality in (2.46), and so A 
must be a scalar matrix. 

It is interesting to compare the inequalities for the condition number 
provided by Corollaries 2.1, 2.3, 2.4, and 2.5. When n >2 and s >0, it is 
clear that the bounds in Corollaries 2.3 and 2.4 are strictly better than those 
given in Corollary 2.1. These bounds, however, require that 

(2.57) 

which is not necessary for the inequality in Corollary 2.5 to hold. We see 
that that inequality is better than the one in Corollary 2.4 if and only if 

detA>[tn-s(n-1)“2][m-ts/(n-1)1’2]”-1. (2.58) 

Using Theorem 2.1, we see that this is implied by the product 

X,...~_l>[m+s/(n-1)1’2]n-2. (2.59) 
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Considering the three inequalities (2.14), (2.53), and (2.56), we note that 
when n > 2 equality holds if and only if A is a scalar matrix, and then 

trA2= (trA)2/n. (2.60) 

We now present an inequality which can collapse for any pair of values of 
trA2 and trA which satisfy (2.57). The inequality (2.62) below is, therefore, 
always better than (2.14) and (2.56) when n > 2 and s >O. 

THEOREM 2.6. Let A be an n X n Hermitiun matrix. Zf tr A > 0 and 

P= @J -(n-l.)>O, 

then A is positive definite and 

X_(A) < l+(l-~~)l’~ 

Ln(A) P * 

when n > 2, equality holds if and only if 

Af+C 
X2=A3=. . . =&_l= ___ 

Al+% ’ 
and then 

(2.61) 

(2.62) 

To prove Theorem 2.6 we use: 

LEMMA 2.3. Let A be an n X n rumnull matrix with real eigenvalues 
X,>A,> **. >a. Then 

- Gn-2+ @1+hJ2. (W2 
trA2 XT+C 

when n > 2, equality holds in (2.65) if and only if A, +X, #O and 

A;+c 
A,=... -_ =&l-1- A,+-& * 

w-w 

(2.W 
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Proof. If h, =O, then (2.65) reduces to 

(trA)2<(n-l)trA2, (2.67) 

which can be shown to hold by using the Cauchy-Schwarz inequality on the 
n - 1 real nonzero eigenvalues of A. Moreover, equality then holds in (2.67) 
* &=j&=... =&_ i, which is (266) when h, = 0. When &,#O we may 
write 

K =&/a; b=$/L 

Then (2.65) w 

= (K+Fs+ * * * +/..&_i+1)2 
Y 

Ks+j.l;+*** +/_l;_i+1 

j=2,...,n-1. (2.63) 

<n-2+oZ 
K2+l ’ 

(2.69) 

Write ji=C;Liy/(n-2). Th en, using the Cauchy-Schwarz inequality again, 
we obtain 

&+. . . +d_1b(n-2)p2. (2.70) 

Applying (2.70) to the left-hand side of (2.69) yields 

since the second term in the numerator of the right-hand side of (2.71) is 
nonnegative. Simplifying (2.71) yields (2.65). Equality holds in (2.65) if and 
only if equality holds in (2.70) an_d F(K + 1) = ~~ + 1. Equality holds in (2.70) 
if and only if &,-mm* =)Cn_r=h, say, while ,G(K+~)=K~+~ simplifies to 
h(h, +a) =A;+<. If h, +X, #O, this yields (2.66). If X, +&, = 0, then (2.65) 
reduces to (trA)2 < (n -2)trA2, which collapses if and only if A;+ c =0 or 
A-O. n 

Proof of Theorem 2.6. The inequality (2.65) may be written as 

2K 
P<- 

K2+1 ’ 

(2.72) 

where p is defined in (2.61) and K in (2.66). Simplifying (2.72) yields the 
quadratic 

pK2-2K+p <0 (2.73) 
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and so (2.62) follows. Equality holds in (2.62) if and only if equality holds in 
(2.65) and (2.66) = (2.68). n 

To compare (2.62) with (2.58) we may write (2.62) as 

hlwlx(*) d 1+ 

(1-p)“z[(l+p)“2+(1-p)i’s] 

L*(A) P 
(2.74) 

We may interpret the quantity p defined by (2.61) as follows. Let 8 
denote the angle between the Hermitian matrix A and the identity matrix in 
the space of n X n Hermitian matrices with the inner product (A, B) = tr AB. 

