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Abstract. Given a nonnegative, symmetric matrix of weights,H , we study the problem of finding an Hermitian,
positive semidefinite matrix which is closest to a given Hermitian matrix,A, with respect to the weightingH . This
extends the notion of exact matrix completion problems in that,Hi j = 0 corresponds to the elementAi j being
unspecified(free), whileHi j large in absolute value corresponds to the elementAi j being approximatelyspecified
(fixed).

We present optimality conditions, duality theory, and two primal-dual interior-point algorithms. Because of
sparsity considerations, the dual-step-first algorithm is more efficient for a large number of free elements, while
the primal-step-first algorithm is more efficient for a large number of fixed elements.

Included are numerical tests that illustrate the efficiency and robustness of the algorithms

Keywords: positive definite completions, best nonnegative approximation, semidefinite programming, primal-
dual interior-point methods, complementarity problems

1. Introduction

Suppose we are given a partial Hermitian matrixA with certain elements fixed, for which all
fully specified (fixed) principal submatrices are positive semidefinite. The positive semidef-
inite completion problem consists in finding numbers for the unspecified (free) elements in
order to makeA positive semidefinite. This problem has many applications and has been
extensively studied, see [8, 2] and the references therein. Much is known in terms of exis-
tence of completions. In this paper, we generalize the completion problem in that we allow
approximate completions. Using this approach, we introduce and test two primal-dual
interior-point algorithms. These algorithms solve both approximate completion problems
and exact completion problems and avoid the numerical difficulties that can arise from an

∗This report (related software) is available by anonymous ftp at orion.uwaterloo.ca in the directory pub/
henry/reports (henry/software/completions.d); or over WWW with URL ftp://orion.uwaterloo.ca/pub/henry/re-
ports/ABSTRACTS.html (henry/software/readme.html).
†Research support by the National Science and Engineering Research Council Canada.
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exact completion approach. In addition, the algorithms can exploit sparsity of the problem,
i.e., when only few elements are fixed or only few elements are free.

1.1. Background

Let H = Ht ≥ 0 be a real, nonnegative (elementwise) symmetric matrix of weights with
positive diagonal elements

Hii > 0, ∀i,

and letA = A∗ be another given Hermitian matrix. (We often refer toA as the given partial
Hermitian matrix, since some elements are specified as approximately fixed while others
are free. However, for notational purposes, we assume that the free elements are originally
set to 0 if they are not specified.) Let

‖A‖F =
√

traceA∗ A,

denote theFrobenius normof A, and

f (P) := ‖H ◦ (A − P)‖2
F ,

where◦ denotesHadamard product. We consider the weighted, best approximate comple-
tion problem

(AC)

µ∗ := min f (P)

subject to KP= b

P º 0,

whereK :Hn → Cm is a linear operator from the Hermitian matrices toCm, and P º 0
denotespositive semidefiniteness.

Note thatHi j = 0 means thatPi j is free, while Hi j > 0 puts a weight on forcing the
componentsPi j ≈ Ai j , i.e., Pi j is approximatelyfixed. If the optimal value at an optimal
P̄ is f (P̄) = 0, then we have an exact completion ofA, where the positions corresponding
to Hi j = 0 are free. The linear constraintKP= b can force components ofP to exactly
equal the corresponding component ofA, e.g., adding the constraint traceEi j P = Ai j is
equivalent to fixingPi j = Ai j , where

(Ei j )kl =
{

1 if i = k, j = l or i = l , j = k

0 otherwise

i.e., the matrixEi j is the zero matrix with a 1 in thei, j and j, i positions.
Suppose that the diagonal elementsaii > 0, ∀i, i.e., diag(A) > 0. Consider

max{det(P) : P º 0, diag(P) = diag(A)}.
Then (Hadamard’s inequality) the maximum occurs whenP−1, and soP, is diagonal. Thus,
the positive definite completion matrixP, with maximum determinant, of a diagonal matrix
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is characterized byP−1 having zeros in the positions corresponding to the free components
(the off diagonal components).

