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Abstract

M. Tirion’s use of a simple Hookean potential energy
in normal mode analysis (NMA) led to the study of
protein dynamics using elastic network models (ENMs).
Squaring the distance in Tirion’s potential energy gives
a new potential energy that is a function on the
rank 3 positive semidefinite (PSD) matrix manifold.
Fixed rank PSD matrix manifolds have received much
attention within the context of optimization algorithms.
This paper and our prior work suggests that these
manifolds are an appropriate setting for studying pro-
tein dynamics using ENMs. Fully understanding the
implications of this close relationship between ENMs
and the rank 3 PSD matrix manifold is the subject of
future research.

keywords: Euclidean distance matrices, elastic net-
work models, matrix manifolds, normal mode analysis,
positive semidefinite matrices, Riemannian manifold.

1 Introduction

Normal mode analysis (NMA) is a leading method for
studying protein flexibility. Tirion [15] proposed to re-
place semi-empirical potentials with a simpler Hookean
potential. This Hookean potential is a function of dis-
tance. By changing from distance to distance-squared,
also known as quadrance [18], the Hookean potential
becomes a function on the rank 3 positive semidefinite
(PSD) matrix manifold. This same function has been
used as an objective function in optimization [1, 14],
and suggests a close relation between elastic network
models (ENMs) and the rank 3 PSD matrix manifold.

This paper is structured as follows. In Section 2,
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we review some mathematical background on PSD
matrices, and their closely related Euclidean distance
matrices (EDMs). In Section 3, we review NMA as
formulated using distances. We call this formulation
classical NMA. In Section 4, we present NMA using
quadrance. We refer to this formulation as quadrance
NMA. In Section 5 we show that the root-mean-square
(RMS) fluctuations and the eigenvalue histogram for
classical NMA and quadrance NMA are very similar.
This similarity further supports the conjecture that the
rank 3 PSD matrix manifold is an appropriate setting
for studying protein dynamics using ENMs.

2 The PSD Matrix Manifold

For a set of n atoms, labelled 1, . . . , n, in 3-
dimensional space, an EDM matrix is the matrix where
each entry is the quadrance between atoms i and j,
i, j ∈ {1, . . . , n}. Denote the Cartesian coordinates of
atom i by yi ∈ R3. Let Y be the n × 3 matrix with
each row being yTi , the transpose of yi. Assume these
points are centered at the origin because a protein
structure is invariant to translation. The centered
Gram matrix of these atoms is given by X = Y Y T , it
has rank 3. Given a fixed rank r, the set of fixed rank
PSD matrices, denoted Sn,r

+ , is a Riemannian matrix
manifold. The geometry of this manifold is not unique,
see [17]. A protein structure is invariant to rotation.
This invariance gives the set of rank 3 PSD matrices a
quotient geometry, as seen in [7, 14].

2.1 The EDM Completion Problem

The EDM completion problem seeks to recover miss-
ing distances for a set of points, thereby recovering the
coordinates of all points. For an n × n EDM, D, A



linear mapping,

D = K(Y Y T ) = diag(Y Y T )1T +1diag(Y Y T )T−2Y Y T

(1)
relates each centered Gram matrix to its corresponding
EDM. Here, diag(A) ∈ Rn is a vector representing the
diagonal of the n× n matrix A, and 1 ∈ Rn is a vector
of all 1’s. The EDM completion problem thus provides
a setting for studying the theory and applications of
PSD matrix manifolds. Many of the mathemtical tools
resulting from studying the EDM completion problem
[1,10,14] is relevant to protein ENMs.

2.2 Classical Dynamics and
Riemannian Manifolds

Recall that classical dynamics is formulated on Rie-
mannian manifolds [2]. For a Riemannian manifoldM,
Arnold [2] defines the kinetic energy as the quadratic
form on the tangent space of each point x ∈ M. He
also defines the potential energy as any differentiable
function U :M→ R. Diagonalizing the Hessian matrix
of the quadratic approximation of the potential energy
gives the normal modes of the system.

2.3 The Benefits of M = Sn,3+

Tirion’s potential energy is defined onM = R3n. The
benefits and limitations of studying protein dynamics
using ENMs on Sn,3

+ versus R3n is still the subject of
continued research. We state some known benefits.

(1) A protein structure’s rotational invariance is en-
coded in the Gram matrix via the equivalence
Y Q(Y Q)T = Y QQTY T = Y Y T , where Q is a 3×3
orthogaonal matrix, that is, QQT = QTQ = I.
A protein structure’s translational invariance is
addressed by limiting to centered Gram matrices.

(2) The n × n EDM cone is convex for any number
of points n. The convexity of the EDM cone
gives it well understood mathematical properties.
In contrast, the set of distance matrices is not
convex when n > 3, see Section 6.3 of Dattorro [5],
suggesting the EDM cone may be a more natural
choice in applications.