Then 

(2.75) 

and so 8 is also the angle between the vector of eigenvalues hi, A,, . . . , A,, and 
the equiangular line. Hence 

p=l-nsin28, (2.76) 

and so (2.61) holds, i.e., p >O, if and only if 

sin28 < l/n. (2.77) 

Moreover (2.76) shows immediately that p < 1 and hence (2.62) and (2.74) 
are well defined. The variance s2 may also be interpreted using this angle 8. 

It is easy to see that 

s2= (trA2)sin28 = (trA)2tan20 
n n2 ’ 

(2.78) 

and 

tan8=s/m. (2.79) 

It follows from (2.77) that tr A > 0 and (trA)2 > (n - 1) trA2 if and only if 

o<e=~ccos trA 
< arcsinn- 1/2. 

(ntrA2)“2 
(2.80) 
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TABLE 1 
VALUES OF UPPER BOUNDS FOR 8 AND ASSOCIATED PROBABILITIES 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Upper bound 

(deg) 

(2.80) (2.81) 

45 45 
35.26 .54.74 
30 60 
26.57 63.43 
24.09 65.91 
22.21 67.79 
20.70 69.30 
19.47 70.53 
18X3 71.57 

Ratio of 
upper bounds 

1 
.644 
.5 
,419 
.365 
.328 
.299 
.276 
258 

Monte Carlo 
probability 

of (2.80) 

1 
.a35 
636 
.482 
.310 
.189 
.124 
.073 
.a38 

On the other hand, when A is positive definite (2.75) has the lower bound 
n-l/’ and so 

I i/s 
OtB<arcsin 1-n . 

( 1 
(2.81) 

The range (2.81) exceeds the range (2.80) whenever n > 3; for n = 2, how- 
ever, the two ranges coincide. If 8 is distributed uniformly over the range 
(2.81), then the probability that (2.80) holds is the ratio of the two upper 
bounds. Values of these numbers are given in Table 1 for n =2(1)10. Also 
given is the Monte Carlo probability that (2.80) holds when the eigenvalues 
of A are uniformly distributed on (0, l), based on a run length of 2000. 

The reason why the two sets of probabilities in Table 1 differ is that if 8 
lies between the two upper bounds, then A is not necessarily positive 
definite for n > 3. Only when n = 2, however, does the set of positive definite 
matrices form a cone, which is completely determined by the angle 8. 

3. COMPLEX EIGENVALUES 

The inequlities in Sec. 2 may be extended to cover the situation where 
the eigenvalues are not necessarily all real. We use the matrices [cf. (1.4)] 

B= +(A+A*), 

C=;(A-A*)/i. 
(34 
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We call B the Hemtitian real part and C the Hermitian imaginary part of A. 
Both B and C are Hermitian; cf. [l. p. 1331. Notice also that A=B+ iC. 

We again write A(A) for an eigenvalue of A, but order the eigenvalues 
now according to 

1X,] > ]ha] > . *. > j&j. (3.2) 

This does not necessarily reduce to (2.15) when the eigenvalues are all real. 
We also consider the real and imaginary parts of the eigenvalues: 

We order these: 

Notice that 

P(A) =ReX(A), Y(A) =ImX(A). (3.3) 

4 = pk + iv, (3.5) 

for some values of i, k, and I, not necessarily all equal. 
When all the eigenvalues are real, however, the b’s correspond directly 

to the 4’s of (2.15), but not, of course, necessarily to the +‘s in (3.2). 
Summing (3.5) or taking traces in (3.1) yields (cf. [l, p. 1351) 

trB=RetrA= s y, 
i==l 

(3.6) 

trC=ImtrA= 2 vi. 
i-1 

The eigenvalues of B are called the real singular values of A (cf. [l, p. 1341) 
and need not equal the p’s; similarly the v’s need not equal the eigenvalues 
of C, which are called the imaginuy singular values of A. The eigenvalues of 
B and C are, however, all real. 

Amir-Mo6z and Fass [l, p. 1351 have shown that 

A&(B) < p(A) = ReA(A) <h_(B), 

h,,(C) <v(A) = ImA Q X_(C). 
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We note that if either 

$(B)=Re4(A), j=l,2 ,,.., n, 

or 

+(C)=Im+(A), i-1,2 ,..., 71, 
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(3.6) 

(3.9) 

then both sets of equalities hold, and this is possible if and only if A is 
normal; cf. (1.6), (1.7). 