Now, suppose that 2k + 1 bands are specified inA, i.e.,ai j is fixed for |i − j | ≤ k; and
suppose that any principalk + 1 × k + 1 submatrix contained within the 2k + 1 bands is
positive definite. Then:

Theorem 1.1 ([6]).
1. If

Dk = {B : B º 0, bi j = ai j , ∀|i − j | ≤ k},

thenDk 6= ∅.
2. max{det(B) : B ∈ Dk} occurs at the unique matrix B∈ Dk having the property that for

all |i − j | ≥ k + 1, the(i, j )-entry of B−1 equals0.

Thus, we again have an optimum positive definite completion that is characterized by having
an inverse with zeros in the positions corresponding to the free components.

Suppose that we are given thepartial Hermitianmatrix A = A∗, i.e., the components
Ai j , i j ∈ E are fixed, while the others are free. This is denotedA = A(G), for the undirected
graphG = (N , E). The partial Hermitian matrixA is called aG-partial positive definite
matrix if every specified principal minor is positive definite. Thepositive semidefinite
completion problemconsists in finding componentsAi j , i j /∈ E , such that the resulting
matrix A º 0, is positive semidefinite. The graphG is chordal if there are no minimal
cycles of length≥ 4. A graphG is completableif and only if anyG-partial positive definite
matrix has a positive definite completion.

Theorem 1.2 ([8]). G is completable if and only ifG is chordal.

Theorem 1.3 ([8]). Suppose thatdiag(A) is fixed and A(G) has a positive completion.
Then there is a unique such completion, B, with maximum determinant; and it is charac-
terized by B−1 having0 components in positions corresponding to all kl/∈ E .

The unique completion with maximum determinant is again characterized by its inverse
having zeros in the positions corresponding to free components. In this paper we see that
this characterization follows through for AC with the inverse replaced by the “dual” matrix.

We assume that the diagonal ofH is positive, for if Hkk = 0, then we can makePkk as
large as we like to maintainP º 0. This allows us to setPkj = Akj , ∀ j .

There are several special cases of AC:

1. Suppose thatH has 0 valued elements corresponding to exactly the free elements of the
partial matrixA, and, also, bothK andb are 0. Then we found an exact completion, of
the partial matrixA, if and only if the optimal valueµ∗ = 0.

2. In the case thatA = 0 andH = E, the matrix of ones, the problem AC is an exact
completion problem or a best approximation problem with a semidefinite constraint.
Exact completion problems withP Â 0 and which maximize the determinant are studied
in [8] and more recently in [2, 11, 12]. Existence and optimality conditions are presented.
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Numerical techniques are presented in [7]. Best nonnegative elementwise interpolation
problems are studied in e.g., [3, 4, 18]. This includes optimality conditions as well as
algorithms based on Newton’s method.

3. Without the linear constraint, i.e., withK = 0 andb= 0, the problem AC is a quadratic
program over a cone and can be rephrased as a complementarity problem overP . Such
problems have been studied in e.g., [13, 14]. Algorithms for general semidefinite pro-
grams with linear constraints have been recently studied in several papers, see e.g., [5, 9,
21]. These authors also have software packages, some of which are public domain, see
e.g., the URL for semidefinite programming on the WWW ftp://orion.uwaterloo.ca/pub/
henry/software/readme.html.

1.2. Main results

In this paper we present the optimality conditions, a duality theory, and two primal-dual
interior-point algorithms specialized for AC. One algorithm, the dual-step-first algorithm,
is efficient for problems whereH is sparse, since the dual variable3 is 0 corresponding to
0 in H , i.e., corresponding to free elements ofA. The other algorithm, the primal-step-first
algorithm, is efficient whenH has many relatively large (in absolute value) elements, i.e.,
whenA, and so also the primal variableP, has few free elements.

We include numerical tests on randomly generated problems with various properties, i.e.,
A º 0, H º 0, and specified values for condition numbers ofA, H , sparsity ofH , and
the number of sufficiently large elements ofH . These tests show that the algorithms can
efficiently solve such problems. The algorithms were tested on thousands of problems and
never failed to find the optimal approximate completion. Thus, in the case that the matrix
H contains zeros and an exact completion exists, the algorithm never failed to find an exact
completion. In addition, since interior-point methods converge to the analytic center of
the optimal face, the algorithm finds the completion of maximal rank. Degeneracy and
ill-conditioning did not affect the algorithm, other than change the duality gap of the initial
starting solution.