(3) Protein dynamics is typically studied with coarse-
grained models that approximate the original
structure. When performing principal geodesic
analysis on Sn,3

+ , facial reduction can be done in
place of coarse-graining to reduce the size of the
Gram matrix [12]. Facial reduction is exact in
the sense the atomic coordinates are not changed.
Facial reduction is not the focus of this paper.

(4) We generated transitional conformations between
two protein conformations using Sn,3

+ in [11]. We
presented two example lattice structures which
showed Sn,3

+ preserved bond angles in the final
transitional conformation better than R3n .

In the remaining of this paper, we show the potential
energy defined on M = Sn,3

+ has similar properties to
Tirion’s potential energy. This similarity further sup-
ports the appropriateness of studying protein dynamics
on Sn,3

+ .

3 Classical NMA

We now review how NMA is formulated using dis-
tances [8, 9, 15].

We will consider a coarse-grained network model with
n residues whose positions are represented by their α-
carbons. We will assume all atomic masses are 1. Let
D denote the set of pairwise α-carbons within a given
distance, or quadrance, threshold. Tirion proposed the
Hookean potential energy:

U(y) = U(y0 + δ)

=
∑

(i,j)∈D

C

2

(
‖(y0i + δi)− (y0j + δj)‖ − ‖y0i − y0j ‖

)2
.

(2)

C is a constant assumed to be the same for all
interacting pairs [15]; without loss of generality, we will
assume C = 1 in this paper. δi ∈ R3 is a perturbation
to the initial coordinate, y0i of α-carbon i.

NMA requires the construction of the second order
quadratic potential of the summand near y0 ∈ R3n, the
vector containing all y0i ’s.

U(y0 + δ) ≈
∑

(i,j)∈D

(δi − δj)TGij(0)(δi − δj) . (3)

The Gij(0) term in equation (3) is a 3 × 3 symmetric
matrix. It is given by the Hessian of the summand in
equation (2). When taking the derivative, the summand
in equation (2) can be considered as a function of rij =
yi − yj evaluated at r0ij = y0i − y0j .

Gij(0) =
(y0i − y0j )(y0i − y0j )T

(y0i − y0j )T (y0i − y0j )
. (4)

Equation (3) can be expressed using matrices as δTG0δ
where G0 has a Laplacian structure. Consider the case
of just three α-carbons, n = 3, and the following special
9× 9 Laplacian matrix of 3× 3 blocks of Gij :

G0 =

G01 +G02 −G01 −G02

−G01 G01 +G12 −G12

−G02 −G12 G02 +G12

 . (5)



For a vector δ = (δT0 , δ
T
1 , δ

T
2 )T ∈ R9, we have:

δTG0δ =
∑
i<j

(δi − δj)TGij(δi − δj) (6)

For a protein with n α-carbons, the matrix G0 of the
quadratic form in equation (3) is thus given by a sparse
3n × 3n matrix, consisting of 3 × 3 blocks. The (i, j)-
th block, for i 6= j is given by −Gij(0). The (i, i)-th
diagonal block is given by,

i−1∑
k=1

Gki(0) +

n∑
k=i+1

Gik(0) =
∑
k:k 6=i

Gki(0). (7)

4 Quadrance NMA

The authors of [1, 14] formulated the Euclidean
distance matrix completion problem using the objective
function:

f(X) = f(Y Y T ) =‖ H ◦ (K(Y Y T )−D0) ‖2F . (8)

H is a symmetric matrix with binary entries; Hij = 1
if (i, j) ∈ D, 0 otherwise. D0 is the partial EDM we
wish to complete. In [13], the author gave the following
equivalent expression:

f(Y Y T ) =
∑

(i,j)∈D

((ei − ej)TY Y T (ei − ej)− d0ij)2

=
∑

(i,j)∈D

((yi − yj)T (yi − yj)− d0ij)2 .

(9)

Equation (9) is clearly the Hookean potential energy,
equation (2), with distances replaced by quadrance; it
is a matrix function on the rank 3 PSD matrix manifold.
This is thus the potential energy for quadrance NMA.
In the context of EDM completion, d0ij = ‖y0i − y0j ‖2 =

(y0i − y0j )T (y0i − y0j ) is the (i, j)-th known entry. In the

context of NMA, d0ij is the initial EDM of the starting
conformation, ei, ej ∈ Rn are canonical basis vectors,
and the yi’s are perturbed by some amount δi, from
the initial coordinates y0i ’s. Note that equation (2)
cannot be expressed as a matrix function because the
elementwise square-root function cannot be expressed
as a matrix operation.

For the quotient geometry of Sn,3
+ used in this paper,

the Riemannian metric for matrices A, B on the tangent
space is given by 〈A,B〉 = Trace(ATB) [7, 14]. The
kinetic energy for the initial conformation Y0 at time
t = 0 is thus:

T (Ẏ0) =
1

2
〈Ẏ0, Ẏ0〉 , (10)

where Ẏ0 is a tangent vector on the tanget plane at the
initial conformation at Y0.