THEOREM 3.1. Let A be an n X n cumpkx mutrix, and let 

m=trA/n and si=trA*A/n-(ml’. (3.10) 

Jm( - .s,(n - l)r” < I&/ < (trA*A/n)“‘, (3.11) 

Iml< JA,J < Iml +s,(n - 1)“2. (3.12) 

Equality h&Is 012 the left of (3.11) if and only if A is normal, h, =A, 
+** =&_r, and &= cm for some real nonnegative scalar c < 1. Equality 

~ldPontherightof(3.11)~andalyifAisnomzalandIh,l=I~2(=...= 
j&,1. Equulity holds on the left of (3.12) if and only if X1=&= * * - =A,,. 
Equality holds on the right of (3.12) if and only if A is normal, A,=& 
=... =&, and A,= cmforscakzrc>1. 

We note that when A is real, then the conditions for equality on the left 
of (3.11) and throughout (3.12) hold only if the eigenvalues of A are all real. 

To prove Theorem 3.1 we use a complex analogue of Lemma 2.1. We 

now write 

Then (2.6) becomes, keeping w real, 

Jw’h- mw’el = Iw’CX( <s(nw’Cw)“2, 

(3.13) 

(3.14) 
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with equality if and only if (2.7) holds for some complex scalars a and b. We 
then use Schur’s inequality (1.5), so that 

(3.15) 

with equality if and only if A is normal. 

Proof of Theorem 3.1. Put w=e, in (3.14) to obtain 

w I&-mj<s(n-1) , (3.16) 

with equality if and only if A, =h, = * . * =&_ r. The left of (3.11) then 
follows, since 

> (ml - s(n- 1)“2 

> ImJ - .s,(n - 1)“2. (3.17) 

Equality holds in the first inequality in (3.17) if and only if M -h, = kX, for 
some real scalar k > 0. Hence set c = l/(k + 1). The right-hand side of (3.12) 
follows similarly. To prove the right-hand inequality in (3.11) we note that 

IA,,1 < XlAJ/n < (ZIA12/n)1’2 < (trA*A/n)“2, (3.18) 

using the Cauchy-Schwarz and Schur inequalities. The equality condition 
follows at once. The left-hand inequality in (3.12) follows from 

Iml= lSy/nI < Xl+l/n ( IhIt (3.19) 

with equality if and only if 

+ = cix, ci > 0, (3.20) 

Ih,J=)&,I=..* =1&J. (3.21) 

These two conditions reduce to X, = h, = . * . = ?t,, . a 

We now extend Theorem 3.1 to linear combinations of the absolute 
values of the eigenvalues. 
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THEOREM 3.2. Let A, m, and sf be as in Theorem 3.1. Let 
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(3.22) 

Then 

/ml-_%( n”;: 1)1’2< Ih((k,[) < ( y)l”+sa( q)“‘. (3%) 

Equality holds on the left if and only if A is normal, 

Al=&=... EA~_~, and hk=Ak+l=... =h,=ch,, (3.24) 

with G real and nonnegative. Equality holds on the right if and only if A is a 
scalar matrix. 

Furthermore 

(3.25) 

Equality holds on the lef if and only if A is normul and (3.24) holds. 
Equality holds on the right if and only if A is a scalur matrix. 

Proof. Let X(“)={J+J}, m,=XlAj/n, and sd=zlh112/n-(z(Xi()2/~2. 
Then applying (2.19) yields 

Now 

while 

m, =ZlA,l/n > IZAJn( = JtrA/n( = Iml, (3.27) 
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This proves the left-hand side of (3.23). To prove the right-hand side we use 
(3.28) and 

m, =Z]$]/n G (Z]$]“/~I)~‘~ < (trA*A/n)“‘, (3.29) 

where the first inequality is Cauchy-Schwarz. Equality holds on the left of 
(3.23) if and only if equality holds in (3.27), in (3.28), and on the left of 
(3.26). This means that, respectively, (3.20) holds, 

A is normal, (3.30) 

and 

using (2.20). Substituting (3.20) into (3.31) yields (3.24). 
Equality holds on the right of (3.23) if and only if equality holds in (3.28), 

in (3.29), and on the right of (3.26). This means that (3.20) and (3.30) hold, 

pjl=c, (3.32) 

and 

(A,] = Ihz( = * . * = l&l and h+J = lh+21 = . . . = l&J (3.33) 

[cf. (2.21)] must hold. This can be only if A is a scalar matrix. 