1.3. Outline

The paper is organized as follows. We complete this section with preliminary notation and
results. In Section 2, we present the optimality characterizations and a dual program for
AC. The primal-dual interior-point methods are presented in Section 3. The numerical tests
are summarized in two tables in Section 4. We discuss the results in Section 5.

1.4. Preliminaries

We now present some of the matrix theoretic background. More details can be found in
e.g., [10]. We work in the space of Hermitian matrices,Hn, equipped with the trace inner
product,〈X, Y〉 = traceX∗Y, whereX∗ denotes complex conjugate. The cone of positive
semidefinite Hermitian matrices is denotedP. Each Hermitian matrixA ∈ Hn can be
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decomposed (Moreau decomposition [20]) into the sum of two orthogonal, positive and
negative, semidefinite matrices

A = AÂ − A≺, with A≺ º 0, AÂ º 0, A≺ AÂ = 0.

We useA⊗B to denote theKronecker productof AandB; vec(A) denotes the vector formed
from the columns of the matrixA; while Diag(v) denotes the diagonal matrix formed from
the vectorv, and diag(A) denotes the vector formed from the diagonal of the matrixA.

1.5. Notation

Hn the space of Hermitiann × n matrices
Pn orP the cone of positive semidefinite matrices inHn

Q ¹ R R− Q is positive semidefinite
AÂ the positive semidefinite part ofA
A≺ the negative semidefinite part ofA
A∗ the adjoint of the linear operatorA
A† the Moore-Penrose generalized inverse of the linear operatorA
C+ the polar cone of a setC, C+ = {φ : 〈φ, k〉 ≥ 0, ∀k ∈ C}
A ◦ B the Hadamard product ofA andB
A(2) the Hadamard product ofA andA
A ⊗ B the Kronecker product ofA andB
vec(A) the vector formed from the columns of the matrixA
diag(A) the vector formed from the diagonal of the matrixA
Diag(v) the diagonal matrix formed from the vectorv

ei the i th unit vector
Ei j the i j unit matrix,Ei j = ei et

j

E the matrix of ones
AC the approximate completion problem
DAC the dual of the approximate completion problem
SDP a semidefinite program
‖A‖F the Frobenius norm of the matrixA
f (P) the objective function of AC:‖H ◦ (A − P)‖2

F
L(P, y, 3) the Lagrangian of AC: f (P) + 〈y, (b − K P)〉 − trace3P
Bµ(P) the log-barrier function of AC: f (P) − µ log detP
P̄ an optimum semidefinite matrix of AC
3̄ an optimum semidefinite matrix of DAC

2. Duality and optimality

2.1. Unconstrained case

We first consider the special case without the linear equality constraint, i.e., with only the
semidefinite constraint. The statement that all feasible directions are not descent directions
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translates into the following characterization of an optimal solutionP̄ of AC:

∇ f (P̄) ∈ (P − P̄)+, (2.1)

whereP denotes thecone of positive semidefinite matricesand

S+ = {P : traceQ P ≥ 0, ∀Q ∈ S}

is thepolar coneof the setS. This yields the following characterization of optimality.

Theorem 2.1. The matrixP̄ º 0 solves(AC) if and only if

trace
(
H (2) ◦ (P̄ − A)

)
(P − P̄) ≥ 0, ∀P º 0, (2.2)

where H(2) = H ◦ H is the Hadamard squared term.

Proof: Note that the gradient acting on the Hermitian matrixh, see e.g., [17], is

〈∇ f (P), h〉 = 2trace((H ◦ P)(H ◦ h) − (H ◦ A)(H ◦ h))

= 2trace(H ◦ (P − A))(H ◦ h)

= 2trace(H ◦ h)(H ◦ (P − A))

= 2trace(h ◦ H)(H ◦ (P − A))

= 2traceh
(
H (2) ◦ (P − A)

)
. (2.3)

Therefore the gradient of the objective function is

∇ f (P) = 2H (2) ◦ (P − A). (2.4)

The result follows upon replacingh by the directionP − P̄, for P º 0, and applying the
so-called Pshenichnyi condition (2.1). 2

Corollary 2.1. If H = E, the matrix of ones, then the(unique) optimal solution of AC is
P̄ = AÂ, where AÂ is the positive part of A.