(a)

Figure 1: Classical NMA found that the shape of the
density of normal modes is similar for many proteins.
Taken from [3].

We can find the quadratic approximation of the
potential energy using a procedure analogous to that
given in Section 3. The summand in equation (9) can
be expanded to second order. When any constants are
ignored we have:

Gij(0) = (y0i − y0j )(y0i − y0j )T . (11)

The Hessian matrix G0 is given by the same structure as
in Section 3. NMA requires eigendecomposition of G0.
From equation (4) and (11), we see that G0 is similar
for classical and quadrance NMA, except for a division
done in equation (4). Therefore, the computational cost
for classical and quadrance NMA is very similar.

5 Comparison of Classical and
Quadrance Modes

Tirion justified the appropriateness of the Hookean
potential energy by showing the resulting density of
normal modes (Figure 1 of [15]), and RMS fluctuations
(Figures 2 and 3 of [15]) closely match the L79 potential.
In this section, we present the close match of these
graphs between classical and quadrance NMA to justify
the appropriateness of using Sn,3

+ to further study
ENMs. Our graphs are generated using pyplot [6].

We begin with a discussion of G-Actin because this
was the main protein used by Tirion [3, 4, 15, 16] to
validate her methodology.

Ben-Avraham [3] observed the shape of the density
of normal modes is similar for many globular proteins;
he called this shape a “universal curve”, see Figure 1.
In Figure 2, we present the histograms generated by
grouping eigenvalues into 40 bins, using pyplot’s hist

function. Both histograms exhibit the characteristic
“universal curve” shape. They are not identical because
the magnitude of the eigenvalues are different due to
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(a) Classical modes.
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(b) Quadrance modes.

Figure 2: Classical and quadrance mode histograms for 1ATN both follow the shape shown in Figure 1.

differences in equations (4) and (11).

We now examine the RMS fluctuations of G-actin.
The formulas used have been described previously in for
example [8, 16]. The RMS fluctuation of all α-carbons
per normal mode k, σk, is given by:

σk =

(
n∑

i=1

(σi
k)2

n

) 1
2

, (12)

where

σi
k =

∣∣∣∣∣∣∣∣vik αk√
2

∣∣∣∣∣∣∣∣ , (13)

and vk = ((v1k)T , . . . , (vnk )T )T ∈ R3n is the eigenvector
for mode k. The authors in [8,16] have used an αk value
of:

αk =

(
2kBT

λk

) 1
2

, (14)

where λk is the k-th eigenvalue, kB is the Boltzmann
constant, and T is temperature. However, since the
constants do not affect the shape of the RMS plots, we
have ignored them and will use an αk value of:

αk =
1√
λk

. (15)

Figure 3 plots these values for both classical and quad-
rance modes. Both graphs tapers off quickly. This is
expected because, as discussed in [15], lower modes give
large amplitude low frequency motions of atoms, while
higher modes related to rapid small atomic oscillations.
Quantum mechanical effects become important for such
rapid small oscillations, and at this scale the Hookean
and Sn,3

+ potential energies are not appropriate. Figure

3 shows the potential energy on Sn,3
+ has captured this

drop in amplitude just as well as the classical Hookean
potential energy.

Next, we consider σi, the RMS fluctuation of residue
i due to all modes for each α-carbon, ignoring the first

6 which are rigid motions.

σi =

(
3n∑
k=7

(σi
k)2

) 1
2

, (16)

In Figure 4, we present the σi graph for numerous
proteins. For these proteins, the classical and quad-
rance normal mode density histograms and the graph
for σk have a similar discussion to 1ATN. That is, the
density histograms all follow the shape in Figure 1,
yet both are not identical, and the σk graph tapers off
similar to Figure 3. Hence, we will not present those
graphs. σi is more interesting because it is different
for each protein. As Figure 4 shows, quadrance NMA
reproduces the shape seen in classical NMA, implying
that Sn,3

+ is appropriate for studying protein dynamics.

6 Conclusion

In this paper, we presented NMA using quadrance.
Theoretically, quadrance NMA is the formulation of
NMA on the rank 3 PSD matrix manifold. This
manifold is widely studied in optimization, but its use
in studying protein dynamics is to date rare. We
have observed the RMS fluctuations and eigenvalue
histogram produced by quadrance modes show close
match to their classical counterparts which in turn
closely matches the L79 potential. These results suggest
the rank 3 PSD matrix manifold should be further
investigated as a setting for studying protein dynamics.
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(a) 1ATN σi for classical mode.
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(b) 1ATN σi for quadrance mode.
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(c) 2KT6 σi for classical mode.
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(d) 2KT6 σi for quadrance mode.
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(e) 2L3o σi for classical mode.
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(f) 2L3o σi for quadrance mode.
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(g) 2AVM σi for classical mode.
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(h) 2AVM σi for quadrance mode.

Figure 4: Quadrance NMA reproduces the σi seen in classical NMA