We notice that putting k = 1 on the left of (3.23) and Z= n on the right 
yields 

I4 < I~IW 1=12 , ,...,% (334) 

k=1,2 ,..., n. (335) 

Equality holds in (3.34) if and only if X, =&= . . * =A,,, and in (3.35) if and 
only if A is normal and Jh,] = ]hs] = - . * = l&,1. 

We presented “better” bounds for the real case in Theorem 2.3. In [19] 
we strengthen (3.34) and (3.35) using Theorem 2.3 and the trace of (AA* - 
A*A)2. 
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Unfortunately the lower bound in (3.25) for l&J may be negative. This 
bound will be positive if and only if 

lml5( n”;:,)s:=( ,“,:,)[ F -b121, (3.36) 

which reduces to 

(trA(“>(k-l)trA*A. 

We therefore get the following 

(3.37) 

COROLLARY 3.1. Let A be a nonnuU n X n complex matrix with exactly 
k nonzero eigenvalues. Then 

ItrA12/trA*A <k < rankA. (3.3) 

Equulityhddscm thelefifandonly~AAisnonnaland(h,l=(A,I=...= 

!$LEJ,~l@ h&Is on the right if and only if rank A=rankA2, i.e., A has 

We will now find analogous results for the real and imaginary parts of 
the eigenvalues. To ease the notation, let 

hf”)= I+(, qb)= 4, and X\“)= vi for i= 1,2,. . .,n, (3.39) 

where 4 and 3 are as in (3.3) and (3.4). 

THEOREM 3.3. Let A be an n X n complex matrix. Let B and C be as in 
(3.1) and 

n+,=RetrA/n=trB/n, m,=ImtrA/n=trC/n, 

S; = tr Be/n - 4, sf = tr Cz/n - m:. 

Then,fort=borc, 

(3.4) 

(3.41) 
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Moreover, for t = b, c 

m,- s,(n- l)““=~~~(.A) 

if ad only if A is non& and 

h?)(A) =@(A) =. . . =A$,,(A), 

while 

(3.42) 

(343) 

(3.44) 

if and only if A is normu and 

At)(A) =@(A) = . . . +($(A). (3.45) 

Furthermore, if A is normal, then 

tin(A) <m,- st/(n- 1)“2, (3.46) 

m,+s,/(n-1)1/2+&(A). (3.47) 

Equality holds in (3.46) (in (3.47)) if and only if the n - 1 smallest (largest) 
A/% are equul. 

The proofs of Theorem 3.3 and the subsequent results in this section 
follow our proofs for real eigenvalues, with X@), t= a, b,c, replacing the 
vector X of real eigenvalues. The variance of the +@) cannot, however, in 
general be computed in terms of traces; to obtain our inequalities we use 

+(A{“)‘-( ++s~, t-a,b,c. (3.46) 

For t= b,c equality in (3.48) holds if and only if A is normal [cf. (1.6), (1.71, 
while for t = a equality holds if and only if A is normal and + = c$r for some 
nonnegative scalars cj, i = 2,. . . , n [cf. (1.5), (3.20)]. 

As remarked earlier, a matrix is stable if and only if the real parts of its 
eigenvalues are all less than zero. By the above Theorem 3.3, this will occur 
if m, < 0 and s,“( n - 1) <n$. This reduces to 

RetrA/n=trB/n<O and (n-1)trB2<(trB)2. 
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We summarize this in 

COROLLARY 3.2. Let A= (uk,) be an n X n complex 
stable if RetrA< 0 and 

Let us now define the real and imaginary mid-means [cf. 

matrix. Then A is 

We then get 

THEOREM 3.4. Let A, m,, and s, for t = b,c be as in Theorem 3.3. Then 
for t= b,c, 

m,-s,( n”,:, )1”thj&j<m,+s,( y)1’2. (3.51) 

When (k, I) = (1, n) the inequality string collapses. When (k, I) # (1, n), then 
equality holds on the left if and only if A is fioTmal and 

AI” =jq) =: . . . =A@) 
k -1 

a& pq)+,=. . . =A$ (3.52) 