Proof: We substituteP̄ = AÂ in (2.2) and see that

trace
(
H (2) ◦ (AÂ − A)

)
(P − AÂ) = trace(AÂ − A)(P − AÂ) = traceA≺ P ≥ 0,

where thenegative partof A is denotedA≺, and satisfiesA = AÂ − A≺, A≺ º 0, and
traceA≺ AÂ = 0. The objective function is strictly convex in this case, i.e., the Hessian of
f acting onh is trace 2hH(2) ◦ h = 2‖h‖2

F . Therefore the optimum is unique. 2

Corollary 2.2. If H Â 0, then the(unique) optimal solutionP̄ of AC is the solution of

H ◦ P̄ = (H ◦ A)Â.
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Proof: From the conclusion and (2.2) we get

trace
(
H (2) ◦ (P̄ − A)

)
(P − P̄) = trace(H ◦ P̄ − H ◦ A)(H ◦ P − H ◦ P̄)

= trace(H ◦ A)≺(H ◦ P)

≥ 0, ∀P º 0. (2.5)

This is sufficient for optimality ofP̄. As in the previous proof, the objective function is
strictly convex and the optimum is unique. 2

2.2. General constrained case

Another approach involves the dual program of AC which we now derive. For3 ∈ Hn and
y ∈ Cm, let

L(P, y, 3) = f (P) + 〈y, b − K P〉 − trace3P (2.6)

denote theLagrangianof AC. It is easy to see that the primal program AC is equivalent to

µ∗ = min
P

max
y

3º0

L(P, y, 3). (2.7)

We assume that the generalized Slater’s constraint qualification,

∃P Â 0 with K P = b,

holds for AC.
Note that if the linear equality constraint does not exist, then the assumption diag(H) > 0

implies that Slater’s condition holds. The linear constraint can be written as(〈P, Ai 〉) =
(bi ), for appropriate symmetric matricesAi . Then the adjoint operatorK ∗y = ∑

i yi Ai .

Slater’s condition implies that strong duality holds, i.e., this means

µ∗ = max
y

3º0

min
P

L(P, y, 3) (2.8)

andµ∗ is attained for some3 º 0, see e.g., [16]. The inner minimization of the convex,
in P, Lagrangian is unconstrained and we can differentiate to get the equivalent program

µ∗ = max
∇ f (P)−K ∗ y=3

3º0

f (P) + 〈y, b − K P〉 − trace3P. (2.9)

We can now state the dual problem.

(DAC)

µ∗ := max f (P) + 〈y, b − K P〉 − trace3P

subject to ∇ f (P) − K ∗y − 3 = 0

3 º 0. (2.10)
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The above pair of dual programs, AC and DAC, provide an optimality criteria in terms
of feasibility and complementary slackness. This provides the basis for many algorithms
including primal-dual interior-point algorithms. In particular, we see that the duality gap, in
the case of primal and dual feasibility, is given by the complementary slackness condition:

traceP
(
2H (2) ◦ (P − A) − K ∗y

) = 0, (2.11)

or equivalently

P
(
2H (2) ◦ (P − A) − K ∗y

) = 0.

Theorem 2.2. The matrixP̄ º 0 and vector-matrixȳ, 3̄ º 0 solve AC and DAC if and
only if

K P̄ = b primal feasibility

2H (2) ◦ (P̄ − A) − K ∗ ȳ − 3̄ = 0 dual feasibility

trace3̄P̄ = 0 complementary slackness

The above yields an equation for the solution of AC. This is a very simple optimality
characterization and compares to the characterizations of best nonnegative interpolants in
[18]. This illustrates the connection between complementarity and the positive and negative
parts. This also extends the results in [23].