Equality holds on the right if and only if A is normal and 

~;t)=jy=. . . =A!‘) a& A(‘) , +1 =hy2 = * * * =A$). (3.53) 

Furthermore, for t = b,c, 

m,-s,( ,1;:,)‘“~h!“<rn,+S~(2-l)ln. (3.54) 

Equality holds on the left if and only if A is norm& and (3.52) holds. 
Equality holds on the right if and only if A is normal, 
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THEOREM 3.5. Let A, mt, and s, for t = b, c be as in Theorem 3.3. If A is 
normal, then for t = b,c, 

%!,, > I mt+ (n_s;)l,2 if WnY 

m + dn-l) 

t Z(n- 1)“2 
if 1 >in, 

(3.56) 

I st(k - 1) 
mt- (n-k+l)(n-1)"' 

if k<in+l, 

G!“, ( s+ 

i 
mt- (n_ ;)I/2 

(3.57) 

if ks+n+l. 

Equality holds in (3.56) if and only if 

Equality holds in (3.57) if and only if 

. . 

when k<in+l, 

=A:) when k=in+l, 

when k>in+l. 

(3.59) 

We note the similarity between Theorems 3.5 and 2.3. The difference is 
the need for normality. This is due to the fact that equality occurs in (3.48) 
for t = b,c if and only if A is normal. 

As mentioned in the introduction, a matrix is stable on the eigenspace 
corresponding to those eigenvalues with negative real parts. Furthermore, 
the solutions to the ordinary differential equation i= Ax will be spirals along 
the eigenvectors in the phase plane corresponding to those eigenvalues with 
nonzero imaginary parts. 
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We conclude this section with the following inequalities on differences 
(cf. Theorem 2.4). 

THEOREM 3.6. Let A and s, be as in Theorem 3.3. Zf 1 <k <I Gn, then 
fm t=a, b, M c, 

Equality holds if and only if A is rwnnul and 

(3.61) 

+=cih,, j=2 ,..., n, (3.62) 

for some nonnegative scalars cI, i = 2, . . . , n. 
Furthermore, if A is mmalandn=2qiseven,thenfort=borc, 

2s t < A@) - xp 1 (3.63) 

with equulity if and only if 

Zf, however, n = 2q 2 1 is odd, then (3.63) holds, but moreover, 

2stn/(n2-1)1’2Ghjt)-*) 

with equality if and only if (3.64) holds. 

We note that if A is nonsingular and normal, then 

(3.W 
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may be used as a condition number of A. We may now follow the approach 
in Sec. 2 and obtain upper and lower bounds for (3.66). We use Theorems 
3.1 and 3.6 to see that 

2% m4%4)l 
‘+ (trA*Ain)li2 ’ min]h(A)( ’ 

(3.67) 

Furthermore, if 

then 

]trA12>(n-l)trA*A, (368) 

m4wl < 1+ 
(2n)“2s, 

min]h(A)] ]m]-s,(fl-1)“2’ 
(3.69) 

4. EXAMPLES 

To illustrate our bounds for eigenvalues we present five numerical 
examples. 

EXAMPLE 1. In his recent paper Scheffold [14] obtained bounds for the 
subdominant eigenvalues of a matrix with nonnegative elements. To 
illustrate his findings, he considered the matrix 

(4.1) 

and found 

IX217 l&l < 5. 

Our bounds (3.25), however, yield 

3 < Jh,] < 9.89, 

0.89 < ]h2] < 7.31, 

0 < IX,] < 4.73. 

(4.2) 

(4.3) 
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We observe, moreover, that the eigenvalues of (4.1) are hi = 6 and the two 

eigenvalues of 3 1 
( 1 

(2.31) to (4.1) th& yi$ds 

and so all the eigenvalues must be real. Applying 

- 1.16 <ha < 0.92 < X, < 5.08 < A, < 7.16. (4.4) 

It is easily seen that the subdominant eigenvalues of (4.1) are A, 54 and 
As= -1. 

EXAMPLE 2. In their book [9, p. 1581 Marcus 
various bounds for the dominant eigenvalue of a 
elements: 

and Mint compared 
matrix with positive 

(4.5) 

Their best bounds are 

Our bounds (3.25) yield 

5.162 < A, < 9.359. (4.6) 

2.33 < Ihi] < 9.67, 

0 < (ha] < 7.04, (4.7) 

0 < Iha] < 4.40. 

The matrix in (4.5) is, however, singular; hence all its eigenvalues are real. 
Applying (2.31) yields 

-2.87<&< -0.27<Aa,4.93<A,<7.54. (4.8) 

The nonzero eigenvalues are 3; + fV%%, or approximately 7.531 and 

- 0.531. 

EXAMPLE 3. Marcus and Mint [9, p. 1481 also consider the complex 
matrix 

I 
7+3i -4-6i -4 

A = -l-6i 7 -2-6i 
2 4-6i 13-3i 

(4.9) 
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Using results due to Hirsch [S], they obtain 

[h(A)] < 40.03, 

]ReX(A)] < 39, (4.10) 

]ImA(A)] < 20.12, 

while Getigorin’s discs are 

(z-7-3i] 6 11.21, 

]a - 7]< 12.40, (4.11) 

(z-13+3i] 69.21. 

Applying (3.25) yields 

9 < Xp’ < 25.46, 

2.64 <h?’ < 19.09, 

0 < A$=’ d 12.73, 

while (3,54) yields 

9 < hcb) 
1 

< 14.20, 

6.40 < hcb) < 2 11.60 > 

(4.12) 

(4.13) 

3.81< hcb) Q 9 
3 

and 

0 < Ar) < 11.62, 

- 5.81< Xt’ < 5.81, (4.14) 

-ll.SZ<AFkO. 

@) Recall that 4 , t = a, b, c, and j = 1,2,3 are the ordered modulus, real part, 
and imaginary part, respectively. 

The bounds (4.13) and (4.14) define the rectangle [cf. (3.41)] 

3.81< Reh(A) < 14.20, 

- 11.62 < ImA < 11.62, (4.15) 
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First disc (4.11) 
fctangle (4.15) 

+G’ 
rd disc 

(4.11) 

FIG. 2. Gesgorin discs (4.11) and our bounds (4.15) for Example 3. 

which sits almost entirely within the union of the three Gerggorin discs as 
given by (4.11); cf. Fig. 2. the eigenvalues are 9, 9+9i, 9 - 9i, with 
A?) = 12.73. 

EXAMPLE 4. To illustrate our bound (2.62) for the condition number we 
consider the symmetric matrix 

4 0 2 3 
0 5 0 1 
2 0 6 0 
3 1 0 7 

(4.16) 
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Our bounds (2.32) yield 
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7.158 Q X, < 10.475, 

3.842 < h, < 8.372, (4.17) 

2.628 < A, < 7.158, 

0.525 < A, < 3.842. 

We find that [cf. (2.61)] 

p = 0.1429 (4.18) 

and so B=27.57” <30”; cf. Table 1. Thus (4.16) is positive definite. More- 
over [cf. (2.62)] 

K < 13.928. (4.19) 

Frobenius’ theorem [9, p. 1521 indicates that A, must he between the 
smallest and largest row sums, i.e., 

6<X,<ll, (4.20) 

while from the separation theorem [ 13, p. 641, using the top left 2 X 2 and 
bottom right 2X2 submatrices of (4.16), we obtain 

The eigenvahres are 9.376, 6.423, 4.775, and 1.426, and so K = 6.575. 

EXAMPLE 5. Our last example is the symmetric matrix 

(4 1 1 2 2’ 
1 5 1 1 1 
11 6 11. 
2 1 1 7 1 

-2 1 1 1 8, 

(4.21) 

(4.22) 
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Our bounds (2.33) yield 

7.449 <A, < 11.797, 

4.551< x, < 9.559, 

3.634 Q hs < 8.366, 

2.450 < h, < 7.449, 
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(4.23) 

0.263 <A, < 4.551. 

Moreover [cf. (2.61)] 

p = 0.6541. (4.24) 

Furthermore e-25.78” <26.57”; cf. Table 1. Thus (4.22) is positive definite. 

And so [cf. (2.62)] 

K < 36.973. (‘w 

Frobenius’ theorem [cf. (4.20)] here gives 

9<h,<13. (4.26) 

The eigenvalues of (4.22) are 11.171, 6.527, 5.434, 4.296, and 2.571, and so 
K = 4.345. 

The authors wish to thank Patricia J. Babecki fm suggesting Examples 4 
and 5, and Paul J. Brockman for drawing Fig. 2. 
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