Corollary 2.3. The optimal solution of AC is the solution of the two equations

P̄ − (
P̄ − 2H (2) ◦ (P̄ − A) + K ∗y

)
Â = 0 (2.12)

and

K
(
P̄ − 2H (2) ◦ (P̄ − A) + K ∗y

)
Â = b. (2.13)

Corollary 2.4. Suppose that A= 0 and H = 1√
2
E. Then the optimal solution of AC is:

P̄ = (K ∗y)Â, (2.14)

where

K(K ∗y)Â = b. (2.15)

However, we do not apply Newton’s method to (2.12) but rather to a perturbed equation
which allows us to stay interior toP .
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3. Interior-point algorithms

We now present the interior-point algorithms for AC. We present a primal-step-first and
a dual-step-first version. The difference in efficiency arises from the fact that the primal
variableP does not change very much if few elements ofA are free, while the dual variable
3 does not change very much if many elements ofA are free.

Since we can increase the weights inH to try and force an exact completion, we restrict
ourselves to the case without the linear equality constraint. This avoids the need for a
constraint qualification and simplifies the algorithms.

3.1. Dual infeasible algorithm

We now derive a primal-dual interior-point method using the log-barrier approach, see e.g.,
[9]. This is an alternative way of deriving the optimality conditions in Theorem 2.2. The
log-barrier problem for AC is

min
PÂ0

Bµ(P) := f (P) − µ log detP,

whereµ ↓ 0. For eachµ > 0 we take one Newton step toward minimizing the log-barrier
function. Therefore, we take one Newton step for solving the stationarity condition

∇Bµ(P) = 2H (2) ◦ (P − A) − µP−1 = 0. (3.1)

This equation yields the perturbed complementary slackness equation:

2P H(2) ◦ (P − A) = µI , (3.2)

and the estimate of the barrier parameter

µ = 2

n
traceP H(2) ◦ (P − A). (3.3)

The Newton direction is dependent on the Eqs. (3.1) and (3.2) that we choose to solve.
The Eq. (3.2) is shown to perform better in the applications to solving max-cut problems in
[9]. A discussion on various choices is given in [1] (see also [15]). A general discussion of
adaptive-step methods for linear programming is given in [19].

The Hessian acting on the matrixh is

∇2Bµ(P)(h) = 2H (2) ◦ h − µP−1h P−1. (3.4)

The equation for the Newton steph is

∇2Bµ(P)(h) = 2H (2) ◦ h − µP−1h P−1 = −∇ f (P) + µP−1. (3.5)
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We use the Kronecker product to replace this equation by an ordinary matrix-vector
equation[

2Diag
(
vec

(
H (2)

) − µ(P−1 ⊗ P−1)
]
vec(h)

= vec
(−2H (2) ◦ (P − A) + µP−1

)
. (3.6)

We now have a choice of several interior-point methods, e.g., an infeasible primal-dual
method or a feasible primal-dual method. If we assume that the diagonal ofH is positive,
then we can always start with strict dual feasibility and so we can have a standard feasible
primal-dual method. Otherwise, there cannot be a strictly feasible dual solution. In this
case we must use a different convergence criteria.

3.2. Primal-dual feasible algorithms

We could modify the above procedure and guarantee dual feasibility under the assumption
that diag(H) > 0. For then, there exists an initialP Â 0, such that 2H (2) ◦ (P − A) Â 0
as well. We can fixPi j = Ai j throughout the algorithm, for elements corresponding to
Hi j = ∞. We then solve for the steph and backtrack to ensure both primal and dual strict
feasibility. This yields the primal-step-first algorithm since we only solve for the steph
for changes in the primal variableP. We do need to evaluate the dual variable in order to
update the barrier parameterµ using the perturbed complementarity condition.

Alternatively, we can work with dual feasibility and perturbed complementary slackness.
(We follow the approach in [9]. See also [19].) We replace Eqs. (3.1) and (3.2) with the
following two:

2H (2) ◦ (P − A) − 3 = 0 dual feasibility

−P + µ3−1 = 0 perturbed complementary slackness (3.7)

Note that the dual feasibility equation adds restrictions to the diagonal ofP in an interior-
point approach. Since we want3 Â 0, we cannot assume that the diagonal ofP is fixed
equal to the diagonal ofA; nor can we assume that the diagonal ofH is 0. This means that
we cannot fix the diagonal ofP nor set it completely free. However, we can have arbitrarily
large, or small, weights on the diagonal ofH.

We apply Newton’s method to solve (3.7). We leth denote the step forP andl denote
the step for3. Then linearization of the second equation yields

−(P + h) + µ3−1 − µ3−1l3−1 = 0

or

P + h = µ3−1 − µ3−1l3−1. (3.8)

We get

h = µ3−1 − µ3−1l3−1 − P (3.9)

and

l = 1

µ
{−3(P + h)3} + 3. (3.10)
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The linearization of the dual feasibility equation yields

2H (2) ◦ h − l = −(
2H (2) ◦ (P − A) − 3

)
. (3.11)

We assume that we start with an initial dual feasible solution. However, we include the
feasibility equation on the right-hand side of (3.11), because roundoff error can cause loss
of feasibilty. (Since Newton directions maintain linear equations, we could theoretically
substitute forh in this linearization with the right-hand side being 0.)

Dual-step-first. We can eliminate the primal steph and solve for the dual stepl .

l = 2H (2) ◦ h + (
2H (2) ◦ (P − A) − 3

)
= 2H (2) ◦ (µ3−1 − µ3−1l3−1 − P) + (

2H (2) ◦ (P − A) − 3
)
. (3.12)

Equivalently, we get the Newton equation

2H (2) ◦ (µ3−1l3−1) + l = 2H (2) ◦ (µ3−1 − A) − 3. (3.13)

We can now solve forl and substitute to recoverh. We then backtrack and ensure both
primal and dual positive definiteness.

The Eq. (3.13) is equivalent to[
2Diag

(
vec

(
H (2)

))
µ(3−1 ⊗ 3−1) + I

]
vec(l )

= vec
(
2H (2) ◦ (µ3−1 − A) − 3

)
. (3.14)

We see that in this final form we can exploit the possible sparsity ofH , i.e., Hi j = 0 ⇒
l i j = 0. Therefore, we can delete the corresponding rows and columns of the Kronecker
product when solving the system of equations. LetF denote thek × 2 matrix with rows
denoting thesth nonzero element ofH , i.e., fors = 1, . . . , k,

(Fs1, Fs2)s=1,...,k = {i j : Hi j 6= 0}.

Note that the(kl, i j ) component of the Hadamard-Kronecker product 2H (2) ◦ (µ3−1l3−1)

is found from

2µ traceEkl
(
H (2) ◦ 3−1Ei j 3

−1
) = 2µ traceeket

l

(
H (2) ◦ 3−1ei e

t
j 3

−1
)

= 2µ traceet
l

(
H (2) ◦ 3−1

:,i 3−1
j :

)
ek

= 2µH (2)
lk 3−1

li 3−1
jk .

Suppose that we represent the Newton system as

Lvec(l ) = r, (3.15)
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then fors = kl, t = i j , thest component of the matrixL is

Ls,t =
2µH (2)

Fs2 ,Fs1
3−1

Fs2 ,Ft1
3−1

Ft2 ,Fs1
if s 6= t

2µH (2)
Fs2 ,Fs1

3−1
Fs2 ,Ft1

3−1
Ft2 ,Fs1

+ 1 if s = t
(3.16)

Thes = i j -component of the right-hand side of the system (3.15) is

rs = 2H (2)
s

(
µ3−1

s − As
) − 3s.

This simplifies the construction of the linear system, especially in the large sparse case.

Primal-step-first. Alternatively, if many elements ofH are sufficiently large, i.e., if we
fix (or specify) elements ofA, then it is more efficient to eliminatel and solve forh first.
By equatingl in (3.10) and (3.11), and movingh to one side, we get the system

2H (2) ◦ h + 1

µ
3h3 = 3 − 1

µ
3P3 − (

2H (2) ◦ (P − A) − 3
)

(3.17)

or, equivalently,[
2Diag

(
vec

(
H (2)

) + 1

µ
(3 ⊗ 3)

)]
vec(h)

= vec

(
3 − 1

µ
3P3 − (

2H (2) ◦ (P − A) − 3
))

. (3.18)

We solve this system forh and then substitute to getl using (3.10).
Note that if thei j component ofP is specified or fixed, i.e., if the corresponding element

of H is sufficiently large, then thei j component of the primal stephi j = 0. Therefore, if
there are many elements ofH which are sufficiently large, then the size of the system (3.18)
is very small, i.e., it is the same order as the number of elements corresponding to relatively
small values inH . Let F denote thek × 2 matrix with rows denoting thesth free element
of P, i.e., fors = 1, . . . , k,

(Fs1, Fs2)s=1,...,k = {i j : Pi j is free}.

Note that the(kl, i j ) component of the Kronecker product3 ⊗ 3 is found from

traceEkl3Ei j 3 = traceeket
l 3ei e

t
j 3 = 3li 3 jk .

Also, thekl component of3P3 is

traceEkl3P3 = traceeket
l 3P3 = 3l : P3:k.

If we represent the Newton system as

Lvec(h) = r, (3.19)
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then fors = kl, t = i j , thest component of the matrixL is

Ls,t =
{

3Fs1 ,Ft1
3Ft2 ,Fs2

if s 6= t

2µH (2)
Fs1 ,Fs2

+ 3Fs1 ,Fs1
3Fs2 ,Fs2

if s = t
(3.20)

If we denote the dual feasibility residual as

r D := 2H (2) ◦ (P − A) − 3,

then thes = i j -component of the right-hand side of the system (3.19) is

rs = 3s − 1

µ
3 j : P3:i − (r D)s.

4. Numerical tests

The feasible interior-point algorithm was tested on randomly generated problems. We used
MATLAB as the programming language. (The files are available by anonymous ftp, see
the address and URL on the front page.) The tests were done on a SUN SPARC 1 with
16 megs RAM and with SPECint 18.2 and SPECfp 17.9.

The major part of the work of one iteration is the construction and solution of the linear
system to be solved for the Newton direction. Solving the linear system was much less
expensive since it depended directly on the number of nonzeros and not on the dimension
of the original problem.

For the dual-step-first algorithm, we need to form and solve the system in (3.14). This
requires finding the inverse of the dual variable,3−1, O(n3) operations. Then we need
to form the Kronecker product3−1 ⊗ 3−1, O(n̄4) operations (̄n denotes the number of
nonzero elements ofH ), and solve the resulting system, which involvesO(n̄6) operations.
Note that the complexity of both these latter operations depends completely on the spar-
sity of H, i.e., on the number of nonzeros inH. The algorithm needs an initial positive
definite matrixP Â 0, for which the corresponding dual variable is positive definite as
well, i.e., 2H (2) ◦ (P − A) = 3 Â 0. We obtain this by settingP = A + t I , wheret
is chosen using the smallest eigenvalue ofA; which is, in turn, found using a Lanczos
algorithm.

Similarly, for the primal-step-first algorithm, we use the system in (3.18). The complexity
is as above except that it depends on the number of zeros, or “small” elements ofH, i.e.,
elements which are not “sufficiently large”. The initial point is found using a similar
heuristic as in the dual-step-first algorithm.

In both algorithms, we have to be careful with the diagonal ofP. We cannot have 0, or
sufficiently large, elements on the diagonal ofH. This can cause problems in finding an
initial positive definite dual variable.

We first present the results for the dual-step-first algorithm. The matrix of weightsH
was chosen sparse, nonnegative, with positive diagonal, i.e.,.1 was added to the diagonal
to ensure that it is positive.
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Different tolerances and dimensions were tested with no appreciable difference in the
number of iterations. Typically, the duality gap is halved at each iteration. The algorithm
stops with a guarantee that the duality gap meets the desired tolerance. Since the objective
function is always nonnegative, this is equivalent to

min{ f (P), trace3P} ≤ tolerance.

The details for several of the tests follow in Tables 1 and 2. (Each test appears on one
line and includes 20 test problems.)

Table 1. Data for dual-step-first (20 problems per test): dimension; tolerance for duality gap; density of nonzeros
in H /density of infinite values inH ; positive semidefiniteness ofA; positive definiteness ofH ; min and max number
of iterations; average number of iterations.

Dimensions Tolerance H density/infinite A º 0 cond(A) H Â 0 min/max Iterations

60 10−6 .01/.001 Yes 79.738 No 15/23 16.8

65 10−6 .015/.001 Yes 49.8611 Yes 18/24 21.25

83 10−6 .007/.001 No 235.1547 No 24/29 25.45

85 10−5 .008/.001 Yes 94.6955 No 11/17 13.05

85 10−6 .0075/.001 No 299.8517 No 23/27 25.25

87 10−6 .006/.001 Yes 74.163 Yes 14/19 16.85

89 10−6 .006/.001 No 179.33 No 23/28 15.2

110 10−6 .007/.001 Yes 172.255 Yes 15/20 17.8

155 10−6 .01/0 Yes 643.9619 Yes 14/18 15.3

Table 2. Data for primal-step-first (20 problems per test): dimension; tolerance for duality gap; density of
nonzeros inH /density of infinite values inH ; positive semidefiniteness ofA; positive definiteness ofH ; min and
max number of iterations; average number of iterations.

Dimensions Tolerance H density/infinite A º 0 cond(A) H Â 0 min/max Iterations

15 10−5 .0751/.02 Yes 222.52 No 8/17 10.25

15 10−6 .1/.95 Yes 19.6102 No 10/23 15.55

15 10−6 .01/.95 Yes 21.0473 No 10/20 13.2

19 10−6 .005/.1 Yes 14.811 No 10/18 12.95

21 10−6 .005/.1 Yes 20.3077 No 8/24 15

38 10−6 1/.99 Yes 49.6068 Yes 14/24 16.3

45 10−6 1/.99 Yes 46.8396 Yes 15/22 17.1

55 10−6 1/.99 Yes 37.1883 Yes 15/30 17.45

85 10−5 .0219/.02 Yes 1374.54 No 16/23 18.95

95 10−5 .0206/.02 Yes 2.6983 No 8/14 11.05

95 10−6 1/.999 Yes 196.0130 Yes 14/18 16.8

145 10−6 .01/.997 Yes 658.5103 Yes 13/17 14.95
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5. Conclusion

We have presented optimality conditions and an interior-point algorithm for the approximate
completion problem AC. We have shown that the interior-point approach is very efficient
and robust. We have tested the algorithm successfully on randomly generated problems.
The algorithm never failed to find the optimal completion. In fact, the algorithm was very
robust; the number of iterations consistently fell within a very small range. Degeneracy
and ill-conditioning did not affect the algorithm. In particular, there were no difficulties
for problems where only a singular semidefinite completion existed. If a positive definite
completion existed, then one was always found, even if there were multiple optimal solutions
for AC. In addition, the algorithm exploited sparsity and so was successful on relatively
large problems.

We have not compared our algorithm directly with others. Other algorithms that solve
similar problems have appeared in the literature. In particular, AC is a semidefinite pro-
gramming problem and therefore can be expressed as a problem with a lower bound on the
smallest eigenvalue. Algorithms for eigenvalue constrained problems have been solved by
active set type methods, see e.g., [22]. However, recent testing has shown that our approach
using primal-dual interior-point methods is superior, see e.g., [9]. Also, we did not include
CPU times. The tests were done on a SPARC 1 using MATLAB. The major time was taken
in forming the operator. MATLAB is notoriously slow when using loops. The CPU time
can be reduced significantly if the operation is vectorized or the code is rewritten in C (for
which MATLAB now has the capability). As an illustration of the poor CPU time due to
the poor performance of MATLAB while looping, the last problem in Table 1, of dimension
155, took approximately 90 seconds per iteration to form the operator but only 6 seconds to
solve the resulting system for the Newton direction. (This test was done on a SPARC 20.)

In addition, we do not present any convergence proofs. These proofs can be obtained by
guaranteeing sufficient decrease at each step. This can be done using a potential function
or via an Armijo-Goldstein-Wolfe type step, see e.g., [9].

There are still many unanswered questions. It is not clear that we have used the best
primal-dual interior-point algorithm. We did not use a predictor-corrector approach or test
out different forms of the complementarity condition, e.g., (3.2). It is not clear whether
these changes, which do improve performance for SDP problems [1, 15], would improve
performance here, since they would have to exploit sparsity to the same extent.
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